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t. It is well known that for a standard Brownian motion(BM) {B(t); t > 0} with values in Rd, its 
onvex hull V (t) =
onv{B(s); s 6 t} with probability 1 for ea
h t > 0 
ontains 0 as aninterior point (see Evans [3℄). We also know that the winding numberof a typi
al path of a two-dimensional BM is equal to +∞. The aimof this arti
le is to show that these properties aren't spe
i�
ally\Brownian", but hold for a mu
h larger 
lass of d-dimensional self-similar pro
esses. This 
lass 
ontains in parti
ular d-dimensionalfra
tional Brownian motions and (
on
erning 
onvex hulls) stri
tlystable L�evy pro
esses.
§1. Introdu
tionLet (
;F ;P) be a basi
 probability spa
e. Consider a d-dimensionalpro
ess X = {X(t); t > 0} de�ned on 
 whi
h is self-similar of indexH > 0: It means that for ea
h 
onstant 
 > 0 the pro
ess {X(
t); t > 0}has the same distribution as {
HX(t); t > 0}:Let L = {L(u); u ∈ R1} be the stri
tly stationary pro
ess obtainedfrom X by Lamperti transformation:L(u) = e−HuX(eu); u ∈ R1: (1)Equivalently, X(t) = tHL(log t); t ∈ R+

∗ :Let � = {0; 1}d be the set of all dyadi
 sequen
es of length d: Denoteby D�, � ∈ �, the quadrant D� = d
∏i=1R�i ;where R�i = [0;∞) if �i = 1; and R�i = (−∞; 0℄ if �i = 0. The positivequadrant D(1;1;:::;1) for simpli
ity is denoted by D.Key words and phrases: Brownian motion, multi-dimensional fra
tional Brownianmotion, stable L�evy pro
esses, 
onvex hull, winding number.154



ON CONVEX HULL AND WINDING NUMBER 155We say that the pro
ess X is non-degenerate if for all � ∈ �P{X(1) ∈ D�} > 0:Two important examples of self-similar pro
esses are fra
tional Brow-nian motion and stable L�evy pro
ess.De�nition 1. We 
all a self-similar (of index H > 0) pro
ess BH fra
-tional Brownian motion (FBM) if for ea
h e ∈ Rd the s
alar pro
esst → 〈BH(t); e〉 is a standard one-dimensional FBM of index H up to a
onstant 
(e):It is easy to see that in this 
ase 
2(e) = 〈Qe; e〉; where Q is the 
ovari-an
e matrix of BH(1); and hen
eE〈BH(t); e〉〈BH (s); e〉 = 〈Qe; e〉12(t2H+s2H−|t−s|2H); t; s > 0; e ∈ Rd:The pro
ess BH is non-degenerate i� the rank of the matrix Q is equalto d. If H = 12 ; Q = Id; then BH is a standard Brownian motion.(See Xiao [8℄, Ra�
kauskas and Suquet [6℄, Lavan
ier et al. [4℄ and refer-en
es therein for more general de�nitions of operator self-similar FBM).De�nition 2. We 
all S = {S(t), t ∈ R+} �-stri
tly stable L�evy pro
ess(StS) if1) S(1) has a �-stri
tly stable distribution in Rd;2) it has independent and stationary in
rements ;3) it is 
ontinuous in probability.Then for ea
h t ∈ R+ the random variable S(t) has the same distribu-tion as t 1�S(1):The 
adlag version of S on [0; 1℄ 
an be obtained with the help of LePageseries representation (see [7℄ for more details). If � ∈ (0; 1) or if � ∈ (1; 2)and EX(1) = 0; then we have:
{S(t); t ∈ [0; 1℄} L= {
 ∞

∑1 �−1=�k "k1[0;t℄(�k); t ∈ [0; 1℄}; (2)where L= means equality in law, 
 is a 
onstant, �k = ∑k1 
j ; {
j} isa sequen
e of i.i.d. random variables with 
ommon standard exponentialdistribution, {"k} is a sequen
e of i.i.d. random variables with 
ommondistribution � 
on
entrated on unit sphere Sd−1, {�k} is a sequen
e of



