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kON THE CLASSIFICATION PROBLEM OFMEASURABLE FUNCTIONS IN SEVERAL VARIABLESAND ON MATRIX DISTRIBUTIONSAbstra
t. We resume the results from [12℄ on the 
lassi�
ation ofmeasurable fun
tions in several variables, with some minor 
orre
-tions of purely te
hni
al nature. We give a partial solution of he
hara
terization problem of so{
alled matrix distributions, whi
hare the metri
 invariants of measurable fun
tions introdu
ed in [12℄.Matrix distibutions 
onsidered as §N × §N{invariant, ergodi
 mea-sures on the spa
e of matri
es { this fa
t 
onne
ts our problem withAldous' and Hoover's theorem [2,6℄,To the memory of Mi
hael I. Gordin
§1. Introdu
tion and outline of the paperThe 
lassi�
ation problem of measurable fun
tions is the question whet-her a measurable fun
tionf : X1 ×X2 × · · · ×Xn −→ Z;de�ned in several variables from standard probability spa
es (Xi;Bi; �i)and values in a Borel spa
e Z, is isomorphi
 to another su
h fun
tion hwith arguments taken from other probability spa
es (Yi;Ci; �i). The notionof isomorphism refers to the 
ategory of measure spa
es: the existen
e ofmeasure-preserving, invertible Borel mapsTi : (Xi;Bi; �i) −→ (Yi;Ci; �i)Key words and phrases: 
lassi�
ation of measurable fun
tions, matrix distributions,pure fun
tions. simple mrasures.The �rst author supported by the Russian S
ien
e Foundation grant # 14-11-00581.119
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h 
arry the fun
tion f to h by seperate 
oordinate{wise appli
ation.In terms of 
ommutative diagrams: the diagramX1 ×X2 × · · · ×Xn f
−−−−→ Rmeas.-pres.

y

T=(T1;T2;:::;Tn) 



y
idY1 × Y2 × · · · × Yn h

−−−−→ R
ommutes on a set of full measure. The 
lassi
al 
ase of fun
tions in one ar-gument was solved by Rokhlin [7℄, and is nowadays found in many moderntextbooks on measure theory su
h as [3℄: roughly speaking, two fun
tionsare isomorphi
 if and only if the distribution as well as the multipli
itiesof the attained values, des
ribed by the metri
 types of the 
onditionalmeasures �z( · ) = �( · |f = z), 
oin
ide (we will give the pre
ise statementin Se
tion 2).When 
onsidering the isomorphism problem for fun
tions in several ar-guments one obviously needs an entirely di�erent 
on
ept. This problemwas posed in full generality by the �rst author in [12℄, and a �rst appli-
ation of the idea of matrix distributions was in the 
ontext of 
lassifyingmetri
 triples, i.e. Polish spa
es with fully supported probability measure,initiated by M. Gromov, 
f. [4℄ and [11℄. The tensor distribution Df of ameasurable fun
tion f (or matrix distribution in the 
ase of two variablesonly) introdu
ed in [12℄ is a probability measure on the spa
e of in�nitetensors, i.e. Df ∈ Meas1 (ZN
n) ;whi
h arises as the distribution of the tensors(ri1;i2;:::;in) = (f (x(i1)1 ; x(i2)2 ; : : : ; x(in)n ))∞i1;i2;:::;in=1determined by the f -values when the arguments are sampled indepen-dently and at random a

ording to the given measures �i. This measureis invariant and ergodi
 with respe
t to a
tion of the produ
t(SN)n = SN × SN × · · · × SN;of the in�nite symmetri
 group SN, a
ting independently on the indi
es ofthe tensors. It is shown in [12℄ thatDf is a 
omplete metri
 invariant for theisomorphism problem of measurable fun
tions, provided that the fun
tionsunder 
onsideration are pure, whi
h means that they do not admit non-trivial fa
tors in the 
ategory of measurable fun
tions (see Se
tion 2 for apre
ise statement of that property).



ON THE CLASSIFICATION OF MEASURABLE FUNCTIONS 121The 
hara
terization problem of those invariant measures� ∈ Meas1 (RN×N
)whi
h are the matrix distribution of a fun
tion f(x; y) in two variablesis 
losely related to Aldous' and Hoover's representation of ex
hangeabledistributions on in�nite arrays in two dimensions [2, 6℄: any array of ran-dom variables (Xi;j), 1 6 i; j < ∞, with an (SN × SN)-invariant jointdistribution 
an be represented as fun
tionXi;j = f (�; �i; �j ; �i;j)of underlying i.i.d. random variables �, �i, �j , and �i;j . The 
onne
tion ofAldous' theorem with [12℄ 
onsists in the fa
t that some (SN×SN)-invariantergodi
 measures 
orrespond to the matrix distribution of a measurablefun
tion, whi
h is up to isomorphy unique { a property that doesn't fol-low from the approa
h in [2,6℄. Re
ently, the �rst author proved the sameanswer for arbitrary invariant ergodi
 measures whi
h 
overs Aldous' rep-resentation in full generality [8℄, but we shall not tou
h this topi
 here.In the present work we 
on
etrate on the above mentioned partial so-lution to the 
hara
terization problem of matrix distributions, 
orre
tingthe 
orresponding statement Theorem 3 in [12℄: an (SN )n-invariant ergodi
measure � is the matrix distribution of a 
ompletely pure fun
tion, that isa pure fun
tion with trivial 
ongruen
e groupKf = {(Ti)ni=1 ∈

n
∏i=1Aut0(Xi; �i) :f (T1(x1); : : : ; Tn(xn)) = f(x1; : : : ; xn) a.e.};if and only if it is a simple measure, i.e. the ergodi
 
omponents of theseperate a
tions of SN generate the entire sigma algebra in the spa
e oftensors.The paper is organized as follows: In Se
tion 2 we re
all important def-initions and fa
ts from [12℄ and restate Rokhlin's 
lassi�
ation theoremfor univalent fun
tions. Se
tion 3 revises basi
 properties of pure fun
-tions from [12℄ in
luding self-
ontained proofs. We 
hose to repeat theseelementary fa
ts, as they are needed in Se
tion 4, in whi
h we present aslightly modi�ed proof of the 
ompleteness theorem Theorem 2 from [12℄.Finally, Se
tion 5 elaborates the above mentioned partial 
hara
terization



