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, M. Denker, M: GordinCIRCULAR UNITARY ENSEMBLES: PARAMETRICMODELS AND THEIR ASYMPTOTIC MAXIMUMLIKELIHOOD ESTIMATESAbstra
t. Parametrized families of distributions for the 
ir
ularunitary ensemble in random matrix theory are 
onsidered whi
hare 
onne
ted to Toeplitz determinants and whi
h have many ap-pli
ations in mathemati
s (for example to the longest in
reasingsubsequen
es of random permutations) and physi
s (for example tonu
lear physi
s and quantum gravity). We develop a theory for theunknown parameter estimated by an asymptoti
 maximum likeli-hood estimator, whi
h, in the limit, behaves as the maximum like-lihood estimator if the latter is well de�ned and the family is suÆ-
iently smooth. They are asymptoti
ally unbiased and normally dis-tributed, where the norming 
onstants are un
onventional be
auseof long range dependen
e.
§1. Introdu
tionThe purpose of this note is to initiate a statisti
al analysis of paramet-rized exponential families of distributions on the group of unitary matri
eswhi
h are dominated by the Haar measure. Statisti
al analysis of the 
ir
u-lar unitary ensemble (CUE) is not entirely new in general, but the theoryof maximum likelihood estimates is and has been �rst investigated by oneof the authors in [29℄.In order to motivate the approa
h here we re
all basi
 fa
ts from randommatrix theory and explain whi
h role the parametrized families play withinthe theory. Random matrix theory (RMT) is used in di�erent bran
hes ofs
ien
e sin
e it was introdu
ed by Wishart in the late 1920s. It has beensu

essfully applied to an extraordinarily large variety of problems in �eldsKey words and phrases: 
ir
ular unitary ensemble, Toeplitz determinant, maximumlikelihood estimator, normal distribution, long range dependen
e.Rada Dakovi
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164 R. DAKOVIC, M. DENKER, M: GORDINas diverse as multivariate statisti
s [2, 32℄, and more re
ently [6, 24℄, har-moni
 analysis on groups [10℄, 
ombinatori
s [3℄, nu
lear physi
s [31℄, quan-tum gravity [15℄, wireless 
ommuni
ations [41℄, to name a few importantappli
ations.Although random matri
es were �rst en
ountered by Weyl [42, 43℄ in
onne
tion with the integration over the unitary group, the expli
it studyof their properties began in 1928 with Wishart [48℄, who obtained the jointdistribution of sample varian
es and 
ovarian
es from multivariate normalpopulations. After a relatively slow start, the investigation of random ma-trix ensembles intensi�ed in the 1950s, when Wigner [45, 46℄ proposed touse RMT to 
hara
terize 
ertain properties of 
omplex many-body systemssu
h as heavy nu
lei, 
omplex atoms and mole
ules. Despite the fa
t thatthe Gaussian ensembles, introdu
ed in Wigner [46,47℄, allow a wide rangeof appli
ations, they have the unpleasant property of being de�ned on thenon-
ompa
t spa
e of matri
es. Consequently there is no way assigningthe same weight to every matrix and hen
e matri
es representing di�erentquantum systems 
annot be treated in the same manner. To avoid this de-�
ien
y, Dyson [17℄ modi�ed Wigner's treatment of a nu
leus and de�nedthree ensembles, similar to Gaussian, but mathemati
ally simpler to dealwith. The three 
ir
ular ensembles (orthogonal, unitary and symple
ti
)are de�ned as subsets of the set U(n) of all n×n unitary matri
es. They areapplied in a broad range of models (see [18, 31℄ for details). Nevertheless,there exist physi
al systems that 
ould be des
ribed by random unitarymatri
es whi
h do not share the statisti
al properties of Dyson's 
ir
ularensembles. As mentioned in Muttalib, Ismail [33℄, numeri
al studies relatedto disordered 
ondu
tors [23℄ and periodi
ally driven systems [28℄, exhibitstatisti
al behavior di�erent from that of Dyson's models. Therefore, gen-eralizations of 
ir
ular ensembles of Dyson were introdu
ed in [33, 34℄.We shall develop a rigorous statisti
al treatment of generalized 
ir
u-lar unitary ensembles (GCUE), where the attention is restri
ted to theunitary 
ase sin
e the analyti
al tools are developed best in this 
ase; inparti
ular, the asymptoti
 theory of Toeplitz determinants 
an be used.The investigation is motivated by numerous examples from mathemati
sand physi
s. Examples from physi
s in
lude 
haoti
 s
attering (Jalabert,Pi
hard [23℄), 
ondu
tan
e in mesos
opi
 systems (Beenakker [7℄) and pe-riodi
ally driven systems (Haake [20℄). Related models from mathemati
sarise in the theory of orthogonal polynomials on the unit 
ir
le (Ismail,Witte [22℄, Simon [37℄), the theory of Toeplitz determinants (Adler, van



