
úÁ�ÉÓËÉ ÎÁÕÞÎÙÈÓÅÍÉÎÁÒÏ× ðïíé�ÏÍ 441, 2015 Ç.M. J.G. WeberCRITERIA OF DIVERGENCE ALMOSTEVERYWHERE IN ERGODIC THEORYAbstrat. In this expository paper, we survey nowadays lassi-al tools or riteria used in problems of onvergene everywhereto build ounterexamples: the Stein ontinuity priniple, Bourgain'sentropy riteria and Kakutani{Rohlin lemma, most lassial deviefor these questions in ergodi theory. First, we state a L1-version ofthe ontinuity priniple and give an example of its usefulness by ap-plying it to some famous problem on divergene almost everywhereof Fourier series. Next we partiularly fous on entropy riteria inLp, 2 6 p 6 ∞, and provide detailed proofs. We also study thelink between the assoiated maximal operators and the anonialGaussian proess on L2. We further study the orresponding rite-rion in Lp, 1 < p < 2, using properties of p-stable proesses. Finallywe onsider Kakutani{Rohlin's lemma, one of the most frequentlyused tool in ergodi theory, by stating and proving a riterion fora.e. divergene of weighted ergodi averages.
§1. Introdution.This is an expository paper on riteria of divergene almost everywherein ergodi theory, and mainly Bourgain's entropy riteria in Lp, 2 6 p 6 ∞.The paper is written in a self-ontained and informative way: tools neededare presented, with (expeted to be) helpful and sometimes historial om-ments, auxiliary results are inluded, as well as detailed and areful proofsof main theorems. The preparation of this paper is thus made in orderto be also an eÆient tool for investigating these questions. This is infat our main objetive. We do not study nor present appliations. Werefer for these to Bourgain [1{3℄. We also refer to Rosenblatt and Wierdlmonograph [26℄, to our monograph [33℄ devoted to the study of these ri-teria and to Chapters 5 and 6 of our book [32℄ where appliations of theStein ontinuity priniple are also studied. We further refer to Laey [18℄,Key words and phrases: Bourgain's entropy riteria, Stein's ontinuity priniple,Gaussian proess, stable proess, metri entropy, GB set, GC set, Kakutani{Rohlinlemma. 73



74 M. J.G. WEBERLesigne [20℄, Berkes and Weber [6℄ notably for other appliations. In writ-ing the present paper, we referred to Chapter 6 of [32℄. We were able toimprove and simplify some proofs and also omplete it by new results. Theentropy riterion in Lp, 1 < p < 2, obtained in Weber [38℄ is stated andproved under a less restritive ommutation assumption, and we inludedthe neessary material from the theory of �-stable proesses (here � = p)for the proof. The metri entropy method (�rst introdued by Strassen inthe theory of Gaussian proesses, see [8℄) is briey and onisely presentedfor the need of the study.The paper is organized as follows. In Setion 2, we start with whatis ertainly, by the probabilisti argument used in its proof, the basis ofeverything: the Stein ontinuity priniple. A less known aspet of thispriniple is that it is also a tool for produing ounterexamples to almosteverywhere questions. That point is developed in this Setion. Next, Se-tion 3 is the entral part of the paper and onerns Bourgain's entropyriteria and extensions of them. In Setion 4, we present auxiliary resultsonerning Lp-isometries, stable random variables and proesses, variantsof Banah priniple, a metri omparison lemma and basi Gaussian tools.Setion 5 is ompletely devoted to proofs of the results stated in Setion 3.We onlude the paper with Kakutani{Rohlin lemma, one of the mostlassial devies in ergodi theory. There are many appliations of this re-sult, also alled Kakutani{Rohlin towers' lemma. We refer to Rosenblattand Wierdl monograph [26℄. We illustrate it by stating and proving a ri-terion for a.e. divergene of weighted ergodi averages, based on Deniel'sonstrution [7℄.
§2. The Continuity Priniple.Let (X;A; �) be a probability spae with a �-omplete �-�eld A.Throughout the paper S denotes, unless expliitly mentioned, a sequeneof ontinuous operators Sn : L2(�) → L2(�), n > 1. Reall some basifats. Let 1 6 p 6 ∞. By the Banah priniple, the set

F(S) = {f ∈ Lp(�) : {Snf; n > 1} onverges �-almost everywhere}is losed in Lp(�) if and only if:There exists a non-inreasing funtion C : R+ → R+ with lim�→∞
C(�)=0,and suh that for any � > 0 and any f ∈ Lp(�),�{S∗f > �‖f‖p} 6 C(�) where S∗f = supn>1 |Snf |:



DIVERGENCE CRITERIA IN ERGODIC THEORY 75When the sequene S ommutes with a sequene {�j ; j > 1} of measurabletransformations of X preserving � and mixing in the following sense:
∀ A;B ∈ A; ∀ � > 1; ∃ j > 1: �(A ∩ �−1j B) 6 ��(A)�(B); (H)and 1 6 p 6 2, then by the ontinuity priniple C(�) = O(�−p).This is ful�lled if S ommutes with an ergodi endomorphism of (X;A;�).So that the study of the onvergene almost everywhere of the sequeneS amounts, under appropriate ommutation assumptions, to establish amaximal inequality and to exhibit a dense subset of Lp(�) for whih theonvergene almost everywhere already holds.Before stating the Continuity Priniple, reall that the topology of on-vergene in measure on L0(�) (gn �→ g if � {|gn − g| > "} → 0, for any" > 0) is metrizable and, endowed with the metri d(f; g) = ∫X |f−g|1+|f−g| d�,(L0(�); d) is a omplete metri spae. A mapping V from a Banah spaeB to L0(�) is said to be ontinuous in measure or d-ontinuous, if forany sequene (f; fn; n > 1) ⊂ B, we have d(Sfn; Sf) → 0 whenever

‖fn − f‖ → 0.Theorem 2.1. Suppose that {Sn; n > 1} is a sequene of operators,Sn : Lp(�) → L0(�), 1 6 p 6 2, whih are ontinuous in measure andsatisfy the ommutation assumption (H). Then the following propertiesare equivalent:(i) ∀ f ∈ Lp(�); �{x : S∗f(x) < ∞} = 1:(ii) ∃ 0 < C <∞ : ∀ f ∈ Lp(�);sup�>0 �p �{x : S∗f(x) > �} 6 C ∫X |f |p d�:Remark 2.2. If p > 2, the same onlusion holds for positive operators(Snf > 0, if f > 0). This was proved later by Sawyer in [27℄.The proof ombines quite subtely and remarkably, analysis and proba-bility. The ommutation property of the operators Sn is ruial, and makesthe proof possible. Earlier, Kolmogorov used already in [13℄ the fat thatthe operatorsHnf(x) = ∫

|t|>1=n f(x− t)dtt ; f ∈ L1lo(R)



76 M. J.G. WEBERall ommute with translations to prove the similar inequality: letH∗f(x) =sup{|Hnf(x)|; n > 1}, thensup�>0 �m{x : H∗f(x) > �} 6 C ∫

