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§1. IntrodutionThe purpose of this note is to initiate a statistial analysis of paramet-rized exponential families of distributions on the group of unitary matrieswhih are dominated by the Haar measure. Statistial analysis of the iru-lar unitary ensemble (CUE) is not entirely new in general, but the theoryof maximum likelihood estimates is and has been �rst investigated by oneof the authors in [29℄.In order to motivate the approah here we reall basi fats from randommatrix theory and explain whih role the parametrized families play withinthe theory. Random matrix theory (RMT) is used in di�erent branhes ofsiene sine it was introdued by Wishart in the late 1920s. It has beensuessfully applied to an extraordinarily large variety of problems in �eldsKey words and phrases: irular unitary ensemble, Toeplitz determinant, maximumlikelihood estimator, normal distribution, long range dependene.Rada Dakovi aknowledges the support of the Center for Statistis, University ofG�ottingen. Manfred Denker was supported by n�umero 158/2012 de PesquisadorVisi-tante Espeial de CAPES. Mikhail Gordin supported by the RFBR grant 13-01-00256and by grant NSh: 2504.2014.1. 163



164 R. DAKOVIC, M. DENKER, M: GORDINas diverse as multivariate statistis [2, 32℄, and more reently [6, 24℄, har-moni analysis on groups [10℄, ombinatoris [3℄, nulear physis [31℄, quan-tum gravity [15℄, wireless ommuniations [41℄, to name a few importantappliations.Although random matries were �rst enountered by Weyl [42, 43℄ inonnetion with the integration over the unitary group, the expliit studyof their properties began in 1928 with Wishart [48℄, who obtained the jointdistribution of sample varianes and ovarianes from multivariate normalpopulations. After a relatively slow start, the investigation of random ma-trix ensembles intensi�ed in the 1950s, when Wigner [45, 46℄ proposed touse RMT to haraterize ertain properties of omplex many-body systemssuh as heavy nulei, omplex atoms and moleules. Despite the fat thatthe Gaussian ensembles, introdued in Wigner [46,47℄, allow a wide rangeof appliations, they have the unpleasant property of being de�ned on thenon-ompat spae of matries. Consequently there is no way assigningthe same weight to every matrix and hene matries representing di�erentquantum systems annot be treated in the same manner. To avoid this de-�ieny, Dyson [17℄ modi�ed Wigner's treatment of a nuleus and de�nedthree ensembles, similar to Gaussian, but mathematially simpler to dealwith. The three irular ensembles (orthogonal, unitary and sympleti)are de�ned as subsets of the set U(n) of all n×n unitary matries. They areapplied in a broad range of models (see [18, 31℄ for details). Nevertheless,there exist physial systems that ould be desribed by random unitarymatries whih do not share the statistial properties of Dyson's irularensembles. As mentioned in Muttalib, Ismail [33℄, numerial studies relatedto disordered ondutors [23℄ and periodially driven systems [28℄, exhibitstatistial behavior di�erent from that of Dyson's models. Therefore, gen-eralizations of irular ensembles of Dyson were introdued in [33, 34℄.We shall develop a rigorous statistial treatment of generalized iru-lar unitary ensembles (GCUE), where the attention is restrited to theunitary ase sine the analytial tools are developed best in this ase; inpartiular, the asymptoti theory of Toeplitz determinants an be used.The investigation is motivated by numerous examples from mathematisand physis. Examples from physis inlude haoti sattering (Jalabert,Pihard [23℄), ondutane in mesosopi systems (Beenakker [7℄) and pe-riodially driven systems (Haake [20℄). Related models from mathematisarise in the theory of orthogonal polynomials on the unit irle (Ismail,Witte [22℄, Simon [37℄), the theory of Toeplitz determinants (Adler, van



CIRCULAR UNITARY ENSEMBLES 165Moerbeke [1℄, Borodin, Okounkov [9℄), and studies of the length of thelongest inreasing subsequene in a random permutation (Johansson [26℄,Baik, Deift, Johansson [3℄, et). The attention of physiists and mathe-matiians is often entered around the asymptoti behavior of the spetraof random matries rather than the struture of random matries itself.Therefore, our generalization of Dyson's irular unitary ensemble will bede�ned in terms of the density of the joint eigenvalue distribution. Al-though the estimation problem an be dealt with within a general non-parametri framework, we restrit our attention to the ase of densitiesbelonging to exponential families of probability distributions, sine numer-ous examples disussed in the physis literature allow this interpretation(see the end of Setion 2). Additionally, remarkable analytial tools fromthe theory of exponential families an be applied whih are not availablein the non-parametri setup.This estimation problem has been �rst studied by the �rst author in herPhD dissertation [29℄. It ontains the entral limit theorems for suÆientstatistis of the four lassial �-ensembles and the generalized irular uni-tary ensemble. Central limit theorems were obtained (in a broader ontext)for �-Hermite and Dyson's irular ensembles in Johansson [25, 27℄, Du-mitriu, Edelman [16℄, Diaonis, Evans [14℄. Corresponding theorems forsuÆient statistis of �-Laguerre, �-Jaobi, the Cauhy unitary ensembleare obtained in [29℄ whih also forms the basis of the result in this note.All results on the asymptoti normality of the suÆient statistis, as wellas the results on the behavior of the asymptoti maximum likelihood es-timator de�ned in Setions 4 and 5 seem to be new. Sine this paper hadbeen written in the years 2007 to 2009 (shortly after the PhD thesis [29℄had been defended) several papers appeared whih are in some way re-lated to the present one. We mention [5℄ where orrelation funtions ofparametrized families are onsidered, [36℄ where similar tehniques as hereare used to derive asymptoti distributions. The book of Bai and Silver-stein [6℄ shows a wide range of appliations of large dimensional randommatries and gives a basi aount of theoretial results. The present workadds to this endeavor.This paper seems to be one of the �rst attempts to apply parametri sta-tistial methods to analyze spetra of randommatries in the non-Gaussianase. Classial estimation theory of i.i.d. samples is not appliable in thissetting sine our analysis involves inferene for samples of n strongly de-pendent observations. We believe that the results in this note an serve as