CIRCULAR UNITARY ENSEMBLES 165Moerbeke [1℄, Borodin, Okounkov [9℄), and studies of the length of thelongest in
reasing subsequen
e in a random permutation (Johansson [26℄,Baik, Deift, Johansson [3℄, et
). The attention of physi
ists and mathe-mati
ians is often 
entered around the asymptoti
 behavior of the spe
traof random matri
es rather than the stru
ture of random matri
es itself.Therefore, our generalization of Dyson's 
ir
ular unitary ensemble will bede�ned in terms of the density of the joint eigenvalue distribution. Al-though the estimation problem 
an be dealt with within a general non-parametri
 framework, we restri
t our attention to the 
ase of densitiesbelonging to exponential families of probability distributions, sin
e numer-ous examples dis
ussed in the physi
s literature allow this interpretation(see the end of Se
tion 2). Additionally, remarkable analyti
al tools fromthe theory of exponential families 
an be applied whi
h are not availablein the non-parametri
 setup.This estimation problem has been �rst studied by the �rst author in herPhD dissertation [29℄. It 
ontains the 
entral limit theorems for suÆ
ientstatisti
s of the four 
lassi
al �-ensembles and the generalized 
ir
ular uni-tary ensemble. Central limit theorems were obtained (in a broader 
ontext)for �-Hermite and Dyson's 
ir
ular ensembles in Johansson [25, 27℄, Du-mitriu, Edelman [16℄, Dia
onis, Evans [14℄. Corresponding theorems forsuÆ
ient statisti
s of �-Laguerre, �-Ja
obi, the Cau
hy unitary ensembleare obtained in [29℄ whi
h also forms the basis of the result in this note.All results on the asymptoti
 normality of the suÆ
ient statisti
s, as wellas the results on the behavior of the asymptoti
 maximum likelihood es-timator de�ned in Se
tions 4 and 5 seem to be new. Sin
e this paper hadbeen written in the years 2007 to 2009 (shortly after the PhD thesis [29℄had been defended) several papers appeared whi
h are in some way re-lated to the present one. We mention [5℄ where 
orrelation fun
tions ofparametrized families are 
onsidered, [36℄ where similar te
hniques as hereare used to derive asymptoti
 distributions. The book of Bai and Silver-stein [6℄ shows a wide range of appli
ations of large dimensional randommatri
es and gives a basi
 a

ount of theoreti
al results. The present workadds to this endeavor.This paper seems to be one of the �rst attempts to apply parametri
 sta-tisti
al methods to analyze spe
tra of randommatri
es in the non-Gaussian
ase. Classi
al estimation theory of i.i.d. samples is not appli
able in thissetting sin
e our analysis involves inferen
e for samples of n strongly de-pendent observations. We believe that the results in this note 
an serve as



166 R. DAKOVIC, M. DENKER, M: GORDINanother starting point for a ri
h resear
h area in high-dimensional asymp-toti
 statisti
s.A short des
ription of the models 
onsidered and a summary of ourresults follows.Let U be a unitary matrix taken at random with respe
t to the nor-malized Haar measure from the unitary group U(n), n ≥ 1. The randomeigenvalues of U are denoted by (eiZ1 ; : : : ; eiZn), where Zk ∈ [0; 2�) fork = 1; : : : ; n. The joint distribution of eigenphases (
alled the Weyl mea-sure) is absolutely 
ontinuous with respe
t to the Lebesgue measure on[0; 2�)n and its density ispn(�) = C−1n ∏16k<l6n |ei�k − ei�l |2; � ∈ [0; 2�)n; (1)where Cn is the normalizing 
onstant (see Weyl [42, 43℄).In this paper we introdu
e a generalization of (1) letting the probabilitydensity of n eigenphases be of the formp�;n(�) = C−1n (�) n∏k=1w�(ei�k ) ∏16k<l6n |ei�k − ei�l |2; � ∈ [0; 2�)n;where � = (�1; : : : ; �r) ∈ � ⊂ Rr is an r-dimensional unknown, and hen
ean estimable parameter. Cn(�) is the normalizing 
onstant, and w� is asuitable weight fun
tion on the unit 
ir
le T. The theory of Toeplitz deter-minants and 
omplex analysis of several 
omplex variables turns out to behelpul deriving properties of the asymptoti
 maximum likelihood estima-tor of �, and showing that the Fisher information 
ontained in the sample� = (�1; : : : ; �n) stays bounded as the dimension parameter n in
reasesprovided the weight fun
tion w� does not involve n. To over
ome this de-�
ien
y, we 
onsider the third-order phase transition model with varyingweight introdu
ed in Gross, Witten [19℄, where the probability density ofn eigenphases is equal top
;n(�)=C−1n (
) n∏k=1 exp{
n 
os �k} ∏16k<l6n |ei�k − ei�l |2;� ∈ [0; 2�)n (2)with normalizing 
onstant Cn(
) and parameter 
 > 0. We show that thetrue parameter value 
0 
an be estimated 
onsistently by an asymptoti
maximum likelihood estimator, provided that 
0 ∈ (0; 1− �), � > 0. Addi-tionally, we obtain that the asymptoti
 maximum likelihood estimator 
̂n



CIRCULAR UNITARY ENSEMBLES 167of 
0 is asymptoti
ally normal in the sense thatn(
̂n − 
0) D→ N (0; 2); n→ ∞;if 
0 ∈ (0; 1− �), � > 0. This result is in sharp 
ontrast to 
lassi
al estima-tion theory of i.i.d. samples under regularity 
onditions where the varian
eof the maximum likelihood estimator is of order O(1=n).The outline of this paper is as follows. In Se
tion 2, we state basi
fa
ts about Dyson's 
ir
ular unitary ensemble and formally introdu
e thegeneralized 
ir
ular unitary ensemble (GCUE) extending the model CUE.In Se
tion 3 the asymptoti
 normality of the suÆ
ient statisti
s for GCUEis established. The asymptoti
 maximum likelihood pro
edure is appliedto estimate the parameters of the joint eigenvalue distribution of GCUE.The properties of the estimators are derived in Se
tion 4. In Se
tion 5 weanalyze the model with varying weight from Gross, Witten [19℄. Se
tion 6
ontains a dis
ussion of open questions.
§2. Cir
ular unitary ensemble and generalizationsThe 
ir
ular unitary ensemble (CUE) is the group of unitary matri
esendowed with the normalized Haar measure. As mentioned in the intro-du
tion, the joint distribution of n eigenvalues of a matrix taken from CUEis absolutely 
ontinuous with respe
t to the Lebesgue measure on Tn andthe density fun
tion of phases is given by (1).The density 
an be rewritten using the Vandermonde determinant�(�) = (−1)n(n−1)2 ∏16k<l6n(ei�k − ei�l)= ∣∣∣∣∣∣∣∣