122 A. M. VERSHIK, U. HAB�OCKof matrix distributions via the so-
alled general 
anoni
al model for a mea-surable fun
tion. As the 
ase of fun
tions in more than two variables bearsno additional obsta
les from the 
on
eptual point of view, we shall restri
tourselves throughout Se
tions 2{5 to the 
ase of two variablesn = 2only. The general 
ase, whi
h is then obtained by a straight-forward gen-eralization of our methods, is brie
y dis
ussed in Se
tion 6.The present paper is a revised version of a 
hapter taken from the the-sis [5℄, whi
h originated from a dis
ussion on the 
lassi�
ation of matrixdistributions during the 
ourse Measure theoreti
 
onstru
tions and theirappli
ations in ergodi
 theory, asymptoti
s, 
ombinatori
s, and geometrygiven by the �rst author in autumn 2002 at the Erwin S
hr�odinger Insti-tute, Vienna.A
knowledgments. The se
ond author would like to thank the �rst au-thor for his endless patien
e in dis
ussions and 
orresponden
e, in parti
-ular during his last stage of writing his thesis.
§2. Basi
 definitions and fa
tsThroughout the following we 
onsider all spa
es to be standard proba-bility spa
es, i.e. standard Borel spa
es (X;B) equipped with a Borel prob-ability measure �. To avoid 
umbersome notation we shall write (X;�) (orjust X if it is 
lear to what measure on X we refer) instead of (X;B; �),whenever it is 
onvient. All fun
tions are 
onsidered to be measurableunless the 
ontrary is expli
itely stated.2.1. Isomorphy, fa
tors, and pure fun
tions. We 
all two measurablefun
tions f : (X;�)× (Y; �) −→ R and f ′ : (X ′; �′)× (Y ′; �′) −→ R to beisomorphi
 if we 
an �nd measure preserving isomorphisms S : X −→ X ′and T : Y −→ Y ′ su
h thatf ′

(S(x); T (y)) = f(x; y) a.e.;where `a.e.' refers to the produ
t measure � × �. Whenever the transfor-mations S and T are measure preserving proje
tions (and not ne
essarilyinvertible mod 0), i.e. they map onto a set of full measure, we say that f ′is a fa
tor of the fun
tion f .



ON THE CLASSIFICATION OF MEASURABLE FUNCTIONS 123Noti
e that isomorphy as well as being a fa
tor is a notion on the equiv-alen
e 
lasses (mod 0) of fun
tions. In terms of 
ommutative diagrams, iff ′ is a fa
tor of f , then the diagramX×Y f
−−−−→ Zmeas.pres. proje
tions

y
S 



y
T 



y
idX ′×Y ′ f ′

−−−−→ Z
ommutes.De�nition 2.1. A measurable fun
tion f : (X;�)× (Y; �) −→ Z is pure ifit admits no true fa
tor, by whi
h we mean that every fa
tor f ′ : (X ′; �′)×(Y ′; �′) −→ Z of f is already isomorphi
 to f .We denote by B(X;Z) (or B(Y; Z)) the spa
e of all equivalen
e 
lassesmod 0 of measurable fun
tions from X (or Y , respe
tively) into the stan-dard Borel spa
e Z, endowed with topology of 
onvergen
e in measurewith respe
t to any Polish topology generating the Borel stru
ture of Z.Sin
e f is measurable so are the mappingsfX : X −→ B(Y; Z); x 7→ [f(x; · )℄�and fY : Y −→ B(X;Z); y 7→ [f( · ; y)℄� ;where [ · ℄� and [ · ℄� denote the 
orresponding equivalen
e 
lass. For brevity,we will omit the bra
kets in the sequel.It is evident from De�nition 2.1 that pureness of a fun
tion 
an berephrased as follows.Lemma 2.2. A fun
tion f : X × Y −→ Z is pure if and only if bothmappings fX : X −→ B(Y; Z), x 7→ f(x; · ), and fY : Y −→ B(X;Z),y 7→ f( · ; y) are one-to-one on a set of full measure.2.2. Rokhlin's Theorem. It is evident that two univalent measurablefun
tions f : (X;�) −→ Z and f ′ : (X ′; �′) −→ Z, i.e. one{to{one on aset of full measure, are isomorphi
 if and only if their distributions Df =� ◦ f−1 and Df ′ = �′ ◦ f ′−1 
oin
ide. If the fun
tions under 
onsiderationare not univalent one has to take in a

ount the `multipli
ity' 
ertain values



124 A. M. VERSHIK, U. HAB�OCKare obtained. This is done by looking at the fun
tionmf : Z −→ � = {(
i)i>1 : 0 6 
i 6 1; ∞
∑i=1 
i 6 1}whi
h maps any value z to the metri
 type mf (z) of the 
onditional prob-ability distribution �z( · ) = �( · |f = z);whi
h is the sequen
e of weights {
i = �z({ai})}i>1 of the atoms ai ofthe measure �z arranged in a non-in
reasing way. Note that sin
e the
onditional probability distributions are de�ned uniquely (mod 0) so isthe fun
tion mf .Theorem 2.3 (Rokhlin, [7℄). Assume that fi : Xi −→ Z (i = 1; 2) are twomeasurable fun
tions de�ned on standard probability spa
es (Xi; �i). Thenthere exists an isomorphism T : X1 −→ X2 of the measure spa
es with theproperty that �1 ◦ T−1 = �2 and f2 ◦ T (x) = f1(x) almost everywhere ifand only if their extended fun
tionsfei : Xi −→ Z × �; x 7→

(fi(x);mfi ◦ fi(x))have the same distribution, by whi
h we mean that the measures D1 =�1 ◦ (fe1 )−1 and D2 = �2 ◦ (fe2 )−1 
oin
ide.2.3. Group a
tions and ergodi
 de
ompositions. The produ
t SN×SN of the in�nite symmetri
 groupSN = ∞
⋃n=1S{1;:::;n}of all �nite permutations of N a
ts on the produ
t spa
e(X × Y )N = XN × Y Nin the 
anoni
al way by a
ting independently on the indi
es of the se-quen
es, i.e.g · ((xi)∞i=1 ; (yj)∞j=1) = ((xg−11 (i))∞i=1 ;(yg−12 (j))∞j=1)for every ((xi); (yi)) from XN×Y N and g = (g1; g2) from SN×SN. Its a
tionon the spa
e of in�nite matri
es is that of permuting rows and 
olumnsseparately: g · (ri;j) = (rg−11 (i);g−12 (j))i;j



