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CIRCULAR UNITARY ENSEMBLES: PARAMETRIC
MODELS AND THEIR ASYMPTOTIC MAXIMUM
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ABSTRACT. Parametrized families of distributions for the circular
unitary ensemble in random matrix theory are considered which
are connected to Toeplitz determinants and which have many ap-
plications in mathematics (for example to the longest increasing
subsequences of random permutations) and physics (for example to
nuclear physics and quantum gravity). We develop a theory for the
unknown parameter estimated by an asymptotic maximum likeli-
hood estimator, which, in the limit, behaves as the maximum like-
lihood estimator if the latter is well defined and the family is suffi-
ciently smooth. They are asymptotically unbiased and normally dis-
tributed, where the norming constants are unconventional because
of long range dependence.

§1. INTRODUCTION

The purpose of this note is to initiate a statistical analysis of paramet-
rized exponential families of distributions on the group of unitary matrices
which are dominated by the Haar measure. Statistical analysis of the circu-
lar unitary ensemble (CUE) is not entirely new in general, but the theory
of maximum likelihood estimates is and has been first investigated by one
of the authors in [29)].

In order to motivate the approach here we recall basic facts from random
matrix theory and explain which role the parametrized families play within
the theory. Random matrix theory (RMT) is used in different branches of
science since it was introduced by Wishart in the late 1920s. It has been
successfully applied to an extraordinarily large variety of problems in fields
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as diverse as multivariate statistics [2,32], and more recently [6,24], har-
monic analysis on groups [10], combinatorics [3], nuclear physics [31], quan-
tum gravity [15], wireless communications [41], to name a few important
applications.

Although random matrices were first encountered by Weyl [42,43] in
connection with the integration over the unitary group, the explicit study
of their properties began in 1928 with Wishart [48], who obtained the joint
distribution of sample variances and covariances from multivariate normal
populations. After a relatively slow start, the investigation of random ma-
trix ensembles intensified in the 1950s, when Wigner [45,46] proposed to
use RMT to characterize certain properties of complex many-body systems
such as heavy nuclei, complex atoms and molecules. Despite the fact that
the Gaussian ensembles, introduced in Wigner [46,47], allow a wide range
of applications, they have the unpleasant property of being defined on the
non-compact space of matrices. Consequently there is no way assigning
the same weight to every matrix and hence matrices representing different
quantum systems cannot be treated in the same manner. To avoid this de-
ficiency, Dyson [17] modified Wigner’s treatment of a nucleus and defined
three ensembles, similar to Gaussian, but mathematically simpler to deal
with. The three circular ensembles (orthogonal, unitary and symplectic)
are defined as subsets of the set U(n) of all n xn unitary matrices. They are
applied in a broad range of models (see [18,31] for details). Nevertheless,
there exist physical systems that could be described by random unitary
matrices which do not share the statistical properties of Dyson’s circular
ensembles. As mentioned in Muttalib, Ismail [33], numerical studies related
to disordered conductors [23] and periodically driven systems [28], exhibit
statistical behavior different from that of Dyson’s models. Therefore, gen-
eralizations of circular ensembles of Dyson were introduced in [33, 34].

We shall develop a rigorous statistical treatment of generalized circu-
lar unitary ensembles (GCUE), where the attention is restricted to the
unitary case since the analytical tools are developed best in this case; in
particular, the asymptotic theory of Toeplitz determinants can be used.
The investigation is motivated by numerous examples from mathematics
and physics. Examples from physics include chaotic scattering (Jalabert,
Pichard [23]), conductance in mesoscopic systems (Beenakker [7]) and pe-
riodically driven systems (Haake [20]). Related models from mathematics
arise in the theory of orthogonal polynomials on the unit circle (Ismail,
Witte [22], Simon [37]), the theory of Toeplitz determinants (Adler, van
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Moerbeke [1], Borodin, Okounkov [9]), and studies of the length of the
longest increasing subsequence in a random permutation (Johansson [26],
Baik, Deift, Johansson [3], etc). The attention of physicists and mathe-
maticians is often centered around the asymptotic behavior of the spectra
of random matrices rather than the structure of random matrices itself.
Therefore, our generalization of Dyson’s circular unitary ensemble will be
defined in terms of the density of the joint eigenvalue distribution. Al-
though the estimation problem can be dealt with within a general non-
parametric framework, we restrict our attention to the case of densities
belonging to exponential families of probability distributions, since numer-
ous examples discussed in the physics literature allow this interpretation
(see the end of Section 2). Additionally, remarkable analytical tools from
the theory of exponential families can be applied which are not available
in the non-parametric setup.