156 YU. DAVYDOV[0; 1℄-uniformly distributed i.i.d. random variables, and the three sequen
es
{
j}; {"k}; {�k} are supposed to be independent.The measure � is 
alled spe
tral measure of S. It is easy to see that if(2) takes pla
e, the pro
ess X is non-degenerate i� ve
t{supp �} = R1:In Se
tion 2 the obje
t of our interest is the 
onvex hull pro
ess V =
{V (t)} asso
iated with X: We show that under very sharp 
onditions withprobability 1 for all t > 0 the 
onvex set V (t) 
ontains 0 as its interiorpoint. From this result some interesting 
orollaries are dedu
ed.Se
tion 3 is devoted to studying the winding numbers of two-dimensionalself-similar pro
esses. As a 
orollary of our main result we show that forthe typi
al path of a standard two-dimensional FBM the number of its
lo
kwise and anti-
lo
kwise winds around 0 in the neighborhood of zeroor at in�nity is equal to ∞:

§2. Convex hullsFor a Borel set A ⊂ Rd we denote by 
onv(A) the 
losed 
onvex hull ofA and de�ne the 
onvex hull pro
ess related to X :V (t) = 
onv{X(s); s 6 t}:Theorem 1. Let X be a non-degenerate self-similar pro
ess su
h that thestri
tly stationary pro
ess L generating X is ergodi
. Then with probabil-ity 1 for all t > 0 the point 0 is an interior point of V (t):Appli
ation to FBM. Let BH be a FBM with index H: The nextproperties follow from the de�nition without diÆ
ulties.1) Continuity. The pro
ess X has a 
ontinuous version.Below we always suppose BH to be 
ontinuous.2) Reversibility. If the pro
ess Y is de�ned byY (t) = BH(1)−BH(1− t); t ∈ [0; 1℄;then {Y (t); t ∈ [0; 1℄} L= {BH(t); t ∈ [0; 1℄}.3) Ergodi
ity. Let L = {L(u); u ∈ R1} be the stri
tly stationaryGaussian pro
ess obtained from BH by Lamperti transformation(1).Then L is ergodi
 (see Cornfeld et al. [1℄, Chapter 14, § 2, The-orem 1, Theorem 2).It is supposed below that the pro
ess BH is non-degenerate.



ON CONVEX HULL AND WINDING NUMBER 157Corollary 1. Let V be the 
onvex hull pro
ess related to BH : Then withprobability 1 for all t > 0 the point 0 is an interior point of V (t):This follows immediately from Theorem 1.Corollary 2. Let V be the 
onvex hull pro
ess related to BH : Then forea
h t > 0 with probability 1 the point BH(t) is an interior point of V (t):Proof of Corollary 2. Denote by A◦ the interior of A: By self-similarityof the pro
ess BH it is suÆ
ient to state this property for t = 1: Then,due to the reversibility of BH by Theorem 1, a.s.0 ∈ [
onv{BH(1)−BH(1− t); t ∈ [0; 1℄}℄◦: (3)As
onv{BH(1)−BH(1−t); t ∈ [0; 1℄}=BH(1)−
onv{BH(1−s); s ∈ [0; 1℄};the relation (3) is equivalent toBH(1) ∈ [
onv{BH(s); s ∈ [0; 1℄}℄◦;whi
h 
on
ludes the proof. �Let Kd be the family of all 
ompa
t 
onvex subsets of Rd: It is wellknown that Kd equipped with Hausdor� metri
 is a Polish spa
e.We say that a fun
tion f : [0; 1℄ → Kd is in
reasing, if f(t) ⊂ f(s) for0 6 t < s 6 1:We say that a fun
tion f : [0; 1℄ → Kd is almost everywhere 
onstant, iff is su
h that for almost every t ∈ [0; 1℄ there exists an interval (t−"; t+")where f is 
onstant.We say that a fun
tion f : [0; 1℄ → Kd is a Cantor-stair
ase (C-S), if fis 
ontinuous, in
reasing and almost everywhere 
onstant.The next statement follows easily from Corollary 2.Corollary 3. Let V be the 
onvex hull pro
ess related to BH . Then withprobability 1 the paths of the pro
ess t → V (t) are C-S fun
tions.Remark 1. Let h : K → R1 be an in
reasing 
ontinuous fun
tion. Thenalmost all paths of the pro
ess t → h(V (t)) are C-S real fun
tions. Thisobvious fa
t may be applied to all reasonable geometri
al 
hara
teristi
sof V (t); su
h as volume, surfa
e area, diameter, . . .