ON THE CLASSIFICATION OF MEASURABLE FUNCTIONS 125for every g = (g1; g2) from SN × SN and matrix (ri;j).Let G be a 
ountable semigroup a
ting measurably on a standard Borelspa
e, whi
h will be in our 
ase the spa
e of matri
es ZN×N. Every G-invariant probability measure D on ZN×N is then de
omposed into G-invariant ergodi
 measures Dr by a (mod 0) uniquely de�ned Borel map-ping � : ZN×N −→ MeasG1 (ZN×N
) ; r 7→ DGr ;whi
h maps into the standard Borel spa
e of G-invariant probability mea-sures, endowed with the topology of weak 
onvergen
e, su
h that the for-mula D(B) = ∫ZN×N

DGr (B) · dD(r)holds for every Borel set B ⊆ ZN×N.2.4. De Finetti's theorem. We shall make use of de Finett's theorem onex
hangeable distributions in the following form: Every Borel probabilitymeasure m on the produ
t XN of a Borel spa
e X, whi
h is invariant andergodi
 with respe
t to the a
tion SN is Bernoulli, i.e.m = �Nfor a Borel probability measure � on X. There is a very simple and elegantproof of de Finetti's theorem with help of the point{wise ergodi
 theoremwith respe
t to the 
ountable group SN, but we shall not dwell on this,
f. [14℄.2.5. Matrix distribution of a measurable fun
tion. Let us re
allthe de�nition of matrix distributions from [12℄:De�nition 2.4. Let f : (X;�)× (Y; �) −→ Z be a measurable fun
tion intwo variables. Its matrix distribution Df is the pushforward measureDf = (�N × �N) ◦ F−1fof the Bernoulli measure �N × �N under the evaluation fun
tionFf : XN × Y N −→ ZN×N; ((xi); (yj)) 7→ (f(xi; yj))i;j :This de�nition generalizes the notion of matrix distributions for Gromovtriples, i.e. Polish spa
es with probability measure introdu
ed in [13℄. Note



126 A. M. VERSHIK, U. HAB�OCKthat Df is a probability measure on the spa
e of in�nite matri
es ZN×N,and that Ff is equivariant with respe
t to the a
tion of SN × SN, i.e.Ff(g · ( (xi) ; (yj) )) = g · Ff( (xi) ; (yj) ):Hen
e invarian
e and ergodi
ity of the Bernoulli measure �N × �N yieldsinvarian
e and ergodi
ity of the matrix distribution.2.6. The 
ongruen
e group of a measurable fun
tion. The 
on-gruen
e group of a fun
tion in two arguments is the group of measure{preserving symmetriesKf = {(S; T ) ∈ Aut0 (X;�)×Aut0 (Y; �) :f(S(x); T (y)) = f(x; y) a.e.}:This group plays an important role for our partial solution to the 
hara
ter-ization problem of matrix distributions, Theorem 5.4. It is remarkable thatthe 
ongruen
e group is 
ompa
t, when endowed with the weak topology.This fa
t is shown in [10℄, but we will not make use of it in the sequel.As in [9℄ we shall 
all any pure fun
tion f with trivial 
ongruen
e groupsimply 
ompletely pure fun
tion.
§3. Redu
tion of the 
lassifi
ation problem to that ofpure fun
tionsAny measurable fun
tion f has a pure fa
tor �f de�ned in a natural way:As the fun
tions fX and fY are Borel the equivalen
e relations de�ned by�X = { (x1; x2) ∈ X ×X : f(x1; · ) = f(x2; · ) (mod �)}and �Y = { (y1; y2) ∈ Y × Y : f( · ; y1) = f( · ; y2) (mod �)}are partitions of the respe
tive spa
es into measurable 
omponents. Inorder to stay within the 
ategory of standard measure spa
es we de�ne1the fa
tor spa
es X=�X and Y=�Y1It is no good 
hoi
e to de�ne the fa
tor X=�X to be the set of all equivalen
e 
lasseswith respe
t to �X and its sigma algebra the algebra of all �X -saturated S-measurablesets; this spa
e need not to be standard Borel.



ON THE CLASSIFICATION OF MEASURABLE FUNCTIONS 127as the standard Borel spa
eB(Y; Z) and B(X;Z) with the fa
tor mappings�X : X −→ X=�X ; �X = fX ;and �Y : Y −→ Y=�Y ; �Y = fY ;and the proje
ted measures � ◦ �−1X and � ◦ �−1Y as measures, respe
tively.The mapping fX as fun
tion from X into the spa
e B(Y; Z) translatesunder the proje
tion �X to the identity mapping regarded as fun
tion fromX=�X to B(Y; Z), and by the measurability it originates from a jointlymeasurable fun
tion f ′ : X=�X × Y −→ Zwhi
h by 
onstru
tion satis�es thatf ′
(�X (x); y) = f(x; y) a.e.;and the 
orresponding map f ′X=�X is one-to-one on a set of full measure.In the same manner we pro
eed with the se
ond argument and �nally endwith a measurable fun
tion�f : X=�X × Y=�Y −→ Zsu
h that �f(�X (x); �Y (y)) = f(x; y) a.e.:This shows that the diagramX × Y f

−−−−→ Zmeas.-pres.
y

�=(�X ;�Y ) 



y
idX=�X × Y=�Y f ′

−−−−→ Zis 
ommutative on a set of full measure, and sin
e the 
orresponding map-pings �fX=�X and �fY=�Y are now one{to{one on a set of full measure, thefun
tion �f is 
onsequently pure. It is not diÆ
ult to see that this purefa
tor �f is uniquely determined up to isomorphy. We will sometimes referto it as the puri�
ation or the unique pure fa
tor of f .The redu
tion of the isomorphism problem is done in the spirit ofRokhlin's Theorem 2.3. Instead of f we 
onsider its extended pure fa
-tor �fe : X=�X × Y=�Y −→ Z ×�2; (x; y) 7→ ( �f(x; y);m(�x);m(�y)) ;