This estimation problem has been first studied by the first author in her
PhD dissertation [29]. It contains the central limit theorems for sufficient
statistics of the four classical S-ensembles and the generalized circular uni-
tary ensemble. Central limit theorems were obtained (in a broader context)
for g-Hermite and Dyson’s circular ensembles in Johansson [25,27], Du-
mitriu, Edelman [16], Diaconis, Evans [14]. Corresponding theorems for
sufficient statistics of -Laguerre, f-Jacobi, the Cauchy unitary ensemble
are obtained in [29] which also forms the basis of the result in this note.
All results on the asymptotic normality of the sufficient statistics, as well
as the results on the behavior of the asymptotic maximum likelihood es-
timator defined in Sections 4 and 5 seem to be new. Since this paper had
been written in the years 2007 to 2009 (shortly after the PhD thesis [29]
had been defended) several papers appeared which are in some way re-
lated to the present one. We mention [5] where correlation functions of
parametrized families are considered, [36] where similar techniques as here
are used to derive asymptotic distributions. The book of Bai and Silver-
stein [6] shows a wide range of applications of large dimensional random
matrices and gives a basic account of theoretical results. The present work
adds to this endeavor.

This paper seems to be one of the first attempts to apply parametric sta-
tistical methods to analyze spectra of random matrices in the non-Gaussian
case. Classical estimation theory of i.i.d. samples is not applicable in this
setting since our analysis involves inference for samples of n strongly de-
pendent observations. We believe that the results in this note can serve as
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another starting point for a rich research area in high-dimensional asymp-
totic statistics.

A short description of the models considered and a summary of our
results follows.

Let U be a unitary matrix taken at random with respect to the nor-
malized Haar measure from the unitary group U(n), n > 1. The random
eigenvalues of U are denoted by (e?%1,... e"%»), where Z; € [0,2n) for
k=1,...,n. The joint distribution of eigenphases (called the Weyl mea-
sure) is absolutely continuous with respect to the Lebesgue measure on
[0,27)™ and its density is

pa(Q)=C," [[ e =P, (elo,2m), (1)
1<k<I<n
where C), is the normalizing constant (see Weyl [42,43]).
In this paper we introduce a generalization of (1) letting the probability
density of n eigenphases be of the form

n
po:n(Q) = C, ' (0) [Jwale™) T Il —€ >, ¢el0,2m)7,
k=1 1<k<I<n

where @ = (61,...,0,) € ©® C R" is an r-dimensional unknown, and hence
an estimable parameter. C,, (@) is the normalizing constant, and we is a
suitable weight function on the unit circle T. The theory of Toeplitz deter-
minants and complex analysis of several complex variables turns out to be
helpul deriving properties of the asymptotic maximum likelihood estima-
tor of @, and showing that the Fisher information contained in the sample
¢ = (¢,...,¢) stays bounded as the dimension parameter n increases
provided the weight function wg does not involve n. To overcome this de-
ficiency, we consider the third-order phase transition model with varying
weight introduced in Gross, Witten [19], where the probability density of
n eigenphases is equal to

Py;n(C) :Cﬁl(’}’) H exp {’yn cos Ck} H |eiCk _ i |2’
k=1

1<k<I<n (2)
¢ e[0,2m)"

with normalizing constant C,(v) and parameter v > 0. We show that the
true parameter value 7y can be estimated consistently by an asymptotic
maximum likelihood estimator, provided that v € (0,1 —¢), € > 0. Addi-
tionally, we obtain that the asymptotic maximum likelihood estimator 7,
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of vy is asymptotically normal in the sense that
~ 2
n(’yn - 70) - ‘/V(Ov 2)7 n — 00,

if 70 € (0,1 —¢€), € > 0. This result is in sharp contrast to classical estima-
tion theory of i.i.d. samples under regularity conditions where the variance
of the maximum likelihood estimator is of order O(1/n).

The outline of this paper is as follows. In Section 2, we state basic
facts about Dyson’s circular unitary ensemble and formally introduce the
generalized circular unitary ensemble (GCUE) extending the model CUE.
In Section 3 the asymptotic normality of the sufficient statistics for GCUE
is established. The asymptotic maximum likelihood procedure is applied
to estimate the parameters of the joint eigenvalue distribution of GCUE.
The properties of the estimators are derived in Section 4. In Section 5 we
analyze the model with varying weight from Gross, Witten [19]. Section 6
contains a discussion of open questions.

