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ON THE CLASSIFICATION PROBLEM OF
MEASURABLE FUNCTIONS IN SEVERAL VARIABLES
AND ON MATRIX DISTRIBUTIONS

ABSTRACT. We resume the results from [12] on the classification of
measurable functions in several variables, with some minor correc-
tions of purely technical nature. We give a partial solution of he
characterization problem of so—called matrix distributions, which
are the metric invariants of measurable functions introduced in [12].
Matrix distibutions considered as §y X §y—invariant, ergodic mea-
sures on the space of matrices — this fact connects our problem with
Aldous’ and Hoover’s theorem |2, 6],

To the memory of Michael I. Gordin

§1. INTRODUCTION AND OUTLINE OF THE PAPER

The classification problem of measurable functions is the question whet-
her a measurable function

f:XixXox - x X, — Z,

defined in several variables from standard probability spaces (X;, B, ;)
and values in a Borel space Z, is isomorphic to another such function h
with arguments taken from other probability spaces (Y;, €;, v;). The notion
of isomorphism refers to the category of measure spaces: the existence of
measure-preserving, invertible Borel maps

Ti : (Xiy%hp’i) — (}/'Z.’Qi7yi)

Key words and phrases: classification of measurable functions, matrix distributions,
pure functions. simple mrasures.
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120 A. M. VERSHIK, U. HABOCK

which carry the function f to h by seperate coordinate—wise application.
In terms of commutative diagrams: the diagram

X; X Xg X - x Xp, _r

meas.—pres.J]T:(T1 Ta,...,Ty) lid

VixYex---xY, —" LR

commutes on a set of full measure. The classical case of functions in one ar-
gument was solved by Rokhlin [7], and is nowadays found in many modern
textbooks on measure theory such as [3]: roughly speaking, two functions
are isomorphic if and only if the distribution as well as the multiplicities
of the attained values, described by the metric types of the conditional
measures p,(-) = u(-|f = z), coincide (we will give the precise statement
in Section 2).

When considering the isomorphism problem for functions in several ar-
guments one obviously needs an entirely different concept. This problem
was posed in full generality by the first author in [12], and a first appli-
cation of the idea of matrix distributions was in the context of classifying
metric triples, i.e. Polish spaces with fully supported probability measure,
initiated by M. Gromov, cf. [4] and [11]. The tensor distribution D of a
measurable function f (or matriz distribution in the case of two variables
only) introduced in [12] is a probability measure on the space of infinite
tensors, i.e.

Dy € Meas; (ZN") ,
which arises as the distribution of the tensors

(Pirsin,oin) = (f (wgil),xg”), o 7:1:7(%,-”)))

determined by the f-values when the arguments are sampled indepen-
dently and at random according to the given measures u;. This measure
is invariant and ergodic with respect to action of the product

(SN)n:SNXSNX---XSN,

of the infinite symmetric group Sy, acting independently on the indices of
the tensors. It is shown in [12] that Dy is a complete metric invariant for the
isomorphism problem of measurable functions, provided that the functions
under consideration are pure, which means that they do not admit non-
trivial factors in the category of measurable functions (see Section 2 for a
precise statement of that property).

oo

i1,82,..0,0n=1
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The characterization problem of those invariant measures
A € Meas; (R"N)

which are the matrix distribution of a function f(z,y) in two variables
is closely related to Aldous’ and Hoover’s representation of exchangeable
distributions on infinite arrays in two dimensions [2,6]: any array of ran-
dom wariables (X;;), 1 < 4,§ < oo, with an (Sy x Sy)-invariant joint
distribution can be represented as function

Xi,j - f(a7<i777j7€i7j)

of underlying i.i.d. random variables o, (;, nj, and & ;. The connection of
Aldous’ theorem with [12] consists in the fact that some (Sy x Sy)-invariant
ergodic measures correspond to the matrix distribution of a measurable
function, which is up to isomorphy unique — a property that doesn’t fol-
low from the approach in [2,6]. Recently, the first author proved the same
answer for arbitrary invariant ergodic measures which covers Aldous’ rep-
resentation in full generality [8], but we shall not touch this topic here.

In the present work we concetrate on the above mentioned partial so-
lution to the characterization problem of matrix distributions, correcting
the corresponding statement Theorem 3 in [12]: an (Sn)"-invariant ergodic
measure A is the matrix distribution of a completely pure function, that is
a pure function with trivial congruence group

Ky = {(Tz’)?:1 e [ Auto(Xi, ps) -

f(Ti(z1),...,Tul(zy)) = f(x1, ..., 20) a.e.},

if and only if it is a simple measure, i.e. the ergodic components of the
seperate actions of Sy generate the entire sigma algebra in the space of
tensors.

The paper is organized as follows: In Section 2 we recall important def-
initions and facts from [12] and restate Rokhlin’s classification theorem
for univalent functions. Section 3 revises basic properties of pure func-
tions from [12] including self-contained proofs. We chose to repeat these
elementary facts, as they are needed in Section 4, in which we present a
slightly modified proof of the completeness theorem Theorem 2 from [12].
Finally, Section 5 elaborates the above mentioned partial characterization
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of matrix distributions via the so-called general canonical model for a mea-
surable function. As the case of functions in more than two variables bears
no additional obstacles from the conceptual point of view, we shall restrict
ourselves throughout Sections 2-5 to the case of two variables

n=2

only. The general case, which is then obtained by a straight-forward gen-
eralization of our methods, is briefly discussed in Section 6.