128 A. M. VERSHIK, U. HAB�OCKwhere m(�x) and m(�y) denote the metri
 types of the respe
tive (mod 0uniquely determined) 
onditional measures �( · |�X = x) and �( · |�Y = y).Theorem 3.1. Two not ne
essarily pure fun
tions f : (X;�)× (Y; �) −→Z and g : (X ′; �′) × (Y ′; �′) −→ Z are isomorphi
 if and only if theirextended pure fa
tors�fe : X=�X × Y=�Y −→ Z ×�2; (x; y) 7→ ( �f(x; y);m(�x);m(�y));and�ge : X ′=�X′ × Y ′=�Y ′ −→ Z ×�2; (x′; y′) 7→ (�g(x′; y′);m(�′x′);m(�′y′));both de�ned as above, are isomorphi
.Proof. The statement of the theorem is 
lear sin
e every measure pre-serving isomorphism �T : X=�X −→ X ′=� ′X whi
h 
arries the fun
tionx 7→ m(�x) to the fun
tion x′ 7→ m(�′x′) (mod 0) 
an be lifted to a mea-sure preserving isomorphism T : X −→ X ′ so that T = �T ◦ �X (mod 0)and the same is true for the se
ond 
oordinate spa
es Y and Y ′. �

§4. The matrix distribution as 
omplete invariant forpure fun
tionsIn this se
tion we resume the individual 
anon
ial model and the 
om-pleteness theorem for measurable fun
tions in two variables. Are resultsand proofs, apart from some te
hni
al details whi
h are elaborated ingreater detail, 
an be also found in [12℄.Let us start with an auxiliary lemma on pure fun
tions. We say thata sigma algebra S ⊆ BX equals modulo a measure � (or simply `mod 0',whenever it is 
lear to whi
h measure we refer) the whole Borel algebra
BX , if its measure algebra S� = {[A℄� : A ∈ S}, with [A℄� = {B ∈ BX :�(B�A) = 0}, 
oin
ides with the measure algebra de�ned by BX itself.Lemma 4.1. Suppose f : X × Y → Z is a pure fun
tion. Then thefollowing properties also hold:(i) For any Borel set Y ′ ⊆ Y whi
h is of full �-measure the set offun
tions {f ( · ; y) : y ∈ Y ′} generates (mod 0) the Borel algebraof X.(ii) For �N-almost every sequen
e (yj)∞j=1 the 
ountable 
olle
tion offun
tions {f( · ; yj) : j > 1} generates (mod0) the Borel algebraof X.



ON THE CLASSIFICATION OF MEASURABLE FUNCTIONS 129By symmetry the same statements hold when inter
hanging the role of Yand X.Proof. As the restri
tion of f to X × Y ′ is also a pure fun
tion, it issuÆ
ient to prove (i) for the 
ase Y ′ = Y . Let FY denote the sigma algebragenerated by the set of fun
tions {fy = f ( · ; y) : y ∈ Y }. Using standardarguments one sees that the fun
tion f is measurable with respe
t to thesigma algebra FY × BY , where BY is the Borel algebra of Y , after amodi�
ation on a set of measure zero if ne
essary. Thus the mappingfX : X −→ B(Y; Z); x 7→ f (x; · ) ;is measurable (mod 0) with respe
t to the sigma algebra FY .2 Hen
e in-je
tivity of the map fX on a set of full measure implies that FY 
oin
idesmodulo null sets with the entire Borel algebra of X .To prove (ii) let us 
hoose a 
ountable base {On}n>1 for the topologyin B(Y; Z). Now �N-almost every sequen
e (yj) is su
h that for any setOn of positive measure � ◦ f−1X , its interse
tion with {fyj : j > 1} is non-empty. For every su
h sequen
e (yj) the sigma algebra F(yj) generated bythe fun
tions {fyj : j > 1} 
ontains (mod 0) the sigma algebra generatedby the 
olle
tion {fy : y ∈ Y ′} with Y ′ being the preimage of the supportof the measure � ◦ f−1Y under the map fY . As this set has full measure itfollows from (i) that F(yj) 
oin
ides (mod 0) with the entire Borel algebraof X . �4.1. Individual 
anoni
al model of a measurable fun
tion. In thesequel we assume that that f : X×Y −→ Z takes values in the interval Z =[0; 1℄. This means no loss in generality, as any Borel spa
e is measurablyisomorphi
 to [0; 1℄ or to an { at most { 
ountable subset. It is an immediate
onsequen
e of Lemma 4.1 that for �N-almost every sequen
e (xi) and �N-almost every sequen
e (yj) the mappingsL(yj) : X −→ [0; 1℄N; x 7→
(f(x; yj))j ;L(xi) : Y −→ [0; 1℄N; y 7→
(f(xi; y))i;2By whi
h we mean that it 
oin
ides on a set of full measure with an FY -measurablefun
tion.



130 A. M. VERSHIK, U. HAB�OCKare one-to-one on a set of full measure, and therefore they are isomorphismsbetween the measure spa
es (X;�), (Y; �) and the spa
es
(X(yj); �(yj)) = ([0; 1℄N; � ◦ L−1(yj)) ;
(Y(xi); �(xi)) = ([0; 1℄N; � ◦ L−1(xi)) ;respe
tively. These spa
es together with the fun
tionf(xi);(yj) = f ◦

(L(yj) × L(xi))−1form the 
anoni
al representation (or 
anoni
al model) of our measurablefun
tion f . We shall 
all this model individual 
anoni
al model, as bothmeasures �(yj), �(xj) and the fun
tion f(xi);(yj), being the density of theabsolutely 
ontinuous measurem(yj);(xi) = f(xi);(yj) · d(�(yj) × �(xi)) = m ◦ (L(yj) × L(xi))−1;are uniquely determined by the values of the single in�nite matrixr = (ri;j) = (f(xi; yj)) ∈ ZN×N:The 
onstru
tion of the model is done by ergodi
 arguments with respe
tto the two-dimensional shift on XN × Y N de�ned by�(k;l)((xi); (yj)) = ((xi+k); (yj+l));for every k; l > 1 and ((xi); (yj)) from XN × Y N, but 
an as well beperformed with respe
t to the a
tion of SN × SN. For every n > 1 let us
hoose a 
ountable algebra An whi
h generates the sigma algebra of alln{
ylinders, i.e. the Borel sets formulated in the �rst n 
oordinates only.Using the ergodi
 theorem for the two{dimensional shift, we 
on
lude thatalmost every 
hoi
e of sequen
es (xi)i∈N and (yj)j∈N the following relationshold for every A1 and A2 from A = ⋃n An:�(yj)(A1) = limm→∞