166 R. DAKOVIC, M. DENKER, M: GORDINanother starting point for a rih researh area in high-dimensional asymp-toti statistis.A short desription of the models onsidered and a summary of ourresults follows.Let U be a unitary matrix taken at random with respet to the nor-malized Haar measure from the unitary group U(n), n ≥ 1. The randomeigenvalues of U are denoted by (eiZ1 ; : : : ; eiZn), where Zk ∈ [0; 2�) fork = 1; : : : ; n. The joint distribution of eigenphases (alled the Weyl mea-sure) is absolutely ontinuous with respet to the Lebesgue measure on[0; 2�)n and its density ispn(�) = C−1n ∏16k<l6n |ei�k − ei�l |2; � ∈ [0; 2�)n; (1)where Cn is the normalizing onstant (see Weyl [42, 43℄).In this paper we introdue a generalization of (1) letting the probabilitydensity of n eigenphases be of the formp�;n(�) = C−1n (�) n∏k=1w�(ei�k ) ∏16k<l6n |ei�k − ei�l |2; � ∈ [0; 2�)n;where � = (�1; : : : ; �r) ∈ � ⊂ Rr is an r-dimensional unknown, and henean estimable parameter. Cn(�) is the normalizing onstant, and w� is asuitable weight funtion on the unit irle T. The theory of Toeplitz deter-minants and omplex analysis of several omplex variables turns out to behelpul deriving properties of the asymptoti maximum likelihood estima-tor of �, and showing that the Fisher information ontained in the sample� = (�1; : : : ; �n) stays bounded as the dimension parameter n inreasesprovided the weight funtion w� does not involve n. To overome this de-�ieny, we onsider the third-order phase transition model with varyingweight introdued in Gross, Witten [19℄, where the probability density ofn eigenphases is equal top;n(�)=C−1n () n∏k=1 exp{n os �k} ∏16k<l6n |ei�k − ei�l |2;� ∈ [0; 2�)n (2)with normalizing onstant Cn() and parameter  > 0. We show that thetrue parameter value 0 an be estimated onsistently by an asymptotimaximum likelihood estimator, provided that 0 ∈ (0; 1− �), � > 0. Addi-tionally, we obtain that the asymptoti maximum likelihood estimator ̂n



CIRCULAR UNITARY ENSEMBLES 167of 0 is asymptotially normal in the sense thatn(̂n − 0) D→ N (0; 2); n→ ∞;if 0 ∈ (0; 1− �), � > 0. This result is in sharp ontrast to lassial estima-tion theory of i.i.d. samples under regularity onditions where the varianeof the maximum likelihood estimator is of order O(1=n).The outline of this paper is as follows. In Setion 2, we state basifats about Dyson's irular unitary ensemble and formally introdue thegeneralized irular unitary ensemble (GCUE) extending the model CUE.In Setion 3 the asymptoti normality of the suÆient statistis for GCUEis established. The asymptoti maximum likelihood proedure is appliedto estimate the parameters of the joint eigenvalue distribution of GCUE.The properties of the estimators are derived in Setion 4. In Setion 5 weanalyze the model with varying weight from Gross, Witten [19℄. Setion 6ontains a disussion of open questions.
§2. Cirular unitary ensemble and generalizationsThe irular unitary ensemble (CUE) is the group of unitary matriesendowed with the normalized Haar measure. As mentioned in the intro-dution, the joint distribution of n eigenvalues of a matrix taken from CUEis absolutely ontinuous with respet to the Lebesgue measure on Tn andthe density funtion of phases is given by (1).The density an be rewritten using the Vandermonde determinant�(�) = (−1)n(n−1)2 ∏16k<l6n(ei�k − ei�l)= ∣∣∣∣∣∣∣∣

1 1 : : : 1ei�1 ei�2 : : : ei�n: : : : : : : : : : : :ei(n−1)�1 ei(n−1)�2 : : : ei(n−1)�n ∣∣∣∣∣∣∣∣and this shows that the eigenphases (Z1; : : : ; Zn) with joint probabilitydensity (1) exhibit strong repulsive dependene. This repulsiveness prop-erty allows appliations of CUE in a variety of models in physis andmathematis. However, numerial studies of periodi quantum systemsand disordered ondutors, sattering of plane waves within an irregularlyshaped domain (see [18,33℄) have a statistial behavior di�erent from thatof CUE. A new analytial model, ontaining CUE is thus onsidered.