The present paper is a revised version of a chapter taken from the the-
sis [5], which originated from a discussion on the classification of matrix
distributions during the course Measure theoretic constructions and their
applications in ergodic theory, asymptotics, combinatorics, and geometry
given by the first author in autumn 2002 at the Erwin Schrodinger Insti-
tute, Vienna.

Acknowledgments. The second author would like to thank the first au-
thor for his endless patience in discussions and correspondence, in partic-
ular during his last stage of writing his thesis.

§2. BASIC DEFINITIONS AND FACTS

Throughout the following we consider all spaces to be standard proba-
bility spaces, i.e. standard Borel spaces (X, 98) equipped with a Borel prob-
ability measure u. To avoid cumbersome notation we shall write (X, u) (or
just X if it is clear to what measure on X we refer) instead of (X, B, p),
whenever it is convient. All functions are considered to be measurable
unless the contrary is explicitely stated.

2.1. Isomorphy, factors, and pure functions. We call two measurable
functions f: (X,u) x (Y,v) — Rand f': (X', /) x (Y',v') — R to be
isomorphic if we can find measure preserving isomorphisms S : X — X’
and T : Y — Y” such that

F(8), T(y) = f(z,y) ae,

where ‘a.e.’ refers to the product measure p x v. Whenever the transfor-
mations S and T are measure preserving projections (and not necessarily
invertible mod 0), i.e. they map onto a set of full measure, we say that f’
is a factor of the function f.
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Notice that isomorphy as well as being a factor is a notion on the equiv-
alence classes (mod 0) of functions. In terms of commutative diagrams, if
/' is a factor of f, then the diagram

Xxy —1 .z

meas.pres. projectionsls J{T J{id
f/
X'xYy" ——
commutes.

Definition 2.1. A measurable function [ : (X, u) x (Y,v) — Z is pure if
it admits no true factor, by which we mean that every factor ' : (X', u') x
(Y', V') — Z of f is already isomorphic to f.

We denote by B(X, Z) (or B(Y, Z)) the space of all equivalence classes
mod 0 of measurable functions from X (or Y, respectively) into the stan-
dard Borel space Z, endowed with topology of convergence in measure
with respect to any Polish topology generating the Borel structure of Z.
Since f is measurable so are the mappings

fx: X —BY,2), z—|[f(z,-)],
and

friY —B(X,2), ye FC)l,.

where [ -], and [ -], denote the corresponding equivalence class. For brevity,
we will omit the brackets in the sequel.

It is evident from Definition 2.1 that pureness of a function can be
rephrased as follows.

Lemma 2.2. A function f : X xY — Z is pure if and only if both
mappings fx : X — B, 2), v — f(z,-), and fy : Y — B(X,2),
y+— f(-,y) are one-to-one on a set of full measure.

2.2. Rokhlin’s Theorem. It is evident that two univalent measurable
functions f : (X,u) — Z and f' : (X', u/) — Z, i.e. one—to—one on a
set of full measure, are isomorphic if and only if their distributions Dy =
po f~1 and Dy = p/ o f'~! coincide. If the functions under consideration
are not univalent one has to take in account the ‘multiplicity’ certain values
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are obtained. This is done by looking at the function
mf:Z—>E: {(Q’)i}l :Ogci < I,Zci < 1}
i=1

which maps any value z to the metric type my(z) of the conditional prob-
ability distribution

pe(-) = p(-|f = 2),
which is the sequence of weights {¢; = “Z({ai})}ix
the measure p, arranged in a non-increasing way./ Note that since the
conditional probability distributions are defined uniquely (mod 0) so is
the function my.

Theorem 2.3 (Rokhlin, [7]). Assume that f; : X; — Z (i = 1,2) are two
measurable functions defined on standard probability spaces (X;, ;). Then
there exists an isomorphism T : X1 — X5 of the measure spaces with the
property that p; o T=Y = ps and fo o T(x) = fi(x) almost everywhere if
and only if their extended functions

ff:Xi—Zx3, x+— (fi(x),mfi ofi(x))

have the same distribution, by which we mean that the measures D, =
po (ff)~" and Dy = pp o (f§)~1 coincide.

of the atoms a; of

2.3. Group actions and ergodic decompositions. The product Sy x
Sy of the infinite symmetric group

Sy = U S{l,...,n}

n=1
of all finite permutations of N acts on the product space
(X x V)N = XN 5 yN
in the canonical way by acting independently on the indices of the se-
quences, i.e.

g ((xi);’il : (yj)}”;l) = <($g;1(i>)zl ’ (yg;(j));)

for every ((x;), (y;)) from XN xYN and g = (g1, g2) from Sy x Sy. Its action
on the space of infinite matrices is that of permuting rows and columns
separately:

g-(rij) = (’“gfluxg;l(j))m
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for every g = (g1, 92) from Sy x Sy and matrix (r; ;).

