
úÁ�ÉÓËÉ ÎÁÕÞÎÙÈÓÅÍÉÎÁÒÏ× ðïíé�ÏÍ 441, 2015 Ç.A. M. Vershik, U. Hab�okON THE CLASSIFICATION PROBLEM OFMEASURABLE FUNCTIONS IN SEVERAL VARIABLESAND ON MATRIX DISTRIBUTIONSAbstrat. We resume the results from [12℄ on the lassi�ation ofmeasurable funtions in several variables, with some minor orre-tions of purely tehnial nature. We give a partial solution of heharaterization problem of so{alled matrix distributions, whihare the metri invariants of measurable funtions introdued in [12℄.Matrix distibutions onsidered as §N × §N{invariant, ergodi mea-sures on the spae of matries { this fat onnets our problem withAldous' and Hoover's theorem [2,6℄,To the memory of Mihael I. Gordin
§1. Introdution and outline of the paperThe lassi�ation problem of measurable funtions is the question whet-her a measurable funtionf : X1 ×X2 × · · · ×Xn −→ Z;de�ned in several variables from standard probability spaes (Xi;Bi; �i)and values in a Borel spae Z, is isomorphi to another suh funtion hwith arguments taken from other probability spaes (Yi;Ci; �i). The notionof isomorphism refers to the ategory of measure spaes: the existene ofmeasure-preserving, invertible Borel mapsTi : (Xi;Bi; �i) −→ (Yi;Ci; �i)Key words and phrases: lassi�ation of measurable funtions, matrix distributions,pure funtions. simple mrasures.The �rst author supported by the Russian Siene Foundation grant # 14-11-00581.119



120 A. M. VERSHIK, U. HAB�OCKwhih arry the funtion f to h by seperate oordinate{wise appliation.In terms of ommutative diagrams: the diagramX1 ×X2 × · · · ×Xn f
−−−−→ Rmeas.-pres.

y

T=(T1;T2;:::;Tn) 



y
idY1 × Y2 × · · · × Yn h

−−−−→ Rommutes on a set of full measure. The lassial ase of funtions in one ar-gument was solved by Rokhlin [7℄, and is nowadays found in many moderntextbooks on measure theory suh as [3℄: roughly speaking, two funtionsare isomorphi if and only if the distribution as well as the multipliitiesof the attained values, desribed by the metri types of the onditionalmeasures �z( · ) = �( · |f = z), oinide (we will give the preise statementin Setion 2).When onsidering the isomorphism problem for funtions in several ar-guments one obviously needs an entirely di�erent onept. This problemwas posed in full generality by the �rst author in [12℄, and a �rst appli-ation of the idea of matrix distributions was in the ontext of lassifyingmetri triples, i.e. Polish spaes with fully supported probability measure,initiated by M. Gromov, f. [4℄ and [11℄. The tensor distribution Df of ameasurable funtion f (or matrix distribution in the ase of two variablesonly) introdued in [12℄ is a probability measure on the spae of in�nitetensors, i.e. Df ∈ Meas1 (ZN
n) ;whih arises as the distribution of the tensors(ri1;i2;:::;in) = (f (x(i1)1 ; x(i2)2 ; : : : ; x(in)n ))∞i1;i2;:::;in=1determined by the f -values when the arguments are sampled indepen-dently and at random aording to the given measures �i. This measureis invariant and ergodi with respet to ation of the produt(SN)n = SN × SN × · · · × SN;of the in�nite symmetri group SN, ating independently on the indies ofthe tensors. It is shown in [12℄ thatDf is a omplete metri invariant for theisomorphism problem of measurable funtions, provided that the funtionsunder onsideration are pure, whih means that they do not admit non-trivial fators in the ategory of measurable funtions (see Setion 2 for apreise statement of that property).



ON THE CLASSIFICATION OF MEASURABLE FUNCTIONS 121The haraterization problem of those invariant measures� ∈ Meas1 (RN×N
)whih are the matrix distribution of a funtion f(x; y) in two variablesis losely related to Aldous' and Hoover's representation of exhangeabledistributions on in�nite arrays in two dimensions [2, 6℄: any array of ran-dom variables (Xi;j), 1 6 i; j < ∞, with an (SN × SN)-invariant jointdistribution an be represented as funtionXi;j = f (�; �i; �j ; �i;j)of underlying i.i.d. random variables �, �i, �j , and �i;j . The onnetion ofAldous' theorem with [12℄ onsists in the fat that some (SN×SN)-invariantergodi measures orrespond to the matrix distribution of a measurablefuntion, whih is up to isomorphy unique { a property that doesn't fol-low from the approah in [2,6℄. Reently, the �rst author proved the sameanswer for arbitrary invariant ergodi measures whih overs Aldous' rep-resentation in full generality [8℄, but we shall not touh this topi here.In the present work we onetrate on the above mentioned partial so-lution to the haraterization problem of matrix distributions, orretingthe orresponding statement Theorem 3 in [12℄: an (SN )n-invariant ergodimeasure � is the matrix distribution of a ompletely pure funtion, that isa pure funtion with trivial ongruene groupKf = {(Ti)ni=1 ∈

n
∏i=1Aut0(Xi; �i) :f (T1(x1); : : : ; Tn(xn)) = f(x1; : : : ; xn) a.e.};if and only if it is a simple measure, i.e. the ergodi omponents of theseperate ations of SN generate the entire sigma algebra in the spae oftensors.The paper is organized as follows: In Setion 2 we reall important def-initions and fats from [12℄ and restate Rokhlin's lassi�ation theoremfor univalent funtions. Setion 3 revises basi properties of pure fun-tions from [12℄ inluding self-ontained proofs. We hose to repeat theseelementary fats, as they are needed in Setion 4, in whih we present aslightly modi�ed proof of the ompleteness theorem Theorem 2 from [12℄.Finally, Setion 5 elaborates the above mentioned partial haraterization