R

|f(x)| dx;m denoting here the Lebesgue measure on R. The setting onsidered in[29℄ is group theoreti: 
 is a ommutative ompat group, � is the Haarmeasure and Sn are ommuting with translations. Sawyer [27℄ showed thatthis setting is not neessary and that a general priniple an be derivedunder the above assumptions. We refer to the nie monograph of Garsia[10℄.The Continuity Priniple is not only a tool for studying integrability ofmaximal operators S∗f , but also a devie for produing ounterexamplesin problems of onvergene almost everywhere. This was already observedand studied by Stein [29℄, but also by Burkholder [5℄ and Sawyer [27℄. In[29℄, Stein has established other forms of this priniple with quite strikingappliations, proving notably negative onvergene results. One of theseappliations onerns a deep result of Kolmogorov [14, 15℄ showing theexistene of an integrable funtion whose Fourier series diverges almosteverywhere. The proof is known to be very diÆult. Using a suitable formof his priniple for the spae L1(�), Stein ould re�ne and also provide asimpler proof of Kolmogorov's result. Convergene riteria for this spaeare not frequent, and reveal ruial in many deep questions. We reall itnow.We assume here that X is a ommutative ompat group and denoteby \+" the group operation. Let � be the unique invariant measure, theHaar measure on X . Let C(X) be the spae of ontinuous funtions on X ,with the supremum norm, and B(X) be the spae of �nite Borel measureson X with the usual norm. Let {Sn; n > 1} be a sequene of operators.We assume:(a) Eah Sn is a bounded operator from L1(�) to C(X).(b) Eah Sn ommutes with translations.By Riesz's representation of bounded linear funtionals on L1(�), on-ditions (a) and (b) are equivalent with() Snf(x) = ∫X Kn(x− y) f(y)�(dy), where K ∈ L∞(X).



DIVERGENCE CRITERIA IN ERGODIC THEORY 77Suh an operator has a natural extension to a bounded operator from B(X)to L∞(�), whih we again denote by Sn. Notie that this extension stillommutes with translations. Similarly, we also write S∗� = supn∈N
|Sn�|.Theorem 2.3. Under assumptions (a) and (b), the following assertionsare equivalent:

∀ f ∈ L1(�); �{x : S∗f(x) < ∞} = 1; (2.1)
∃0 < C <∞ : ∀� ∈ B(X); sup�>0��{x : S∗�(x) > � ∫X |d�|} 6 C: (2.2)To give an idea of its strength, let us show how to reover Kolmogorov'stheorem. Introdue the neessary notation. We denote throughout thisartile by T the irle R=Z ∼ [0; 1[.Take X = T and let � be the normalized Lebesgue measure on T. LetSn(f) denote here the partial sum of order n of the Fourier series of f ,and more generally let Sn(�) be the partial sum of order n of the Fourier{Stieltjes expansion of a Borel measure �. Reall that for any integrable f ,Snf(x)− Smf(x) = O(log(1 + |m− n|)); m; n → ∞;almost everywhere. Stein proved the following re�nement:Theorem 2.4. Let '(n) > 0 be any funtion tending to zero as n tends toin�nity. Then there exists an integrable funtion f(x) suh that the morerestritive propertySn(f)(x) − Sm(f)(x) = O('(|m− n|) log(1 + |m− n|)) (2.3)is false for almost every x.This of ourse implies Kolmogorov's theorem. For the proof, onsiderfor n 6= m the family of operators�(m;n)f = Sn(f)− Sm(f)'(|m− n|) log(1 + |m− n|) :These operators satisfy onditions (a) and (b) of Theorem 2.3. A lemmais neessary.Lemma 2.5. There exists an absolute onstant C suh that for any inte-ger k, there exists a measure � on T with ∫

T

|d�| = 1 andsupn;m:|n−m|=k ∣∣Sn(�)− Sm(�)∣∣ > C log k almost surely:



78 M. J.G. WEBERProof. Let x1; : : : ; xN be some points of T to be spei�ed later, and set� = 1N N∑i=1 Æxi , where Æx denotes the Dira measure at point x. Then
∫
T

|d�| = 1. Plainly,Sn(�)(x) − Sm(�)(x)= 2N N∑i=1 os�(n+m+ 1)(x− xi) sin�(n−m)(x− xi)sin�(x − xj) :Write k = n −m, ` = n+m+ 1. Assume that k is odd. Then ` must beeven, but this is the only restrition on `. We hoose the xi to be linearlyindependent over Q, and suh that they are very lose to i=N . It is easilyseen then, that for almost every x, the x−xi are linearly independent over
Q. Choosing ` large enough, depending on x, we havesupn;m:|n−m|=k |Sn(�)(x) − Sm(�)(x)| = 2N N∑i=1 | sin�k(x − xi)|

| sin�(x− xj)| :The fat that xi are very lose to i=N and N is large enough, shows thatthe sum on the right is lose to its integral ounterpart, and so exeedshalf of its value. Therefore,supn;m:|n−m|=k |Sn(�)(x) − Sm(�)(x)| >
12 ∫

T

| sin�k(x− y)|
| sin�(x− y)| dy > C log k;as laimed. �Now we prove Theorem 2.4. Suppose on the ontrary that property (2.3)were true with positive probability, and this for any f ∈ L1(T). Let � be anirrational rotation of T, thereby an ergodi measure preserving transfor-mation. Note that if A = { supn6=m |�(m;n)f | < ∞

}, then �−1(A) ⊂ A. ByBirkho�'s theorem, this suÆes to imply that �(A) = 1. So that the op-erators �(m;n)f would satisfy ondition (2.1). Consequently, the maximaloperator � 7→ �∗(�) := supn6=m ∣∣∣∣
Sn(�)(x) − Sm(�)(x)'(|m− n|) log(1 + |m− n|) ∣∣∣∣



DIVERGENCE CRITERIA IN ERGODIC THEORY 79would satisfy (2.2). Therefore this would imply the existene of a onstantC0 suh that for any � ∈ B(M) with ∫
T

|d�| = 1, and any t > 0, t�{x :�∗�(x) > t} 6 C0.Let k be a positive integer, whih we hoose suÆiently large to ensurethat log k > (2C0)=C, where C is the same onstant as in Lemma 2.5.Apply this for t = (C log k)=2; then,�{x : �∗�(x) > C2 log k} 6
2C0C log k < 1:By Lemma 2.5, there exists � ∈ B(M) with ∫

T

|d�| = 1 suh that�∗� > C log k almost surely. Hene a ontradition and ondition (2.1)annot hold. Therefore there exists an integrable funtion suh that prop-erty (2.3) is false for almost every x.For reent results related to Kolmogorov's theorem, see Laey's verynie paper [17℄, Setion 9.3. We refer to [29℄ (see also [32, Chapter 5℄) forseveral other appliations of this kind.To f ∈ L2(�), assoiate the sequene in whih we set Tjf = f ◦ �j ,FJ;f = 1√J ∑16j6J gjTjf; (J > 1); (2.4)where g1; g2; : : : are i.i.d. standard Gaussian random variables, de�ned ona ommon joint probability spae (
;B;P).These random elements (with Rademaher weights instead of Gauss-ian's) are key tools in Stein's proof. The same elements (sometimes withstable weights) are also playing a entral role in Bourgain's entropy rite-ria and extensions obtained by the author. The notation used in (2.4) willbe later formalized to inlude these ases, see (4.4). Lifshits and Weberstudied in [21, 22℄ and [35℄ their osillations properties and the tightnessproperties of their laws.The Continuity Priniple is established in an indiret way in [29℄. Adiret proof with Gaussian weights (as in the proofs of Bourgain's entropyriteria) was given in [32℄.We lose this setion with an interesting and somehow intriguing obser-vation. The key point of the proof is ontained in the following inequality