168 R. DAKOVIC, M. DENKER, M: GORDINDe�nition 1. The generalized irular unitary ensemble is the ensembleof random unitary matries whose joint distribution of n eigenphases isgiven by the densityp�;n(�) = C−1n (�) n∏k=1w�(ei�k ) ∏16k<l6n |ei�k −ei�l |2; � ∈ [0; 2�)n; (3)where � = (�1; : : : ; �r) is an r-dimensional parameter, Cn(�) is the nor-malizing onstant andw�(ei�) = exp{ r∑j=1 �jVj(ei�)}; � ∈ [0; 2�℄; (4)with real-valued funtions Vj having Fourier oeÆients {V̂j(k)}k∈Z satis-fying the onditionEj = ∑k∈N k ∣∣∣ V̂j(k) ∣∣∣
2 <∞; 1 6 j 6 r: (5)We note that the funtion w� is integrable on the unit irle if theondition (5) is satis�ed. This fat is obtained from the �rst proposition(for a proof see [37℄).Proposition 2.1. Let V ∈ L1(T) be a real-valued funtion on the unitirle with Fourier oeÆients {V̂ (k)}k∈Z, suh thatE = ∑k∈N k∣∣ V̂ (k) ∣∣2 <∞:Then the funtion ei� 7→ w(ei�) = expV (ei�), � ∈ [0; 2�); belongs to L1(T).It follows from this proposition that exp(�jVj) ∈ L1(T) for every�j ∈ R, 1 6 j 6 r, and onsequently w� ∈ L1(T) for every � ∈ Rrwhenever the ondition (5) is satis�ed. Sine |�(�)|2 is bounded on Tn,the density (3) is well de�ned.If the ondition (5) is satis�ed, the strong Szeg}o theorem for ToeplitzdeterminantsDn[f ℄ = det[f̂(k − l)℄0≤k;l<n = ∣∣∣∣∣∣∣∣

f̂(0) f̂(−1) : : : f̂(−n+ 1)f̂(1) f̂(0) : : : f̂(−n+ 2): : : : : : : : : : : :f̂(n− 1) f̂(n− 2) : : : f̂(0) ∣∣∣∣∣∣∣∣



CIRCULAR UNITARY ENSEMBLES 169(f ∈ L1(T)) an be used to derive statistial properties of the asymptotiMLE for the parameter � in (3). The key onnetion of the GCUE with thetheory of Toeplitz determinants is based on the following determinantalidentity due to Heine and Szeg}o; in partiular, the expliit expression forthe normalizing onstant Cn(�) an be dedued (see [27℄, equation (1.4)).Lemma 2.2 (Szeg}o [39℄). Let f ∈ L1(T) be a funtion on the unit irlewith Fourier oeÆients {f̂(k)}k∈Z. Then the following identity holds1(2�)nn! ∫[0;2�)n n∏k=1 f(ei�k ) |�(�)|2 d� = Dn[f ℄: (6)From this we an see that Cn(�) in (3) is a multiple of the Toeplitzdeterminant with respet to the symbol w�,Cn(�) = (2�)nn!Dn[w�℄: (7)Below we also use the notationCn(� + it) = (2�)nn!Dn[f�;t℄ �; t ∈ Rr;when f�;t(�) = n∏k=1 


r∑j=1(�j + itj)Vj(ei�k )(t = (tj)1≤j≤r , � = (�j)1≤j≤r , � = (�k)1≤k≤n). The smoothness onditionon f ′ was relaxed to the ondition that log f ∈ L1(T) in [21℄ and the�nal form we shall need an be found in [25, Theorem 2.2℄ (attributed toOnsager and Szeg}o).Theorem 2.3. Let g ∈ L1(T) be a omplex-valued funtion on T withFourier oeÆients {ĝ(k)}k∈Z. Assume that

∑k∈Z |k| |ĝ(k)|2 <∞:Then Dn[exp g℄ = exp{nĝ(0) + ∑k∈N k ĝ(k) ĝ(−k) + o(1)} (8)as n→ ∞.