Let GG be a countable semigroup acting measurably on a standard Borel
space, which will be in our case the space of matrices ZV*N, Every G-
invariant probability measure D on Z XN is then decomposed into G-
invariant ergodic measures D, by a (mod 0) uniquely defined Borel map-
ping

2NN Meas? (ZNXN)
which maps into the standard Borel space of G-invariant probability mea-

sures, endowed with the topology of weak convergence, such that the for-
mula

G
r— D7,

)

)= [ DEB)-dD()

ZNXN

holds for every Borel set B C ZNV*N,

2.4. De Finetti’s theorem. We shall make use of de Finett’s theorem on
exchangeable distributions in the following form: FEwvery Borel probability
measure m on the product X~ of a Borel space X, which is invariant and
ergodic with respect to the action Sy is Bernoulli, i.e.

m = p

for a Borel probability measure p on X . There is a very simple and elegant
proof of de Finetti’s theorem with help of the point—wise ergodic theorem
with respect to the countable group Sy, but we shall not dwell on this,
cf. [14].

2.5. Matrix distribution of a measurable function. Let us recall

the definition of matrix distributions from [12]:

Definition 2.4. Let f: (X, p) X (Y,v) — Z be a measurable function in
two variables. Its matriz distribution Dy is the pushforward measure

Dy = (u x yN)oFJT1
of the Bernoulli measure p~ x v under the evaluation function
Ff ZXN XYN HZNXNu ((xz)a(y])) = (f(xzuy])>z7j

This definition generalizes the notion of matrix distributions for Gromov
triples, i.e. Polish spaces with probability measure introduced in [13]. Note
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that Dy is a probability measure on the space of infinite matrices ZMN*N,
and that F} is equivariant with respect to the action of Sy x Sy, i.e.

Fr(g- ((z), () =g Fr( (i), (y5))-

Hence invariance and ergodicity of the Bernoulli measure p x vN yields
invariance and ergodicity of the matrix distribution.

2.6. The congruence group of a measurable function. The con-
gruence group of a function in two arguments is the group of measure—
preserving symmetries

K= {(S, T) € Auto (X, 1) x Auto (Y, ) :

F(S(@),T(y) = f(=,y) a.e.}.

This group plays an important role for our partial solution to the character-
ization problem of matrix distributions, Theorem 5.4. It is remarkable that
the congruence group is compact, when endowed with the weak topology.
This fact is shown in [10], but we will not make use of it in the sequel.

As in [9] we shall call any pure function f with trivial congruence group
simply completely pure function.

§3. REDUCTION OF THE CLASSIFICATION PROBLEM TO THAT OF
PURE FUNCTIONS

Any measurable function f has a pure factor f defined in a natural way:
As the functions fx and fy are Borel the equivalence relations defined by

(x = { (1,22) e X X X = f(x1, - ) = f(a, +) (modl/)}
and
G ={(y1,y2) €Y xY : f(-,y1) = f(+,y2) (mod ) }
are partitions of the respective spaces into measurable components. In

order to stay within the category of standard measure spaces we define
the factor spaces

X/Cx and Y/(y

1Tt is no good choice to define the factor X/{x to be the set of all equivalence classes
with respect to (x and its sigma algebra the algebra of all {x-saturated G-measurable
sets; this space need not to be standard Borel.
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as the standard Borel space B(Y, Z) and B (X, Z) with the factor mappings
mx : X — X/(x, mx = fx,
and

Ty Y — Y/Cy, Ty = fy,

and the projected measures p o W)_(l and vo 7r;1 as measures, respectively.
The mapping fx as function from X into the space B(Y, Z) translates
under the projection wx to the identity mapping regarded as function from
X/¢x to B(Y,Z), and by the measurability it originates from a jointly
measurable function

i X/ixxY — Z

which by construction satisfies that

f(rx(x),y) = f(z,y) ae,
and the corresponding map f Jex is one-to-one on a set of full measure.

In the same manner we proceed with the second argument and finally end
with a measurable function

[ X[Cx xY[y — Z
such that
Flnx(@),my(y)) = f(z,y) ae.
This shows that the diagram

xxy L.z

meanPreS-J/Tr:(ﬂ'x,ﬂ'y) lid

X/Cx x Y[ty —L— z

is commutative on a set of full measure, and since the corresponding map-
pings fX/Cx and fy/CY are now one—to—one on a set of full measure, the
function f is consequently pure. It is not difficult to see that this pure
factor f is uniquely determined up to isomorphy. We will sometimes refer
to it as the purification or the unique pure factor of f.

The reduction of the isomorphism problem is done in the spirit of
Rokhlin’s Theorem 2.3. Instead of f we consider its extended pure fac-
tor

fTE : X/CX X Y/(Y — Z % A27 (xay) = (f(xay)vm(.u’z)vm(l/y)) s
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where m(p,) and m(v,) denote the metric types of the respective (mod 0
uniquely determined) conditional measures u( - |7x = z) and v(- |7y = y).

Theorem 3.1. Two not necessarily pure functions f : (X, p) x (Y,v) —
Z and g : (X',v) x Y, V') — Z are isomorphic if and only if their
extended pure factors

P X/} YIGy — Z % A% (ayy) = (Fa,p),m(m),m(v,)).
and
7 X G ) Y G — Zx A2 (@) o (5@ y)mO), m(w))),
both defined as above, are isomorphic.

Proof. The statement of the theorem is clear since every measure pre-
serving isomorphism T : X/(x — X’/(% which carries the function
x — m(ug) to the function =’ — m(y,,) (mod0) can be lifted to a mea-
sure preserving isomorphism T : X — X’ so that T = T o rx (mod 0)

and the same is true for the second coordinate spaces Y and Y. (I

§4. THE MATRIX DISTRIBUTION AS COMPLETE INVARIANT FOR
PURE FUNCTIONS

In this section we resume the individual canoncial model and the com-
pleteness theorem for measurable functions in two variables. Are results
and proofs, apart from some technical details which are elaborated in
greater detail, can be also found in [12].