80 M. J.G. WEBER(see [32, p. 211{212℄)n�{S∗(f) > M(1 + n)1=p} − 2n�{S∗(f) > M(1 + n)1=p} 6 8E�{S∗(Fn;f ) > M}; (2.5)whih holds for any M > 0, any integer n > 2, and  is a numerialonstant. Now by simply permuting the order of integration, we getn�{S∗(f) > M(1 + n)1=p} − 2n�{S∗(f) > M(1 + n)1=p} 6 8 ∫X P{S∗(Fn;f ) > M} d�; (2.6)where this time, S∗(f) is ontrolled by its random ounterpart of S∗(Fn;f )for an appropriate hoie of the integer n. Therefore a good ontrol of therandom ounterpart also provides a good ontrol of the initial sequene.Notation. We reserve the letter g to denote throughout an N (0; 1)distributed random variable. An index or a sub-index always denotes anin�nite inreasing sequene of positive integers.
§3. Metri Entropy CriteriaUsing the theory of Gaussian proesses, Bourgain has established in [2℄two very useful riteria linking the regularity properties (boundedness,onvergene almost everywhere) of the sequene S with the metri entropyproperties of the sets Cf below.The onept of entropy numbers (namely overing numbers) assoiatedwith a metri spae is old; it was invented by Kolmogorov as a deviefor lassifying funtional spaes. See Kolmogorov [13℄, Kolmogorov andTikhomirov [16℄, Lorentz [23℄. In many situations, these numbers are om-putable (typial examples of sets are ellipsoids, see [9℄); hene their inter-est. Reall that any ompat set in a separable Hilbert spae is inludedin some ellipsoid, see Raimi [25℄ and for relations between their entropynumbers, see Helemski�� and Henkin [11℄.Bourgain also showed, by means of imaginative onstrutions, how toapply these riteria to several analysis problems, among them Marstrand'sdisproof of Khinthin's Conjeture, a problem posed by Bellow and a ques-tion raised by Erd�os. This is a quite striking ahievement, whih adds anew hapter to Stein's Continuity Priniple. We believe that Bourgain'sapproah goes beyond the setting explored in [1{3℄ and should deservefurther investigations. The author has obtained in [6, 33, 38℄ extensions



DIVERGENCE CRITERIA IN ERGODIC THEORY 81of these riteria and applied them to similar questions. He further stud-ied in [34, 36, 37℄ the geometry of the sets Cf de�ned in (3.1), as well asand their natural extension C(A) = {Sn(f); n > 1; f ∈ A}, in whih A isan arbitrary subset of L2(�). We also refer to Talagrand [31℄ where thisquestion was investigated in a larger ontext.Introdue the following ommutation ondition:(C) There exists a sequene {Tj ; j > 1} of L1(�) positive isometries,suh that Tj1 = 1, ommuting with S, Sn(Tjf) = Tj(Snf), and suh thatfor any f ∈ L1(�), limJ→∞

∥∥∥
1J ∑j6J Tjf −

∫ f d�∥∥∥1;� = 0:Set for any f ∈ L2(�), Cf = {Sn(f); n > 1} : (3.1)Consider for 2 6 p 6 ∞, the following onvergene property(Cp) �{
{Sn(f); n > 1} onverges} = 1; for all f ∈ Lp(�).Bourgain's �rst riterion [2, Proposition 1℄ shows that if (Cp) holds forsome 2 6 p <∞, the sets Cf annot be too large. More preisely,Theorem 3.1. Let S be a sequene of L2(�) ontrations satisfying on-dition (C). Assume that (Cp) holds for some 2 6 p < ∞. Then there existsa numerial onstant C0 suh that for any f ∈ Lp(�),sup">0 "√logNf (") 6 C0‖f‖2;where for any " > 0, Nf (") denotes the minimal number of L2(�) openballs of radius ", entered in Cf and enough to over Cf .Remark 3.2. By using overing properties of ellipsoids, one an show thatthe above entropy estimate is optimal for onvolutions on the irle; andthus admits no improvement. See [33, p. 47℄. However, it an be far fromoptimal on typial examples. Let Snf = 1n ∑j6nT jf , where T is some mea-sure preserving transformation on (X;A; �). By a theorem of TalagrandNf (") 6 Cmax(1; ‖f‖22;�="2), 0 < " 6 ‖f‖2;�, where C is an absoluteonstant. See [31℄, [32, Theorem 1.4.1℄.Bourgain's seond riterion [2, Proposition 2℄ states as follows.



82 M. J.G. WEBERTheorem 3.3. Let S be a sequene of L2(�) ontrations satisfying on-dition (C). Assume that (C∞) is ful�lled. Then for any real Æ > 0,C(Æ) = supf∈L∞(�); ‖f‖261Nf (Æ) < ∞:A starting point of the proof is a version (see [2, (9)℄) of the Banahpriniple for L∞(�), namely the fat that the onvergene property (C∞)implies that sup
‖f‖∞;�61;‖f‖2;�6" ∫X S∗f1 + S∗f d� → 0; as " → 0: (3.2)This result was established few after by Bellow and Jones in [4℄. The proofis however lenghty and indiret. It is possible to provide a diret andshort proof, similar to the one of the standard Banah priniple, see [32,Theorem 5.1.5℄.Note that the integrability of S∗f , whih is required in (3.2), is notensured by the assumption made in Theorem 3.3. This is for instaneguaranteed when Sn are L2(�)-L∞(�) ontrations, whih is the ase ofall appliations given in [2℄. Moreover, Bourgain's proof runs with no mod-i�ation using (3.2) at the onlusion.Given a separable Hilbert spae H , reall that the anonial Gaussian(also alled isonormal) proess Z = {Zh; h ∈ H} on H is the enteredGaussian proess with ovariane funtion�(h; h′) = 〈h; h′〉; h; h′ ∈ H:Let {hn; n > 1} be a ountable orthonormal basis of H . Let also {gn; n >1} be a sequene of i.i.d. N (0; 1) distributed random variables on a basiprobability spae (
;A;P). Then Z an be de�ned as follows: for anyh ∈ H , Zh = ∞∑n=1 gn〈h; hn〉:A subset A of H is a GB set (for Gaussian bounded) if the restritionof Z on A possesses a version whih is sample bounded. Further, A is aGC set (for Gaussian ontinuous) if the restrition of Z on A possesses aversion whih is sample ‖ · ‖-ontinuous. These notions were introdued inDudley [9℄.