1m ·

m
∑k=1 Æ(rk;i)∞i=1(A1); (1)�(xj)(A2) = limm→∞

1m ·

m
∑l=1 Æ(ri;l)∞i=1(A2); (2)



ON THE CLASSIFICATION OF MEASURABLE FUNCTIONS 131andm(xi);(yj)(A1 ×A2)= limm→∞

1m2 ·
m
∑k;l=1 rk;l · Æ(ri;k)∞i=1(A1) · Æ(rl;j)∞j=1(A2): (3)In fa
t, given �nitely many points {xi : 1 6 i 6 n} from X and {yj : 1 6j 6 n} from Y , and introdu
ing the notationf(x1;:::;xn)(y) = (f(x1; y); : : : ; f(xn; y));and f(y1;:::;yn)(x) = (f(x; y1); : : : ; f(x; yn));then almost every 
ontinuations (xi)∞i=n+1 and (yj)∞j=n+1 of the �nite se-quen
es (xi)ni=1 and (yj)nj=1 are su
h that for any 
hoi
e of sets A1 and A2from An,� ◦ f−1(y1;:::yn)(A1) = limm→∞

1m ·
∣

∣

∣

{n+ 1 6 k 6 m : f(y1;:::;yn)(xk) ∈ A1} ∣∣∣;� ◦ f−1(x1;:::xn)(A2) = limm→∞

1m ·
∣

∣

∣

{n+ 1 6 k 6 m : f(x1;:::;xn)(yk) ∈ A2} ∣∣∣;andm(f−1(y1;:::yn)(A1)× f−1(x1;:::;xn)(A2)) = limm→∞

1m2 ·
∑(k;l)∈W∩[n+1;m℄2 f(xk; yl):Here W denotes the setW = {(k; l) ∈ N × N : f(y1;:::;yn)(xk) ∈ A1 and f(x1;:::;xn)(yl) ∈ A2}:Hen
e the 
on
atenated sequen
es (xi)∞i=1 and (yj)∞j=1 obviously satisfy theequations (1), (2) and (3). Integrating over all 
hoi
es of ((xi)ni=1; (yj)nj=1)from Xn × Y n yields the sets

Ef (An) = {((xi); (yj)) ∈ XN × Y N : L(yj) and L(xi) are one-to-one(mod 0) and (1), (2), (3) hold for all A1; A2 ∈ An}and hen
e their interse
tion
Ef (A) = ⋂n>1 Ef (An)is of full measure.



132 A. M. VERSHIK, U. HAB�OCKWe shall 
all any ((xi); (yj)) from the set Ef (A) a pair of typi
al se-quen
es. It is well known that the image Ff(Ef (A)) is then measurablewith respe
t to the Df -
ompletion of the Borel algebra in the spa
e ZN×Nthus we 
an �nd a Borel set
Tf (A) ⊆ Ff(Ef (A))whi
h is of full measure. We shall 
all this set Tf (A) the set of typi
almatri
es with respe
t to the 
ountable algebra A and the fun
tion f .Summarizing these fa
ts we have shown that for any 
hoi
e of

((xi); (yj))from the set Ef (A) the 
anoni
al model depends only on their matrix(f(xi; yj))i;j . Likewise, for any matrixr = (ri;j)i;j∈Nfrom the set of typi
al matri
es Tf (A) we 
an 
onstru
t spa
es(Xr; �r) = ([0; 1℄N; �r) (4)and (Yr; �r) = ([0; 1℄N; �r); (5)the measures �r and �r determined by the limits (1) and (2), and a mea-surable fun
tionfr : Xr × Yr −→ [0; 1℄; fr = dmrd(�r × �r) ; (6)i.e. the Radon{Nikod�ym derivative of the measure mr determined by thelimit in (3) with respe
t to �r × �r, whi
h is isomorphi
 to the originalfun
tion f . Note that �r and �r are the empiri
al distributions of the rowsand 
olumns of the matrix r, and mr(A1×A2) for two n-dimensional Borelsets A1 and A2 equals the average value rk;l whi
h o

urs when observingsimultaneously the row segment (rk;1; : : : ; rk;n) belonging to A1 and the
olumn segment (r1;l; : : : ; rn;l) belonging to A2.In parti
ular, the so 
onstru
ted fun
tion fr is unique: Any matrix rfrom the set Tf (A) determines { up to isomorphism { the same fun
tion.For general ergodi
 (SN×SN)-invariant measuresD this 
onstru
tion mightfail: Of 
ourse the existen
e of the measures �r and �r follows from sta-tionarity of the two-dimensional shift a
tion, or of the separate a
tions ofSN ×{1} and {1}×SN (
f. Se
tion 5), but it is by no means 
lear that the



