
úÁ�ÉÓËÉ ÎÁÕÞÎÙÈÓÅÍÉÎÁÒÏ× ðïíé�ÏÍ 441, 2015 Ç.F. G�otze, D. ZaporozhetsDISCRIMINANT AND ROOT SEPARATION OFINTEGRAL POLYNOMIALSAbstra
t. Consider a random polynomialGQ(x) = �Q;nxn + �Q;n−1xn−1 + · · ·+ �Q;0with independent 
oeÆ
ients uniformly distributed on 2Q+1 integerpoints {−Q; : : : ;Q}. Denote by D(GQ) the dis
riminant of GQ. Weshow that there exists a 
onstant Cn, depending on n only su
hthat for all Q > 2 the distribution of D(GQ) 
an be approximatedas followssup
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CnlogQ;where 'n denotes the probability density fun
tion of the dis
rimi-nant of a random polynomial of degree n with independent 
oeÆ-
ients whi
h are uniformly distributed on [−1; 1℄.Let �(GQ) denote the minimal distan
e between the 
omplexroots of GQ. As an appli
ation we show that for any " > 0 thereexists a 
onstant Æn > 0 su
h that �(GQ) is sto
hasti
ally boundedfrom below/above for all suÆ
iently large Q in the following senseP(Æn < �(GQ) < 1Æn ) > 1− ":

§1. Introdu
tionLetp(x) = anxn + an−1xn−1 + · · ·+ a0 = an(x− �1) : : : (x− �n)be a polynomial of degree n with real or 
omplex 
oeÆ
ients.In this note we 
onsider di�erent asymptoti
 estimates when the degreen is arbitrary but �xed. Thus for non-negative fun
tions f; g we write f ≪ gKey words and phrases: distribution of dis
riminants, integral polynomials, polyno-mial dis
riminant, polynomial root separation.The work was done with the �nan
ial support of the Bielefeld University (Germany)in terms of proje
t SFB 701. The se
ond author is supported by the RFBR grant 13-01-00256 and by the program of RAS \Modern problems of theoreti
al mathemati
s".144



DISCRIMINANT AND ROOT SEPARATION 145if there exists a non-negative 
onstant Cn (depending on n only) su
h thatf 6 Cng. We also write f ≍ g if f ≪ g and f ≫ g.Denote by �(p) = min16i<j6n |�i − �j |the shortest distan
e between any two zeros of p.In his seminal paper Mahler [12℄ proved that�(p) >
√3n−(n+2)=2 |D(p)|1=2(|an|+ · · ·+ |a0|)n−1 ; (1)where D(p) = a2n−2n ∏16i<j6n(�i − �j)2 (2)denotes the dis
riminant of p(x). Alternatively, D(p) is given by the (2n−1)-dimensional determinantD(p) = (−1)n(n−1)=2
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: (3)De�ne the height of the polynomial by H(p) = max06i6n |ai|. It followsimmediately from (3) that
|D(p)| ≪ H(p)2n−2: (4)From now on we will always assume that the polynomial p is integral(that is, it has integer 
oeÆ
ients). Sin
e the 
ondition D(p) 6= 0 implies

|D(p)| > 1 Mahler noted that (1) implies�(p) ≫ H(p)−n+1; (5)provided that p doesn't have multiple zeros. The estimate (5) seems to bethe best available lower bound up to now. However, for n > 3 it is still notknown how far it di�ers from the optimal lower bound. Denote by �n thein�mum of � su
h that �(p) > H(p)−�



146 F. G�OTZE, D. ZAPOROZHETSholds for all integral polynomials of degree n without multiple zeros andlarge enough height H(p). It is easy to see that (5) is equivalent to �n 6n − 1. Also it is a simple exer
ise to show that �2 = 1 (see, e.g., [8℄).Evertse [9℄ showed that �3 = 2.For n > 4 only estimates are known. At �rst, Mignotte [13℄ proved that�n > n=4 for n > 2. Later Bugeaud and Mignotte [7, 8℄ have shown that�n > n=2 for even n > 4 and �n > (n + 2)=4 for odd n > 5. Shortlyafter that Beresnivi
h, Bernik, and G�otze [1℄, using 
ompletely di�erentapproa
h, improved their result in the 
ase of odd n: they obtained (as a
orollary of more general 
ounting result) that �n > (n + 1)=3 for n > 2.Re
ently Bugeaud and Dujella [6℄ a
hieved signi�
ant progress showingthat �n > (2n− 1)=3 for n > 4 (see also [5℄ for irredu
ible polynomials).Formulated in other terms the above results give answers to the ques-tion "How 
lose to ea
h other 
an two 
onjugate algebrai
 numbers of de-gree n be?" Re
all that two 
omplex algebrai
 numbers 
alled 
onjugate(over Q) if they are roots of the same irredu
ible integral polynomial (over
Q). Roughly speaking, if we 
onsider a polynomial p∗ whi
h minimizes�(p) among all integral polynomials of degree n having the same heightand without multiple zeros, then �(p∗) satis�es the following lower/upperbounds with respe
t to H(p∗):H(p∗)−
1n ≪ �(p∗) ≪ H(p∗)−
2n;for some absolute 
onstants 0 < 
2 6 
1. In this note, instead of 
onsideringthe extreme polynomial p∗, we 
onsider the behaviour of �(p) for a typi
alintegral polynomial p. We prove that for \most" integral polynomials (seeSe
tion 2 for a more pre
ise formulation) we have�(p) ≍ 1:We also show that the same estimate holds for "most\ irredu
ible integralpolynomials (over Q).A related interesting problem is to study the distribution of dis
rim-inants of integral polynomials. To deal with it is 
onvenient (albeit notne
essary) to use probabilisti
 terminology. Consider some Q ∈ N and 
on-sider the 
lass of all integral polynomials p with deg(p) 6 n and H(p) 6 Q.The 
ardinality of this 
lass is (2Q+ 1)n+1. Consider the uniform proba-bility measure on this 
lass so that the probability of ea
h polynomial isgiven by (2Q+1)−n−1. In this sense, we may 
onsider random polynomialsGQ(x) = �Q;nxn + �Q;n−1xn−1 + · · ·+ �Q;0



DISCRIMINANT AND ROOT SEPARATION 147with independent 
oeÆ
ients whi
h are uniformly distributed on 2Q + 1integer points {−Q; : : : ; Q}. We are interested in the asymptoti
 behaviorof D(GQ) when n is �xed and Q→ ∞.Bernik, G�otze and Kukso [4℄ showed that for � ∈ [0; 1=2℄P(|D(GQ| < Q2n−2−2�) ≫ Q−2� :Note that the 
ase � = 0 is 
onsistent with (4). It has been 
onje
turedin [4℄ that this estimate is optimal up to a 
onstant:P(|D(GQ)| < Q2n−2−2�) ≍ Q−2� : (6)The 
onje
ture turned out to be true for n = 2: G�otze, Kaliada, andKorolev [10℄ showed that for n = 2 and � ∈ (0; 3=4) it holdsP(|D(GQ)| < Q2−2�)= 2(log 2 + 1)Q−2� (1 +O(Q−� logQ+Q2�−3=2 log3=2Q)) :However, for n = 3 and � ∈ [0; 3=5) Kaliada, G�otze, and Kukso [11℄obtained the following asymptoti
 relation:P(|D(GQ)| < Q4−2�) = �Q−5�=3 (1 +O(Q−�=3 logQ+Q5�=3−1)) ; (7)where the absolute 
onstant � had been expli
itly determined.Re
ently Beresnevi
h, Bernik, and G�otze [2℄ extended the lower boundgiven by (7) to the full range of � and to the arbitrary degrees n. Theyshowed that for 0 6 � < n− 1 one has thatP(|D(GQ| < Q2n−2−2�) ≫ Q−n+3−(n+2)�=n:They also obtained a similar result for resultants.In this note we prove a limit theorem for D(GQ). As a 
orollary, weobtain that "with high probability\ (see Se
tion 2 for details) the followingasymptoti
 equivalen
e holds:
|D(PQ)| ≍ Q2n−2:The same estimate holds \with high probability" for irredu
ible polyno-mials.For more 
omprehensive survey of the subje
t and a list of referen
es,see [3℄.
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§2. Main resultsLet �0; �1; : : : ; �n be independent random variables uniformly distributedon [−1; 1℄. Consider the random polynomialG(x) = �nxn + �n−1xn−1 + · · ·+ �1x+ �0and denote by ' the probability density fun
tion of D(G). It is easy to seethat ' has 
ompa
t support and supx∈R

'(x) <∞.Theorem 2.1. Using the above notations we havesup
−∞6a6b6∞
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≪ 1logQ: (8)How far is this estimate from being optimal? Relation (7) shows thatfor n = 3 the estimate log−1Q 
an not be repla
ed by Q−" for any " > 0.Otherwise it would imply that (6) holds for � 6 "=2.The proof of Theorem 2.1 will be given in Se
tion 2.1. Now let us derivesome 
orollaries.Relation (4) means that |D(GQ)| ≪ Q2n−2 holds a.s. It follows fromTheorem 2.1 that with high probability the lower estimate holds as well.Corollary 2.2. For any " > 0 there exists Æ > 0 (depending on n only)su
h that for all suÆ
iently large QP(|D(GQ)| > ÆQ2n−2) > 1− ": (9)Proof. Sin
e supx∈R