122 A. M. VERSHIK, U. HAB�OCKof matrix distributions via the so-alled general anonial model for a mea-surable funtion. As the ase of funtions in more than two variables bearsno additional obstales from the oneptual point of view, we shall restritourselves throughout Setions 2{5 to the ase of two variablesn = 2only. The general ase, whih is then obtained by a straight-forward gen-eralization of our methods, is briey disussed in Setion 6.The present paper is a revised version of a hapter taken from the the-sis [5℄, whih originated from a disussion on the lassi�ation of matrixdistributions during the ourse Measure theoreti onstrutions and theirappliations in ergodi theory, asymptotis, ombinatoris, and geometrygiven by the �rst author in autumn 2002 at the Erwin Shr�odinger Insti-tute, Vienna.Aknowledgments. The seond author would like to thank the �rst au-thor for his endless patiene in disussions and orrespondene, in parti-ular during his last stage of writing his thesis.
§2. Basi definitions and fatsThroughout the following we onsider all spaes to be standard proba-bility spaes, i.e. standard Borel spaes (X;B) equipped with a Borel prob-ability measure �. To avoid umbersome notation we shall write (X;�) (orjust X if it is lear to what measure on X we refer) instead of (X;B; �),whenever it is onvient. All funtions are onsidered to be measurableunless the ontrary is expliitely stated.2.1. Isomorphy, fators, and pure funtions. We all two measurablefuntions f : (X;�)× (Y; �) −→ R and f ′ : (X ′; �′)× (Y ′; �′) −→ R to beisomorphi if we an �nd measure preserving isomorphisms S : X −→ X ′and T : Y −→ Y ′ suh thatf ′

(S(x); T (y)) = f(x; y) a.e.;where `a.e.' refers to the produt measure � × �. Whenever the transfor-mations S and T are measure preserving projetions (and not neessarilyinvertible mod 0), i.e. they map onto a set of full measure, we say that f ′is a fator of the funtion f .



ON THE CLASSIFICATION OF MEASURABLE FUNCTIONS 123Notie that isomorphy as well as being a fator is a notion on the equiv-alene lasses (mod 0) of funtions. In terms of ommutative diagrams, iff ′ is a fator of f , then the diagramX×Y f
−−−−→ Zmeas.pres. projetions

y
S 



y
T 



y
idX ′×Y ′ f ′

−−−−→ Zommutes.De�nition 2.1. A measurable funtion f : (X;�)× (Y; �) −→ Z is pure ifit admits no true fator, by whih we mean that every fator f ′ : (X ′; �′)×(Y ′; �′) −→ Z of f is already isomorphi to f .We denote by B(X;Z) (or B(Y; Z)) the spae of all equivalene lassesmod 0 of measurable funtions from X (or Y , respetively) into the stan-dard Borel spae Z, endowed with topology of onvergene in measurewith respet to any Polish topology generating the Borel struture of Z.Sine f is measurable so are the mappingsfX : X −→ B(Y; Z); x 7→ [f(x; · )℄�and fY : Y −→ B(X;Z); y 7→ [f( · ; y)℄� ;where [ · ℄� and [ · ℄� denote the orresponding equivalene lass. For brevity,we will omit the brakets in the sequel.It is evident from De�nition 2.1 that pureness of a funtion an berephrased as follows.Lemma 2.2. A funtion f : X × Y −→ Z is pure if and only if bothmappings fX : X −→ B(Y; Z), x 7→ f(x; · ), and fY : Y −→ B(X;Z),y 7→ f( · ; y) are one-to-one on a set of full measure.2.2. Rokhlin's Theorem. It is evident that two univalent measurablefuntions f : (X;�) −→ Z and f ′ : (X ′; �′) −→ Z, i.e. one{to{one on aset of full measure, are isomorphi if and only if their distributions Df =� ◦ f−1 and Df ′ = �′ ◦ f ′−1 oinide. If the funtions under onsiderationare not univalent one has to take in aount the `multipliity' ertain values



124 A. M. VERSHIK, U. HAB�OCKare obtained. This is done by looking at the funtionmf : Z −→ � = {(i)i>1 : 0 6 i 6 1; ∞
∑i=1 i 6 1}whih maps any value z to the metri type mf (z) of the onditional prob-ability distribution �z( · ) = �( · |f = z);whih is the sequene of weights {i = �z({ai})}i>1 of the atoms ai ofthe measure �z arranged in a non-inreasing way. Note that sine theonditional probability distributions are de�ned uniquely (mod 0) so isthe funtion mf .Theorem 2.3 (Rokhlin, [7℄). Assume that fi : Xi −→ Z (i = 1; 2) are twomeasurable funtions de�ned on standard probability spaes (Xi; �i). Thenthere exists an isomorphism T : X1 −→ X2 of the measure spaes with theproperty that �1 ◦ T−1 = �2 and f2 ◦ T (x) = f1(x) almost everywhere ifand only if their extended funtionsfei : Xi −→ Z × �; x 7→

(fi(x);mfi ◦ fi(x))have the same distribution, by whih we mean that the measures D1 =�1 ◦ (fe1 )−1 and D2 = �2 ◦ (fe2 )−1 oinide.2.3. Group ations and ergodi deompositions. The produt SN×SN of the in�nite symmetri groupSN = ∞
⋃n=1S{1;:::;n}of all �nite permutations of N ats on the produt spae(X × Y )N = XN × Y Nin the anonial way by ating independently on the indies of the se-quenes, i.e.g · ((xi)∞i=1 ; (yj)∞j=1) = ((xg−11 (i))∞i=1 ;(yg−12 (j))∞j=1)for every ((xi); (yi)) from XN×Y N and g = (g1; g2) from SN×SN. Its ationon the spae of in�nite matries is that of permuting rows and olumnsseparately: g · (ri;j) = (rg−11 (i);g−12 (j))i;j