ON THE CLASSIFICATION OF MEASURABLE FUNCTIONS 133limit in (3) de�nes a measure mr, nor that the so 
onstru
ted fun
tion fris unique up to isomorphism, 
ontrary to what was stated in [12℄.With the above re
onstru
tion of the 
anoni
al model we are able toshow the main result of this se
tion:Theorem 4.2 (Completeness Theorem). Suppose f : X × Y −→ Z andg : X ′ × Y ′ −→ Z are pure fun
tions. There exist measure preservingisomorphisms S : (X;�) −→ (X ′; �′) and T : (Y; �) −→ (Y ′; �′) of the
orresponding standard probability spa
es su
h thatg(S(x); T (y)) = f(x; y) (mod 0);if and only if their matrix distributions Df and Dg 
oin
ide.Proof. One dire
tion is trivial: If there exist su
h isomorphisms S and Tthen the 
orresponding produ
t transformation whi
h maps ((xi)i; (yj)j)to ((S(xi))i; (T (yj))j) is a measure preserving isomorphism of the spa
esXN × Y N and X ′N × Y ′N whi
h 
arries the matrix valued fun
tions Ff toFg . Hen
e their push forward measures Df and Dg 
oin
ide.Now assume that Df = Dg. As in the pre
eding dis
ussion we 
onsiderZ = [0; 1℄, �x 
ountable algebras An, n > 1, whi
h generate the Borelstru
ture of [0; 1℄n, and put A = ⋃n An. As Df = Dg the interse
tion ofthe sets of typi
al matri
es
Tf (A) ∩ Tg(A)is still of full measure and therfore it is non-empty. But any matrix r =(ri;j) from this interse
tion determines a fun
tionfr : (Xr; �r)× (Yr; �r) −→ [0; 1℄whi
h is an isomorphi
 model simultaneously for both fun
tions f and g.This proves the existen
e of the 
laimed isomorphisms S and T . �Note that an expli
it form of the isomorphisms from Theorem 4.2 isS = L−1(y′j) ◦ L(yj) and T = L−1(x′i) ◦ L(xi);the pairs ((xi); (yj)) and ((x′i); (y′j)) being any two pairs of typi
al se-quen
es, i.e. from
Ef (A) ∩ Eg(A);whi
h de�ne the same matrix: (f(xi; yj)) = (g(x′i; y′j)). This observationwill be useful in the proof of the following 
orollary, whi
h will be neededin Se
tion 5.



134 A. M. VERSHIK, U. HAB�OCKCorollary 4.3. Let f : X × Y −→ Z be pure. Then the map Ff : XN ×Y N −→ Z is one-to-one (mod 0) if and only if its 
ongruen
e group Kf istrivial.Proof. As before we assume that Z = [0; 1℄. Assume that Ff is notone{to{one (mod0). If A is any arbitrary 
ountable algebra generatingthe Borel stru
ture of [0; 1℄N then the map Ff 
annot be inje
tive on
Ef (A), sin
e this set is of full measure. Thus there exist two di�erent pairs
((xi); (yj)) and ((x′i); (y′j)) from E(A) whi
h have the same image underFf . Therefore the mappingsS = L−1(y′j) ◦ L(yj) and T = L−1(x′i) ◦ L(xi);are measure preserving automorphisms of (X;�) and (Y; �) respe
tivelyfor whi
h f(Sx; Ty) = f(x; y) (mod0). Moreover these automorphismssatisfy f(Sx; yj) = f(x; y′j) for a.e. x in X and f(xi; T y) = f(x′i; y) for a.e.y in Y , i and j being arbitrary. This proves that either S or T must benon-trivial sin
e we may assume that both mappings fX and fY (de�nedin Se
tion 2) are one-to-one.The other dire
tion is trivial: Assume that there exists a non{trivialautomorphism (S; T ) in Kf . Then every set B ⊆ XN × Y N of full measureis almost invariant under (S; T )N. But at the same time the automorphism(S; T )N leaves Ff almost invariant and therefore we 
an �nd two di�erentpoints in B with the same image under Ff . �

§5. Absen
e of symmetry - simple measuresIn this se
tion we 
hara
terize those matrix distributions whi
h orig-inate from a fun
tion with no symmetries, i.e. with trivial 
ongruen
egroup. Its main result, Theorem 5.4 
orre
ts the 
orresponding statementTheorem 3 in [12℄.De�nition 5.1. Let D be a (SN × SN)-invariant and ergodi
 measure onthe spa
e of matri
es. We say that D is simple if the invariant alge-bras BSN×{1} and B{1}×SN generate (mod0) the whole Borel algebra Bof ZN×N, i.e.
BSN×{1} ∨ B{1}×SN = B (modD):5.1. Simpli
ity and de
omposition of the a
tion of SN × SN. Sim-pli
ity of an (SN × SN)-invariant and ergodi
 measure D means that thedynami
al system

(ZN×N; D; SN × SN

)
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 to the dire
t produ
t of its fa
tors(X; �X; G1) = (ZN×N=G2; D;G1) ;and (Y; �Y; G2) = (ZN×N=G1; D;G2) ;i.e. the systems of the ergodi
 
omponents with respe
t to the subgroupsG2 = {1} × SN and G1 = SN × {1}:As model of these fa
tors we 
hoose the standard Borel spa
es
X = MeasG21 (ZN×N

) ;
Y = MeasG11 (ZN×N

) ;of respe
tive invariant probability measures, together with the isomor-phism � : ZN×N −→ X × Y; r 7→ (DG2r ; DG1r ) ;given by the de
omposition of D into its G2-ergodi
 and G1-ergodi
 mea-sures, respe
tively. We assume without any loss in generality the mappings�:r 7→ DG2r and �2 = r 7→ DG1r invariant with respe
t to G2 and G1 re-spe
tively, when
e the equationsg1 ·DG2r = DG2g1·r;g2 ·DG1r = DG1g1·r;with g1 ∈ G1 and g2 ∈ G2, de�ne a
tions of the permutation groups G1and G2 on X and Y, respe
tively. By invarian
e and ergodi
ity of D, thepushforward measures �X = D ◦ �−11 ;�Y = D ◦ �−12 ;are invariant and ergodi
 with respe
t to the a
tions de�ned. Note thatthe points x and y of the fa
tor spa
es X and Y are represented bypermutation{invariant and ergodi
 measuresDG2r andDG1r whi
h are there-fore Bernoulli measures by de Finetti's theorem. Con
retely, regardingZN×N = (Z{1}×N)N;the `spa
e of sequen
es of rows' or on the other handZN×N = (ZN×{1})N;