170 R. DAKOVIC, M. DENKER, M: GORDINThe identity (8) is used to establish the CLT for the suÆient vetorstatisti of GCUE and to derive the asymptoti MLE of the parameter �.The approah by (6) and Theorem 2.3 has been used by Johansson [26℄to obtain the asymptoti normality of a broad lass of linear statistis forCUE.We onlude this setion with a motivation for the models desribedin (3). Although a non-parametri setup an be onsidered, the lass ofmodels here overs most pratial objetives. Moreover, statistial analy-sis for these models an widely be developed in the framework of the theoryof exponential families: the models allow a redution of data by suÆieny,and the normalizing onstant Cn(�) is an analytial funtion of its param-eter � ∈ Rr for arbitrary �xed n ∈ N. In addition to these properties, wemention that the parameters �1; : : : ; �r may have a lear physial interpre-tation, and their estimation often is of high importane for understandingthe system's behavior. As mentioned in Muttalib, Ismail [33℄, the intro-dution of the weight funtion w� may ome from any system-dependentphysial onstraint, sine the measure under onsideration may depend onvarious physial parameters.The main examples of the weight funtion w� in (4), inludew(1)� (ei�) = exp (� os �) ; � ∈ [0; 2�℄;w(2)� (ei�) = exp (�1 os � + �2 os 2�) ; � ∈ [0; 2�℄;w(3)� (ei�) = (1 + �2 − 2� os �)�; � ∈ [0; 2�℄:The weight funtion w(1)� and the orresponding system of orthogonal poly-nomials arose from the studies on the length of the longest inreasing sub-sequene of a random permutation in Baik, Deift, Johansson [3, p. 1123℄,and random matrix models in Gross, Witten [19℄, Periwal, Shewitz [35℄.Reursion relations for Toeplitz determinants of this symbol an be foundin Borodin [11℄, or Adler, van Moerbeke [1, Setion 2℄, while the propertiesof orthogonal polynomials with respet to this weight (alled the Besselweight) appear in detail in Ismail, Witte [22℄. It should be noted herethat in the literature on irular statistis, w(1)� (ei�) is known as the den-sity of the von Mises{Fisher distribution on the 2-dimensional sphere (seee.g. Jammalamadaka, SenGupta [24℄). The weight w(2)� arose in the stud-ies of the longest inreasing subsequene in a random odd permutation(see Tray, Widom [40℄). Rational reursion relations for the respetiveToeplitz determinants are desribed in detail in Adler, van Moerbeke [1℄.



CIRCULAR UNITARY ENSEMBLES 171For the disussion of the weight w(3)� and their Toeplitz determinants thereader may onsult Borodin [11℄, Borodin, Okounkov [9℄, and Adler, vanMoerbeke [1℄.Remark 2.4. An important appliation of GCUE is the theory of log-potential gases. In this framework the density (3) oinides with the Boltz-mann fator of a one-dimensional Coulomb gas onsisting of n partiles freeto move on the unit irle in an external �eld with potential− r∑j=1 �jVj(�)=2at temperature 1=2. Further details regarding this onnetion are ontainedin Forrester [18℄.Remark 2.5. We note here that due to Weyl's integration formula anequivalent de�nition of GCUE an be given by onsidering the probabilitymeasures with densities exp{ r∑j=1 �jtr(Vj(U))}on the unitary group U(n), where the funtions Vj are as given in De�-nition 1, onsidered as a lass funtion on U(n) (see [13, p. 92�℄). Moregenerally and in the same spirit, measures with densitiesexp {tr(V (U))}an be onsidered where V : T → R is suh that exp(V (·)) is integrableon T. The estimation of the funtion V an be studied in the nonparamet-ri setup. Ensembles of this form an be onsidered dominant in RMT andthe theory of log-potential systems (see e.g. Deift [13℄).
§3. Asymptoti distribution of the suffiient statistiThe vetor statistiV (n)(Z) = ( n∑k=1 V1(eiZk ); : : : ; n∑k=1Vr(eiZk )) (9)in De�nition 1 is learly suÆient, where Z = (Z1; : : : ; Zn) (we suppressthe dependene of Zl on n sine no onfusion an our) is a sample ofexhangeable random variables with probability density funtionp�;n(�) = C−1n (�) n∏k=1w�(ei�k ) ∏16k<l6n |ei�k − ei�l |2; � ∈ [0; 2�)n:



172 R. DAKOVIC, M. DENKER, M: GORDINWe shall prove a entral limit theorem (CLT) for this statistis as n→ ∞.This result is of speial importane when omparing models with experi-ments (physiists are mainly interested in those features of the statistialmodel that tend to de�nite limits as n → ∞). The method of proof isbased on the strong Szeg}o theorem and the identity (7), whih will beused to prove pointwise onvergene of the harateristi funtions to theorresponding limit harateristi funtion of a normal distribution.In the ase of Dyson's irular unitary ensemblep0;n(�) = C−1n (0) ∏16k<l6n |ei�k − ei�l |2; � ∈ [0; 2�℄n;the entral limit theorem was obtained for a statistis of the formn∑k=1 f(eiZk );where f ∈ L1(T) is assumed to be real-valued funtion suh that
∑k∈N k|f̂(k)|2 <∞: (10)This result together with a superexponential rate of onvergene for fis due to Johansson [25, Theorem 2.6℄. For further developments of thissubjet see Soshnikov [38℄ and Diaonis, Evans [14℄.In order to state the CLT for GCUE, we need to de�ne a non-negativebilinear form on the spae H1=22 of real-valued funtions f ∈ L1(T) satis-fying the ondition (10). The form is de�ned by

〈f; g〉1=2 = ∑k∈Z |k| f̂(k)ĝ(−k); f; g ∈ H1=22 ; (11)and turns H1=22 into a Besov potential spae. For details we refer the readerto [14℄ and referenes therein. One the form (11) is de�ned, we an statethe theoremTheorem 3.1. Consider the sequene of probability density funtions
{p�;n(�)}n>2 in (3), where the real-valued funtions Vj belong to H1=22 foreah 1 6 j 6 r. Assume in addition thatV̂j(0) = 0; 1 6 j 6 r:



CIRCULAR UNITARY ENSEMBLES 173Then, for �xed � ∈ Rr, the vetor statisti V (n)(Z) in (9) has asymptoti-ally a normal distribution with mean� = ( r∑j=1 �j〈V1; Vj〉1=2; : : : ; r∑j=1 �j〈Vr; Vj〉1=2); (12)and ovariane matrix� = 


〈V1; V1〉1=2 〈V1; V2〉1=2 : : : 〈V1; Vr〉1=2
〈V2; V1〉1=2 〈V2; V2〉1=2 : : : 〈V2; Vr〉1=2: : : : : : : : : : : :
〈Vr; V1〉1=2 〈Vr ; V2〉1=2 : : : 〈Vr ; Vr〉1=2 

 : (13)Proof. The asymptoti distribution of the statisti V (n)(Z) is obtainedfrom the onvergene of its harateristi funtion�n(t) = En exp{ r∑j=1 n∑k=1 itjVj(eiZk )}; t = (tj)1≤j≤r ∈ Rr;where En denotes the expetation with respet to the probability (3).Substituting the density p�;n(·) into the mathematial expetation yields�n(t) = C−1n (�) ∫[0;2�℄n |�(�)|2 n∏k=1 exp{ r∑j=1(�j + itj)Vj(ei�k )}d�= Cn(� + it)Cn(�)The identity (7) and Ibragimov's version of the strong Szeg}o theorem (The-orem 2.3) imply that the above expression has the limitlimn→∞
�n(t) = exp{

−
∑k∈N k( r∑j=1 �j V̂j(k))( r∑j=1 �j V̂j(−k))}

× exp{ ∑k∈N k( r∑j=1(�j+itj) V̂j(k))( r∑j=1(�j+itj) V̂j(−k))}:



174 R. DAKOVIC, M. DENKER, M: GORDINRewriting the expression on the right-hand side, we observe thatlimn→∞
�n(t) = exp [ r∑j=1 itj( r∑l=1 �l 〈Vj ; Vl〉1=2)]

× exp [
− 12 r∑j;l=1 tjtl 〈Vj ; Vl〉1=2];where the limiting funtion oinides with the harateristi funtion ofthe multivariate normal distribution with mean and ovariane matrix asspei�ed in (12) and (13). This ompletes the proof of the theorem. �Remark 3.2. Notie that as in the ase of CUE (see [25, Theorem 2.6℄, [14,Theorem 4.1℄, or [38, Theorem 1℄, also the result in [6, Theorem 1.1℄).Theorem 3.1 proves the onvergeneV (n)(Z) D−→ N (�;�); n→ ∞;without normalization by √n. Moreover, the omponents of the vetorstatistis V (n)(Z) are asymptotially independent if and only if the fun-tions Vj ; 1 6 j 6 r, are orthogonal in the spae H1=22 , i.e. 〈Vj ; Vl〉1=2 = 0for j 6= l. In that ase, the ovariane matrix (13) obtains the diagonalstruture � = diag{〈V1; V1〉1=2; : : : ; 〈Vr; Vr〉1=2}:

§4. Asymptoti Maximum Likelihood EstimationThe aim of this setion is to onstrut the asymptoti maximum likeli-hood estimator �̂(n) for the parameter � of the generalized irular unitaryensemble. The maximum likelihood estimator ~�(n) is de�ned as the solu-tion of the system of equations���j logCn( ~�(n)) = n∑k=1 Vj(ei�k ); 1 6 j 6 r; (14)and is not available in a losed form. We show that���j logCn(�) −−−−→n→∞

r∑l=1 �l 〈Vj ; Vl〉1=2; 1 6 j 6 r;



CIRCULAR UNITARY ENSEMBLES 175uniformly over � ∈ K,K ⊂ Rr;K ompat, and replae (14) by the systemof linear equationsr∑l=1 �̂(n)l 〈Vj ; Vl〉1=2 = n∑k=1Vj(ei�k ); 1 6 j 6 r;whih de�nes the asymptoti MLE �̂(n) in a losed form. The estimator�̂(n) is asymptotially unbiased, but not onsistent. Below we indiatewhy a onsistent estimation of the parameter � is not possible, unless thedimension parameter n is inluded into the weight funtion w�.Sine p�; n(�) is the density of the distribution from an exponential fam-ily for eah n > 2, it follows from [12, Corollary 2.6℄, that the derivatives ofthe funtion � 7→ �n(�) := Cn(�) may be obtained by di�erentiation un-der the integral sign. Additionally, �n(�) admits an analytial ontinuationto Cr by the identity~�n(�) = ∫[0;2�)n |�(�)|2 n∏k=1w�(ei�k )d�; � ∈ Cr:Assume that the onditions of Theorem 3.1 are satis�ed and onsiderthe sequene of Toeplitz determinants {Dn[w�℄}n>2 with respet to thesymbol w�, � ∈ Cr. Sine the funtions Vj ; 1 6 j 6 r are �xed, theToeplitz determinants Dn[w�℄ beome funtions of the parameter � ∈ Cr.In order to avoid misinterpretation, we de�ne the new sequene of funtions
{dn(�)}n>2 by settingdn(�) := Dn[w�℄; � ∈ Cr; n > 2:From the theory of exponential families and the determinantal identity(6), we obtain that dn(�) = ~�n(�)(2�)−n=n! is an entire funtion for everyn > 2. Additionally, the sequene {dn(�)}n>2 is loally uniformly boundedas shown next.Lemma 4.1. Assume that the onditions of Theorem 3.1 are satis�ed.Then the sequene {dn(�)}n>2 of entire funtions on Cr is loally uni-formly bounded, i.e. for every ompat set K ⊂ Cr there exists a onstantCK > 0 suh that

|dn(�)| 6 CK ; ∀� ∈ K:



176 R. DAKOVIC, M. DENKER, M: GORDINProof. From the determinantal identity (6) we havedn(�) = 1(2�)nn! ∫[0;2�)n |�(�)|2 n∏k=1 w�(ei�k ) d�; � ∈ Cr; (15)and onsequently
| dn(�)| 6

1(2�)nn! ∫[0;2�)n |�(�)|2 n∏k=1 |w�(ei�k )| d�; � ∈ Cr:Sine the funtions Vj , 1 6 j 6 r; are real-valued, we observe that
|w�(ei�k )| = exp{ r∑j=1Re(�j)Vj(ei�k )}:From the last equality it follows that it is enough to prove the loal uniformbound for the sequene {dn(�)}n>2 with respet to the real-valued symbolsw� with parameter � ∈ Rr. As notied in [25℄, for the real-valued symbolw�, we have from Szeg}o's theorem thatDn[w�℄Dn−1[w� ℄ = minp∈Pn−1 2�∫0 |p(ei�)|2 w�(ei�)d�; n > 2; (16)where Pn is the set of all polynomials of degree not exeeding n and withleading oeÆient equal to 1. Observe that the left-hand side in (16) isnon-inreasing in n and it tends to 1 as n → ∞ beause limn→∞

Dn[w�℄exists. Thus, for every �, the sequene {Dn[w�℄}n∈N inreases to its limitexp{ ∑k∈N k( r∑j=1 �j V̂j(k))( r∑l=1 �l V̂l(−k))}as n inreases. As an immediate onsequene of this fat, we obtain that
|dn(�)| 6 exp{12 r∑j=1 r∑l=1 �j�l 〈Vj ; Vl〉1=2}; ∀n ∈ N; � ∈ Rr;where 〈Vj ; Vl〉1=2 is the non-negative bilinear form de�ned in (11). Thefuntion on the right-hand side is bounded on ompat sets in Rr, and thelemma is proved. �This lemma proves part of the next lemma.



CIRCULAR UNITARY ENSEMBLES 177Lemma 4.2. Suppose the onditions of Theorem 3.1 are satis�ed. Thenthe sequene {dn(�)}n>2 of Toeplitz determinants (15) with respet to the(omplex-valued) generating funtion w�, onverges loally uniformly in Crto its limit d(�) = exp{12 r∑j=1 r∑l=1 �j�l 〈Vj ; Vl〉1=2}: (17)Moreover, all partial derivatives of dn(�) onverge loally uniformly to theorresponding derivatives of the limiting funtion (17).Proof. The strong Szeg}o theorem applied to the symbol w� ∈ L1(T)implies that limn→∞
dn(�) = exp{12 r∑j=1 r∑l=1 �j�l〈Vj ; Vl〉1=2}; (18)under the onditions of Theorem 3.1.Sine the sequene of analyti funtions {dn(�)}n>2 is loally bounded(Lemma 4.1) and it onverges to an entire funtion on Cr, it follows fromVitali's theorem for several omplex variables that it also onverges loallyuniformly on Cr. If we apply Weierstrass' theorem for several omplexvariables to the sequene of Toeplitz determinants {dn(�)}n>2, we obtainfor an arbitrary multi-index l = (l1; : : : ; lr), with r∑j=1 lj = l; lj > 0; 1 6j 6 r, that the derivatives �l��l11 : : : ��lrr dn(�)exist and onverge uniformly on ompat sets in Cr to the orrespondingderivatives of the limiting funtion (17). �In order to obtain the probabilisti interpretation of the uniform on-vergene of derivatives in Lemma 4.2, we will onsider the umulant gen-erating funtion  n(�) = log�n(�) orresponding to the density p�;n(�)and formulate the following orollary.Corollary 4.3. Let {p�;n(�)}n>2 be the sequene of probability densityfuntions de�ned in (3) and suppose that the onditions of Theorem 3.1are satis�ed. Then the sequene of gradients {∇ n(�)}n>2 of its umulant