ON THE CLASSIFICATION OF MEASURABLE FUNCTIONS 125for every g = (g1; g2) from SN × SN and matrix (ri;j).Let G be a ountable semigroup ating measurably on a standard Borelspae, whih will be in our ase the spae of matries ZN×N. Every G-invariant probability measure D on ZN×N is then deomposed into G-invariant ergodi measures Dr by a (mod 0) uniquely de�ned Borel map-ping � : ZN×N −→ MeasG1 (ZN×N
) ; r 7→ DGr ;whih maps into the standard Borel spae of G-invariant probability mea-sures, endowed with the topology of weak onvergene, suh that the for-mula D(B) = ∫ZN×N

DGr (B) · dD(r)holds for every Borel set B ⊆ ZN×N.2.4. De Finetti's theorem. We shall make use of de Finett's theorem onexhangeable distributions in the following form: Every Borel probabilitymeasure m on the produt XN of a Borel spae X, whih is invariant andergodi with respet to the ation SN is Bernoulli, i.e.m = �Nfor a Borel probability measure � on X. There is a very simple and elegantproof of de Finetti's theorem with help of the point{wise ergodi theoremwith respet to the ountable group SN, but we shall not dwell on this,f. [14℄.2.5. Matrix distribution of a measurable funtion. Let us reallthe de�nition of matrix distributions from [12℄:De�nition 2.4. Let f : (X;�)× (Y; �) −→ Z be a measurable funtion intwo variables. Its matrix distribution Df is the pushforward measureDf = (�N × �N) ◦ F−1fof the Bernoulli measure �N × �N under the evaluation funtionFf : XN × Y N −→ ZN×N; ((xi); (yj)) 7→ (f(xi; yj))i;j :This de�nition generalizes the notion of matrix distributions for Gromovtriples, i.e. Polish spaes with probability measure introdued in [13℄. Note



126 A. M. VERSHIK, U. HAB�OCKthat Df is a probability measure on the spae of in�nite matries ZN×N,and that Ff is equivariant with respet to the ation of SN × SN, i.e.Ff(g · ( (xi) ; (yj) )) = g · Ff( (xi) ; (yj) ):Hene invariane and ergodiity of the Bernoulli measure �N × �N yieldsinvariane and ergodiity of the matrix distribution.2.6. The ongruene group of a measurable funtion. The on-gruene group of a funtion in two arguments is the group of measure{preserving symmetriesKf = {(S; T ) ∈ Aut0 (X;�)×Aut0 (Y; �) :f(S(x); T (y)) = f(x; y) a.e.}:This group plays an important role for our partial solution to the harater-ization problem of matrix distributions, Theorem 5.4. It is remarkable thatthe ongruene group is ompat, when endowed with the weak topology.This fat is shown in [10℄, but we will not make use of it in the sequel.As in [9℄ we shall all any pure funtion f with trivial ongruene groupsimply ompletely pure funtion.
§3. Redution of the lassifiation problem to that ofpure funtionsAny measurable funtion f has a pure fator �f de�ned in a natural way:As the funtions fX and fY are Borel the equivalene relations de�ned by�X = { (x1; x2) ∈ X ×X : f(x1; · ) = f(x2; · ) (mod �)}and �Y = { (y1; y2) ∈ Y × Y : f( · ; y1) = f( · ; y2) (mod �)}are partitions of the respetive spaes into measurable omponents. Inorder to stay within the ategory of standard measure spaes we de�ne1the fator spaes X=�X and Y=�Y1It is no good hoie to de�ne the fator X=�X to be the set of all equivalene lasseswith respet to �X and its sigma algebra the algebra of all �X -saturated S-measurablesets; this spae need not to be standard Borel.



ON THE CLASSIFICATION OF MEASURABLE FUNCTIONS 127as the standard Borel spaeB(Y; Z) and B(X;Z) with the fator mappings�X : X −→ X=�X ; �X = fX ;and �Y : Y −→ Y=�Y ; �Y = fY ;and the projeted measures � ◦ �−1X and � ◦ �−1Y as measures, respetively.The mapping fX as funtion from X into the spae B(Y; Z) translatesunder the projetion �X to the identity mapping regarded as funtion fromX=�X to B(Y; Z), and by the measurability it originates from a jointlymeasurable funtion f ′ : X=�X × Y −→ Zwhih by onstrution satis�es thatf ′
(�X (x); y) = f(x; y) a.e.;and the orresponding map f ′X=�X is one-to-one on a set of full measure.In the same manner we proeed with the seond argument and �nally endwith a measurable funtion�f : X=�X × Y=�Y −→ Zsuh that �f(�X (x); �Y (y)) = f(x; y) a.e.:This shows that the diagramX × Y f

−−−−→ Zmeas.-pres.
y

�=(�X ;�Y ) 



y
idX=�X × Y=�Y f ′

−−−−→ Zis ommutative on a set of full measure, and sine the orresponding map-pings �fX=�X and �fY=�Y are now one{to{one on a set of full measure, thefuntion �f is onsequently pure. It is not diÆult to see that this purefator �f is uniquely determined up to isomorphy. We will sometimes referto it as the puri�ation or the unique pure fator of f .The redution of the isomorphism problem is done in the spirit ofRokhlin's Theorem 2.3. Instead of f we onsider its extended pure fa-tor �fe : X=�X × Y=�Y −→ Z ×�2; (x; y) 7→ ( �f(x; y);m(�x);m(�y)) ;



128 A. M. VERSHIK, U. HAB�OCKwhere m(�x) and m(�y) denote the metri types of the respetive (mod 0uniquely determined) onditional measures �( · |�X = x) and �( · |�Y = y).Theorem 3.1. Two not neessarily pure funtions f : (X;�)× (Y; �) −→Z and g : (X ′; �′) × (Y ′; �′) −→ Z are isomorphi if and only if theirextended pure fators�fe : X=�X × Y=�Y −→ Z ×�2; (x; y) 7→ ( �f(x; y);m(�x);m(�y));and�ge : X ′=�X′ × Y ′=�Y ′ −→ Z ×�2; (x′; y′) 7→ (�g(x′; y′);m(�′x′);m(�′y′));both de�ned as above, are isomorphi.Proof. The statement of the theorem is lear sine every measure pre-serving isomorphism �T : X=�X −→ X ′=� ′X whih arries the funtionx 7→ m(�x) to the funtion x′ 7→ m(�′x′) (mod 0) an be lifted to a mea-sure preserving isomorphism T : X −→ X ′ so that T = �T ◦ �X (mod 0)and the same is true for the seond oordinate spaes Y and Y ′. �

§4. The matrix distribution as omplete invariant forpure funtionsIn this setion we resume the individual anonial model and the om-pleteness theorem for measurable funtions in two variables. Are resultsand proofs, apart from some tehnial details whih are elaborated ingreater detail, an be also found in [12℄.Let us start with an auxiliary lemma on pure funtions. We say thata sigma algebra S ⊆ BX equals modulo a measure � (or simply `mod 0',whenever it is lear to whih measure we refer) the whole Borel algebra
BX , if its measure algebra S� = {[A℄� : A ∈ S}, with [A℄� = {B ∈ BX :�(B�A) = 0}, oinides with the measure algebra de�ned by BX itself.Lemma 4.1. Suppose f : X × Y → Z is a pure funtion. Then thefollowing properties also hold:(i) For any Borel set Y ′ ⊆ Y whih is of full �-measure the set offuntions {f ( · ; y) : y ∈ Y ′} generates (mod 0) the Borel algebraof X.(ii) For �N-almost every sequene (yj)∞j=1 the ountable olletion offuntions {f( · ; yj) : j > 1} generates (mod0) the Borel algebraof X.



ON THE CLASSIFICATION OF MEASURABLE FUNCTIONS 129By symmetry the same statements hold when interhanging the role of Yand X.Proof. As the restrition of f to X × Y ′ is also a pure funtion, it issuÆient to prove (i) for the ase Y ′ = Y . Let FY denote the sigma algebragenerated by the set of funtions {fy = f ( · ; y) : y ∈ Y }. Using standardarguments one sees that the funtion f is measurable with respet to thesigma algebra FY × BY , where BY is the Borel algebra of Y , after amodi�ation on a set of measure zero if neessary. Thus the mappingfX : X −→ B(Y; Z); x 7→ f (x; · ) ;is measurable (mod 0) with respet to the sigma algebra FY .2 Hene in-jetivity of the map fX on a set of full measure implies that FY oinidesmodulo null sets with the entire Borel algebra of X .To prove (ii) let us hoose a ountable base {On}n>1 for the topologyin B(Y; Z). Now �N-almost every sequene (yj) is suh that for any setOn of positive measure � ◦ f−1X , its intersetion with {fyj : j > 1} is non-empty. For every suh sequene (yj) the sigma algebra F(yj) generated bythe funtions {fyj : j > 1} ontains (mod 0) the sigma algebra generatedby the olletion {fy : y ∈ Y ′} with Y ′ being the preimage of the supportof the measure � ◦ f−1Y under the map fY . As this set has full measure itfollows from (i) that F(yj) oinides (mod 0) with the entire Borel algebraof X . �4.1. Individual anonial model of a measurable funtion. In thesequel we assume that that f : X×Y −→ Z takes values in the interval Z =[0; 1℄. This means no loss in generality, as any Borel spae is measurablyisomorphi to [0; 1℄ or to an { at most { ountable subset. It is an immediateonsequene of Lemma 4.1 that for �N-almost every sequene (xi) and �N-almost every sequene (yj) the mappingsL(yj) : X −→ [0; 1℄N; x 7→
(f(x; yj))j ;L(xi) : Y −→ [0; 1℄N; y 7→
(f(xi; y))i;2By whih we mean that it oinides on a set of full measure with an FY -measurablefuntion.



130 A. M. VERSHIK, U. HAB�OCKare one-to-one on a set of full measure, and therefore they are isomorphismsbetween the measure spaes (X;�), (Y; �) and the spaes
(X(yj); �(yj)) = ([0; 1℄N; � ◦ L−1(yj)) ;
(Y(xi); �(xi)) = ([0; 1℄N; � ◦ L−1(xi)) ;respetively. These spaes together with the funtionf(xi);(yj) = f ◦

(L(yj) × L(xi))−1form the anonial representation (or anonial model) of our measurablefuntion f . We shall all this model individual anonial model, as bothmeasures �(yj), �(xj) and the funtion f(xi);(yj), being the density of theabsolutely ontinuous measurem(yj);(xi) = f(xi);(yj) · d(�(yj) × �(xi)) = m ◦ (L(yj) × L(xi))−1;are uniquely determined by the values of the single in�nite matrixr = (ri;j) = (f(xi; yj)) ∈ ZN×N:The onstrution of the model is done by ergodi arguments with respetto the two-dimensional shift on XN × Y N de�ned by�(k;l)((xi); (yj)) = ((xi+k); (yj+l));for every k; l > 1 and ((xi); (yj)) from XN × Y N, but an as well beperformed with respet to the ation of SN × SN. For every n > 1 let ushoose a ountable algebra An whih generates the sigma algebra of alln{ylinders, i.e. the Borel sets formulated in the �rst n oordinates only.Using the ergodi theorem for the two{dimensional shift, we onlude thatalmost every hoie of sequenes (xi)i∈N and (yj)j∈N the following relationshold for every A1 and A2 from A = ⋃n An:�(yj)(A1) = limm→∞

1m ·

m
∑k=1 Æ(rk;i)∞i=1(A1); (1)�(xj)(A2) = limm→∞

1m ·

m
∑l=1 Æ(ri;l)∞i=1(A2); (2)