Let us start with an auxiliary lemma on pure functions. We say that
a sigma algebra & C B x equals modulo a measure u (or simply ‘mod 0,
whenever it is clear to which measure we refer) the whole Borel algebra
B x, if its measure algebra &, = {[A], : A € &}, with [4], = {B € Bx :
u(BAA) = 0}, coincides with the measure algebra defined by Bx itself.

Lemma 4.1. Suppose [ : X xY — Z is a pure function. Then the
following properties also hold:
(i) For any Borel set Y’ C Y which is of full v-measure the set of
functions {f (-,y) :y €Y'} generates (mod 0) the Borel algebra
of X.
(i) For vN-almost every sequence (yj);; the countable collection of

functions {f(-,y;):j > 1} generates (modO0) the Borel algebra
of X.
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By symmetry the same statements hold when interchanging the role of Y
and X .

Proof. As the restriction of f to X x Y’ is also a pure function, it is
sufficient to prove (i) for the case Y’ =Y. Let Fy denote the sigma algebra
generated by the set of functions {f, = f(-,y) : y € Y'}. Using standard
arguments one sees that the function f is measurable with respect to the
sigma algebra §y x By, where By is the Borel algebra of YV, after a
modification on a set of measure zero if necessary. Thus the mapping

fx: X —BY,2), z— f(z,),

is measurable (mod 0) with respect to the sigma algebra Fy.? Hence in-
jectivity of the map fx on a set of full measure implies that §y coincides
modulo null sets with the entire Borel algebra of X.

To prove (ii) let us choose a countable base {O,},, for the topology
in B(Y, Z). Now v'-almost every sequence (y;) is such that for any set
O,, of positive measure p o f)}l, its intersection with {f,, : j > 1} is non-
empty. For every such sequence (y;) the sigma algebra §(,,) generated by
the functions {f,, : j > 1} contains (mod 0) the sigma algebra generated
by the collection {f, : y € Y’} with Y’ being the preimage of the support
of the measure v o f;l under the map fy. As this set has full measure it
follows from (i) that §(,,) coincides (mod 0) with the entire Borel algebra
of X. O

4.1. Individual canonical model of a measurable function. In the
sequel we assume that that f : X XY — Z takes values in the interval Z =
[0,1]. This means no loss in generality, as any Borel space is measurably
isomorphic to [0, 1] or to an — at most — countable subset. It is an immediate
consequence of Lemma 4.1 that for yN-almost every sequence (z;) and -
almost every sequence (y;) the mappings

Ly, : X — [0,1]Y, =
Ly Y — [0,1]Y, gy

(f(@);
(f(:z:,-, ?J))iy

—
—

2By which we mean that it coincides on a set of full measure with an Fy-measurable
function.
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are one-to-one on a set of full measure, and therefore they are isomorphisms
between the measure spaces (X, u), (Y,v) and the spaces

N -1
(X(y)s b)) = ([071] : NOL(M) )
_ N -1
(Vieas ) = (10,17 vo LGL)).
respectively. These spaces together with the function

-1
Faown = o (L) X Lay)

form the canonical representation (or canonical model) of our measurable
function f. We shall call this model individual canonical model, as both
measures [(y.), V(z;) and the function f,) ), being the density of the
absolutely continuous measure

M) (e0) = Fa)(ws) - ABys) X V(i) = mo (Liyy) X Liay) ™

are uniquely determined by the values of the single infinite matrix
r=(rig) = (f(ziy;)) € 22

The construction of the model is done by ergodic arguments with respect
to the two-dimensional shift on XN x YN defined by

oD (@), () = ((wien): (Wi41)

for every k,I > 1 and ((xl),(y])) from XN x YN, but can as well be
performed with respect to the action of Sy x Sy. For every n > 1 let us
choose a countable algebra 2, which generates the sigma algebra of all
n—cylinders, i.e. the Borel sets formulated in the first n coordinates only.
Using the ergodic theorem for the two—dimensional shift, we conclude that
almost every choice of sequences (2;);en and (y;) e the following relations
hold for every A; and Ay from 2A =, ™An:

1l =
By (A1) = lim — -3 "5, ) (A1), (1)

m—oo 1M
k=1

R
l/(mj)(AZ) = lim —- Z 5(7‘1',1);’;1 (A2)7 (2)
=1

m—oo 1M
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and

M(2,),(y;) (A1 X A2)

= lim_ W Z Tkl o (A1) 0 jyee (A2). (3)
k=1
In fact, given finitely many points {z; : 1 < i < n} from X and {y; : 1 <
Jj < n} from Y, and introducing the notation

Sz @) = (f@1, ), -, f(@n, 1),
and
f(y17'--7yn)(x) = (f(xayl)u ) f(x,yn)),
then almost every continuations (z;)§%,, ., and (y;)72,,, of the finite se-

quences (z;)7_; and (y;)}_, are such that for any choice of sets A; and A
from 2,,,

uof@i___yn)(Al)_n}@wE [+ 1<k <m: Sy, (@) € A
Vo i ()= T | LB < fny (k) € Ay
and

My (A % TG () = Jim ST )