158 YU. DAVYDOVAppli
ation to StS. Let now S be an StS pro
ess with exponent� < 2: The following properties are more or less known.1) Right 
ontinuity. The pro
ess S has a 
adlag version (see remarkabove just after the de�nition).2) Reversibility. LetY (t) = S(1)− S(1− t); t ∈ [0; 1℄:Then {Y (t); t ∈ [0; 1℄} L= {S(t); t ∈ [0; 1℄}:3) Self-similarity. The pro
ess S is self-similar of index H = 1� :4) Ergodi
ity. Let L = {L(u); u ∈ R1} be the stri
tly stationarypro
ess obtained from S by the Lamperti transformation (1). ThenL is ergodi
.We suppose that the law of S(1) is non-degenerate.Corollary 4. Let V be the 
onvex hull pro
ess related to S: Then withprobability 1 for all t > 0 the point 0 is an interior point of V (t):Corollary 5. Let V be the 
onvex hull pro
ess related to S: Then for ea
ht > 0 with probability 1 the point X(t) is an interior point of V (t):Corollary 6. Let V be the 
onvex hull pro
ess related to S: Then withprobability 1 the paths of the pro
ess t → V (t) are right 
ontinuous almosteverywhere 
onstant fun
tions.We omit proofs of these statements as they are similar to proofs ofCorollaries 1{3.Proof of Theorem 1. We �rst show thatp def= P{ ∃ t ∈ (0; 1℄ | X(t) ∈ D◦} = 1: (4)Remark that p is stri
tly positive:p > P{X(1) ∈ D◦} > 0 (5)due to the hypothesis that the law of X(1) is non-degenerate.By self-similarityP{D◦ ∩ {X(t); t ∈ [0; T ℄} = ∅

} = 1− pfor every T > 0: The sequen
e of events (An)n∈N ;An = {D◦ ∩ {X(t); t ∈ [0; n℄} = ∅

};



ON CONVEX HULL AND WINDING NUMBER 159being de
reasing, it follows that1− p = limP(An) = P(∩nAn) = P{X(t) =∈ D◦; ∀ t > 0}:In terms of the stationary pro
ess L from the Lamperti representation itmeans that P{L(s) =∈ D◦; ∀ s ∈ R1} = 1− p:As this event is invariant, by ergodi
ity of L and due to (5) we see thatthe value p = 1 is the only one possible.Applying the similar arguments to another quadrants D�, � ∈ �, we getthat with probability 1 there exists points t� ∈ (0; 1℄; su
h thatX(t�) ∈ D◦� ,� ∈ �. Now, to end the proof it is suÆ
ient to remark thatV (1)◦ = 
onv{X(t); t ∈ [0; 1℄}◦ ⊃ 
onv{X(t�); � ∈ �}◦and that the last set evidently 
ontains 0: �

§3. Winding numbersLet now X = {X(t); t > 0} be a two-dimensional self-similar pro
ess.It is supposed that the following properties are ful�lled:1) Pro
ess X is 
ontinuous.2) Pro
ess X is non-degenerate.3) Pro
ess X is symmetri
: X and −X have the same law.4) The stationary pro
ess L asso
iated with X is ergodi
.5) Starting from 0 the pro
ess X with probability 1 never 
ome ba
k:P{X(t) 6= 0; ∀ t > 0} = 1: (6)Due to the last hypothesis, 
onsideringR2 as 
omplex plane, we 
an de�nethe winding numbers (around 0) �[s; t℄, 0 < s < t, by the usual way (see[5℄, Chapter 5): �[s; t℄ = arg (X(t))− arg (X(s)):We set �+(0; t℄ = lim sups↓0 �[s; t℄; �−(0; t℄ = lim infs↓0 �[s; t℄;�+[s;∞) = lim supt→∞

�[s; t℄; �−[s;∞) = lim inft→∞
�[s; t℄:The values �+(0; t℄, −�−(0; t℄ represent respe
tively the number of 
lo
k-wise and anti-
lo
kwise winds around 0 in the neighborhood of the startingpoint, while �+[s;∞), −�−[s;∞) are the similar winding numbers at in-�nity.