ON THE CLASSIFICATION OF MEASURABLE FUNCTIONS 131andm(xi);(yj)(A1 ×A2)= limm→∞

1m2 ·
m
∑k;l=1 rk;l · Æ(ri;k)∞i=1(A1) · Æ(rl;j)∞j=1(A2): (3)In fat, given �nitely many points {xi : 1 6 i 6 n} from X and {yj : 1 6j 6 n} from Y , and introduing the notationf(x1;:::;xn)(y) = (f(x1; y); : : : ; f(xn; y));and f(y1;:::;yn)(x) = (f(x; y1); : : : ; f(x; yn));then almost every ontinuations (xi)∞i=n+1 and (yj)∞j=n+1 of the �nite se-quenes (xi)ni=1 and (yj)nj=1 are suh that for any hoie of sets A1 and A2from An,� ◦ f−1(y1;:::yn)(A1) = limm→∞

1m ·
∣

∣

∣

{n+ 1 6 k 6 m : f(y1;:::;yn)(xk) ∈ A1} ∣∣∣;� ◦ f−1(x1;:::xn)(A2) = limm→∞

1m ·
∣

∣

∣

{n+ 1 6 k 6 m : f(x1;:::;xn)(yk) ∈ A2} ∣∣∣;andm(f−1(y1;:::yn)(A1)× f−1(x1;:::;xn)(A2)) = limm→∞

1m2 ·
∑(k;l)∈W∩[n+1;m℄2 f(xk; yl):Here W denotes the setW = {(k; l) ∈ N × N : f(y1;:::;yn)(xk) ∈ A1 and f(x1;:::;xn)(yl) ∈ A2}:Hene the onatenated sequenes (xi)∞i=1 and (yj)∞j=1 obviously satisfy theequations (1), (2) and (3). Integrating over all hoies of ((xi)ni=1; (yj)nj=1)from Xn × Y n yields the sets

Ef (An) = {((xi); (yj)) ∈ XN × Y N : L(yj) and L(xi) are one-to-one(mod 0) and (1), (2), (3) hold for all A1; A2 ∈ An}and hene their intersetion
Ef (A) = ⋂n>1 Ef (An)is of full measure.



132 A. M. VERSHIK, U. HAB�OCKWe shall all any ((xi); (yj)) from the set Ef (A) a pair of typial se-quenes. It is well known that the image Ff(Ef (A)) is then measurablewith respet to the Df -ompletion of the Borel algebra in the spae ZN×Nthus we an �nd a Borel set
Tf (A) ⊆ Ff(Ef (A))whih is of full measure. We shall all this set Tf (A) the set of typialmatries with respet to the ountable algebra A and the funtion f .Summarizing these fats we have shown that for any hoie of

((xi); (yj))from the set Ef (A) the anonial model depends only on their matrix(f(xi; yj))i;j . Likewise, for any matrixr = (ri;j)i;j∈Nfrom the set of typial matries Tf (A) we an onstrut spaes(Xr; �r) = ([0; 1℄N; �r) (4)and (Yr; �r) = ([0; 1℄N; �r); (5)the measures �r and �r determined by the limits (1) and (2), and a mea-surable funtionfr : Xr × Yr −→ [0; 1℄; fr = dmrd(�r × �r) ; (6)i.e. the Radon{Nikod�ym derivative of the measure mr determined by thelimit in (3) with respet to �r × �r, whih is isomorphi to the originalfuntion f . Note that �r and �r are the empirial distributions of the rowsand olumns of the matrix r, and mr(A1×A2) for two n-dimensional Borelsets A1 and A2 equals the average value rk;l whih ours when observingsimultaneously the row segment (rk;1; : : : ; rk;n) belonging to A1 and theolumn segment (r1;l; : : : ; rn;l) belonging to A2.In partiular, the so onstruted funtion fr is unique: Any matrix rfrom the set Tf (A) determines { up to isomorphism { the same funtion.For general ergodi (SN×SN)-invariant measuresD this onstrution mightfail: Of ourse the existene of the measures �r and �r follows from sta-tionarity of the two-dimensional shift ation, or of the separate ations ofSN ×{1} and {1}×SN (f. Setion 5), but it is by no means lear that the



ON THE CLASSIFICATION OF MEASURABLE FUNCTIONS 133limit in (3) de�nes a measure mr, nor that the so onstruted funtion fris unique up to isomorphism, ontrary to what was stated in [12℄.With the above reonstrution of the anonial model we are able toshow the main result of this setion:Theorem 4.2 (Completeness Theorem). Suppose f : X × Y −→ Z andg : X ′ × Y ′ −→ Z are pure funtions. There exist measure preservingisomorphisms S : (X;�) −→ (X ′; �′) and T : (Y; �) −→ (Y ′; �′) of theorresponding standard probability spaes suh thatg(S(x); T (y)) = f(x; y) (mod 0);if and only if their matrix distributions Df and Dg oinide.Proof. One diretion is trivial: If there exist suh isomorphisms S and Tthen the orresponding produt transformation whih maps ((xi)i; (yj)j)to ((S(xi))i; (T (yj))j) is a measure preserving isomorphism of the spaesXN × Y N and X ′N × Y ′N whih arries the matrix valued funtions Ff toFg . Hene their push forward measures Df and Dg oinide.Now assume that Df = Dg. As in the preeding disussion we onsiderZ = [0; 1℄, �x ountable algebras An, n > 1, whih generate the Borelstruture of [0; 1℄n, and put A = ⋃n An. As Df = Dg the intersetion ofthe sets of typial matries
Tf (A) ∩ Tg(A)is still of full measure and therfore it is non-empty. But any matrix r =(ri;j) from this intersetion determines a funtionfr : (Xr; �r)× (Yr; �r) −→ [0; 1℄whih is an isomorphi model simultaneously for both funtions f and g.This proves the existene of the laimed isomorphisms S and T . �Note that an expliit form of the isomorphisms from Theorem 4.2 isS = L−1(y′j) ◦ L(yj) and T = L−1(x′i) ◦ L(xi);the pairs ((xi); (yj)) and ((x′i); (y′j)) being any two pairs of typial se-quenes, i.e. from
Ef (A) ∩ Eg(A);whih de�ne the same matrix: (f(xi; yj)) = (g(x′i; y′j)). This observationwill be useful in the proof of the following orollary, whih will be neededin Setion 5.