DIVERGENCE CRITERIA IN ERGODIC THEORY 83A ountable subset A of H is a GB set if E suph∈A |Z(h)| < ∞, orequivalently E suph∈A Z(h) <∞, sine as is well-known,E suph∈AZ(h) 6 E suph∈A |Z(h)| 6 2E suph∈AZ(h) + infh0∈AE |Z(h0)|:Under assumptions of Theorem 3.1, Bourgain has also shown that thesets Cf are GB sets. Some remarks are in order. It is not neessary toassume that Sn are L2(�)-ontrations. Moreover, the onlusion remainstrue under a weaker ondition than (Cp). Theorem 3.1 an be reformulatedas follows.Theorem 3.4. Let S be satisfying assumption (C). Assume that for some2 6 p <∞,(Bp) �{ supn>1 |Sn(f)| <∞
} = 1; for all f ∈ Lp(�):Then for any f ∈ Lp(�), the sets Cf are GB sets of L2(�). Further thereexists a numerial onstant C1 and a onstant C2 suh that for any f ∈Lp(�), C1 sup">0 "√logNf (") 6 E supn>1 Z(Sn(f)) 6 C2 ‖f‖2;�:The use of the fat that if N(X) is a Gaussian semi-norm, thenP{N(X) 6 s} > 0 ⇒ EN(X) 6

4sP{N(X) 6 s} ; (3.3)slightly simpli�es the proof, whih otherwise is very similar ([32℄).Remark 3.5. One an naturally wonder whether property (Cp) analo-gously implies that the sets Cf are GC sets. This question was investi-gated in [33, § 5.2.2℄, where in Theorem 5.2.4 it is shown that the answeris positive when X = T and Sn are ommuting with rotations.Note before ontinuing that when ∫X S∗f d� is �nite, no expliit linkwith E supn>1 Z(Sn(f))an be drawn from Theorem 3.4. In Theorem 3.6 below, this is established.A general inequality valid for arbitrary partial maxima, an be diretlyindeed derived from ondition (C) only. Before, we add further omments.First, say a few words on the way the ommutation ondition (C) links



84 M. J.G. WEBERZ and S. This explains easily. Let f ∈ L2(�) and let I be a �nite set ofintegers. Then one derives from (C), that there exists an index J suhthat the two-sided inequalities12‖Sn(f)− Sm(f)‖2;� 6 ‖Sn(FJ;f )− Sm(FJ;f )(x)‖2;P
6 2‖Sn(f)− Sm(f)‖2;�;hold true for all n;m ∈ I and all J ∈ J , and for all x in a measur-able set of positive measure. See Lemma 4.6. Theorem 3.1 is obtained as astraightforward appliation of the Banah priniple, and Slepian's inequal-ity ombined with Sudakov's minoration (Lemma 4.9).Bourgain essentially applied Theorem 3.3, and this in the ase X = T,and Tj are translation or dilation operators. The ounter-examples arebuilt on funtions of the typef = 1√#(F ) ∑n∈F en (en(x) = e2i�nx);where F are spei� arithmeti sets. These elements, as well as all Tjf ,j > 1, not only belong to Lp(�) but also to many more spei� spaes. Sothat for Banah spaes B suh that B ⊂ L2(�), a requirement on f ∈ Blike Tjf ∈ B; j > 1;is frequently non void. Call R(B) the set of these elements. Then FJ;f ∈ Bwhenever f ∈ R(B). If B = Lp(�) for instane, then by Corollary 4.3 andLemma 4.4, R(B) = B.Theorem 3.6. Let S be satisfying ondition (C). Let additionally I be a�nite set of integers and 0 < " < 1. Then there exists a partial index J suhthat for any J ∈ J , any positive inreasing onvex funtion G : R+ → R+,the following are true:(i) Let B ⊂ L2(�) be a Banah spae with norm ‖ · ‖B. For any f ∈ R(B),

√1− " E supn∈I Z(Sn(f)) 6 E ‖FJ;f‖B sup
‖h‖B61 ∫ supn∈I |Sn(h)| d�:



DIVERGENCE CRITERIA IN ERGODIC THEORY 85Moreover,EG(√1− " supn;m∈I ∣∣Z(Sn(f))− Z(Sm(f))∣∣)
6 E ‖FJ;f‖B sup

‖h‖B61 E ∫X G( supn;m∈I ∣∣(Sn − Sm)(h)∣∣) d�:(ii) In partiular, for any f ∈ Lp(�) with 2 6 p < ∞,
√1− " sup

‖f‖2;�61 E supn∈I Z(Sn(f)) 6 Cp sup
‖h‖p;�61 ∫ supn∈I |Sn(h)| d�;where Cp = ‖g‖p=‖g‖2, realling the notation used. Furthersup

‖f‖2;�61 EG(√1− " supn;m∈I ∣∣Z(Sn(f))− Z(Sm(f))∣∣)
6 Cp sup

‖h‖p;�61 E ∫X G( supn;m∈I ∣∣(Sn − Sm)(h)∣∣) d�:We have the following riterion providing a general form of Theorem 3.4.Theorem 3.7. Let S be satisfying assumption (C). Let B ⊂ L2(�) bea Banah spae with norm ‖ · ‖B. Assume that the following property isful�lled: �{ supn>1 |Sn(f)| < ∞
} = 1; ∀ f ∈ B:Then there exists a onstant K depending on S and B only suh thatE supn>1 Z(Sn(f)) 6 K lim supH→∞
E ‖FH;f‖B ; ∀ f ∈ R(B):Let us derive a riterion whih has been reently applied in [6℄ toshow the optimality of a famous theorem of Koksma. Let {hn; n ∈ Z}be a ountable orthonormal basis of L2(�) and use the notation f ∼∑n∈Z

an(f)hn, ∑n∈Z

a2n(f) < ∞, if f ∈ L2(�). Given a sequene of posi-tive reals w = {wn; n ∈ Z} with wn > 1, we reall that L2w(�) is thesub-spae of L2(�) onsisting of funtions suh that
∑n∈Z

wn a2n(f) < ∞:



86 M. J.G. WEBERThis is a Hilbert spae with salar produt de�ned by
〈f; h〉 = ∑n∈Z

wn an(f) an(h);and norm
‖f‖2;w = ( ∑n∈Z

wn a2n(f))1=2:The spae L2(�) orresponds to the ase wn ≡ 1. Moreover, L2w(�) triviallyontains any f suh that an(f) = 0 exept for �nitely many n.Corollary 3.8. Let S be satisfying assumption (C). Assume that the fol-lowing property is ful�lled:�{ supn>1 |Sn(f)| <∞
} = 1; for all f ∈ L2w(�):Then there exists a onstant K depending on S and w only suh thatsup">0 "√logNf (") 6 K lim supJ→∞
E ‖FJ;f‖2;w; for all f ∈ R(L2w(�)):Remark 3.9. Let X = T, � the normalized Lebesgue measure and let Tjbe dilation operators, Tjf(x) = f(jx). Then any �nite trigonometri sumbelongs to R(L2w(�)).We refer to [32, Chapter 6℄ for a study of the link between the partialmaximum operators (I being a set integers).sup