160 YU. DAVYDOVTheorem 2. Let X be a two-dimensional self-similar pro
ess with theproperties 1){5) mentioned above. Then with probability one for all t > 0�+(0; t℄ = �+[t;∞) = −�−(0; t℄ = −�−[t;∞) = +∞: (7)Corollary 7. Let BH be a two-dimensional standard FBM and assumethat H ∈ [1=2; 1). Then with probability one for all t > 0 the equalities (7)take pla
e.Proof. Case H = 1=2 is well known, see [5, Chapter 5℄, whi
h 
ontainsexhaustive information on Brownian winding numbers.If H ∈ (1=2; 1); we apply Theorem 2 as all hypothesis 1){5) are ful-�lled: indeed, the properties 1){3) are obvious; the ergodi
ity of L; L(t) =(L1(t); L2(t)); follows from the fa
t that EL1(t)L1(0) → 0 when t → ∞(see [1, Chapter 14, Se
tion 2, Theorem 2℄); The property 5) 
an be de-du
ed from Theorem 11 of [8℄ (see also [9, Theorem 4.2℄ and [10, Theo-rem 2.6℄). �Remark 2. If H ∈ (0; 12 ); the pro
ess t → argBH(t) − argBH(0) is not
ontinuous with positive probability as the set {t ∈ (0; 1℄ | BH(t) = 0} isnot empty (see [8, Theorem 11)℄). It means that in this 
ase the windingnumbers 
ould be de�ned only for the ex
ursions of BH ; and we need forits study more sophisti
ated methods.Proof of Theorem 2. By 5) we haveP{L(t) 6= 0; ∀ t ∈ R1} = 1:Hen
e as above we 
an de�ne for L the winding numbers �L+
−

(−∞; t℄,�L+
−

[t;∞), and besides we have�L+
−
(−∞; t℄ = �+

−
(0; et℄; �L+

−
[t;∞) = �+

−
[et;∞):Therefore from now on we 
an work with the pro
ess L and will omit theindex L in the notation of winding numbers.Let us show thatP{

|�+
−
[t;∞)| = ∞; ∀ t ∈ R1} = 1: (8)By symmetry (property 3) it is suÆ
ient to state thatP{�+[t;∞) = ∞; ∀ t ∈ R1} = 1: (9)



ON CONVEX HULL AND WINDING NUMBER 161Using the arguments from the proof of Theorem 1 we remark that thepro
ess L visits in�nitely often ea
h of four basi
 quadrants. It follows by
ontinuity that at least one of two events A;B,A = {

∃ t > 0; su
h that argX(t)− argX(0) > �=2};B = {

∃ t > 0; su
h that argX(t)− argX(0) < �=2};has probability 1. By symmetry (property 3)) P(A) = P(B). Thus,P{

∃ t > 0; su
h that argX(t)− argX(0) > �=2} = 1:From this follows by stationarity that for all s ∈ R1,P{

∃ t > s; su
h that argX(t)− argX(s) > �=2} = 1:The setE = {(s; !) ∈ R1 × 
 | ∃ t > s; su
h that argX(t)− argX(s) > �=2}is measurable as the pro
ess s→ supt>s(argX(t)−argX(s)) is 
ontinuous.Based on the aforementioned and due to the Fubini theorem, the set Eis su
h that �×P(E∁) = 0, � being the Lebesgue measure. Therefore thereexists 
′ ⊂ 
, P(
′) = 1, su
h that for ea
h ! ∈ 
′, for almost all s ∈ R1,there exists t > s for whi
h argX(t) − argX(s) > �=2. Take ! ∈ 
′. Letus denote E! the 
orresponding !-se
tion of E. Without loss of generality,we 
an suppose that for ea
h ! ∈ 
′, the point 0 belongs to E!. As�(E∁!) = 0,E! is dense inR1: Let u > 0 be su
h that argX(u)−argX(0) >�=2. By 
ontinuity, argX(t) − argX(0) > �=2 for all t in a suÆ
ientlysmall neighborhood of u and, therefore, there exists t1 ∈ E! for whi
hargX(t1) − argX(0) > �=2. Repeating this reasoning, we 
an build anin
reasing sequen
e (tn) su
h that t1 = 0 and tn ∈ E!. Sin
e for ea
h n,argX(tn)− argX(tn−1) > �=2, we getsupt>0(argX(t)− argX(0)) = ∞:Thus, it is proved that for ea
h tP{�+[t;∞) = ∞
} = 1: (10)Now to show that P{�+[t;∞) = ∞; ∀ t ∈ R1} = 1it is suÆ
ient to remark that for ea
h ! from 
′ the !-se
tion E! = R1:Indeed, supposing that there exists u ∈ E∁! we should haveargX(s)− argX(u) 6 �=2



162 YU. DAVYDOVfor ea
h s > t, but that is in 
ontradi
tion with the existen
e of t ∈ E! ,t > u, for whi
h (10) holds. Thus (9) is proved. Applying the previous rea-sonings to the pro
ess {L(−t); t ∈ R1}; we prove the remaining equalitiesof (7). �Referen
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