1 1 : : : 1ei�1 ei�2 : : : ei�n: : : : : : : : : : : :ei(n−1)�1 ei(n−1)�2 : : : ei(n−1)�n ∣∣∣∣∣∣∣∣and this shows that the eigenphases (Z1; : : : ; Zn) with joint probabilitydensity (1) exhibit strong repulsive dependen
e. This repulsiveness prop-erty allows appli
ations of CUE in a variety of models in physi
s andmathemati
s. However, numeri
al studies of periodi
 quantum systemsand disordered 
ondu
tors, s
attering of plane waves within an irregularlyshaped domain (see [18,33℄) have a statisti
al behavior di�erent from thatof CUE. A new analyti
al model, 
ontaining CUE is thus 
onsidered.



168 R. DAKOVIC, M. DENKER, M: GORDINDe�nition 1. The generalized 
ir
ular unitary ensemble is the ensembleof random unitary matri
es whose joint distribution of n eigenphases isgiven by the densityp�;n(�) = C−1n (�) n∏k=1w�(ei�k ) ∏16k<l6n |ei�k −ei�l |2; � ∈ [0; 2�)n; (3)where � = (�1; : : : ; �r) is an r-dimensional parameter, Cn(�) is the nor-malizing 
onstant andw�(ei�) = exp{ r∑j=1 �jVj(ei�)}; � ∈ [0; 2�℄; (4)with real-valued fun
tions Vj having Fourier 
oeÆ
ients {V̂j(k)}k∈Z satis-fying the 
onditionEj = ∑k∈N k ∣∣∣ V̂j(k) ∣∣∣
2 <∞; 1 6 j 6 r: (5)We note that the fun
tion w� is integrable on the unit 
ir
le if the
ondition (5) is satis�ed. This fa
t is obtained from the �rst proposition(for a proof see [37℄).Proposition 2.1. Let V ∈ L1(T) be a real-valued fun
tion on the unit
ir
le with Fourier 
oeÆ
ients {V̂ (k)}k∈Z, su
h thatE = ∑k∈N k∣∣ V̂ (k) ∣∣2 <∞:Then the fun
tion ei� 7→ w(ei�) = expV (ei�), � ∈ [0; 2�); belongs to L1(T).It follows from this proposition that exp(�jVj) ∈ L1(T) for every�j ∈ R, 1 6 j 6 r, and 
onsequently w� ∈ L1(T) for every � ∈ Rrwhenever the 
ondition (5) is satis�ed. Sin
e |�(�)|2 is bounded on Tn,the density (3) is well de�ned.If the 
ondition (5) is satis�ed, the strong Szeg}o theorem for ToeplitzdeterminantsDn[f ℄ = det[f̂(k − l)℄0≤k;l<n = ∣∣∣∣∣∣∣∣

f̂(0) f̂(−1) : : : f̂(−n+ 1)f̂(1) f̂(0) : : : f̂(−n+ 2): : : : : : : : : : : :f̂(n− 1) f̂(n− 2) : : : f̂(0) ∣∣∣∣∣∣∣∣



CIRCULAR UNITARY ENSEMBLES 169(f ∈ L1(T)) 
an be used to derive statisti
al properties of the asymptoti
MLE for the parameter � in (3). The key 
onne
tion of the GCUE with thetheory of Toeplitz determinants is based on the following determinantalidentity due to Heine and Szeg}o; in parti
ular, the expli
it expression forthe normalizing 
onstant Cn(�) 
an be dedu
ed (see [27℄, equation (1.4)).Lemma 2.2 (Szeg}o [39℄). Let f ∈ L1(T) be a fun
tion on the unit 
ir
lewith Fourier 
oeÆ
ients {f̂(k)}k∈Z. Then the following identity holds1(2�)nn! ∫[0;2�)n n∏k=1 f(ei�k ) |�(�)|2 d� = Dn[f ℄: (6)From this we 
an see that Cn(�) in (3) is a multiple of the Toeplitzdeterminant with respe
t to the symbol w�,Cn(�) = (2�)nn!Dn[w�℄: (7)Below we also use the notationCn(� + it) = (2�)nn!Dn[f�;t℄ �; t ∈ Rr;when f�;t(�) = n∏k=1 


r∑j=1(�j + itj)Vj(ei�k )(t = (tj)1≤j≤r , � = (�j)1≤j≤r , � = (�k)1≤k≤n). The smoothness 
onditionon f ′ was relaxed to the 
ondition that log f ∈ L1(T) in [21℄ and the�nal form we shall need 
an be found in [25, Theorem 2.2℄ (attributed toOnsager and Szeg}o).Theorem 2.3. Let g ∈ L1(T) be a 
omplex-valued fun
tion on T withFourier 
oeÆ
ients {ĝ(k)}k∈Z. Assume that

∑k∈Z |k| |ĝ(k)|2 <∞:Then Dn[exp g℄ = exp{nĝ(0) + ∑k∈N k ĝ(k) ĝ(−k) + o(1)} (8)as n→ ∞.