136 A. M. VERSHIK, U. HAB�OCKthe `spa
e of sequen
es of 
olumns', thenDG2r = �Nr and DG1r = �Nrthe measures �r and �r being a probability measure on the spa
e of
olumns and rows, respe
tively. For almost every matrix r, the measures�r and �r are the empiri
al distributions of its 
olumns and rows.Note that if the measure D is not simple then the dire
t produ
t of(X; �X; G1) and (Y; �Y; G2) is a non{trivial fa
tor of (ZN×N; D;G1 ×G2).This gives us the following 
hara
terisation of simple measures:Proposition 5.2. A measure D is simple if and only if the (almost ev-erywhere uniquely de�ned) mapping whi
h sends a matrix r to the pair(�r; �r) of its empiri
al distribution of 
olumns and rows respe
tively, isone-to-one (mod 0).With the help of the de
omposition of the group a
tion we are able toproof the following lemma.Lemma 5.3. Assume that D = Df is the matrix distribution of a purefun
tion f : (X;�) × (Y; �) −→ Z. Then D is simple if and only if the
ongruen
e group Kf is trivial.Proof. First of all note that by Corollary 4.3, we only have to show thata measure D is simple if and only if the mapFf : (XN; �N)× (Y N; �N) −→ (ZN×N; D)is one{to{one on a set of full measure. One dire
tion is trivial: if Ff isone-to-one, it is an equivariant isomorphism between the measure spa
es.Hen
e
BSN×{1} ∨ B{1}×SN = B (modD);as the same assertion is true for the 
orresponding invariant algebras inthe spa
e XN × Y N.Conversely, assume that D is simple. Whe may thus regard Ff as map-ping (XN; �N; G1)× (Y N; �N; G2) −→ (X; �X; G1)× (Y; �Y; G2):By equivarian
e, the preimage F−1f (B) of any Gi-invariant Borel set B ⊆

X×Y is also Gi-invariant, for every i = 1; 2. Thus Ff must be of the formFf = (�1; �2);with �1 : XN −→ X and �1 : Y N −→ Y. By Lemma 4.1 we know thatfor �N-almost every sequen
e (yj) the restri
tion Ff ( · ; (yj)) is one-to-one



ON THE CLASSIFICATION OF MEASURABLE FUNCTIONS 137(mod 0) and so is �1. For the same reasoning the fun
tion �2 is one-to-one (mod 0). This proves that Ff = (�1; �2) is one-to-one on a set of fullmeasure. �5.2. General 
anoni
al model given the matrix distribution of a
ompletely pure fun
tion. Assume that D is the matrix distributionof a 
ompletely pure fun
tion f , that is a pure fun
tion f with trivial
ongruen
e group Kf . Then by Lemma 5.3 the measure D is simple andhen
e the de
omposition(ZN×N; D; SN × SN) = (X; �X; G1)× (Y; �Y; G2 × SN

)des
ribed in the previous se
tion, together with its isomorphism� : ZN×N −→ X × Ygives us another possibility to re
onstru
t the fun
tion f : We simply set
f : X × Y −→ Z; f = r1;1 ◦ �−1;and 
laim that it is isomorphi
 to the fun
tionf : XN × Y N −→ Zregarded as fun
tion on the �rst 
oordinates x1 and y1. In fa
t, the map-ping � = � ◦ Ff : XN × Y N −→ X × Yis one-to-one, measure preserving and obviously 
arries the fun
tion f :XN×Y N −→ Z to f. Thus the only thing we need to 
he
k to is that � is ofprodu
t type, i.e. � = (�1;�2) with measurable fun
tions �1 : XN −→ Xand �2 : Y N −→ Y. But this is 
lear from the proof of Lemma 5.3.We shall 
all the above 
onstru
ted fun
tion f the general 
anoni
almodel of f , sin
e it does not depend on the 
hoi
e of a parti
ular matrixr as the individual 
anoni
al model from Se
tion 4. In 
ontrast to theindividual 
anoni
al model the fun
tion f is never pure as it is a modelfor f as fun
tion on XN × Y N rather than as fun
tion X × Y −→ Z.Nevertheless its puri�
ation�f : X=�X × Y=�Y −→ Zas des
ribed in Se
tion 3 is 
learly isomorphi
 to the original pure fun
tionf : X × Y −→ Zby the uniqueness of pure fa
tors. The dire
t 
onne
tion between bothmodels be
omes 
lear in the proof of Theorem 5.4.



138 A. M. VERSHIK, U. HAB�OCKOf 
ourse the above 
onstru
tion of f makes sense for any (SN × SN)-invariant simple measure on ZN×N. This observation is the key for thefollowing theorem.Theorem 5.4 (Chara
terisation of simple measures using the general
anoni
al model f). Let D be an (SN×SN)-invariant and ergodi
 probabilitymeasure on the spa
e of matri
es ZN×N. Then D is a matrix distributionof a fun
tion f : (X;�)× (Y; �) −→ Z with trivial 
ongruen
e group Kf ifand only if D is a simple measure.Remark 5.5. This theorem 
orre
ts Theorem 2 from [12℄, whi
h statesthat an (SN × SN)-invariant and ergodi
 measure is a matrix distributionif and only if it is simple.Proof. One dire
tion is already 
ontent of Lemma 5.3. Conversely, let usassume that D is simple. Again, the dynami
al system (ZN×N; D; SN ×SN)de
omposes via the isomorphism� : r 7→ (DG2r ; DG1r )into the produ
t (X; �X; G1)× (Y; �Y; G2)of the spa
es of ergodi
 
omponents
X = MeasG21 (ZN×N

) ;
Y = MeasG11 (ZN×N

) ;the measures �X, �Y, and group a
tions as de�ned in Se
tion 5.1. Taking a
loser look on these measures it is obvious that e.g. �1 : r 7→ DG2r regardedas G1-equivariant mapping�1 : (Z
{1}×N

)N

−→ Xmaps ea
h of the G1-invariant ergodi
 measures DG1r onto an G1-invariantergodi
 measure on X. Sin
e �X is also an G1-invariant ergodi
 measure,being the integral 
onvex 
ombination�X(B) = ∫r DG1r ◦ �−11 (B) · dD(r)
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h measures, it therefore must equal to at least3 one su
h pushforwardmeasures DG1r ◦ �−11 . As noted in Se
tion 5.1, we may regard the lattermeasure DG1r as Bernoulli measure �Nr on the spa
e of sequen
es of rows
(

Z
{1}×N

)N, and �1 as measure preserving isomorphism between the spa
eof sequen
es of rows and X. We thus may 
onsider(X; �X) = ((Z
{1}×N