134 A. M. VERSHIK, U. HAB�OCKCorollary 4.3. Let f : X × Y −→ Z be pure. Then the map Ff : XN ×Y N −→ Z is one-to-one (mod 0) if and only if its ongruene group Kf istrivial.Proof. As before we assume that Z = [0; 1℄. Assume that Ff is notone{to{one (mod0). If A is any arbitrary ountable algebra generatingthe Borel struture of [0; 1℄N then the map Ff annot be injetive on
Ef (A), sine this set is of full measure. Thus there exist two di�erent pairs
((xi); (yj)) and ((x′i); (y′j)) from E(A) whih have the same image underFf . Therefore the mappingsS = L−1(y′j) ◦ L(yj) and T = L−1(x′i) ◦ L(xi);are measure preserving automorphisms of (X;�) and (Y; �) respetivelyfor whih f(Sx; Ty) = f(x; y) (mod0). Moreover these automorphismssatisfy f(Sx; yj) = f(x; y′j) for a.e. x in X and f(xi; T y) = f(x′i; y) for a.e.y in Y , i and j being arbitrary. This proves that either S or T must benon-trivial sine we may assume that both mappings fX and fY (de�nedin Setion 2) are one-to-one.The other diretion is trivial: Assume that there exists a non{trivialautomorphism (S; T ) in Kf . Then every set B ⊆ XN × Y N of full measureis almost invariant under (S; T )N. But at the same time the automorphism(S; T )N leaves Ff almost invariant and therefore we an �nd two di�erentpoints in B with the same image under Ff . �

§5. Absene of symmetry - simple measuresIn this setion we haraterize those matrix distributions whih orig-inate from a funtion with no symmetries, i.e. with trivial ongruenegroup. Its main result, Theorem 5.4 orrets the orresponding statementTheorem 3 in [12℄.De�nition 5.1. Let D be a (SN × SN)-invariant and ergodi measure onthe spae of matries. We say that D is simple if the invariant alge-bras BSN×{1} and B{1}×SN generate (mod0) the whole Borel algebra Bof ZN×N, i.e.
BSN×{1} ∨ B{1}×SN = B (modD):5.1. Simpliity and deomposition of the ation of SN × SN. Sim-pliity of an (SN × SN)-invariant and ergodi measure D means that thedynamial system

(ZN×N; D; SN × SN

)



ON THE CLASSIFICATION OF MEASURABLE FUNCTIONS 135is isomorphi to the diret produt of its fators(X; �X; G1) = (ZN×N=G2; D;G1) ;and (Y; �Y; G2) = (ZN×N=G1; D;G2) ;i.e. the systems of the ergodi omponents with respet to the subgroupsG2 = {1} × SN and G1 = SN × {1}:As model of these fators we hoose the standard Borel spaes
X = MeasG21 (ZN×N

) ;
Y = MeasG11 (ZN×N

) ;of respetive invariant probability measures, together with the isomor-phism � : ZN×N −→ X × Y; r 7→ (DG2r ; DG1r ) ;given by the deomposition of D into its G2-ergodi and G1-ergodi mea-sures, respetively. We assume without any loss in generality the mappings�:r 7→ DG2r and �2 = r 7→ DG1r invariant with respet to G2 and G1 re-spetively, whene the equationsg1 ·DG2r = DG2g1·r;g2 ·DG1r = DG1g1·r;with g1 ∈ G1 and g2 ∈ G2, de�ne ations of the permutation groups G1and G2 on X and Y, respetively. By invariane and ergodiity of D, thepushforward measures �X = D ◦ �−11 ;�Y = D ◦ �−12 ;are invariant and ergodi with respet to the ations de�ned. Note thatthe points x and y of the fator spaes X and Y are represented bypermutation{invariant and ergodi measuresDG2r andDG1r whih are there-fore Bernoulli measures by de Finetti's theorem. Conretely, regardingZN×N = (Z{1}×N)N;the `spae of sequenes of rows' or on the other handZN×N = (ZN×{1})N;



136 A. M. VERSHIK, U. HAB�OCKthe `spae of sequenes of olumns', thenDG2r = �Nr and DG1r = �Nrthe measures �r and �r being a probability measure on the spae ofolumns and rows, respetively. For almost every matrix r, the measures�r and �r are the empirial distributions of its olumns and rows.Note that if the measure D is not simple then the diret produt of(X; �X; G1) and (Y; �Y; G2) is a non{trivial fator of (ZN×N; D;G1 ×G2).This gives us the following haraterisation of simple measures:Proposition 5.2. A measure D is simple if and only if the (almost ev-erywhere uniquely de�ned) mapping whih sends a matrix r to the pair(�r; �r) of its empirial distribution of olumns and rows respetively, isone-to-one (mod 0).With the help of the deomposition of the group ation we are able toproof the following lemma.Lemma 5.3. Assume that D = Df is the matrix distribution of a purefuntion f : (X;�) × (Y; �) −→ Z. Then D is simple if and only if theongruene group Kf is trivial.Proof. First of all note that by Corollary 4.3, we only have to show thata measure D is simple if and only if the mapFf : (XN; �N)× (Y N; �N) −→ (ZN×N; D)is one{to{one on a set of full measure. One diretion is trivial: if Ff isone-to-one, it is an equivariant isomorphism between the measure spaes.Hene
BSN×{1} ∨ B{1}×SN = B (modD);as the same assertion is true for the orresponding invariant algebras inthe spae XN × Y N.Conversely, assume that D is simple. Whe may thus regard Ff as map-ping (XN; �N; G1)× (Y N; �N; G2) −→ (X; �X; G1)× (Y; �Y; G2):By equivariane, the preimage F−1f (B) of any Gi-invariant Borel set B ⊆