(k,l)ewn[n+1,m]?
Here W denotes the set
W= {(k l) € NxN: f 1yees¥n) (ZL‘k) € Ay and le, ,zn)(yl) € A2}

Hence the concatenated sequences (z;)72, and (y;)32, obviously satisfy the
equations (1), (2) and (3). Integrating over all ch01ces of ((zi)fy, (y5)7=1)
from X™ x Y yields the sets

Er(Ay) = {((wl), (y;)) € X" x YN L,y and L, are one-to-one

(mod 0) and (1), (2), (3) hold for all A;, A, € mn}

and hence their intersection

=) &«

n=1

is of full measure.
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We shall call any ((z;), (y;)) from the set £;() a pair of typical se-
quences. It is well known that the image Fy(£7(2)) is then measurable
with respect to the Dj-completion of the Borel algebra in the space Z"*N
thus we can find a Borel set

Tp(A) C Fr(E6(2))

which is of full measure. We shall call this set 7;() the set of typical
matrices with respect to the countable algebra 2l and the function f.
Summarizing these facts we have shown that for any choice of

(i), (7))

from the set &;(2A) the canonical model depends only on their matrix
(f(zi,y;))i,;- Likewise, for any matrix

r=(rij)ijen
from the set of typical matrices 7;(2) we can construct spaces

(Xpsp1r) = ([Ov I]Nyﬂr) (4)

and

(1/7"71/7’) = ([07 ]-]Nal/r)a (5)

the measures p, and v, determined by the limits (1) and (2), and a mea-
surable function

dm,
_—_— 6
A %) (6)

i.e. the Radon—Nikodym derivative of the measure m, determined by the
limit in (3) with respect to u, X v, which is isomorphic to the original
function f. Note that u, and v, are the empirical distributions of the rows
and columns of the matrix r, and m,.(A4; X As) for two n-dimensional Borel
sets A; and A, equals the average value r; which occurs when observing
simultaneously the row segment (r1,...,7 ) belonging to A; and the
column segment (ry,...,r,,) belonging to As.

In particular, the so constructed function f, is unique: Any matrix r
from the set 7;(2) determines — up to isomorphism — the same function.
For general ergodic (Sy x Sy)-invariant measures D this construction might
fail: Of course the existence of the measures p, and v, follows from sta-
tionarity of the two-dimensional shift action, or of the separate actions of
Sy x {1} and {1} x Sy (cf. Section 5), but it is by no means clear that the

frZXrXY;"—)[Oal]a fr:
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limit in (3) defines a measure m,., nor that the so constructed function f,
is unique up to isomorphism, contrary to what was stated in [12].

With the above reconstruction of the canonical model we are able to
show the main result of this section:

Theorem 4.2 (Completeness Theorem). Suppose f : X xY — Z and
g : X' xY' — Z are pure functions. There exist measure preserving
isomorphisms S : (X,u) — (X',p) and T : (Y,v) — (Y, V') of the
corresponding standard probability spaces such that

9(S(x), T(y)) = f(z,y) (mod0),

if and only if their matriz distributions D¢ and D, coincide.

Proof. One direction is trivial: If there exist such isomorphisms S and T’
then the corresponding product transformation which maps ((z;):, (y;);)
to ((S(zi))s, (T'(y;));) is a measure preserving isomorphism of the spaces
XN x YN and XN x YN which carries the matrix valued functions Fy to
F,. Hence their push forward measures Dy and D, coincide.

Now assume that Dy = D,. As in the preceding discussion we consider
Z = [0,1], fix countable algebras 2,, n > 1, which generate the Borel
structure of [0,1]", and put 2 = |J,,A,. As Dy = D, the intersection of
the sets of typical matrices

75 (A) N Ty (A)

is still of full measure and therfore it is non-empty. But any matrix r =
(r;,;) from this intersection determines a function

fr : (Xrnur) X (YraVr) - [07 1]
which is an isomorphic model simultaneously for both functions f and g.

This proves the existence of the claimed isomorphisms S and 7T'. O

Note that an explicit form of the isomorphisms from Theorem 4.2 is

-1 -1
S = L(y;_) o L(yj) and T = L(mé) o L(mi),
the pairs ((wl), (y])) and ((x;), (y;)) being any two pairs of typical se-
quences, i.e. from
Ep(A) NEy(A),

which define the same matrix: (f(xl,y])) = (g(x;,y;)) This observation
will be useful in the proof of the following corollary, which will be needed
in Section 5.



134 A. M. VERSHIK, U. HABOCK

Corollary 4.3. Let f : X x Y — Z be pure. Then the map Fy : X~ x
YN — 7 is one-to-one (mod 0) if and only if its congruence group Ky is
trivial.

Proof. As before we assume that Z = [0,1]. Assume that F} is not
one-to—one (mod0). If A is any arbitrary countable algebra generating
the Borel structure of [0,1]Y then the map F; cannot be injective on
&7 (), since this set is of full measure. Thus there exist two different pairs
((z), (y;)) and ((2}), (y;)) from £(2A) which have the same image under
F;. Therefore the mappings

-1 -1
S = L(y;_) o L(yj) and T = L(mé) o L(mi),

are measure preserving automorphisms of (X, u) and (Y, v) respectively
for which f(Sz,Ty) = f(z,y) (mod0). Moreover these automorphisms
satisfy f(Sz,y;) = f(z,y;) for a.e. w in X and f(2;, Ty) = f(z},y) for a.e.
y in Y, i and j being arbitrary. This proves that either S or T" must be
non-trivial since we may assume that both mappings fx and fy (defined
in Section 2) are one-to-one.

