
úÁ�ÉÓËÉ ÎÁÕÞÎÙÈÓÅÍÉÎÁÒÏ× ðïíé�ÏÍ 441, 2015 Ç.F. G�otze, D. ZaporozhetsDISCRIMINANT AND ROOT SEPARATION OFINTEGRAL POLYNOMIALSAbstrat. Consider a random polynomialGQ(x) = �Q;nxn + �Q;n−1xn−1 + · · ·+ �Q;0with independent oeÆients uniformly distributed on 2Q+1 integerpoints {−Q; : : : ;Q}. Denote by D(GQ) the disriminant of GQ. Weshow that there exists a onstant Cn, depending on n only suhthat for all Q > 2 the distribution of D(GQ) an be approximatedas followssup
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CnlogQ;where 'n denotes the probability density funtion of the disrimi-nant of a random polynomial of degree n with independent oeÆ-ients whih are uniformly distributed on [−1; 1℄.Let �(GQ) denote the minimal distane between the omplexroots of GQ. As an appliation we show that for any " > 0 thereexists a onstant Æn > 0 suh that �(GQ) is stohastially boundedfrom below/above for all suÆiently large Q in the following senseP(Æn < �(GQ) < 1Æn ) > 1− ":

§1. IntrodutionLetp(x) = anxn + an−1xn−1 + · · ·+ a0 = an(x− �1) : : : (x− �n)be a polynomial of degree n with real or omplex oeÆients.In this note we onsider di�erent asymptoti estimates when the degreen is arbitrary but �xed. Thus for non-negative funtions f; g we write f ≪ gKey words and phrases: distribution of disriminants, integral polynomials, polyno-mial disriminant, polynomial root separation.The work was done with the �nanial support of the Bielefeld University (Germany)in terms of projet SFB 701. The seond author is supported by the RFBR grant 13-01-00256 and by the program of RAS \Modern problems of theoretial mathematis".144



DISCRIMINANT AND ROOT SEPARATION 145if there exists a non-negative onstant Cn (depending on n only) suh thatf 6 Cng. We also write f ≍ g if f ≪ g and f ≫ g.Denote by �(p) = min16i<j6n |�i − �j |the shortest distane between any two zeros of p.In his seminal paper Mahler [12℄ proved that�(p) >
√3n−(n+2)=2 |D(p)|1=2(|an|+ · · ·+ |a0|)n−1 ; (1)where D(p) = a2n−2n ∏16i<j6n(�i − �j)2 (2)denotes the disriminant of p(x). Alternatively, D(p) is given by the (2n−1)-dimensional determinantD(p) = (−1)n(n−1)=2
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: (3)De�ne the height of the polynomial by H(p) = max06i6n |ai|. It followsimmediately from (3) that
|D(p)| ≪ H(p)2n−2: (4)From now on we will always assume that the polynomial p is integral(that is, it has integer oeÆients). Sine the ondition D(p) 6= 0 implies

|D(p)| > 1 Mahler noted that (1) implies�(p) ≫ H(p)−n+1; (5)provided that p doesn't have multiple zeros. The estimate (5) seems to bethe best available lower bound up to now. However, for n > 3 it is still notknown how far it di�ers from the optimal lower bound. Denote by �n thein�mum of � suh that �(p) > H(p)−�



146 F. G�OTZE, D. ZAPOROZHETSholds for all integral polynomials of degree n without multiple zeros andlarge enough height H(p). It is easy to see that (5) is equivalent to �n 6n − 1. Also it is a simple exerise to show that �2 = 1 (see, e.g., [8℄).Evertse [9℄ showed that �3 = 2.For n > 4 only estimates are known. At �rst, Mignotte [13℄ proved that�n > n=4 for n > 2. Later Bugeaud and Mignotte [7, 8℄ have shown that�n > n=2 for even n > 4 and �n > (n + 2)=4 for odd n > 5. Shortlyafter that Beresnivih, Bernik, and G�otze [1℄, using ompletely di�erentapproah, improved their result in the ase of odd n: they obtained (as aorollary of more general ounting result) that �n > (n + 1)=3 for n > 2.Reently Bugeaud and Dujella [6℄ ahieved signi�ant progress showingthat �n > (2n− 1)=3 for n > 4 (see also [5℄ for irreduible polynomials).Formulated in other terms the above results give answers to the ques-tion "How lose to eah other an two onjugate algebrai numbers of de-gree n be?" Reall that two omplex algebrai numbers alled onjugate(over Q) if they are roots of the same irreduible integral polynomial (over
Q). Roughly speaking, if we onsider a polynomial p∗ whih minimizes�(p) among all integral polynomials of degree n having the same heightand without multiple zeros, then �(p∗) satis�es the following lower/upperbounds with respet to H(p∗):H(p∗)−1n ≪ �(p∗) ≪ H(p∗)−2n;for some absolute onstants 0 < 2 6 1. In this note, instead of onsideringthe extreme polynomial p∗, we onsider the behaviour of �(p) for a typialintegral polynomial p. We prove that for \most" integral polynomials (seeSetion 2 for a more preise formulation) we have�(p) ≍ 1:We also show that the same estimate holds for "most\ irreduible integralpolynomials (over Q).A related interesting problem is to study the distribution of disrim-inants of integral polynomials. To deal with it is onvenient (albeit notneessary) to use probabilisti terminology. Consider some Q ∈ N and on-sider the lass of all integral polynomials p with deg(p) 6 n and H(p) 6 Q.The ardinality of this lass is (2Q+ 1)n+1. Consider the uniform proba-bility measure on this lass so that the probability of eah polynomial isgiven by (2Q+1)−n−1. In this sense, we may onsider random polynomialsGQ(x) = �Q;nxn + �Q;n−1xn−1 + · · ·+ �Q;0



DISCRIMINANT AND ROOT SEPARATION 147with independent oeÆients whih are uniformly distributed on 2Q + 1integer points {−Q; : : : ; Q}. We are interested in the asymptoti behaviorof D(GQ) when n is �xed and Q→ ∞.Bernik, G�otze and Kukso [4℄ showed that for � ∈ [0; 1=2℄P(|D(GQ| < Q2n−2−2�) ≫ Q−2� :Note that the ase � = 0 is onsistent with (4). It has been onjeturedin [4℄ that this estimate is optimal up to a onstant:P(|D(GQ)| < Q2n−2−2�) ≍ Q−2� : (6)The onjeture turned out to be true for n = 2: G�otze, Kaliada, andKorolev [10℄ showed that for n = 2 and � ∈ (0; 3=4) it holdsP(|D(GQ)| < Q2−2�)= 2(log 2 + 1)Q−2� (1 +O(Q−� logQ+Q2�−3=2 log3=2Q)) :However, for n = 3 and � ∈ [0; 3=5) Kaliada, G�otze, and Kukso [11℄obtained the following asymptoti relation:P(|D(GQ)| < Q4−2�) = �Q−5�=3 (1 +O(Q−�=3 logQ+Q5�=3−1)) ; (7)where the absolute onstant � had been expliitly determined.Reently Beresnevih, Bernik, and G�otze [2℄ extended the lower boundgiven by (7) to the full range of � and to the arbitrary degrees n. Theyshowed that for 0 6 � < n− 1 one has thatP(|D(GQ| < Q2n−2−2�) ≫ Q−n+3−(n+2)�=n:They also obtained a similar result for resultants.In this note we prove a limit theorem for D(GQ). As a orollary, weobtain that "with high probability\ (see Setion 2 for details) the followingasymptoti equivalene holds:
|D(PQ)| ≍ Q2n−2:The same estimate holds \with high probability" for irreduible polyno-mials.For more omprehensive survey of the subjet and a list of referenes,see [3℄.



148 F. G�OTZE, D. ZAPOROZHETS
§2. Main resultsLet �0; �1; : : : ; �n be independent random variables uniformly distributedon [−1; 1℄. Consider the random polynomialG(x) = �nxn + �n−1xn−1 + · · ·+ �1x+ �0and denote by ' the probability density funtion of D(G). It is easy to seethat ' has ompat support and supx∈R

'(x) <∞.Theorem 2.1. Using the above notations we havesup
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≪ 1logQ: (8)How far is this estimate from being optimal? Relation (7) shows thatfor n = 3 the estimate log−1Q an not be replaed by Q−" for any " > 0.Otherwise it would imply that (6) holds for � 6 "=2.The proof of Theorem 2.1 will be given in Setion 2.1. Now let us derivesome orollaries.Relation (4) means that |D(GQ)| ≪ Q2n−2 holds a.s. It follows fromTheorem 2.1 that with high probability the lower estimate holds as well.Corollary 2.2. For any " > 0 there exists Æ > 0 (depending on n only)suh that for all suÆiently large QP(|D(GQ)| > ÆQ2n−2) > 1− ": (9)Proof. Sine supx∈R