X×Y is also Gi-invariant, for every i = 1; 2. Thus Ff must be of the formFf = (�1; �2);with �1 : XN −→ X and �1 : Y N −→ Y. By Lemma 4.1 we know thatfor �N-almost every sequene (yj) the restrition Ff ( · ; (yj)) is one-to-one



ON THE CLASSIFICATION OF MEASURABLE FUNCTIONS 137(mod 0) and so is �1. For the same reasoning the funtion �2 is one-to-one (mod 0). This proves that Ff = (�1; �2) is one-to-one on a set of fullmeasure. �5.2. General anonial model given the matrix distribution of aompletely pure funtion. Assume that D is the matrix distributionof a ompletely pure funtion f , that is a pure funtion f with trivialongruene group Kf . Then by Lemma 5.3 the measure D is simple andhene the deomposition(ZN×N; D; SN × SN) = (X; �X; G1)× (Y; �Y; G2 × SN

)desribed in the previous setion, together with its isomorphism� : ZN×N −→ X × Ygives us another possibility to reonstrut the funtion f : We simply set
f : X × Y −→ Z; f = r1;1 ◦ �−1;and laim that it is isomorphi to the funtionf : XN × Y N −→ Zregarded as funtion on the �rst oordinates x1 and y1. In fat, the map-ping � = � ◦ Ff : XN × Y N −→ X × Yis one-to-one, measure preserving and obviously arries the funtion f :XN×Y N −→ Z to f. Thus the only thing we need to hek to is that � is ofprodut type, i.e. � = (�1;�2) with measurable funtions �1 : XN −→ Xand �2 : Y N −→ Y. But this is lear from the proof of Lemma 5.3.We shall all the above onstruted funtion f the general anonialmodel of f , sine it does not depend on the hoie of a partiular matrixr as the individual anonial model from Setion 4. In ontrast to theindividual anonial model the funtion f is never pure as it is a modelfor f as funtion on XN × Y N rather than as funtion X × Y −→ Z.Nevertheless its puri�ation�f : X=�X × Y=�Y −→ Zas desribed in Setion 3 is learly isomorphi to the original pure funtionf : X × Y −→ Zby the uniqueness of pure fators. The diret onnetion between bothmodels beomes lear in the proof of Theorem 5.4.



138 A. M. VERSHIK, U. HAB�OCKOf ourse the above onstrution of f makes sense for any (SN × SN)-invariant simple measure on ZN×N. This observation is the key for thefollowing theorem.Theorem 5.4 (Charaterisation of simple measures using the generalanonial model f). Let D be an (SN×SN)-invariant and ergodi probabilitymeasure on the spae of matries ZN×N. Then D is a matrix distributionof a funtion f : (X;�)× (Y; �) −→ Z with trivial ongruene group Kf ifand only if D is a simple measure.Remark 5.5. This theorem orrets Theorem 2 from [12℄, whih statesthat an (SN × SN)-invariant and ergodi measure is a matrix distributionif and only if it is simple.Proof. One diretion is already ontent of Lemma 5.3. Conversely, let usassume that D is simple. Again, the dynamial system (ZN×N; D; SN ×SN)deomposes via the isomorphism� : r 7→ (DG2r ; DG1r )into the produt (X; �X; G1)× (Y; �Y; G2)of the spaes of ergodi omponents
X = MeasG21 (ZN×N

) ;
Y = MeasG11 (ZN×N

) ;the measures �X, �Y, and group ations as de�ned in Setion 5.1. Taking aloser look on these measures it is obvious that e.g. �1 : r 7→ DG2r regardedas G1-equivariant mapping�1 : (Z
{1}×N

)N

−→ Xmaps eah of the G1-invariant ergodi measures DG1r onto an G1-invariantergodi measure on X. Sine �X is also an G1-invariant ergodi measure,being the integral onvex ombination�X(B) = ∫r DG1r ◦ �−11 (B) · dD(r)



ON THE CLASSIFICATION OF MEASURABLE FUNCTIONS 139of suh measures, it therefore must equal to at least3 one suh pushforwardmeasures DG1r ◦ �−11 . As noted in Setion 5.1, we may regard the lattermeasure DG1r as Bernoulli measure �Nr on the spae of sequenes of rows
(

Z
{1}×N

)N, and �1 as measure preserving isomorphism between the spaeof sequenes of rows and X. We thus may onsider(X; �X) = ((Z
{1}×N

)N ; �Nr) ;and in the same way one sees that(Y; �Y) = ((Z
N×{1})N ; �Nr ) ;that is the spae of sequenes of olumns with Bernoulli measure �Nr . Welaim that the matrix distribution of the funtion

f : X × Y −→ Z; f = r1;1 ◦ �−1;equals our measure D. For brevity, we write X = Z{1}×N and Y = ZN×{1}for the spae of rows and the spae of olumns, respetively. As the matrixvalued funtion
F : X × Y −→ ZN×N; F = id ◦�−1;is equivariant with respet to the ation of G1 ×G2 so it is regarding it asfuntion from XN × Y N to ZN×N. From this it follows easily that F is ofthe form

F
((xi); (yj)) = (F1;1(xi; xj)) (mod 0);as is shown in the postponed Lemma 5.7. This proves that the distributionof the matrix valued funtion F, whih by de�nition equalsD, is the matrixdistribution of f. Moreover, the funtion F = Ff is by onstrution one-to-one and we onlude from Corollary 4.3 that the ongruene group of f istrivial. �Remark 5.6. Observe that the haraterization of matrix distributions inthe ase of funtions in just one argument beomes essentially de Finetti'stheorem: In this ontext, the row distribution (instead of matrix distribu-tion) Df of f : X −→ Z is de�ned as the distribution of the proess (f(xi))sampling its arguments independently aording to the given measure � onX . Thus Df is simply the Bernoulli measure D = (� ◦ f−1)N on the spae3it is not diÆult to see that the set of all mesures DG1r whih equal the ergodimeasure X is of full measure.