170 R. DAKOVIC, M. DENKER, M: GORDINThe identity (8) is used to establish the CLT for the suÆ
ient ve
torstatisti
 of GCUE and to derive the asymptoti
 MLE of the parameter �.The approa
h by (6) and Theorem 2.3 has been used by Johansson [26℄to obtain the asymptoti
 normality of a broad 
lass of linear statisti
s forCUE.We 
on
lude this se
tion with a motivation for the models des
ribedin (3). Although a non-parametri
 setup 
an be 
onsidered, the 
lass ofmodels here 
overs most pra
ti
al obje
tives. Moreover, statisti
al analy-sis for these models 
an widely be developed in the framework of the theoryof exponential families: the models allow a redu
tion of data by suÆ
ien
y,and the normalizing 
onstant Cn(�) is an analyti
al fun
tion of its param-eter � ∈ Rr for arbitrary �xed n ∈ N. In addition to these properties, wemention that the parameters �1; : : : ; �r may have a 
lear physi
al interpre-tation, and their estimation often is of high importan
e for understandingthe system's behavior. As mentioned in Muttalib, Ismail [33℄, the intro-du
tion of the weight fun
tion w� may 
ome from any system-dependentphysi
al 
onstraint, sin
e the measure under 
onsideration may depend onvarious physi
al parameters.The main examples of the weight fun
tion w� in (4), in
ludew(1)� (ei�) = exp (� 
os �) ; � ∈ [0; 2�℄;w(2)� (ei�) = exp (�1 
os � + �2 
os 2�) ; � ∈ [0; 2�℄;w(3)� (ei�) = (1 + �2 − 2� 
os �)�; � ∈ [0; 2�℄:The weight fun
tion w(1)� and the 
orresponding system of orthogonal poly-nomials arose from the studies on the length of the longest in
reasing sub-sequen
e of a random permutation in Baik, Deift, Johansson [3, p. 1123℄,and random matrix models in Gross, Witten [19℄, Periwal, Shewitz [35℄.Re
ursion relations for Toeplitz determinants of this symbol 
an be foundin Borodin [11℄, or Adler, van Moerbeke [1, Se
tion 2℄, while the propertiesof orthogonal polynomials with respe
t to this weight (
alled the Besselweight) appear in detail in Ismail, Witte [22℄. It should be noted herethat in the literature on 
ir
ular statisti
s, w(1)� (ei�) is known as the den-sity of the von Mises{Fisher distribution on the 2-dimensional sphere (seee.g. Jammalamadaka, SenGupta [24℄). The weight w(2)� arose in the stud-ies of the longest in
reasing subsequen
e in a random odd permutation(see Tra
y, Widom [40℄). Rational re
ursion relations for the respe
tiveToeplitz determinants are des
ribed in detail in Adler, van Moerbeke [1℄.



CIRCULAR UNITARY ENSEMBLES 171For the dis
ussion of the weight w(3)� and their Toeplitz determinants thereader may 
onsult Borodin [11℄, Borodin, Okounkov [9℄, and Adler, vanMoerbeke [1℄.Remark 2.4. An important appli
ation of GCUE is the theory of log-potential gases. In this framework the density (3) 
oin
ides with the Boltz-mann fa
tor of a one-dimensional Coulomb gas 
onsisting of n parti
les freeto move on the unit 
ir
le in an external �eld with potential− r∑j=1 �jVj(�)=2at temperature 1=2. Further details regarding this 
onne
tion are 
ontainedin Forrester [18℄.Remark 2.5. We note here that due to Weyl's integration formula anequivalent de�nition of GCUE 
an be given by 
onsidering the probabilitymeasures with densities exp{ r∑j=1 �jtr(Vj(U))}on the unitary group U(n), where the fun
tions Vj are as given in De�-nition 1, 
onsidered as a 
lass fun
tion on U(n) (see [13, p. 92�℄). Moregenerally and in the same spirit, measures with densitiesexp {tr(V (U))}
an be 
onsidered where V : T → R is su
h that exp(V (·)) is integrableon T. The estimation of the fun
tion V 
an be studied in the nonparamet-ri
 setup. Ensembles of this form 
an be 
onsidered dominant in RMT andthe theory of log-potential systems (see e.g. Deift [13℄).
§3. Asymptoti
 distribution of the suffi
ient statisti
The ve
tor statisti
V (n)(Z) = ( n∑k=1 V1(eiZk ); : : : ; n∑k=1Vr(eiZk )) (9)in De�nition 1 is 
learly suÆ
ient, where Z = (Z1; : : : ; Zn) (we suppressthe dependen
e of Zl on n sin
e no 
onfusion 
an o

ur) is a sample ofex
hangeable random variables with probability density fun
tionp�;n(�) = C−1n (�) n∏k=1w�(ei�k ) ∏16k<l6n |ei�k − ei�l |2; � ∈ [0; 2�)n:



172 R. DAKOVIC, M. DENKER, M: GORDINWe shall prove a 
entral limit theorem (CLT) for this statisti
s as n→ ∞.This result is of spe
ial importan
e when 
omparing models with experi-ments (physi
ists are mainly interested in those features of the statisti
almodel that tend to de�nite limits as n → ∞). The method of proof isbased on the strong Szeg}o theorem and the identity (7), whi
h will beused to prove pointwise 
onvergen
e of the 
hara
teristi
 fun
tions to the
orresponding limit 
hara
teristi
 fun
tion of a normal distribution.In the 
ase of Dyson's 
ir
ular unitary ensemblep0;n(�) = C−1n (0) ∏16k<l6n |ei�k − ei�l |2; � ∈ [0; 2�℄n;the 
entral limit theorem was obtained for a statisti
s of the formn∑k=1 f(eiZk );where f ∈ L1(T) is assumed to be real-valued fun
tion su
h that
∑k∈N k|f̂(k)|2 <∞: (10)This result together with a superexponential rate of 
onvergen
e for fis due to Johansson [25, Theorem 2.6℄. For further developments of thissubje
t see Soshnikov [38℄ and Dia
onis, Evans [14℄.In order to state the CLT for GCUE, we need to de�ne a non-negativebilinear form on the spa
e H1=22 of real-valued fun
tions f ∈ L1(T) satis-fying the 
ondition (10). The form is de�ned by