§2. CIRCULAR UNITARY ENSEMBLE AND GENERALIZATIONS

The circular unitary ensemble (CUE) is the group of unitary matrices
endowed with the normalized Haar measure. As mentioned in the intro-
duction, the joint distribution of n eigenvalues of a matrix taken from CUE
is absolutely continuous with respect to the Lebesgue measure on T™ and
the density function of phases is given by (1).

The density can be rewritten using the Vandermonde determinant

AQ =D T (@ -
1<k<I<n
1 1 1
eitt etz e ein
J0 NG e DG

and this shows that the eigenphases (Z1,...,Z,) with joint probability
density (1) exhibit strong repulsive dependence. This repulsiveness prop-
erty allows applications of CUE in a variety of models in physics and
mathematics. However, numerical studies of periodic quantum systems
and disordered conductors, scattering of plane waves within an irregularly
shaped domain (see [18,33]) have a statistical behavior different from that
of CUE. A new analytical model, containing CUE is thus considered.
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Definition 1. The generalized circular unitary ensemble is the ensemble
of random unitary matrices whose joint distribution of n eigenphases is
given by the density

pe;n(C) = C, ' (6) H we (e*) H |e** — ™12, ¢ €l0,2m)", (3)
k=1 1<k<I<n

where @ = (01,...,0,) is an r-dimensional parameter, C,(0) is the nor-
malizing constant and

we(e) = exp { D0,Vj(e)}, ¢ € [0,2n), (4)

with real-valued functions V; having Fourier coefficients {‘//;(k)}kez satis-
fying the condition

B = Y K|V

keEN

2
‘ < 00, 1<j<r (5)
We note that the function wg is integrable on the unit circle if the

condition (5) is satisfied. This fact is obtained from the first proposition
(for a proof see [37]).

Proposition 2.1. Let V € LY(T) be a real-valued function on the unit
circle with Fourier coefficients {V (k)}rez, such that

E=Y KV <o

keN
Then the function e®* — w(ei®) = exp V(e%), ¢ € [0, 27), belongs to L*(T).

It follows from this proposition that exp(6;V;) € L'(T) for every
6, € R, 1 < j < r, and consequently wg € L'(T) for every 8 € R"
whenever the condition (5) is satisfied. Since |A(¢)|? is bounded on T%,
the density (3) is well defined.

If the condition (5) is satisfied, the strong Szegé theorem for Toeplitz
determinants

0) F(-1) ... f(=n+1)
2 Fa) 0 ... f(-n+2)

Dn[f] = det[f(k - l)]0§k7l<n =

fo-1) Fm-2 ... 0
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(f € L}(T)) can be used to derive statistical properties of the asymptotic
MLE for the parameter € in (3). The key connection of the GCUE with the
theory of Toeplitz determinants is based on the following determinantal
identity due to Heine and Szegd; in particular, the explicit expression for
the normalizing constant Cy,(0) can be deduced (see [27], equation (1.4)).

Lemma 2.2 (Szeg6 [39]). Let f € L*(T) be a function on the unit circle

o~

with Fourier coefficients { f(k)}rez. Then the following identity holds

g | 117180 & = D, ©
[0,27)n F=1

From this we can see that Cp(0) in (3) is a multiple of the Toeplitz
determinant with respect to the symbol wyg,

Cr(0) = (2m)"n! D, [we]. (7)
Below we also use the notation
Cn(0+it) = 2m)"n! Dy [fo.t] 0,tcR",

when

r

for ) =TT |D_(6; +it;)V;(e™™)
k=1

=1

(t=(tj)1<j<r, @ = (6;)1<i<r, €= (Ck)1<k<n)- The smoothness condition
on f’ was relaxed to the condition that log f € L;(T) in [21] and the
final form we shall need can be found in [25, Theorem 2.2] (attributed to
Onsager and Szeg?).

Theorem 2.3. Let g € LY(T) be a complex-valued function on T with
Fourier coefficients {g(k) }rez. Assume that

> 1k G(k) [ < oo
keZ
Then
Dylexp g] = exp {@(0) + > kgk)g(—k) + 0(1)} (8)

keEN
as n — oQ.
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The identity (8) is used to establish the CLT for the sufficient vector
statistic of GCUE and to derive the asymptotic MLE of the parameter 6.
The approach by (6) and Theorem 2.3 has been used by Johansson [26]
to obtain the asymptotic normality of a broad class of linear statistics for
CUE.