178 R. DAKOVIC, M. DENKER, M: GORDINgenerating funtions  n onverges loally uniformly in � ∈ Rr to the vetor
( r∑j=1 �j〈V1; Vj〉1=2; : : : ; r∑j=1 �j〈Vr; Vj〉1=2):Proof. The statement follows from Lemma 4.2 applied to ompat setsK ⊂ Rr and the funtions���j  n(�) = ���j dn(�)=dn(�); j = 1; : : : ; r: �As disussed in the beginning of the setion, our aim is to obtain the as-ymptoti maximum likelihood estimator for the vetor parameter � ∈ Rr.Sine all preliminary results are stated, we may summarize the disussionin the following theorem. We denote the true parameter value by �0.Theorem 4.4. Let {p�;n(�)}n>2 be the sequene of probability densityfuntions given in (3). Assume that the onditions of Theorem 3.1 aresatis�ed and that the funtions Vj ; j = 1; : : : ; n, are linearly independent.Then the asymptoti maximum likelihood estimator �̂(n) of �0, de�ned asthe unique solution of the system of linear equationsr∑l=1 �̂(n)l 〈Vj ; Vl〉1=2 = n∑k=1 Vj(ei�k ); 1 6 j 6 r; (19)onverges weakly, under the distributions with density p�0;n, to N (�0;�−1),where � is as spei�ed in (13).Proof. The maximum likelihood estimator ~�(n) is de�ned as the solutionof the system of equations���j  n( ~�(n)) = n∑l=1 Vj(ei�l); 1 6 j 6 r: (20)The onvergene in Corollary 4.3 implies that the left-hand side in (20)an be approximated by the expressionr∑k=1 ~�(n)k 〈Vj ; Vk〉1=2:This justi�es the de�nition of the asymptoti maximum likelihood estima-tor �̂(n) by the system of linear equations (19).It also follows that �̂(n) = V (n)(�) �−1



CIRCULAR UNITARY ENSEMBLES 179and, onsequently, Theorem 3.1 yields the onvergene of�̂(n) D−→ N (�0;�−1); n→ ∞: �Remark 4.5. We notie that although �̂(n) is asymptotially unbiasedand follows asymptotially a normal distribution, it is not a onsistent es-timator, as mentioned before. This fat an be explained by the behavior ofthe Fisher information matrix In(�) orresponding to the density p�;n(�).Namely, In(�) = ∥∥∥∥
�2��j��l n(�)∥∥∥∥j;l=1;:::;ronverges to the onstant matrix � de�ned in (13), and therefore, the in-formation ontained in the observed sample (�1; : : : ; �n) of exhangeablerandom variables with probability density p�;n(�) remains bounded as ninreases. This fat an be given an interpretation in the framework of thetheory of log-potential gases. Our proedure involves estimation of param-eters of an external �eld for a Coulomb gas with Boltzmann fator (3).While the number of partiles in the Coulomb gas inreases, the potentialof an external �eld remains unhanged. As a onsequene, the informationabout the potential ontained in the observation � is bounded. We on-lude that onsistent maximum likelihood estimation of the parameter �is not possible, unless the dimension parameter n is introdued into theweight funtion w� de�ned in (4). In suh a setting the potential of anexternal �eld is assumed to be proportional to the number of partiles inthe Coulomb gas system. Below, we onsider the model (2) with varyingweight and the third-order phase transition, and show that under suh amodel, the asymptoti maximum likelihood estimator of a onentrationparameter  has the variane of order O(1=n2).

§5. The third-order phase transition modelIn this setion we onsider the model from two-dimensional lattie gaugetheories whih was analyzed heuristially by the steepest desent methodin Gross, Witten [19℄. The same model arose in the studies of the length ofthe longest inreasing subsequene in a random permutation. Its proper-ties were rigorously analyzed in a series of papers inluding Johansson [26℄,Baik, Deift, Johansson [3℄, Baik, Deift, Rains [4℄ and Widom [44℄. It wasshown that the ensemble exhibits the third-order phase transition at  = 1.



180 R. DAKOVIC, M. DENKER, M: GORDINFormally, the model is de�ned by the joint probability density of n eigen-phases equal top;n(�) = C−1n ()|�(�)|2 exp{n n∑i=1 os �i}; � ∈ [0; 2�℄n; (21)where w(ei�) := exp( os �) and where (abusing the previous notation abit) Cn() = (2�)nn!Dn[wn℄ is the normalizing onstant and  > 0.The following lemma, due to Gross, Witten [19℄ and Johansson [26,Lemma 2.1℄, desribes the asymptoti behavior of the free energy fn() =n−2 logCn().Lemma 5.1 (Gross, Witten [19℄). If fn() = n−2 logCn(), thenlimn→∞
fn() = f() = {24 ; if 0 6  6 1; − 12 log  − 34 ; if 1 < :Remark 5.2. The limiting funtion f() in Lemma 5.1 is not analyti.Its derivative d3f=d3 is disontinuous at  = 1, thus a third-order phasetransition ours at this point. The asymptoti eigenvalue distribution issupported on the whole unit irle for  < 1, whereas for  > 1 its supportis a subset of T, details are ontained in Johansson [26℄.The following lemma shows that the limit in Lemma 5.1 an be used toprove the asymptoti normality of the suÆient statistis Tn(Z) de�nedin (22).Lemma 5.3. Let 0 <  < 1 and Z = (Z1; : : : ; Zn) be a sample with thejoint probability density funtion (21). Then the entered suÆient statistiTn(Z) = n∑k=1 osZk − n=2 (22)onverges in distribution to the normal distribution with mean 0 and vari-ane 1=2.Proof. The moment generating funtion of the statistis Tn(Z) isMn(s) = C−1n ()e−sn=2 ∫[0;2�℄n |�(�)|2 exp{(n+ s) n∑k=1 os �k}d�= e−sn=2 Dn[wn+s℄Dn[wn℄ = e−sn=2C( + sn )C()