'(x) <∞, it follows from (8) thatP(|D(GQ)| < ÆQ2n−2) ≪ Æ + 1logQ;whih ompletes the proof. �As another orollary we obtain an estimate for �(GQ).Corollary 2.3. For any " > 0 there exists Æ > 0 (depending on n only)suh that for all suÆiently large QP(Æ < �(GQ) < Æ−1) > 1− ": (10)Proof. For large enough Q we haveP(

|�Q;n| > "2Q) > 1− ":



DISCRIMINANT AND ROOT SEPARATION 149Therefore it follows from (2) and (4) that with probability at least 1− "�(GQ) 6

(2")2=n ;whih implies the upper estimate. The lower bound immediately followsfrom (9) and (1). �Remark on irreduibility. In order to onsider �(GQ) as distane be-tween the losest onjugate algebrai numbers of GQ we have to restritourselves to irreduible polynomials only. In other words the distribution ofthe random polynomial GQ has to be onditioned on GQ being irreduible.It turns out that the relations (9) and (10) with onditional versions of theleft-hand sides still hold. This fat easily follows from the estimateP(GQis irreduible) ≍ 1;whih was obtained by van der Waerden [14℄.
§3. Proof of Theorem 2.1For k ∈ N the moments of �i and �i;Q are given byE�2ki = 12k + 1 ; E�2ki;Q = 22Q+ 1 Q

∑j=1 j2k:Sine Q2k+12k + 1 = Q
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22kQ : (11)It follows from (3) that for all k ∈ N
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;(12)where the summation is taken over at most ((2n − 1)!)k summands suhthat k0 + · · ·+ kn = k(n− 1). Let us show that
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22k0+···+2knQ : (13)We proeed by indution on n. The ase n = 0 follows from (11). It holds
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:Applying the indution assumption and (11), we obtain (13).Thus, using (12), (13), and the relation k0 + · · ·+ kn = k(n− 1) we get
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kQ ; (14)where  depends on n only.Sine D(G) and D(GQ=Q) are bounded random variables, their har-ateristi funtionsf(t) = E eiD(G); fQ(t) = E eiD(GQ=Q)



DISCRIMINANT AND ROOT SEPARATION 151are entire funtions. Therefore (14) implies that for all real t
|fQ(t)− f(t)| = ∣
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|t|e|t|Q : (15)Now we are ready to estimate the uniform distane between the distri-butions of D(G) and D(GQ=Q) using the loseness of f(t) and fQ(t). LetF and FQ be distribution funtions of D(G) and D(GQ=Q). By Esseen'sinequality, we get for any T > 0supx |FQ(x)− F (x)| 6
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'(x)T :Applying (15), we obtain that there exists a onstant C depending on nonly suh that for any T > 0sup
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§4. ResultantsGiven polynomialsp(x) = an(x− �1) : : : (x− �n); q(x) = bm(x − �1) : : : (x− �m);denote by R(p; q) the resultant de�ned byR(p; q) = amn bnm n

∏i=1 m
∏j=1(�i − �j):Obviously disriminants are essentially a speialization of resultants via:D(p) = (−1)n(n−1)=2a−1n R(p; p′):Repeating the arguments from Setion 3 we obtain the following result.Consider the random polynomialsGQ(x) = �Q;nxn + �Q;n−1xn−1 + · · ·+ �Q;1x+ �Q;0;FQ(x) = �Q;mxm + �Q;m−1xm−1 + · · ·+ �Q;1x+ �Q;0



152 F. G�OTZE, D. ZAPOROZHETSwith independent oeÆients uniformly distributed on 2Q + 1 points
{−Q; : : : ; Q} and onsider the random polynomialsG(x) = �nxn + �n−1xn−1 + · · ·+ �1x+ �0;F (x) = �mxm + �m−1xm−1 + · · ·+ �1x+ �0with independent oeÆients uniformly distributed on [−1; 1℄. Denote by the distribution funtion of R(G;F ). We havesup
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