We conclude this section with a motivation for the models described
in (3). Although a non-parametric setup can be considered, the class of
models here covers most practical objectives. Moreover, statistical analy-
sis for these models can widely be developed in the framework of the theory
of exponential families: the models allow a reduction of data by sufficiency,
and the normalizing constant C,, (@) is an analytical function of its param-
eter @ € R” for arbitrary fixed n € IN. In addition to these properties, we
mention that the parameters 61, ... ,60, may have a clear physical interpre-
tation, and their estimation often is of high importance for understanding
the system’s behavior. As mentioned in Muttalib, Ismail [33], the intro-
duction of the weight function wg may come from any system-dependent
physical constraint, since the measure under consideration may depend on
various physical parameters.

The main examples of the weight function wg in (4), include

wél)(eig) =exp (fcos(), ¢ €10, 2],
wéz) (e') = exp (A cos ¢ + 0 cos 2(), ¢ €10, 2],
wi? () = (1+ p* — 2pcos()’, ¢ € [0,2n].

(1)

The weight function w; ’ and the corresponding system of orthogonal poly-
nomials arose from the studies on the length of the longest increasing sub-
sequence of a random permutation in Baik, Deift, Johansson [3, p. 1123],
and random matrix models in Gross, Witten [19], Periwal, Shewitz [35].
Recursion relations for Toeplitz determinants of this symbol can be found
in Borodin [11], or Adler, van Moerbeke [1, Section 2], while the properties
of orthogonal polynomials with respect to this weight (called the Bessel
weight) appear in detail in Ismail, Witte [22]. It should be noted here
that in the literature on circular statistics, wél) (e%¢) is known as the den-
sity of the von Mises—Fisher distribution on the 2-dimensional sphere (see
e.g. Jammalamadaka, SenGupta [24]). The weight w? arose in the stud-
ies of the longest increasing subsequence in a random odd permutation
(see Tracy, Widom [40]). Rational recursion relations for the respective
Toeplitz determinants are described in detail in Adler, van Moerbeke [1].
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For the discussion of the weight wés) and their Toeplitz determinants the

reader may consult Borodin [11], Borodin, Okounkov [9], and Adler, van
Moerbeke [1].

Remark 2.4. An important application of GCUE is the theory of log-
potential gases. In this framework the density (3) coincides with the Boltz-
mann factor of a one-dimensional Coulomb gas consisting of n particles free

r
to move on the unit circle in an external field with potential — Y~ 6,V;(¢)/2
j=1

at temperature 1/2. Further details regarding this connection are contained
in Forrester [18].

Remark 2.5. We note here that due to Weyl’s integration formula an
equivalent definition of GCUE can be given by considering the probability
measures with densities

exp { Z Gjtr(Vj(U))}

on the unitary group U(n), where the functions V; are as given in Defi-
nition 1, considered as a class function on U(n) (see [13, p. 92ff]). More
generally and in the same spirit, measures with densities

exp {tr(V(U))}

can be considered where V : T — R is such that exp(V'(-)) is integrable
on T. The estimation of the function V' can be studied in the nonparamet-
ric setup. Ensembles of this form can be considered dominant in RMT and
the theory of log-potential systems (see e.g. Deift [13]).

§3 ASYMPTOTIC DISTRIBUTION OF THE SUFFICIENT STATISTIC
The vector statistic
n n
VO(Z) = (3T, Y V(e ) ©)
k=1 k=1
in Definition 1 is clearly sufficient, where Z = (Z1,...,Z,) (we suppress

the dependence of Z; on n since no confusion can occur) is a sample of
exchangeable random variables with probability density function

po:n(C) = C 1 (0) [Twele™™) T[] e —e“P,  ¢el0,2m)™
k=1

1<k<I<n
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We shall prove a central limit theorem (CLT) for this statistics as n — oc.
This result is of special importance when comparing models with experi-
ments (physicists are mainly interested in those features of the statistical
model that tend to definite limits as n — o00). The method of proof is
based on the strong Szegd theorem and the identity (7), which will be
used to prove pointwise convergence of the characteristic functions to the
corresponding limit characteristic function of a normal distribution.
In the case of Dyson’s circular unitary ensemble

Poin(Q) =C10) [ 1€ =2, ¢elo,2q],

1<k<I<n

the central limit theorem was obtained for a statistics of the form
n
> (e,
k=1

where f € L'(T) is assumed to be real-valued function such that

S HFH)? < oo (10)

kelN

This result together with a superexponential rate of convergence for f
is due to Johansson [25, Theorem 2.6]. For further developments of this
subject see Soshnikov [38] and Diaconis, Evans [14].