CIRCULAR UNITARY ENSEMBLES 181for s ∈ R. Let 0 < � < 1 −  and onsider the sequene of funtions
{Mn(s)}n∈N where s belongs to the intervals ∈ I = [−min(; 1− );min(; 1− )℄:From the de�nition of I it follows that 0 6  + s=n 6 1 for every s ∈ I ,n > 1. It has been shown in Johansson [26, Lemma 3.3℄, that for every� > 0 there exists a onstant K(�) > 0 suh that

∣∣∣ logCn(Æ)− n2Æ24 ∣∣∣ 6
K(�)n ;for arbitrary n > 1; Æ ∈ [0; 1− �℄. Consequently, with Æ ∈ {;  + sn} and� = � e−K(�)=n 6 Cn() e−2n2=4 6 eK(�)=n; n > 1;and e−K(�)=n

6 Cn( + s=n) e−(+ sn )2n2=4
6 eK(�)=n; n > 1;uniformly for  ∈ [0; 1− �). Thus, we have the following expansionMn(s) = exp{

− sn2 Big} exp{n24 ( + sn)2
− n24 2 +O( 1n)}= exp{s24 +O( 1n)}; s ∈ I :Therefore, limn→∞

Mn(s) = exp(s2=4); s ∈ I ;where the funtion on the right-hand side is the moment generating fun-tion of the normal distribution with mean 0 and variane 1=2. The asymp-toti normality of the statistis Tn(Z) follows. �Corollary 5.4. If the onditions of Lemma 5.3 are satis�ed, the asymp-toti maximum likelihood estimator of the parameter 0̂n = 2n n∑i=k osZkis asymptotially unbiased andn(̂n − 0) D−→ N (0; 2)as n→ ∞.



182 R. DAKOVIC, M. DENKER, M: GORDINProof. The maximum likelihood estimator ~n of the parameter  is ob-tained from the equationdd logCn(~n) = n n∑k=1 os �k: (23)Sine it was proved in Johansson [26, Lemma 3.3℄, that for 0 < � < 1 thereexists a onstant K > 0, suh that
∣∣∣∣
dd logCn()− n22 ∣∣∣∣ 6

Kn ;for every n > 1;  ∈ (0; 1− �℄, we replae the equation (23) byn2̂n2 = n n∑k=1 os �k;whih de�nes the asymptoti maximum likelihood estimator as before.This leads to the estimator ̂n = 2 n∑k=1 os �kn :We notie thatEn[̂n − 0℄ = En[2Tn(Z)=n℄ −→ 0; n→ ∞;and n(̂n − 0) D−→ N (0; 2); n→ ∞;proving the orollary. �

§6. Open questionsRemark 6.1. The ase  > 1 is not onsidered in Setion 5. In thisase the maximum likelihood equation (23) should be replaed by theasymptoti expression 1− 12~n = n∑i=1 os �inwhih follows from Lemma 5.1 and leads us to the equation whih de�nesthe asymptoti maximum likelihood estimator ̂n. Asymptoti properties



CIRCULAR UNITARY ENSEMBLES 183of ̂n an be derived using the same methods as here. Intuitively, theasymptoti distribution of the suÆient statistisTn(Z) = n∑k=1 osZk − n(1− 12)is a onsequene of the following onvergene of the moment generatingfuntions limn→∞
Mn(s) = exp [ s22 122 ]; s ∈ [1− ;  − 1℄; (24)and onsequently, the asymptoti distribution of Tn(Z) is normal with ex-petation 0 and variane (22)−1. However, to prove the onvergene (24)rigorously, one needs to establish that for  > 1, the rate of onvergeneto the limiting funtion in Lemma 5.1 is of order o(n−2).Remark 6.2. Various extensions of questions addressed in this paperare possible. The Bessel weight in (21) ould be replaed by any othervarying weight on the unit irle. Phase transition phenomena similar tothose appearing in the ase of Hermitian matries (see [13℄) are expetedto our. We should note here that while models with varying exponen-tial weights for Hermitian matries are extensively studied (see [8,13℄ andreferenes therein), respetive irular models are only starting to be on-sidered (see [30℄). We believe that these models may beome an extremelyrih researh area. The models show high mathematial omplexity, manydi�erent analyti methods are involved, and the models have a wide rangeof appliations in di�erent branhes of mathematis and physis. The ques-tion of non-parametri estimation in the framework of generalized iru-lar unitary ensembles with varying weights remains open. Finally, similargeneralizations of irular orthogonal and sympleti ensembles are to beonsidered. Referenes1. M. Adler, P. van Moerbeke, Reursion relations for unitary integrals, ombina-toris and the Toeplitz lattie. | Comm.Math. Phys. 237, No. 3 (2003), 397{440.2. T. W. Anderson, An Introdution to Multivariate Statistial Analysis. Wiley Se-ries in Probability and Statistis. Wiley-Intersiene [John Wiley & Sons℄, Hobo-ken, NJ, third edition, 2003.3. J. Baik, P. Deift, K. Johansson, On the distribution of the length of the longestinreasing subsequene of random permutations. | J. Amer. Math. So. 12, No. 4(1999), 1119{1178.
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