〈f; g〉1=2 = ∑k∈Z |k| f̂(k)ĝ(−k); f; g ∈ H1=22 ; (11)and turns H1=22 into a Besov potential spa
e. For details we refer the readerto [14℄ and referen
es therein. On
e the form (11) is de�ned, we 
an statethe theoremTheorem 3.1. Consider the sequen
e of probability density fun
tions
{p�;n(�)}n>2 in (3), where the real-valued fun
tions Vj belong to H1=22 forea
h 1 6 j 6 r. Assume in addition thatV̂j(0) = 0; 1 6 j 6 r:



CIRCULAR UNITARY ENSEMBLES 173Then, for �xed � ∈ Rr, the ve
tor statisti
 V (n)(Z) in (9) has asymptoti-
ally a normal distribution with mean� = ( r∑j=1 �j〈V1; Vj〉1=2; : : : ; r∑j=1 �j〈Vr; Vj〉1=2); (12)and 
ovarian
e matrix� = 


〈V1; V1〉1=2 〈V1; V2〉1=2 : : : 〈V1; Vr〉1=2
〈V2; V1〉1=2 〈V2; V2〉1=2 : : : 〈V2; Vr〉1=2: : : : : : : : : : : :
〈Vr; V1〉1=2 〈Vr ; V2〉1=2 : : : 〈Vr ; Vr〉1=2 

 : (13)Proof. The asymptoti
 distribution of the statisti
 V (n)(Z) is obtainedfrom the 
onvergen
e of its 
hara
teristi
 fun
tion�n(t) = En exp{ r∑j=1 n∑k=1 itjVj(eiZk )}; t = (tj)1≤j≤r ∈ Rr;where En denotes the expe
tation with respe
t to the probability (3).Substituting the density p�;n(·) into the mathemati
al expe
tation yields�n(t) = C−1n (�) ∫[0;2�℄n |�(�)|2 n∏k=1 exp{ r∑j=1(�j + itj)Vj(ei�k )}d�= Cn(� + it)Cn(�)The identity (7) and Ibragimov's version of the strong Szeg}o theorem (The-orem 2.3) imply that the above expression has the limitlimn→∞
�n(t) = exp{

−
∑k∈N k( r∑j=1 �j V̂j(k))( r∑j=1 �j V̂j(−k))}

× exp{ ∑k∈N k( r∑j=1(�j+itj) V̂j(k))( r∑j=1(�j+itj) V̂j(−k))}:



174 R. DAKOVIC, M. DENKER, M: GORDINRewriting the expression on the right-hand side, we observe thatlimn→∞
�n(t) = exp [ r∑j=1 itj( r∑l=1 �l 〈Vj ; Vl〉1=2)]

× exp [
− 12 r∑j;l=1 tjtl 〈Vj ; Vl〉1=2];where the limiting fun
tion 
oin
ides with the 
hara
teristi
 fun
tion ofthe multivariate normal distribution with mean and 
ovarian
e matrix asspe
i�ed in (12) and (13). This 
ompletes the proof of the theorem. �Remark 3.2. Noti
e that as in the 
ase of CUE (see [25, Theorem 2.6℄, [14,Theorem 4.1℄, or [38, Theorem 1℄, also the result in [6, Theorem 1.1℄).Theorem 3.1 proves the 
onvergen
eV (n)(Z) D−→ N (�;�); n→ ∞;without normalization by √n. Moreover, the 
omponents of the ve
torstatisti
s V (n)(Z) are asymptoti
ally independent if and only if the fun
-tions Vj ; 1 6 j 6 r, are orthogonal in the spa
e H1=22 , i.e. 〈Vj ; Vl〉1=2 = 0for j 6= l. In that 
ase, the 
ovarian
e matrix (13) obtains the diagonalstru
ture � = diag{〈V1; V1〉1=2; : : : ; 〈Vr; Vr〉1=2}:

§4. Asymptoti
 Maximum Likelihood EstimationThe aim of this se
tion is to 
onstru
t the asymptoti
 maximum likeli-hood estimator �̂(n) for the parameter � of the generalized 
ir
ular unitaryensemble. The maximum likelihood estimator ~�(n) is de�ned as the solu-tion of the system of equations���j logCn( ~�(n)) = n∑k=1 Vj(ei�k ); 1 6 j 6 r; (14)and is not available in a 
losed form. We show that���j logCn(�) −−−−→n→∞