In order to state the CLT for GCUE, we need to define a non-negative
bilinear form on the space H21 /% of real-valued functions f € LY(T) satis-
fying the condition (10). The form is defined by

(o912 = |kl FK)G(~k), f,g€ Hy?, (11)

keZ

and turns Hzl /? into a Besov potential space. For details we refer the reader
to [14] and references therein. Once the form (11) is defined, we can state
the theorem

Theorem 3.1. Consider the sequence of probability density functions

{Pe;n(C)}rnx2 in (3), where the real-valued functions V; belong to Hzl/2 for
each 1 < j < r. Assume in addition that
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Then, for fized @ € R”, the vector statistic V™ (Z) in (9) has asymptoti-
colly a normal distribution with mean

p= (0 Y0 Vi), (12)
=1 =1
and covariance matrizc
Vi, Vi)ipe Vi, Va)iyp oo (Vi, Vi)ige
v Vo, Vi) Vo, Va)ije oo (Vo,Viipe _ (13)
Ve, Vidie (Vs Va)ijz oo (Vie,Viipe

Proof. The asymptotic distribution of the statistic V(*)(Z) is obtained
from the convergence of its characteristic function

¢n(t) = Eyexp { Zzitjvj(elz’e)}a t= (tj)lﬁjST eER",

j=1 k=1

where E, denotes the expectation with respect to the probability (3).
Substituting the density pe.(-) into the mathematical expectation yields

r

0n®)=C(0) [ 1AQF [ exw { 30065+ it Vi) Jac
[0,27]" k=1 J=1

_ Cu(0+it)
~ Ca(8)

The identity (7) and Ibragimov’s version of the strong Szegé theorem (The-
orem 2.3) imply that the above expression has the limit

tim 6,(t) = exp { = S K(300,50) (30,75 -b))
kEN j=1 j=1

T

keEN =1 j=1



174 R. DAKOVIC, M. DENKER, | M. GORDIN

Rewriting the expression on the right-hand side, we observe that
T

Jim 0u(t) = exp [ it (300015, Vi )]
=1

Jj=1

X exp [f % Z 1217 <V]‘,W>1/2}a

jl=1

where the limiting function coincides with the characteristic function of
the multivariate normal distribution with mean and covariance matrix as
specified in (12) and (13). This completes the proof of the theorem. [

Remark 3.2. Notice that as in the case of CUE (see [25, Theorem 2.6], [14,
Theorem 4.1], or [38, Theorem 1], also the result in [6, Theorem 1.1]).
Theorem 3.1 proves the convergence

vi(z) L ¥ (w,B), n— o,

without normalization by /n. Moreover, the components of the vector
statistics V(" (Z) are asymptotically independent if and only if the func-
tions V;,1 < j < r, are orthogonal in the space Hé/z, e (Vi,Vi)1y2=0
for j # 1. In that case, the covariance matrix (13) obtains the diagonal
structure

Y= diag{<V1,V1>1/27 S <V1"7V1">1/2}'

§4. ASYMPTOTIC MAXIMUM LIKELIHOOD ESTIMATION

The aim of this section is to construct the asymptotic maximum likeli-
hood estimator 8™ for the parameter 6 of the generalized circular unitary
ensemble. The maximum likelihood estimator 8™ is defined as the solu-
tion of the system of equations

Ao Cal0) = Y Vi), 1< <r, (14)
J k=1

and is not available in a closed form. We show that

0 ZT .
6710g0n(0)r> 9; <V3’,V2>1/27 1<]<r7
j * =
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uniformly over @ € K, K C R", K compact, and replace (14) by the system
of linear equations

Zél(")q/j’v;)l/z =Y Vi(e'r), 1<j<,
1=1 =1

which defines the asymptotic MLE 6™ in a closed form. The estimator
0™ is asymptotically unbiased, but not consistent. Below we indicate
why a consistent estimation of the parameter 6 is not possible, unless the
dimension parameter n is included into the weight function weg.

Since pg, (¢) is the density of the distribution from an exponential fam-
ily for each n > 2, it follows from [12, Corollary 2.6], that the derivatives of
the function 8 — A, (0) := C,(0) may be obtained by differentiation un-
der the integral sign. Additionally, A, (@) admits an analytical continuation
to C" by the identity

n

NOR BINGIS | P C S
[0,27)n k=1

Assume that the conditions of Theorem 3.1 are satisfied and consider
the sequence of Toeplitz determinants {D,[we]}n>2 with respect to the
symbol wg, 8 € C”. Since the functions V;,1 < j < r are fixed, the
Toeplitz determinants D, [wg] become functions of the parameter 8 € C”.
In order to avoid misinterpretation, we define the new sequence of functions
{dn(6)}n>2 by setting

dn(0) := Dywe], 6€C", n>2.