‖h‖∞;�61
‖h‖2;�6" ∫X supn∈I |Sn(h)| d� and sup

‖f‖2;�61 E supn∈I Z(Sn(f)): (3.4)In the theorem below, we provide a quantitative link.Theorem 3.10. Let Sn, n > 1, be L2(�)-L∞(�) ontinuous operatorsverifying ondition (C). Let I be any set of integers with ardinality M .For any reals A > 0, R > 0, it is true thatsup
‖f‖2;�61 E supn∈I Z(Sn(f))

6 6√M S1(I) exp{−A2=8}+A(√2)S2(I) e−R2=4+ A sup
‖h‖∞;�61

‖h‖2;�6R=A ∫X supn∈I |Sn(h)| d�;



DIVERGENCE CRITERIA IN ERGODIC THEORY 87where S1(I) = maxn∈I ‖Sn‖2, S2(I) = maxn∈I ‖Sn‖∞, and
‖Sn‖2 = sup

‖f‖261 ‖Sn(f)‖2 ‖Sn‖∞ = sup
‖f‖∞61 ‖Sn(f)‖∞:Remark 3.11. It is not ompliate to derive from this bound Theorem3.3, for L2(�)-L∞(�) ontrations.Now onsider the spaes Lp(�), 1 < p < 2. A orresponding entropyriterion an be also established.Theorem 3.12. Let 1 < p 6 2 with onjugate number q. Consider asequene S = {Sn; n > 1} of ontinuous operators from Lp(�) to Lp(�).Assume that ondition (C) is satis�ed.Further assume that for some real 0 < r < p, property (Br) is satis�ed.Then there exists a onstant C(r; p) < ∞ depending on r and p only, suhthat for any f ∈ Lp(�),sup">0 " ( logNpf ("))1=q 6 C(r; p) ‖f‖p;where Npf (") is the minimal number of open Lp-balls of radius ", enteredin Cf and enough to over it. Further C(r; p) tends to in�nity as r tendsto p.The proof given in [33℄ relies on properties of p-stable proesses; it isassumed that S ommutes with an ergodi endomorphism of (X;A; �),whih in fat is unneessary. The restrition p 6= 1 is only used at the veryend of the proof, but is then ruially neessary.Remark 3.13. The pending question of a possible onvergene riterionfor the spae L1(�) is of ourse very interesting. But its true nature isunknown, sine we are not operating in a (stritly) stationary ontext. Inpartiular, ‖Sn(f) − Sm(f)‖p;�, ruial in (5.11), does not even dependon n −m only, in general. Moreover, we know (see Talagrand [30, § 8.1℄),that a neessary ondition for a 1-stable proess to be sample boundedrather expresses in terms of majorizing measures. This important oneptis however not relevant in the present ontext beause of its diÆulty ofappliation.As announed already, we have made the paper self-ontained. We pro-vide proofs of these theorems in Setion 5.
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§4. Auxiliary Results.4.1. Lp-isometries. We �rst reall a lassial result of Lamperti [19,Theorem 3.1℄. Let � be a �-�nite measure on (X;A). Some basi propertiesof isometries of Lp(�) are used in what follows. Reall that a regular setisomorphism of the measure spae (X;A; �) is a mapping � of A into itselfsuh that (i) �(A) = �X \�A(ii) �( ∞⋃n=1An) = ∞⋃n=1�An for disjoint An(iii) �(�A) = 0 if and only if �(A) = 0; (4.1)for all elements A;An of A. Then � indues a linear transformation (notedagain by �) on the spae of measurable funtions, de�ned as follows,��A = ��A.Remark 4.1. The question whether a measure preserving set transforma-tion an be obtained from a point mapping has been already onsidered.By a result of von Neumann, so is the ase if for instane X is a losedregion in Rn and � is equivalent to the Lebesgue measure, see [19, p. 463℄.Lemma 4.2. Let T be a linear operator on Lp(�) where 1 6 p < ∞ andp 6= 2, and suh that ‖Tf‖p = ‖f‖p, for all f ∈ Lp(�). Then there existsa regular set-isomorphism � and a funtion h(x) suh that T is given byTf(x) = h(x)� f(x):De�ne a measure �∗ by �∗(A) = �(�−1A). Then

|h(x)|p = d�∗d� (x) a.e. on �X :Corollary 4.3. Let � be a probability measure. Let T be a positive isometryof Lp(�) with 1 6 p < ∞ and p 6= 2, suh that T1 = 1. Then Tf(x) =� f(x) with �1 = 1 and � is a regular set-isomorphism. Moreover for anyf ∈ L∞(�), |Tf |a a.e.= T |f |a, for any 0 6 a < ∞. Further |Tf |p a.e.= T |f |p,if f ∈ Lp(�).Proof. By Lemma 4.2, Tf(x) = h(x)� f(x). As �(X) = 1 and T1 = 1it follows from the proof of Theorem 3.1 in [19℄ that h(x) a.e.= 1, andT = �. But as ��A = ��A, we get |Tf |a = T |f |a for simple funtions,for any 0 6 a < ∞. Hene by approximation |Tf |a a.e.= T |f |a holds for



DIVERGENCE CRITERIA IN ERGODIC THEORY 89all f ∈ L∞(�). Further by approximation again, sine T is an isometry ofLp(�), |Tf |p a.e.= T |f |p, if f ∈ Lp(�). �For the sake of ompleteness, we inluded the following lemma onern-ing the (simpler) ase p = 2.Lemma 4.4. Let T be a positive isometry of L2(�) suh that T1 = 1.Then (Tf)2 a.e.= Tf2, for any f ∈ L2(�).Proof. Let A ∈ A with 0 < �(A) < 1. Trivially f; g ∈ L2+(�) have disjointsupports if and only if ‖f + g‖22;� = ‖f‖22;� + ‖g‖22;�. Hene it followsthat T1A and T1A have disjoint supports. Let E = {0 < T1A < 1} =
{0 < T1A < 1}. As E ⊂ supp(T1A)∩ supp(T1A), we onlude that T1Aand T1A are indiator funtions. Thus any simple funtion is mapped byT into a simple funtion. For these funtions we have (Tf)2 = Tf2. Now letf ∈ L2+(�); there exists a sequene (fn) ⊂ L∞(�) suh that ‖f − fn‖2 → 0as n→ ∞. First observe by applying twie H�older's inequality that

∫X (T |f2n − f2|)1=2 d� 6

( ∫X T |f2n − f2| d�)1=2= ‖f2n − f2‖1=21 6
(
‖fn − f‖2 · ‖fn + f‖2)1=2:Consequently,

‖Tf −√Tf2‖1 6 ‖Tf −Tfn‖1+ ‖Tfn−√Tf2n‖1+ ‖
√Tf2n−√Tf2‖1= ‖f − fn‖1 + ‖

√Tf2n −
√Tf2‖1

6 ‖f − fn‖1 + (
‖fn − f‖2 · ‖fn + f‖2)1=2 → 0;as n → ∞. Hene (Tf)2 = f2 a. e. . As f = f+ − f−, we dedue that thisholds for any f ∈ L2(�). �4.2. Stable proesses. This part was essentially written for the ergodi-ian reader not neessarily familiar with stable proesses. We use very fewfrom the theory. We refer to [24℄. We also refer the interested reader to thevery nie book of Talagrand [30℄ for a thorough study of the regularity ofstable proesses. For the same reason, the last part of the proof of Theo-rem 3.12 is detailed and we refer to [24℄. The stable proesses we onsiderare simple, of �nite rank. They are however not strongly stationary. Re-all and briey explain some basi fats and properties of stable randomvariables and stable proesses.