r∑l=1 �l 〈Vj ; Vl〉1=2; 1 6 j 6 r;
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ompa
t, and repla
e (14) by the systemof linear equationsr∑l=1 �̂(n)l 〈Vj ; Vl〉1=2 = n∑k=1Vj(ei�k ); 1 6 j 6 r;whi
h de�nes the asymptoti
 MLE �̂(n) in a 
losed form. The estimator�̂(n) is asymptoti
ally unbiased, but not 
onsistent. Below we indi
atewhy a 
onsistent estimation of the parameter � is not possible, unless thedimension parameter n is in
luded into the weight fun
tion w�.Sin
e p�; n(�) is the density of the distribution from an exponential fam-ily for ea
h n > 2, it follows from [12, Corollary 2.6℄, that the derivatives ofthe fun
tion � 7→ �n(�) := Cn(�) may be obtained by di�erentiation un-der the integral sign. Additionally, �n(�) admits an analyti
al 
ontinuationto Cr by the identity~�n(�) = ∫[0;2�)n |�(�)|2 n∏k=1w�(ei�k )d�; � ∈ Cr:Assume that the 
onditions of Theorem 3.1 are satis�ed and 
onsiderthe sequen
e of Toeplitz determinants {Dn[w�℄}n>2 with respe
t to thesymbol w�, � ∈ Cr. Sin
e the fun
tions Vj ; 1 6 j 6 r are �xed, theToeplitz determinants Dn[w�℄ be
ome fun
tions of the parameter � ∈ Cr.In order to avoid misinterpretation, we de�ne the new sequen
e of fun
tions
{dn(�)}n>2 by settingdn(�) := Dn[w�℄; � ∈ Cr; n > 2:From the theory of exponential families and the determinantal identity(6), we obtain that dn(�) = ~�n(�)(2�)−n=n! is an entire fun
tion for everyn > 2. Additionally, the sequen
e {dn(�)}n>2 is lo
ally uniformly boundedas shown next.Lemma 4.1. Assume that the 
onditions of Theorem 3.1 are satis�ed.Then the sequen
e {dn(�)}n>2 of entire fun
tions on Cr is lo
ally uni-formly bounded, i.e. for every 
ompa
t set K ⊂ Cr there exists a 
onstantCK > 0 su
h that

|dn(�)| 6 CK ; ∀� ∈ K:



176 R. DAKOVIC, M. DENKER, M: GORDINProof. From the determinantal identity (6) we havedn(�) = 1(2�)nn! ∫[0;2�)n |�(�)|2 n∏k=1 w�(ei�k ) d�; � ∈ Cr; (15)and 
onsequently
| dn(�)| 6

1(2�)nn! ∫[0;2�)n |�(�)|2 n∏k=1 |w�(ei�k )| d�; � ∈ Cr:Sin
e the fun
tions Vj , 1 6 j 6 r; are real-valued, we observe that
|w�(ei�k )| = exp{ r∑j=1Re(�j)Vj(ei�k )}:From the last equality it follows that it is enough to prove the lo
al uniformbound for the sequen
e {dn(�)}n>2 with respe
t to the real-valued symbolsw� with parameter � ∈ Rr. As noti
ed in [25℄, for the real-valued symbolw�, we have from Szeg}o's theorem thatDn[w�℄Dn−1[w� ℄ = minp∈Pn−1 2�∫0 |p(ei�)|2 w�(ei�)d�; n > 2; (16)where Pn is the set of all polynomials of degree not ex
eeding n and withleading 
oeÆ
ient equal to 1. Observe that the left-hand side in (16) isnon-in
reasing in n and it tends to 1 as n → ∞ be
ause limn→∞