From the theory of exponential families and the determinantal identity
(6), we obtain that d,,(8) = X, (8)(27)~"/n! is an entire function for every
n > 2. Additionally, the sequence {d,,(6)},>2 is locally uniformly bounded
as shown next.

Lemma 4.1. Assume that the conditions of Theorem 3.1 are satisfied.
Then the sequence {dn(0)}n>2 of entire functions on C™ is locally uni-
formly bounded, i.e. for every compact set K C C" there exists a constant
Ck > 0 such that

dn(0)] < Cxe, VO E K.
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Proof. From the determinantal identity (6) we have

1 i 1 r
i) = Gy [ 1SOPTL waey o e (15)
[0,2m)" -

and consequently

1
|dn(0)] < Goym

/ AQP ] lwe(es)| ¢, e
[0,27)" k=1

Since the functions Vj, 1 < j < r, are real-valued, we observe that
r
jwo(e'*)| = exp { 3" Re(8)V;(e") |
j=1

From the last equality it follows that it is enough to prove the local uniform
bound for the sequence {d,,(0)},>2 with respect to the real-valued symbols
wg with parameter @ € R”. As noticed in [25], for the real-valued symbol
we, we have from Szegd’s theorem that

21

Din[we] . i

_— = 7 i 2 2’ )

Dy, —1[we] pe%ég,l/'p(e )" we (e )d, n (16)
0

where &7, is the set of all polynomials of degree not exceeding n and with
leading coefficient equal to 1. Observe that the left-hand side in (16) is
non-increasing in n and it tends to 1 as n — oo because lim D,[wg]

n—oo

exists. Thus, for every 6, the sequence {D,[weg]}nen increases to its limit

exp { 32 k(20,7509 (i)}

keEN

as n increases. As an immediate consequence of this fact, we obtain that

0 (O)] < exp {2 500,60 (V;, Vi), Vne N, 0 R,

j=11=1

where (V;,Vi)1/2 is the non-negative bilinear form defined in (11). The
function on the right-hand side is bounded on compact sets in R", and the
lemma is proved. O

This lemma proves part of the next lemma.
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Lemma 4.2. Suppose the conditions of Theorem 3.1 are satisfied. Then
the sequence {d(0)}n>2 of Toeplitz determinants (15) with respect to the
(complez-valued) generating function we, converges locally uniformly in C”
to its limat

d(9) :exp{%ZZGﬂI <VjaV2>1/2}- (17)

j=11=1

Moreover, all partial derivatives of d,(0) converge locally uniformly to the
corresponding derivatives of the limiting function (17).

Proof. The strong Szegd theorem applied to the symbol wg € L'(T)
implies that

lim d,(0) = exp {% ZZGﬁ[(Vj,Vlh/z}, (18)

n—oo
j=11=1

under the conditions of Theorem 3.1.

Since the sequence of analytic functions {d,(8)}n>2 is locally bounded
(Lemma 4.1) and it converges to an entire function on C", it follows from
Vitali’s theorem for several complex variables that it also converges locally
uniformly on C”. If we apply Weierstrass’ theorem for several complex
variables to the sequence of Toeplitz determinants {d,(8)},>2, we obtain

T
for an arbitrary multi-index I = (I1,...,0;), with > l; =1, ; > 0, 1 <
Jj=1
j < r, that the derivatives

al

————— du(0)
o0 ... 06l

exist and converge uniformly on compact sets in C” to the corresponding
derivatives of the limiting function (17). O

In order to obtain the probabilistic interpretation of the uniform con-
vergence of derivatives in Lemma 4.2, we will consider the cumulant gen-
erating function ¢,(0) = log A\, (@) corresponding to the density pe,,(¢)
and formulate the following corollary.

Corollary 4.3. Let {pg.n({)}n>2 be the sequence of probability density
functions defined in (3) and suppose that the conditions of Theorem 3.1
are satisfied. Then the sequence of gradients {Vi,(0)}n>2 of its cumulant
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generating functions 1, converges locally uniformly in @ € R” to the vector
r r
(Zaj<vlv Vj>1/27 ) Z@'(Vm Vj)l/Z)-
j=1 j=1

Proof. The statement follows from Lemma 4.2 applied to compact sets
K C R" and the functions
0 0
—Un(0) = —d,(0)/d,(0), j=1,...,r O
As discussed in the beginning of the section, our aim is to obtain the as-
ymptotic maximum likelihood estimator for the vector parameter 8 € R".
Since all preliminary results are stated, we may summarize the discussion
in the following theorem. We denote the true parameter value by 6.