90 M. J.G. WEBERLet 0 < � 6 2. A real valued random variable � is symmetri �-stableof parameter � if E eit� = e−��|t|� ; ∀ t ∈ R: (4.2)Then for all 0 < r < �, (E |�|r)1=r = Æ(r; �)�, where Æ(r; �) depends onlyon r and �. Stable random variables are mixtures of Gaussian randomvariables. Indeed, as is well-known the funtion f(�) = e−�� is ompletelymonotone on R+, for eah 0 < � 6 1. Consequently, there exists a ran-dom variable v(�) suh that E e−�v(�) = f(�), for all � > 0. Let �(�) :=(2 v(�=2))1=2. Let g be standard Gaussian independent from �. By tak-ing Fourier transforms E eit�(�)·g = E e−t2�(�)2=2 = E e−t2v(�=2) = e−|t|� .Whene it follows that � D= �(�) · g. Let �1; : : : ; �J be i.i.d. �-stable realvalued random variables, and let 1; : : : ; J be real numbers. From (4.2)we get J∑j=1 j�j D= �1( J∑j=1 |j |�)1=�: (4.3)A stohasti proess {X(t); t ∈ T} is a real valued �-stable if any �nitelinear ombination ∑j jX(tj) is an �-stable real valued random variable.From now on, we extend the notation used in (2.4) in the following way.To any f ∈ Lp(�), 1 < p 6 ∞, we assoiate the random element,FJ;f (!; x) = 1J1=p ∑16j6J �j(!)Tjf(x); ! ∈ 
; x ∈ X: (4.4)Remark 4.5. As long as entropy riteria are studied in Lp(�) with 2 6p 6 ∞, the relevant random elements FJ;f are Gaussian (� = 2). When1 < p < 2, we hoose them p-stable (� = p).Clearly (4.4) de�nes a real valued �-stable proess. It follows in parti-ular that for any x ∈ X ,FJ;f ( · ; x) D= �1( 1J ∑16j6J |Tjf(x)|�)1=�: (4.5)Let {�j ; j = 1; : : : ; J} be a sequene of i.i.d. random variables with thesame law than �(�), and let {gj ; j = 1; : : : ; J } be a sequene of i.i.d. Gauss-ian standard random variables. We assume that these sequenes are respe-tively de�ned on joint probability spaes (
′;B′;P′) and (
′′;B′′;P′′).
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FJ;f (!′; !′′; x) = ∑j6J �j(!′) gj(!′′)Tjf(x); x ∈ X;has the same distribution as {FJ;f (x); x ∈ X}.4.3. A omparison Lemma. In the next lemma, we denote the normsorresponding to the spaes Lr(�) and Lr(P) respetively by ‖ · ‖r;� and

‖ · ‖r;P.Lemma 4.6. Let 1 6 p 6 2. Let Sn : Lp(�) → Lp(�), n = 1; 2; : : : , beontinuous operators verifying assumption (C).(i) Let 1 6 p < 2. Let f ∈ Lp(�) and 0 < " < 1. Let also I be a �niteset of integers suh that
‖Sn(f)− Sm(f)‖p;� 6= 0; for all n 6= m, n;m ∈ I:Then given any index J0, there exists a sub-index J and a measurable setA with �{A} > 1− ", and suh that for all x ∈ A, we have(1− ")1=p 6

∥∥(Sn − Sm)(FJ;f )(x)∥∥r;P(r) ‖Sn(f)− Sm(f)‖p;� 6 (1 + ")1=p; (4.6)for all J ∈ J , all n;m ∈ I, m 6= n, and r < p. Moreover, (r) = ‖�1‖r.(ii) Let p = 2. We have in plae of (4.6),(1− ")1=2 6

∥∥(Sn − Sm)(FJ;f )(x)∥∥2;P
‖Sn(f)− Sm(f)‖2;� 6 (1 + ")1=2; (4.7)for all J ∈ J , all n;m ∈ I, m 6= n. Further, for any positive inreasingonvex funtion G on R+, any J ∈ J ,EG(√1− " supn;m∈I Z(Sn(f))− Z(Sm(f)))

6 E ∫X G( supn;m∈I Sn(FJ;f )− Sm(FJ;f )) d�:In partiular for any J ∈ J ,
√1− " E supn∈I Z(Sn(f)) 6 E ∫X supn∈I Sn(FJ;f ) d�: (4.8)



92 M. J.G. WEBERProof. We assume J0 = N, the ase of an arbitrary index J0 being treatedidentially.Proof of (i): Let f ∈ Lp(�). By the ommutation assumption,Sn(FJ;f ) = 1J 1p ∑j6J �jSn(Tj(f)) = 1J1=p ∑j6J �jTj(Sn(f));
∀ n > 1; ∀ J > 1:Hene by (4.3), for any �xed x ∈ X ,1J 1p ∑j6J �jTj(Sn(f)−Sm(f))(x) D= �1( 1J ∑j6J ∣∣Tj(Sn(f)−Sm(f))(x)∣∣p)1=p:Using the fat that |Tjh|p a:e:= Tj |h|p if h ∈ Lp(�), it follows thatE ∣∣(Sn − Sm)(FJ;f )(x)∣∣r = (E |�1|r)( 1J ∑j6J ∣∣Tj(Sn(f)− Sm(f))(x)∣∣p)r=p= (E |�1|r)( 1J ∑j6J Tj(∣∣Sn(f)− Sm(f)∣∣p)(x))r=p; (4.9)for almost all x.Let I be a �nite set of integers suh that

‖Sn(f)− Sm(f)‖p;� > Æ > 0; for all n 6= m, n;m ∈ I:Let 0 < " < 1 and hoose an integer L suÆiently large so that 2−L 6 "and Æ > 2−L−1=". Assumption (C) implies thatlimJ→∞

∥∥∥
1J ∑j6J Tj(∣∣Sn(f)− Sm(f)∣∣p)− ‖Sn(f)− Sm(f)‖pp;�∥∥∥1;� = 0;for all n;m ∈ I . By extration, we an �nd an index J = {Jk; k > L}(depending on I and "), suh that

∥∥∥
1Jk ∑j6Jk Tj(∣∣Sn(f)− Sm(f)∣∣p)− ‖Sn(f)− Sm(f)‖pp;�∥∥∥1;� 6

1#(I)222k ;



DIVERGENCE CRITERIA IN ERGODIC THEORY 93for all n;m ∈ I and all k > L. PutAk = {
∃ n;m ∈ I :