The other direction is trivial: Assume that there exists a non—trivial
automorphism (S, T) in K. Then every set B C X" x VN of full measure
is almost invariant under (S, 7)". But at the same time the automorphism
(S, T)N leaves Fy almost invariant and therefore we can find two different
points in B with the same image under Fy. (|

§5. ABSENCE OF SYMMETRY - SIMPLE MEASURES

In this section we characterize those matrix distributions which orig-
inate from a function with no symmetries, i.e. with trivial congruence
group. Its main result, Theorem 5.4 corrects the corresponding statement
Theorem 3 in [12].

Definition 5.1. Let D be a (Sy x Sn)-invariant and ergodic measure on
the space of matrices. We say that D is simple if the invariant alge-
bras B} and BUIXS generate (mod0) the whole Borel algebra B
of ZNV<N e,

Sty v g {lxSv = 8 (mod D).

5.1. Simplicity and decomposition of the action of Sy x Sy. Sim-
plicity of an (Sy x Sy)-invariant and ergodic measure D means that the

dynamical system
(2N, D, Sy x S)
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is isomorphic to the direct product of its factors
(xa Mz, Gl) = (ZNXN/G27 Du Gl) ’

and

(@’ IU/@7G2) = (ZNXN/GD D7 G2) )
i.e. the systems of the ergodic components with respect to the subgroups
Gg = {1} X SN and G1 = SN X {1}
As model of these factors we choose the standard Borel spaces
G
X = Meas?? (2N,
G
9 = Meas(* (2",
of respective invariant probability measures, together with the isomor-
phism
m: 2N — x %9, re— (DF?,DEY),
given by the decomposition of D into its G-ergodic and G'1-ergodic mea-
sures, respectively. We assume without any loss in generality the mappings

7. — D& and m = r — DY invariant with respect to Go and G re-
spectively, whence the equations

o - DS = D

gi-r?

go -Dfl = DgGll-ra

with g1 € G1 and g2 € (2, define actions of the permutation groups G

and G5 on X and 9), respectively. By invariance and ergodicity of D, the
pushforward measures

Hx = Do 7T1_17

vy =Domy, '
are invariant and ergodic with respect to the actions defined. Note that
the points ¢ and y of the factor spaces X and ) are represented by

permutation—invariant and ergodic measures D$? and D& which are there-
fore Bernoulli measures by de Finetti’s theorem. Concretely, regarding

ZNXN — (Z{l}XN)N’

the ‘space of sequences of rows’ or on the other hand
ZNXN _ (ZNX{l})N
- )



136 A. M. VERSHIK, U. HABOCK

the ‘space of sequences of columns’, then

D§2 =Y and Dfl = ,uEI

T
the measures v, and p, being a probability measure on the space of
columns and rows, respectively. For almost every matrix r, the measures
v, and u, are the empirical distributions of its columns and rows.

Note that if the measure D is not simple then the direct product of
(X, px, Gy) and (9, vy, G>) is a non-trivial factor of (ZMN, D, Gy x Gs).
This gives us the following characterisation of simple measures:
Proposition 5.2. A measure D is simple if and only if the (almost ev-
erywhere uniquely defined) mapping which sends a matriz v to the pair

(vr, pir) of its empirical distribution of columns and rows respectively, is
one-to-one (mod 0).

With the help of the decomposition of the group action we are able to
proof the following lemma.
Lemma 5.3. Assume that D = Dy is the matriz distribution of a pure
function f : (X,u) x (Y,v) — Z. Then D is simple if and only if the
congruence group Ky is trivial.
Proof. First of all note that by Corollary 4.3, we only have to show that
a measure D is simple if and only if the map

Fy (X", ) x (VM%) — (2%, D)
is one-to—one on a set of full measure. One direction is trivial: if Fy is
one-to-one, it is an equivariant isomorphism between the measure spaces.
Hence
Sl y g {thxSv — 98 (mod D),

as the same assertion is true for the corresponding invariant algebras in
the space XV x Y'N.

Conversely, assume that D is simple. Whe may thus regard Fy as map-

ping
(XN, 1, Gr) x (Y08, Ga) — (X, px, Gh) % (D, v, Go).
By equivariance, the preimage F ; 1(B) of any G;-invariant Borel set B C
X x Q) is also G;-invariant, for every ¢ = 1,2. Thus Fr must be of the form
Fy = (¢1,2),

with ¢; : XY — X and ¢, : YN — 9). By Lemma 4.1 we know that
for vN-almost every sequence (y;) the restriction Fy (-, (y;)) is one-to-one
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(mod0) and so is ¢;. For the same reasoning the function ¢y is one-to-
one (mod 0). This proves that Fy = (¢1,¢2) is one-to-one on a set of full
measure. (|

5.2. General canonical model given the matrix distribution of a
completely pure function. Assume that D is the matrix distribution
of a completely pure function f, that is a pure function f with trivial
congruence group K. Then by Lemma 5.3 the measure D is simple and
hence the decomposition

(ZNXNuDusN X SN) = (%nux’Gl) X (@7”2}7(;2 X SN)
described in the previous section, together with its isomorphism
A e )
gives us another possibility to reconstruct the function f: We simply set
TZ%X@"Zu f:?"171071'71’
and claim that it is isomorphic to the function
fXxVNxyN —2z
regarded as function on the first coordinates z; and y;. In fact, the map-
ping
d=moF; : X"xVN —xx9
is one-to-one, measure preserving and obviously carries the function f :
XN¥xYN — Z to f. Thus the only thing we need to check to is that & is of
product type, i.e. ® = (®;,®,) with measurable functions ®; : XN — X
and @5 : YN — 9). But this is clear from the proof of Lemma, 5.3.