Theorem 4.4. Let {po.n(C)}n>2 be the sequence of probability density
functions given in (3). Assume that the conditions of Theorem 3.1 are
satisfied and that the functions Vj,j = 1,...,n, are linearly independent.
Then the asymptotic mazimum likelihood estimator 8™ of 0y, defined as
the unique solution of the system of linear equations
r n

SO WL Vi = Y Vi), 1<i<r, (19)

=1 k=1
converges weakly, under the distributions with density pg, n, to A6y, X7,
where X is as specified in (13).

Proof. The maximum likelihood estimator (™ is defined as the solution
of the system of equations
o - ;
. (n)y — (%€ ;
29, n(9”)—;Vj(e”), 1<j<r (20)
The convergence in Corollary 4.3 implies that the left-hand side in (20)
can be approximated by the expression

‘
S0V Vi) e
k=1

This justifies the definition of the asymptotic maximum likelihood estima-
tor (") by the system of linear equations (19).
It also follows that
6" = v (g st
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and, consequently, Theorem 3.1 yields the convergence of
6" ?%/(00,271), n — 00. O

Remark 4.5. We notice that although 6™ is asymptotically unbiased
and follows asymptotically a normal distribution, it is not a consistent es-
timator, as mentioned before. This fact can be explained by the behavior of
the Fisher information matrix I,,(@) corresponding to the density pg,,(C).
Namely,

62

5,557 (©)

|

3I=1,..,r

converges to the constant matrix ¥ defined in (13), and therefore, the in-
formation contained in the observed sample ((i,...,{,) of exchangeable
random variables with probability density pe.,(¢) remains bounded as n
increases. This fact can be given an interpretation in the framework of the
theory of log-potential gases. Our procedure involves estimation of param-
eters of an external field for a Coulomb gas with Boltzmann factor (3).
While the number of particles in the Coulomb gas increases, the potential
of an external field remains unchanged. As a consequence, the information
about the potential contained in the observation ¢ is bounded. We con-
clude that consistent maximum likelihood estimation of the parameter 8
is not possible, unless the dimension parameter n is introduced into the
weight function we defined in (4). In such a setting the potential of an
external field is assumed to be proportional to the number of particles in
the Coulomb gas system. Below, we consider the model (2) with varying
weight and the third-order phase transition, and show that under such a
model, the asymptotic maximum likelihood estimator of a concentration
parameter 7 has the variance of order O(1/n?).

§5. THE THIRD-ORDER PHASE TRANSITION MODEL

In this section we consider the model from two-dimensional lattice gauge
theories which was analyzed heuristically by the steepest descent method
in Gross, Witten [19]. The same model arose in the studies of the length of
the longest increasing subsequence in a random permutation. Its proper-
ties were rigorously analyzed in a series of papers including Johansson [26],
Baik, Deift, Johansson [3], Baik, Deift, Rains [4] and Widom [44]. It was
shown that the ensemble exhibits the third-order phase transition at v = 1.
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Formally, the model is defined by the joint probability density of n eigen-
phases equal to

Pyn(Q) = MIAQPexp {yn Y cosGf,  Celo2a’, ()

where w., (%) := exp(7y cos () and where (abusing the previous notation a
bit) Cpn(v) = (2m)"n! Dy[wsyy] is the normalizing constant and v > 0.

The following lemma, due to Gross, Witten [19] and Johansson [26,
Lemma 2.1], describes the asymptotic behavior of the free energy f,(y) =
n=2log Cpn (7).

Lemma 5.1 (Gross, Witten [19]). If f,(v) = n=2log Cy, (), then

{1—2, if 0<~v<1,

lim fo(y) = f(7) = .
n—oco" " v —+logy -3, if 1<n.

Remark 5.2. The limiting function f(v) in Lemma 5.1 is not analytic.
Its derivative d* f/d~y? is discontinuous at v = 1, thus a third-order phase
transition occurs at this point. The asymptotic eigenvalue distribution is
supported on the whole unit circle for v < 1, whereas for v > 1 its support
is a subset of T, details are contained in Johansson [26].

The following lemma shows that the limit in Lemma 5.1 can be used to
prove the asymptotic normality of the sufficient statistics T,,(Z) defined
in (22).