∣∣∣
1Jk ∑j6Jk Tj(∣∣Sn(f)− Sm(f)∣∣p)− ‖Sn(f)− Sm(f)‖pp;�∣∣∣ > 2−k};k > L:By Chebyshev's inequality, we have �(Ak) 6 2−k. LetA"(n;m; J)= {(1− ")‖Sn(f)− Sm(f)‖pp;� 6

1J ∑j6J Tj(∣∣Sn(f)− Sm(f)∣∣p)
6 (1 + ")‖Sn(f)− Sm(f)‖pp;�};and AI;" = ⋂k>L ⋂n;m∈IA"(n;m; Jk):Then, �{AI;"} > �{ ⋂k>LAk} > 1− ∑k>L 2−k = 1− 2−L > 1− ":As by (4.9), for any r < p,

∥∥(Sn − Sm)(FJ;f )(x)∥∥r;P = ‖�1‖r( 1J ∑j6J Tj(∣∣Sn(f)− Sm(f)∣∣p)(x))1=p;it follows that for every x ∈ AI;", we have(1− ")1=p 6

∥∥(Sn − Sm)(FJ;f )(x)∥∥r;P
‖�1‖r ‖Sn(f)− Sm(f)‖p;� 6 (1 + ")1=p;for all J ∈ J , all n;m ∈ I , m 6= n, and r < p.Proof of (ii): The proof is the �rst inequality is idential and so we omitit. Let f ∈ L2(�). Let 0 < " < 1 be �xed. Let I be a �nite set of integerssuh that

‖Sn(f)− Sm(f)‖p;� 6= 0; for all n 6= m, n;m ∈ I:



94 M. J.G. WEBERNow notie that �{ E supn∈I Sn(FJ;f ) > 0 } = 1. Using (4.7), nextSlepian omparison lemma, we have along the index J ,
∫X E supn∈I Sn(FJ;f ) d� >

∫A E supn∈I Sn(FJ;f ) d�
>

√1− " �(A)E supn∈I Z(Sn(f))
> (1− ")E supn∈I Z(Sn(f)):Similarly,

∫X EG( supn;m∈I Sn(FJ;f )− Sm(FJ;f )) d�
>

∫A EG( supn;m∈I Sn(FJ;f )− Sm(FJ;f )) d�
>

∫A EG(√1− " supn;m∈I Z(Sn(f))− Z(Sm(f))) d�
>

√1− " EG(√1− " supn;m∈I Z(Sn(f))− Z(Sm(f)))
>

√1− " EG(√1− " supn;m∈I Z(Sn(f))− Z(Sm(f))):This ompletes the proof of Lemma 4.6. �4.4. Banah Priniple. Let
Y = {f ∈ L∞(�) : ‖f‖∞ 6 1}:A mapping V : (Y; d) → L0(�) is said to be ontinuous at 0, if V is d-ontinuous at 0 on Y. When V is linear, then V is ontinuous at 0 if andonly if V is d-ontinuous on L∞(�).Lemma 4.7 ( [4℄). Let {Sn; n > 1} be a sequene of linear operators ofL∞(�) in L0(�). Assume that the following onditions are realized:(i) Eah Sn is ontinuous at 0,(ii) For any f ∈ L∞(�), �{x : {Sn(f)(x); n > 1} onverges} = 1.Then S∗ : Y → L0(�) is ontinuous at 0.For a short proof, we refer to [32, p. 205℄. The next lemma is usedrepeatedly.



DIVERGENCE CRITERIA IN ERGODIC THEORY 95Lemma 4.8. Let (B; ‖ · ‖B) be a Banah spae and let Sn : B → L0(�),n > 1, be ontinuous in measure operators. Assume that�{ supn>1 |Sn(f)| <∞
} = 1; for all f ∈ B:Then there exists a non-inreasing funtion C :℄0; 1℄ → R+ suh that forany 0 < " < 1, any J > 1 and any f ∈ R(B), there exists a measurableset X";J;f with �(X";J;f ) > 1− ", suh thatP{! : supn>1 |Sn(FJ;f (!; · ))(x) |6 C(")E ‖FJ;f‖B}

> 1− ";for any x ∈ X";J;f , realling that FJ;f are de�ned in (4.4).Proof. By the Banah priniple, there exists a non-inreasing funtionÆ :℄0; 1℄ → R+ suh that�{ supn |Sn(h)| > Æ(") ‖h‖B}
6 "2=2; ∀ 0 < " 6 1; ∀ h ∈ B:Let f ∈ R(B), then FJ;f ∈ R(B) almost surely. Taking h = FJ;f and usingFubini's theorem, gives

∫X P{ supn>1 |Sn(FJ;f )| > Æ(") ‖FJ;f‖B} d� 6 "2=2:Now we bound as follows
∫X P{ supn>1 |Sn(FJ;f )| >

2 Æ(")"2 E ‖FJ;f‖B} d�
6

∫X P{ supn>1 |Sn(FJ;f )| >
2 Æ(")"2 E ‖FJ;f‖B ; ‖FJ;f‖B 6

2"2 E ‖FJ;f‖B} d�+ P{
‖FJ;f‖B > 2"2 E ‖FJ;f‖B}

6

∫X P{ supn>1 |Sn(FJ;f )| > Æ(") ‖FJ;f‖B} d�+ "2=2 6 "2=2 + "2=2 = "2:Hene,�{x ∈ X : P{! : supn>1 |Sn(FJ;f (!; · ))(x)| >
2 Æ(")"2 E ‖FJ;f‖B}

> "} 6 ";



96 M. J.G. WEBERor�{x ∈ X : P{! :supn>1 |Sn(FJ;f (!; · ))(x)| 6
2 Æ(")"2 E ‖FJ;f‖B}

> 1− "} > 1− ":By letting C(") = 2Æ(")"2 , we easily onlude. �4.5. Some Gaussian tools. The next lemma is well-known in the theoryof Gaussian proesses. We refer for instane to [32, Chapter 10℄.Lemma 4.9. Let X = {Xt; t ∈ T} and Y = {Yt; t ∈ T} be two enteredGaussian proesses de�ned on a �nite set T .(a) [Slepian's Lemma℄ Assume that for any s; t ∈ T ,
‖Xs −Xt‖2 6 ‖Ys − Yt‖2:Then for any positive inreasing onvex funtion f on R+,E f[ supT×T (Xs −Xt)] 6 E f[ supT×T (Ys − Yt)]:In partiular, E supt∈T Xt 6 E supt∈T Yt:(b) [Sudakov's minoration℄ There exists a universal onstant B suhthat for any Gaussian proess X = {Xt; t ∈ T}E supt∈T Xt > B infs;t∈Ts6=t ‖Xs −Xt‖2;P√log#(T ):() [Lower bound for Gaussian norms℄ Let X be a Gaussian vetor andN a non-negative semi-norm. ThenP{N(X) < ∞} = 1 ⇒ P{N(X) >

12 EN(X)} > where 0 <  < 1 is a universal onstant.(d) [Mill's ratio℄ The Mill's ratio R(x) = ex2=2 ∞∫x e−t2=2 dt veri�es forany x > 0, 2√x2 + 4 + x 6 R(x) 6
2√x2 + 8� + x 6