140 A. M. VERSHIK, U. HAB�OCKZN. De Finetti's theorem states that the SN-invariant ergodi measure onZN are exatly the Bernoulli measures, and hene all suh meausres arethe row distribution of a funtion in one variable.We lose this setion with the auxiliary lemma that we used in the proofof Theorem 5.4.Lemma 5.7. Suppose that the map F from (XN; �N)× (Y N; �N) to ZN×Nis equivariant under the ation of SN ×SN. Then there exists a measurablefuntion f : X × Y −→ Z suh thatF = (Fi;j) = (f(xi; xj)) (mod 0):Proof. Using equivariane we know that for any g1 and g2 from the sub-group S(1)
N

= {g ∈ SN : g(1) = 1}the following identity holds.
F1;1(g1(xi); g2(yj)) = Fg−11 (1);g−12 (1)((xi); (yj)) = F1;1((xi); (yj)):Being invariant with respet to the ation of S(1)

N
× S(1)

N
the funtion F1;1is (mod 0) measurable with respet to the �rst oordinates x1 and y1 ofXNr × Y Nr whih means that F1;1((xi); (yj)) = f(x1; y1) (mod 0) for somefuntion f de�ned on X × Y . Using one more equivariane we onludethatFg−11 (1);g−12 (1)((xi); (yj))= F1;1 ((xg−11 (i)) ;(yg−12 (j))) = f (xg−11 (1); yg−12 (1))(mod0) for every g1 and g2 from SN, whih proves the assertion of thelemma. �

§6. The ase of funtions in more than two argumentsLet us shortly disuss the ase of Borel funtionsf : n
∏i=1(Xi; �i) −→ Z



ON THE CLASSIFICATION OF MEASURABLE FUNCTIONS 141in more than two arguments. Its tensor distribution Df is de�ned as thedistribution of the tensor-valued funtionalFf : n
∏i=1XNi −→ ZN

n ;
((x(1)i ) ;(x(2)i ) ; : : : ;(x(n)i ))

7→
(f (x(1)i1 ; : : : ; x(n)in ))i1;:::;in ;under the measure n

∏i=1�Ni , i.e.Df = ( n
∏i=1�Ni ) ◦ F−1f :In this situation Df is a measure on the spae of in�nite tensors ZN

nwhih is ergodi and invariant with respet to the (analogously de�nedation) of Sn
N
= SN × SN × · · · × SNating independently on the indies of the tensors. The notion of fatorsin the ategory of measurable funtions in several variables is analogousto that of funtions in two arguments, and so is the de�nition of pureness:a funtion f(x1; x2; : : : ; xn) is said to be pure, if it admits no true fator.The redution of the isomorphism problem to pure funtions is then provedin exatly the same way as Theorem 3.1. With help of an extended ver-sion of Lemma 2.2 it is also obvious how to prove the higher-dimensionalanalogue of Theorem 4.2: Two pure measurable funtions are isomorphiif and only if their tensor distributions oinide.The results from Setion 5 are also extended easily: Let Gi be the per-mutation group whih ats on the i-th index of the tensors only. An (Sn

N
)-invariant measure D on the spae of tensors ZN

n is said to be simple, ifthe invariant algebras BG(i) with respet to the groupsG(i) = G1 × · · · ×Gi−1 × {1} ×Gi+1 × · · · ×Gnkeeping the i-th index �xed, generate the whole Borel algebra B of ZN
n ,i.e. n

∨i=1 BG(i) = B (modD):



142 A. M. VERSHIK, U. HAB�OCKThis again means that the dynamial system (ZN
n ; D; n

∏i=1Gi) is the di-ret produt of the systems (ZN
n=G(i); D;Gi), 1 6 i 6 n, the quotientsinterpreted as ergodi deompositions. With help of this deomposition,the general anonial model is de�ned analogously and Theorem 5.4 anbe proved similary: An Sn

N
-invariant and ergodi measure on the spae oftensors ZN

n is the tensor distribution of measurable funtionf : n
∏i=1(Xi; �i) −→ Zwith trivial ongruene groupKf = {(Ti)ni=1 ∈

n
∏i=1Aut0(Xi; �i) :f(T1(x1); : : : ; Tn(xn)) = f(x1; : : : ; xn) a.e.}if and only it is simple. Referenes1. D. J. Aldous, Exhangability and related topis | In: �Eole d'�Et�e de Probabilit�esde Saint{Flour XIII { 1983, Leture Notes Math. 1117 (2006), Springer, 1{198.2. D. J. Aldous, Representations for partially exhangeable arrays of random vari-ables { J. Multivariate Analysis 11 (1981), 581{598.3. V. I. Bogahev, Measure Theory, Vol. I, Springer, Berlin{Heidelberg, 2007.4. M. Gromov, Metri strutures for Riemannian and non-Riemannian spaes. |Progress in Mathematis 152, Birkh�auser Boston, Boston, MA, 1999.5. U. Hab�ok, Cohomology and Classi�ations Problems in Dynamis. | PhDThesis, Faulty of Mathematis, University of Vienna, 2006.6. D. N. Hoover, Row-olumn exhangeability and a generalized model for ex-hangeability. | In Exhangeability in Probability and Statistis (G. Koh andF. Spizzihino, eds.), North{Holland, Amsterdam 1982, 281{291.7. V. A. Rokhlin, Metri lassi�ation of measurable funtions. | Uspekhi Mat.Nauk 12, No. 2 (74) (1957), 169{174.8. A. M. Vershik, Invariant measures { new aspets of dynamis, ombinatorisand representation theory. | Takagi Letures, Math. Inst. of T�ohoku University,2015.9. A. M. Vershik, On lassi�ation of measurable funtions of several variables. |Zapiski Nahn. Semin. POMI 403 (2012), 35{57.10. A. M. Vershik, U. Hab�ok, Compatness of the ongruene group of measurablefuntions in several variables. | J. Math. Sienes 141, No. 6 (2007), 1601{1607.
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