'(x) <∞, it follows from (8) thatP(|D(GQ)| < ÆQ2n−2) ≪ Æ + 1logQ;whi
h 
ompletes the proof. �As another 
orollary we obtain an estimate for �(GQ).Corollary 2.3. For any " > 0 there exists Æ > 0 (depending on n only)su
h that for all suÆ
iently large QP(Æ < �(GQ) < Æ−1) > 1− ": (10)Proof. For large enough Q we haveP(

|�Q;n| > "2Q) > 1− ":



DISCRIMINANT AND ROOT SEPARATION 149Therefore it follows from (2) and (4) that with probability at least 1− "�(GQ) 6

(2")2=n ;whi
h implies the upper estimate. The lower bound immediately followsfrom (9) and (1). �Remark on irredu
ibility. In order to 
onsider �(GQ) as distan
e be-tween the 
losest 
onjugate algebrai
 numbers of GQ we have to restri
tourselves to irredu
ible polynomials only. In other words the distribution ofthe random polynomial GQ has to be 
onditioned on GQ being irredu
ible.It turns out that the relations (9) and (10) with 
onditional versions of theleft-hand sides still hold. This fa
t easily follows from the estimateP(GQis irredu
ible) ≍ 1;whi
h was obtained by van der Waerden [14℄.
§3. Proof of Theorem 2.1For k ∈ N the moments of �i and �i;Q are given byE�2ki = 12k + 1 ; E�2ki;Q = 22Q+ 1 Q

∑j=1 j2k:Sin
e Q2k+12k + 1 = Q
∫0 t2k dt 6

Q
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Q
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22Q+ 1 · (Q+ 1)2k+1 −Q2k+12k + 1 + Q2k2Q+ 1 6 22kQ2k−1;



150 F. G�OTZE, D. ZAPOROZHETSwhi
h implies
∣
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;(12)where the summation is taken over at most ((2n − 1)!)k summands su
hthat k0 + · · ·+ kn = k(n− 1). Let us show that
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22k0+···+2knQ : (13)We pro
eed by indu
tion on n. The 
ase n = 0 follows from (11). It holds
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:Applying the indu
tion assumption and (11), we obtain (13).Thus, using (12), (13), and the relation k0 + · · ·+ kn = k(n− 1) we get
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kQ ; (14)where 
 depends on n only.Sin
e D(G) and D(GQ=Q) are bounded random variables, their 
har-a
teristi
 fun
tionsf(t) = E eiD(G); fQ(t) = E eiD(GQ=Q)
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tions. Therefore (14) implies that for all real t
|fQ(t)− f(t)| = ∣
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|t|)kk! 6

|t|e
|t|Q : (15)Now we are ready to estimate the uniform distan
e between the distri-butions of D(G) and D(GQ=Q) using the 
loseness of f(t) and fQ(t). LetF and FQ be distribution fun
tions of D(G) and D(GQ=Q). By Esseen'sinequality, we get for any T > 0supx |FQ(x)− F (x)| 6
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'(x)T :Applying (15), we obtain that there exists a 
onstant C depending on nonly su
h that for any T > 0sup
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TQ + 1T ) :Taking T = logQ=2
 
ompletes the poof.
§4. ResultantsGiven polynomialsp(x) = an(x− �1) : : : (x− �n); q(x) = bm(x − �1) : : : (x− �m);denote by R(p; q) the resultant de�ned byR(p; q) = amn bnm n

∏i=1 m
∏j=1(�i − �j):Obviously dis
riminants are essentially a spe
ialization of resultants via:D(p) = (−1)n(n−1)=2a−1n R(p; p′):Repeating the arguments from Se
tion 3 we obtain the following result.Consider the random polynomialsGQ(x) = �Q;nxn + �Q;n−1xn−1 + · · ·+ �Q;1x+ �Q;0;FQ(x) = �Q;mxm + �Q;m−1xm−1 + · · ·+ �Q;1x+ �Q;0



152 F. G�OTZE, D. ZAPOROZHETSwith independent 
oeÆ
ients uniformly distributed on 2Q + 1 points
{−Q; : : : ; Q} and 
onsider the random polynomialsG(x) = �nxn + �n−1xn−1 + · · ·+ �1x+ �0;F (x) = �mxm + �m−1xm−1 + · · ·+ �1x+ �0with independent 
oeÆ
ients uniformly distributed on [−1; 1℄. Denote by the distribution fun
tion of R(G;F ). We havesup
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