We shall call the above constructed function § the general canonical
model of f, since it does not depend on the choice of a particular matrix
r as the individual canonical model from Section 4. In contrast to the
individual canonical model the function f is never pure as it is a model
for f as function on XN x YN rather than as function X x Y — Z.
Nevertheless its purification

F:X/GexY/l9 — 2
as described in Section 3 is clearly isomorphic to the original pure function
f: X XY —Z

by the uniqueness of pure factors. The direct connection between both
models becomes clear in the proof of Theorem 5.4.
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Of course the above construction of f makes sense for any (Sy x Sy)-
invariant simple measure on ZN*N. This observation is the key for the
following theorem.

Theorem 5.4 (Characterisation of simple measures using the general
canonical model f). Let D be an (Sy x Sy)-invariant and ergodic probability
measure on the space of matrices ZN*N, Then D is o matriz distribution
of a function f: (X, p) x (Y,v) — Z with trivial congruence group Ky if
and only if D is a simple measure.

Remark 5.5. This theorem corrects Theorem 2 from [12], which states
that an (Sy x Sy)-invariant and ergodic measure is a matrix distribution
if and only if it is simple.

Proof. One direction is already content of Lemma 5.3. Conversely, let us
assume that D is simple. Again, the dynamical system (Z"*N D, Sy x Sy)
decomposes via the isomorphism

mir— (D&, DEY)
into the product
(X, px,G1) x (9, vy,G2)
of the spaces of ergodic components
X = Meas{? (2)
9 = Meas{" (2""V),

the measures ux, vy, and group actions as defined in Section 5.1. Taking a
closer look on these measures it is obvious that e.g. m : r — D&? regarded
as (G1-equivariant mapping

o (Z{l}XN)N — X

maps each of the G;-invariant ergodic measures Dfl onto an (Gy-invariant
ergodic measure on X. Since px is also an Gi-invariant ergodic measure,
being the integral convex combination

jx(B) = / DS o x Y (B) - dD(r)

r
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of such measures, it therefore must equal to at least® one such pushforward
measures Dt o ;7 '. As noted in Section 5.1, we may regard the latter
measure DY as Bernoulli measure g on the space of sequences of rows

N L .
(ZPN)", and 7y as measure preserving isomorphism between the space
of sequences of rows and X. We thus may consider

(%, ux) = ((Z“}XN)N,ME’) :

and in the same way one sees that

Do) = ((Z0)" 08},

that is the space of sequences of columns with Bernoulli measure Y. We
claim that the matrix distribution of the function

f:XxY—2Z, f=rigom

equals our measure D. For brevity, we write X = ZU}*N and v = ZNx{1}
for the space of rows and the space of columns, respectively. As the matrix
valued function

F:xxY — 20N F=idor !,
is equivariant with respect to the action of G x G2 so it is regarding it as
function from XN x YN to ZV*N, From this it follows easily that § is of
the form
F((@), (y;)) = (Fra (@i, 2;5))  (mod0),

as is shown in the postponed Lemma 5.7. This proves that the distribution
of the matrix valued function §, which by definition equals D, is the matrix
distribution of f. Moreover, the function § = F} is by construction one-to-

one and we conclude from Corollary 4.3 that the congruence group of § is
trivial. (]

Remark 5.6. Observe that the characterization of matrix distributions in
the case of functions in just one argument becomes essentially de Finetti’s
theorem: In this context, the row distribution (instead of matrix distribu-
tion) Dy of f : X — Z is defined as the distribution of the process (f(z;))
sampling its arguments independently according to the given measure p on

X. Thus Dy is simply the Bernoulli measure D = (o f—l)N on the space

3it is not difficult to see that the set of all mesures D§1 which equal the ergodic
measure X is of full measure.
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ZN. De Finetti’s theorem states that the Sy-invariant ergodic measure on
ZN are exactly the Bernoulli measures, and hence all such meausres are
the row distribution of a function in one variable.

We close this section with the auxiliary lemma that we used in the proof
of Theorem 5.4.

Lemma 5.7. Suppose that the map F from (XN, u) x (YN, 0N) to ZN*N
is equivariant under the action of Sy X Sy. Then there exists a measurable
function f : X XY — Z such that

F=(F;;) = (f(a:,,:z:])) (mod 0).
Proof. Using equivariance we know that for any g; and g» from the sub-
group
S ={geSy:g(1)=1}
the following identity holds.