Lemma 5.3. Let 0 < v < 1 and Z = (Zy,...,Z,) be a sample with the
joint probability density function (21). Then the centered sufficient stalistic

T.(Z) = zn:cos Zy —ny/2 (22)
k=1

converges in distribution to the normal distribution with mean 0 and vari-
ance 1/2.

Proof. The moment generating function of the statistics T},(Z) is

Mal9) = '™ [ AP exp {(m -+ 5) Y cos G}
[0,27]" k=1

— e—s'yn/Q Dn[w'yn+s] _ e—s'yn/Q C(’}/ + %)

Dn[wwn] C(v)
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for s € R. Let 0 < ¢ < 1 — v and consider the sequence of functions
{Mp(8)}new where s belongs to the interval

s € I, = [~ min(y,1 — ), min(y,1 — 7)].

From the definition of I, it follows that 0 < v+ s/n < 1 for every s € I,
n > 1. It has been shown in Johansson [26, Lemma 3.3], that for every
1 > 0 there exists a constant K (n) > 0 such that

252
n?é < K(n)’

4 n
for arbitrary n > 1,9 € [0,1 — n]. Consequently, with 6 € {y,7+ £} and
n=c¢

log C,(6) —

e~ K(e)/n < Cn(v) 6772n2/4 < eK(e)/n’ n>1,
and
e KO/ < Oy + s/n) e (24 L KO/, n =1,

uniformly for v € [0,1 — €). Thus, we have the following expansion

R e )
—ep{T+0(L)) ser.
Therefore,
lim M,(s) = exp(32/4), sel,,

n—oo
where the function on the right-hand side is the moment generating func-
tion of the normal distribution with mean 0 and variance 1/2. The asymp-
totic normality of the statistics T},(Z) follows. O

Corollary 5.4. If the conditions of Lemma 5.3 are salisfied, the asymp-
totic mazimum likelihood estimator of the parameter o

2 n
Yn = - Z cos Z,
i=k
s asymptotically unbiased and

n(Fn —70) 2> N(0,2)

as n — oQ.
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Proof. The maximum likelihood estimator 7, of the parameter v is ob-
tained from the equation

%log Cn(n) = anos - (23)
k=1

Since it was proved in Johansson [26, Lemma 3.3], that for 0 < € < 1 there
exists a constant K > 0, such that
d n2y K
—log C - | < —
‘ dy 0g Cn(7) 9 n
for every n > 1,7 € (0,1 — €], we replace the equation (23) by

n?% -
“=n g cos (g,
k=1

2

which defines the asymptotic maximum likelihood estimator as before.
This leads to the estimator

n
23" cos (g
k=1

n

~

n =
We notice that
En[¥n — Y] = En[2Tw(Z)/n] - 0, n— oo,
and
n(Fn — %) L N(0,2),  n— o0,
proving the corollary. O

§6. OPEN QUESTIONS

Remark 6.1. The case v > 1 is not considered in Section 5. In this
case the maximum likelihood equation (23) should be replaced by the
asymptotic expression

n

> oSG

L=
29, n

which follows from Lemma 5.1 and leads us to the equation which defines
the asymptotic maximum likelihood estimator 7,,. Asymptotic properties
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of 7, can be derived using the same methods as here. Intuitively, the
asymptotic distribution of the sufficient statistics

n
1
T.(Z) = 7 — (1——)
w(Z) g_lcos k—n 2

is a consequence of the following convergence of the moment generating
functions

lim M (s) = exp | - 1 1 24

Tim. As)—eprﬁ, sell—vy-1], (24)
and consequently, the asymptotic distribution of T,,(Z) is normal with ex-
pectation 0 and variance (272)~!. However, to prove the convergence (24)
rigorously, one needs to establish that for v > 1, the rate of convergence
to the limiting function in Lemma 5.1 is of order o(n~?).

Remark 6.2. Various extensions of questions addressed in this paper
are possible. The Bessel weight in (21) could be replaced by any other
varying weight on the unit circle. Phase transition phenomena similar to
those appearing in the case of Hermitian matrices (see [13]) are expected
to occur. We should note here that while models with varying exponen-
tial weights for Hermitian matrices are extensively studied (see [8,13] and
references therein), respective circular models are only starting to be con-
sidered (see [30]). We believe that these models may become an extremely
rich research area. The models show high mathematical complexity, many
different analytic methods are involved, and the models have a wide range
of applications in different branches of mathematics and physics. The ques-
tion of non-parametric estimation in the framework of generalized circu-
lar unitary ensembles with varying weights remains open. Finally, similar
generalizations of circular orthogonal and symplectic ensembles are to be
considered.
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