Dn[w�℄exists. Thus, for every �, the sequen
e {Dn[w�℄}n∈N in
reases to its limitexp{ ∑k∈N k( r∑j=1 �j V̂j(k))( r∑l=1 �l V̂l(−k))}as n in
reases. As an immediate 
onsequen
e of this fa
t, we obtain that
|dn(�)| 6 exp{12 r∑j=1 r∑l=1 �j�l 〈Vj ; Vl〉1=2}; ∀n ∈ N; � ∈ Rr;where 〈Vj ; Vl〉1=2 is the non-negative bilinear form de�ned in (11). Thefun
tion on the right-hand side is bounded on 
ompa
t sets in Rr, and thelemma is proved. �This lemma proves part of the next lemma.
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onditions of Theorem 3.1 are satis�ed. Thenthe sequen
e {dn(�)}n>2 of Toeplitz determinants (15) with respe
t to the(
omplex-valued) generating fun
tion w�, 
onverges lo
ally uniformly in Crto its limit d(�) = exp{12 r∑j=1 r∑l=1 �j�l 〈Vj ; Vl〉1=2}: (17)Moreover, all partial derivatives of dn(�) 
onverge lo
ally uniformly to the
orresponding derivatives of the limiting fun
tion (17).Proof. The strong Szeg}o theorem applied to the symbol w� ∈ L1(T)implies that limn→∞
dn(�) = exp{12 r∑j=1 r∑l=1 �j�l〈Vj ; Vl〉1=2}; (18)under the 
onditions of Theorem 3.1.Sin
e the sequen
e of analyti
 fun
tions {dn(�)}n>2 is lo
ally bounded(Lemma 4.1) and it 
onverges to an entire fun
tion on Cr, it follows fromVitali's theorem for several 
omplex variables that it also 
onverges lo
allyuniformly on Cr. If we apply Weierstrass' theorem for several 
omplexvariables to the sequen
e of Toeplitz determinants {dn(�)}n>2, we obtainfor an arbitrary multi-index l = (l1; : : : ; lr), with r∑j=1 lj = l; lj > 0; 1 6j 6 r, that the derivatives �l��l11 : : : ��lrr dn(�)exist and 
onverge uniformly on 
ompa
t sets in Cr to the 
orrespondingderivatives of the limiting fun
tion (17). �In order to obtain the probabilisti
 interpretation of the uniform 
on-vergen
e of derivatives in Lemma 4.2, we will 
onsider the 
umulant gen-erating fun
tion  n(�) = log�n(�) 
orresponding to the density p�;n(�)and formulate the following 
orollary.Corollary 4.3. Let {p�;n(�)}n>2 be the sequen
e of probability densityfun
tions de�ned in (3) and suppose that the 
onditions of Theorem 3.1are satis�ed. Then the sequen
e of gradients {∇ n(�)}n>2 of its 
umulant
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tions  n 
onverges lo
ally uniformly in � ∈ Rr to the ve
tor
( r∑j=1 �j〈V1; Vj〉1=2; : : : ; r∑j=1 �j〈Vr; Vj〉1=2):Proof. The statement follows from Lemma 4.2 applied to 
ompa
t setsK ⊂ Rr and the fun
tions���j  n(�) = ���j dn(�)=dn(�); j = 1; : : : ; r: �As dis
ussed in the beginning of the se
tion, our aim is to obtain the as-ymptoti
 maximum likelihood estimator for the ve
tor parameter � ∈ Rr.Sin
e all preliminary results are stated, we may summarize the dis
ussionin the following theorem. We denote the true parameter value by �0.Theorem 4.4. Let {p�;n(�)}n>2 be the sequen
e of probability densityfun
tions given in (3). Assume that the 
onditions of Theorem 3.1 aresatis�ed and that the fun
tions Vj ; j = 1; : : : ; n, are linearly independent.Then the asymptoti
 maximum likelihood estimator �̂(n) of �0, de�ned asthe unique solution of the system of linear equationsr∑l=1 �̂(n)l 〈Vj ; Vl〉1=2 = n∑k=1 Vj(ei�k ); 1 6 j 6 r; (19)
onverges weakly, under the distributions with density p�0;n, to N (�0;�−1),where � is as spe
i�ed in (13).Proof. The maximum likelihood estimator ~�(n) is de�ned as the solutionof the system of equations���j  n( ~�(n)) = n∑l=1 Vj(ei�l); 1 6 j 6 r: (20)The 
onvergen
e in Corollary 4.3 implies that the left-hand side in (20)
an be approximated by the expressionr∑k=1 ~�(n)k 〈Vj ; Vk〉1=2:This justi�es the de�nition of the asymptoti
 maximum likelihood estima-tor �̂(n) by the system of linear equations (19).It also follows that �̂(n) = V (n)(�) �−1
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onsequently, Theorem 3.1 yields the 
onvergen
e of�̂(n) D−→ N (�0;�−1); n→ ∞: �Remark 4.5. We noti
e that although �̂(n) is asymptoti
ally unbiasedand follows asymptoti
ally a normal distribution, it is not a 
onsistent es-timator, as mentioned before. This fa
t 
an be explained by the behavior ofthe Fisher information matrix In(�) 
orresponding to the density p�;n(�).Namely, In(�) = ∥∥∥∥
�2��j��l n(�)∥∥∥∥j;l=1;:::;r
onverges to the 
onstant matrix � de�ned in (13), and therefore, the in-formation 
ontained in the observed sample (�1; : : : ; �n) of ex
hangeablerandom variables with probability density p�;n(�) remains bounded as nin
reases. This fa
t 
an be given an interpretation in the framework of thetheory of log-potential gases. Our pro
edure involves estimation of param-eters of an external �eld for a Coulomb gas with Boltzmann fa
tor (3).While the number of parti
les in the Coulomb gas in
reases, the potentialof an external �eld remains un
hanged. As a 
onsequen
e, the informationabout the potential 
ontained in the observation � is bounded. We 
on-
lude that 
onsistent maximum likelihood estimation of the parameter �is not possible, unless the dimension parameter n is introdu
ed into theweight fun
tion w� de�ned in (4). In su
h a setting the potential of anexternal �eld is assumed to be proportional to the number of parti
les inthe Coulomb gas system. Below, we 
onsider the model (2) with varyingweight and the third-order phase transition, and show that under su
h amodel, the asymptoti
 maximum likelihood estimator of a 
on
entrationparameter 
 has the varian
e of order O(1=n2).

§5. The third-order phase transition modelIn this se
tion we 
onsider the model from two-dimensional latti
e gaugetheories whi
h was analyzed heuristi
ally by the steepest des
ent methodin Gross, Witten [19℄. The same model arose in the studies of the length ofthe longest in
reasing subsequen
e in a random permutation. Its proper-ties were rigorously analyzed in a series of papers in
luding Johansson [26℄,Baik, Deift, Johansson [3℄, Baik, Deift, Rains [4℄ and Widom [44℄. It wasshown that the ensemble exhibits the third-order phase transition at 
 = 1.
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;n(�) = C−1n (
)|�(�)|2 exp{
n n∑i=1 
os �i}; � ∈ [0; 2�℄n; (21)where w
(ei�) := exp(
 
os �) and where (abusing the previous notation abit) Cn(
) = (2�)nn!Dn[w
n℄ is the normalizing 
onstant and 
 > 0.The following lemma, due to Gross, Witten [19℄ and Johansson [26,Lemma 2.1℄, des
ribes the asymptoti
 behavior of the free energy fn(
) =n−2 logCn(
).Lemma 5.1 (Gross, Witten [19℄). If fn(
) = n−2 logCn(
), thenlimn→∞
fn(
) = f(
) = {
24 ; if 0 6 
 6 1;
 − 12 log 
 − 34 ; if 1 < 
:Remark 5.2. The limiting fun
tion f(
) in Lemma 5.1 is not analyti
.Its derivative d3f=d
3 is dis
ontinuous at 
 = 1, thus a third-order phasetransition o