S, (91(2), 92(45) = Tym11) oo (1) (@), (7)) = Fra (@), ()

Being invariant with respect to the action of 512\11) X 512\11) the function §1 1
is (mod 0) measurable with respect to the first coordinates z; and y; of
XN x VY which means that 1,1 ((2:), (y;)) = f(21,41) (nod0) for some
function f defined on X x Y. Using once more equivariance we conclude
that

Fortwer (i), (y5))

=F, ((%;%i)) ’ (yg;(j))) =f (%fl(n’yg;l(l))

(mod0) for every g1 and g from Sy, which proves the assertion of the
lemma. (]

§6. THE CASE OF FUNCTIONS IN MORE THAN TWO ARGUMENTS

Let us shortly discuss the case of Borel functions

n

F & m) — 2z

i=1
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in more than two arguments. Its tensor distribution Dy is defined as the
distribution of the tensor-valued functional

n
Fe: [ X3 — 27,
i=1

() (7)o (1)) = (1 (o)),

seeerln

n
under the measure [] ul, i.e.
i=1

Dy = (Hu?) oFfl.
i=1

In this situation D, is a measure on the space of infinite tensors zZN"
which is ergodic and invariant with respect to the (analogously defined
action) of

SISZSNXSNX~~~XSN

acting independently on the indices of the tensors. The notion of factors
in the category of measurable functions in several variables is analogous
to that of functions in two arguments, and so is the definition of pureness:
a function f(x1,xa,...,x,) is said to be pure, if it admils no true factor.
The reduction of the isomorphism problem to pure functions is then proved
in exactly the same way as Theorem 3.1. With help of an extended ver-
sion of Lemma 2.2 it is also obvious how to prove the higher-dimensional
analogue of Theorem 4.2: Two pure measurable functions are isomorphic
if and only if their tensor distributions coincide.

The results from Section 5 are also extended easily: Let G; be the per-
mutation group which acts on the i-th index of the tensors only. An (S%)-
invariant measure D on the space of tensors ZV is said to be simple, if
the invariant algebras B with respect to the groups

G(i):Glx---xGi_l><{1}><G¢+1><---><Gn

keeping the i-th index fixed, generate the whole Borel algebra 9B of ZN",
ie.

\/ B = ® (mod D).

i=1



142

A. M. VERSHIK, U. HABOCK

This

rect
inter

n
again means that the dynamical system (ZV", D, [ G;) is the di-
i=1
product of the systems (ZV' /G, D,G;), 1 < i < n, the quotients
preted as ergodic decompositions. With help of this decomposition,

the general canonical model is defined analogously and Theorem 5.4 can
be proved similary: An SE-invariant and ergodic measure on the space of
tensors Z\" is the tensor distribution of measurable function

with

n

F X w) — 2

i=1

trivial congruence group

Kf = {(TZ)?:l S HAuto(X“/J,Z) :

=1

f(Ti(z1), .., Ta(zn)) = flz1,. .., T0) a.e.}

if and only it is simple.

1

10.

REFERENCES

. D.J. Aldous, Exchangability and related topics — In: Ecole d’Eté de Probabilités
de Saint—Flour XIII — 1983, Lecture Notes Math. 1117 (2006), Springer, 1-198.

. D. J. Aldous, Representations for partially exchangeable arrays of random vari-
ables — J. Multivariate Analysis 11 (1981), 581-598.

. V. L. Bogachev, Measure Theory, Vol. I, Springer, Berlin—Heidelberg, 2007.

. M. Gromov, Metric structures for Riemannian and non-Riemannian spaces. —
Progress in Mathematics 152, Birkhaduser Boston, Boston, MA, 1999.

. U. Habock, Cohomology and Classifications Problems in Dynamics. — PhD
Thesis, Faculty of Mathematics, University of Vienna, 2006.

. D. N. Hoover, Row-column exchangeability and a generalized model for ex-
changeability. — In Exchangeability in Probability and Statistics (G. Koch and
F. Spizzichino, eds.), North—Holland, Amsterdam 1982, 281-291.

. V. A. Rokhlin, Metric classification of measurable functions. — Uspekhi Mat.
Nauk 12, No. 2 (74) (1957), 169-174.

. A. M. Vershik, Invariant measures — new aspects of dynamics, combinatorics
and representation theory. — Takagi Lectures, Math. Inst. of Tohoku University,
2015.

. A. M. Vershik, On classification of measurable functions of several variables. —

Zapiski Nachn. Semin. POMI 403 (2012), 35-57.

A. M. Vershik, U. Habock, Compactness of the congruence group of measurable

functions in several variables. — J. Math. Sciences 141, No. 6 (2007), 1601-

1607.



ON THE CLASSIFICATION OF MEASURABLE FUNCTIONS 143

11. A. M. Vershik, Random metric spaces and universality. — Russian Math. Sur-
veys 59, No. 2 (2004), 259-295.

12. A. M. Vershik, Classification of measurable functions of several arguments, and
invariantly distributed random matrices. — Funkt. Anal. Prilozhen. 36, No. 2
(2002), 12-27;

13. A. M. Vershik, A random metric space is a Urysohn space. — Dokl. Akad. Nauk
387, No. 6 (2002), 733-736.

14. A. M. Vershik, Description of invariant measures for the actions of some
infinite—dimensional groups. — Dokl. Akad. Nauk SSSR 218, No. 4 (1974),
749-752.

Steklov Inst.of Mathematics, St.Petersburg,
Fontanka 27, St.Petersburg, 191023;
Math.Dept of St.Petersburg State University;
Russia

HocTynuao 19 cenTabpsa 2015 r.

FE-mail: vershik@pdmi.ras.ru

Cometence Centre for IT-Security,
Fachhochschule Campus Wien,
Favoritenstrasse 226, A—1100 Wien, Austria

FE-mail: ulrich.haboeck@fh-campuswien.ac.at