)N ; �Nr) ;and in the same way one sees that(Y; �Y) = ((Z
N×{1})N ; �Nr ) ;that is the spa
e of sequen
es of 
olumns with Bernoulli measure �Nr . We
laim that the matrix distribution of the fun
tion

f : X × Y −→ Z; f = r1;1 ◦ �−1;equals our measure D. For brevity, we write X = Z{1}×N and Y = ZN×{1}for the spa
e of rows and the spa
e of 
olumns, respe
tively. As the matrixvalued fun
tion
F : X × Y −→ ZN×N; F = id ◦�−1;is equivariant with respe
t to the a
tion of G1 ×G2 so it is regarding it asfun
tion from XN × Y N to ZN×N. From this it follows easily that F is ofthe form

F
((xi); (yj)) = (F1;1(xi; xj)) (mod 0);as is shown in the postponed Lemma 5.7. This proves that the distributionof the matrix valued fun
tion F, whi
h by de�nition equalsD, is the matrixdistribution of f. Moreover, the fun
tion F = Ff is by 
onstru
tion one-to-one and we 
on
lude from Corollary 4.3 that the 
ongruen
e group of f istrivial. �Remark 5.6. Observe that the 
hara
terization of matrix distributions inthe 
ase of fun
tions in just one argument be
omes essentially de Finetti'stheorem: In this 
ontext, the row distribution (instead of matrix distribu-tion) Df of f : X −→ Z is de�ned as the distribution of the pro
ess (f(xi))sampling its arguments independently a

ording to the given measure � onX . Thus Df is simply the Bernoulli measure D = (� ◦ f−1)N on the spa
e3it is not diÆ
ult to see that the set of all mesures DG1r whi
h equal the ergodi
measure X is of full measure.



140 A. M. VERSHIK, U. HAB�OCKZN. De Finetti's theorem states that the SN-invariant ergodi
 measure onZN are exa
tly the Bernoulli measures, and hen
e all su
h meausres arethe row distribution of a fun
tion in one variable.We 
lose this se
tion with the auxiliary lemma that we used in the proofof Theorem 5.4.Lemma 5.7. Suppose that the map F from (XN; �N)× (Y N; �N) to ZN×Nis equivariant under the a
tion of SN ×SN. Then there exists a measurablefun
tion f : X × Y −→ Z su
h thatF = (Fi;j) = (f(xi; xj)) (mod 0):Proof. Using equivarian
e we know that for any g1 and g2 from the sub-group S(1)
N

= {g ∈ SN : g(1) = 1}the following identity holds.
F1;1(g1(xi); g2(yj)) = Fg−11 (1);g−12 (1)((xi); (yj)) = F1;1((xi); (yj)):Being invariant with respe
t to the a
tion of S(1)

N
× S(1)

N
the fun
tion F1;1is (mod 0) measurable with respe
t to the �rst 
oordinates x1 and y1 ofXNr × Y Nr whi
h means that F1;1((xi); (yj)) = f(x1; y1) (mod 0) for somefun
tion f de�ned on X × Y . Using on
e more equivarian
e we 
on
ludethatFg−11 (1);g−12 (1)((xi); (yj))= F1;1 ((xg−11 (i)) ;(yg−12 (j))) = f (xg−11 (1); yg−12 (1))(mod0) for every g1 and g2 from SN, whi
h proves the assertion of thelemma. �

§6. The 
ase of fun
tions in more than two argumentsLet us shortly dis
uss the 
ase of Borel fun
tionsf : n
∏i=1(Xi; �i) −→ Z



ON THE CLASSIFICATION OF MEASURABLE FUNCTIONS 141in more than two arguments. Its tensor distribution Df is de�ned as thedistribution of the tensor-valued fun
tionalFf : n
∏i=1XNi −→ ZN

n ;
((x(1)i ) ;(x(2)i ) ; : : : ;(x(n)i ))

7→
(f (x(1)i1 ; : : : ; x(n)in ))i1;:::;in ;under the measure n

∏i=1�Ni , i.e.Df = ( n
∏i=1�Ni ) ◦ F−1f :In this situation Df is a measure on the spa
e of in�nite tensors ZN

nwhi
h is ergodi
 and invariant with respe
t to the (analogously de�neda
tion) of Sn
N
= SN × SN × · · · × SNa
ting independently on the indi
es of the tensors. The notion of fa
torsin the 
ategory of measurable fun
tions in several variables is analogousto that of fun
tions in two arguments, and so is the de�nition of pureness:a fun
tion f(x1; x2; : : : ; xn) is said to be pure, if it admits no true fa
tor.The redu
tion of the isomorphism problem to pure fun
tions is then provedin exa
tly the same way as Theorem 3.1. With help of an extended ver-sion of Lemma 2.2 it is also obvious how to prove the higher-dimensionalanalogue of Theorem 4.2: Two pure measurable fun
tions are isomorphi
if and only if their tensor distributions 
oin
ide.The results from Se
tion 5 are also extended easily: Let Gi be the per-mutation group whi
h a
ts on the i-th index of the tensors only. An (Sn

N
)-invariant measure D on the spa
e of tensors ZN

n is said to be simple, ifthe invariant algebras BG(i) with respe
t to the groupsG(i) = G1 × · · · ×Gi−1 × {1} ×Gi+1 × · · · ×Gnkeeping the i-th index �xed, generate the whole Borel algebra B of ZN
n ,i.e. n

∨i=1 BG(i) = B (modD):



142 A. M. VERSHIK, U. HAB�OCKThis again means that the dynami
al system (ZN
n ; D; n

∏i=1Gi) is the di-re
t produ
t of the systems (ZN
n=G(i); D;Gi), 1 6 i 6 n, the quotientsinterpreted as ergodi
 de
ompositions. With help of this de
omposition,the general 
anoni
al model is de�ned analogously and Theorem 5.4 
anbe proved similary: An Sn

N
-invariant and ergodi
 measure on the spa
e oftensors ZN

n is the tensor distribution of measurable fun
tionf : n
∏i=1(Xi; �i) −→ Zwith trivial 
ongruen
e groupKf = {(Ti)ni=1 ∈

n
∏i=1Aut0(Xi; �i) :f(T1(x1); : : : ; Tn(xn)) = f(x1; : : : ; xn) a.e.}if and only it is simple. Referen
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