urs at this point. The asymptoti
 eigenvalue distribution issupported on the whole unit 
ir
le for 
 < 1, whereas for 
 > 1 its supportis a subset of T, details are 
ontained in Johansson [26℄.The following lemma shows that the limit in Lemma 5.1 
an be used toprove the asymptoti
 normality of the suÆ
ient statisti
s Tn(Z) de�nedin (22).Lemma 5.3. Let 0 < 
 < 1 and Z = (Z1; : : : ; Zn) be a sample with thejoint probability density fun
tion (21). Then the 
entered suÆ
ient statisti
Tn(Z) = n∑k=1 
osZk − n
=2 (22)
onverges in distribution to the normal distribution with mean 0 and vari-an
e 1=2.Proof. The moment generating fun
tion of the statisti
s Tn(Z) isMn(s) = C−1n (
)e−s
n=2 ∫[0;2�℄n |�(�)|2 exp{(
n+ s) n∑k=1 
os �k}d�= e−s
n=2 Dn[w
n+s℄Dn[w
n℄ = e−s
n=2C(
 + sn )C(
)
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 and 
onsider the sequen
e of fun
tions
{Mn(s)}n∈N where s belongs to the intervals ∈ I
 = [−min(
; 1− 
);min(
; 1− 
)℄:From the de�nition of I
 it follows that 0 6 
 + s=n 6 1 for every s ∈ I
 ,n > 1. It has been shown in Johansson [26, Lemma 3.3℄, that for every� > 0 there exists a 
onstant K(�) > 0 su
h that

∣∣∣ logCn(Æ)− n2Æ24 ∣∣∣ 6
K(�)n ;for arbitrary n > 1; Æ ∈ [0; 1− �℄. Consequently, with Æ ∈ {
; 
 + sn} and� = � e−K(�)=n 6 Cn(
) e−
2n2=4 6 eK(�)=n; n > 1;and e−K(�)=n

6 Cn(
 + s=n) e−(
+ sn )2n2=4
6 eK(�)=n; n > 1;uniformly for 
 ∈ [0; 1− �). Thus, we have the following expansionMn(s) = exp{

− sn
2 Big} exp{n24 (
 + sn)2
− n24 
2 +O( 1n)}= exp{s24 +O( 1n)}; s ∈ I
 :Therefore, limn→∞

Mn(s) = exp(s2=4); s ∈ I
 ;where the fun
tion on the right-hand side is the moment generating fun
-tion of the normal distribution with mean 0 and varian
e 1=2. The asymp-toti
 normality of the statisti
s Tn(Z) follows. �Corollary 5.4. If the 
onditions of Lemma 5.3 are satis�ed, the asymp-toti
 maximum likelihood estimator of the parameter 
0
̂n = 2n n∑i=k 
osZkis asymptoti
ally unbiased andn(
̂n − 
0) D−→ N (0; 2)as n→ ∞.
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n of the parameter 
 is ob-tained from the equationdd
 logCn(~
n) = n n∑k=1 
os �k: (23)Sin
e it was proved in Johansson [26, Lemma 3.3℄, that for 0 < � < 1 thereexists a 
onstant K > 0, su
h that
∣∣∣∣
dd
 logCn(
)− n2
2 ∣∣∣∣ 6

Kn ;for every n > 1; 
 ∈ (0; 1− �℄, we repla
e the equation (23) byn2
̂n2 = n n∑k=1 
os �k;whi
h de�nes the asymptoti
 maximum likelihood estimator as before.This leads to the estimator 
̂n = 2 n∑k=1 
os �kn :We noti
e thatEn[
̂n − 
0℄ = En[2Tn(Z)=n℄ −→ 0; n→ ∞;and n(
̂n − 
0) D−→ N (0; 2); n→ ∞;proving the 
orollary. �

§6. Open questionsRemark 6.1. The 
ase 
 > 1 is not 
onsidered in Se
tion 5. In this
ase the maximum likelihood equation (23) should be repla
ed by theasymptoti
 expression 1− 12~
n = n∑i=1 
os �inwhi
h follows from Lemma 5.1 and leads us to the equation whi
h de�nesthe asymptoti
 maximum likelihood estimator 
̂n. Asymptoti
 properties
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̂n 
an be derived using the same methods as here. Intuitively, theasymptoti
 distribution of the suÆ
ient statisti
sTn(Z) = n∑k=1 
osZk − n(1− 12
)is a 
onsequen
e of the following 
onvergen
e of the moment generatingfun
tions limn→∞
Mn(s) = exp [ s22 12
2 ]; s ∈ [1− 
; 
 − 1℄; (24)and 
onsequently, the asymptoti
 distribution of Tn(Z) is normal with ex-pe
tation 0 and varian
e (2
2)−1. However, to prove the 
onvergen
e (24)rigorously, one needs to establish that for 
 > 1, the rate of 
onvergen
eto the limiting fun
tion in Lemma 5.1 is of order o(n−2).Remark 6.2. Various extensions of questions addressed in this paperare possible. The Bessel weight in (21) 
ould be repla
ed by any othervarying weight on the unit 
ir
le. Phase transition phenomena similar tothose appearing in the 
ase of Hermitian matri
es (see [13℄) are expe
tedto o

ur. We should note here that while models with varying exponen-tial weights for Hermitian matri
es are extensively studied (see [8,13℄ andreferen
es therein), respe
tive 
ir
ular models are only starting to be 
on-sidered (see [30℄). We believe that these models may be
ome an extremelyri
h resear
h area. The models show high mathemati
al 
omplexity, manydi�erent analyti
 methods are involved, and the models have a wide rangeof appli
ations in di�erent bran
hes of mathemati
s and physi
s. The ques-tion of non-parametri
 estimation in the framework of generalized 
ir
u-lar unitary ensembles with varying weights remains open. Finally, similargeneralizations of 
ir
ular orthogonal and symple
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 ensembles are to be
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