√�2 :



DIVERGENCE CRITERIA IN ERGODIC THEORY 97It follows that for any standard Gaussian random variable g, any T > 0,E g2�{|g| > T} 6 6 e−T 2=4:
§5. Proofs.As lari�ed in Remark 4.5, we use the random elements FJ;f introduedin (4.4) di�erently, aording to the ases 2 6 p 6 ∞, in whih they areGaussian, and 1 < p < 2, where we hoose them p-stable.5.1. Proof of Theorem 3.7. Let 0 < " < 1=2. Let f ∈ R(B). By Lemma4.8, there exists a non-inreasing funtion C :℄0; 1℄ → R+ and a set X";J;fof measure greater than 1− " suh that for all x ∈ X";J;f ,P{! : supn>1 |Sn(FJ;f (!; · )(x)| 6 C(")E ‖FJ;f‖B}

> 1− ":Estimate (3.3) impliesE supn>1 |Sn(FJ;f (!; · ))(x)| 6
4C(")1− " E ‖FJ;f‖B ; ∀ x ∈ X";J;f :Reall that B ⊂ L2(�). Let I be a �nite set of integers suh that

‖Sn(f)− Sm(f)‖2 6= 0, for all m;n ∈ I , m 6= n. By Lemma 4.6(ii), taking
J0 = N, there exists a sub-index J suh that ifA(I)={

∀J ∈J ; ∀n;m ∈ I; m 6= n; ‖Sn(FJ;f )− Sm(FJ;f )‖2;P
‖Sn(f)− Sm(f)‖2;� >

√1− "};then � {A(I)} >
√1− ".By integrating on X";J;f ∩ A(I), next using the fat thatE supn∈I Sn(FJ;f ) > 0;and Lemma 4.9(a), we get for any J ∈ J ,

∫X";J;f E supn∈I Sn(FJ;f ) d� >

∫X";J;f∩A(I) E supn∈I Sn(FJ;f ) d�
>

√1− " �{X";J;f ∩ A(I)} E supn∈I Z(Sn(f))
>

√1− " (√1− "− ") E supn∈I Z(Sn(f))
> (1− 2 ") E supn∈I Z(Sn(f)):



98 M. J.G. WEBERBy ombining, for any J ∈ J ,E supn∈I Z(Sn(f)) 6
1(1− 2 ") ∫X";J;f E supn∈I Sn(FJ;f ) d�

6 K(")E ‖FJ;f‖B; (5.1)with K(") = 4C(")(1− 2 ")(1− ") :Therefore, for any f ∈ R(B), any �nite set I ,E supn∈I Z(Sn(f)) 6 K(") infJ∈J
supH>J E ‖FH;f‖B = K(") lim supH→∞

E ‖FH;f‖B :Taking I = [1; N ℄ and letting next N tends to in�nity, givesE supn>1 Z(Sn(f)) 6 K(") lim supH→∞
E ‖FH;f‖B:5.2. Proof of Theorem 3.4. Let f ∈ L∞(�). Fubini's theorem andLemma 4.4 allow us to write,E ∫

|FJ;f |pd� 6 Cpp ∫ (E |FJ;f |2)p=2d�= Cpp ∫ ( 1J ∑j6J Tjf2(x))p=2d�(x):By assumption limJ→∞

∥∥∥
1J ∑j6J Tjf2 − ‖f‖22;�∥∥∥1;� = 0:By proeeding by extration, this onvergene also holds almost surelyalong some subsequene J0. As 1J ∑j6J Tjf2(x) 6 ‖f‖2∞, we further deduefrom the dominated onvergene theorem,lim

J0∋J→∞
E ∫ ( 1J ∑j6J Tjf2(x))p=2d� = ‖f‖p2;�:Let 0 < " < 1. Extrating if neessary from J0 a sub-index whih we allagain J0, we thus onlude thatE ‖FJ;f‖p;� 6 (1 + ")Cp ‖f‖2;�; ∀ J ∈ J0:Next the proof is exatly the same as before exept that we replae every-where the norm ‖:‖B by the norm ‖:‖p;�. Let I be a �nite set of integers.



DIVERGENCE CRITERIA IN ERGODIC THEORY 99From Lemma 4.6, we an extrat from J0 a partial index J suh that theanalog of (5.1) holds, namely for any J ∈ J ,E supn∈I Z(Sn(f)) 6 K(")E ‖FJ;f‖p;� 6 CpK(") (1 + ") ‖f‖p;�:A simple approximation argument allows to get the same inequality for allf ∈ Lp. Sudakov's minoration impliessup%>0 %√logNf (%) 6 CpK(") (1 + ") ‖f‖p:5.3. Proof of Theorem 3.6. (i) By Lemma 4.6-(b), given any index J0,there exists an index J ⊆ J0 suh that for any J ∈ J ,(1− ")E supn∈I Z(Sn(f)) 6 E ∫ supn∈I Sn(FJ;f ) d�:Moreover, for any positive inreasing onvex funtion G on R+, any J ∈ J ,EG(√1− " supn;m∈I Z(Sn(f))− Z(Sm(f)))
6 E ∫X G( supn;m∈I (Sn − Sm)(FJ;f )) d�:In the following alulation we putL = sup

‖g‖B61 ∫ supn∈I |Sn(g)| d�;and we let u0 = 0, un = "(1 + ")n−1 n > 1. ThenE ∫ supn∈I |Sn(FJ;f )| d�= ∞∑k=1E (1uk−16‖FJ;f‖B<uk · ∫ supn∈I |Sn(FJ;f )| d� )

6

∞∑k=1P{uk−1 6 ‖FJ;f‖B < uk} supuk−16‖g‖B<uk ∫ supn∈I |Sn(g)| d�
6 L ∞∑k=1ukP{uk−1 6 ‖FJ;f‖B < uk}
6 L(u1P{‖FJ;f‖B < u1}+ (1 + ")E ‖FJ;f‖B · 1u16‖FJ;f‖B)

6 L("+ (1 + ")E ‖FJ;f‖B):



100 M. J.G. WEBERBy ombining, and letting next " tends to 0, we get for any f ∈ L2(�),E supn∈I Z(Sn(f)) 6 E ‖FJ;f‖B sup
‖g‖B61 ∫ supn∈I |Sn(g)| d�:SimilarlyEG(√1− " supn;m∈I ∣∣Z(Sn(f))− Z(Sm(f))∣∣)

6 E ‖FJ;f‖B sup
‖g‖B61 E ∫X G( supn;m∈I ∣∣(Sn − Sm)(g)∣∣) d�:(ii) Let B = Lp(�). We have seen that there exists an index J0 suh thatE ‖FJ;f‖p;� 6 (1 + ")Cp‖f‖2;�; ∀ J ∈ J0:Therefore sup

‖f‖2;�61 E supn∈I Z(Sn(f)) 6 Cp sup
‖g‖p;�61 ∫ supn∈I |Sn(g)| d�:Moreover,sup

‖f‖2;�61 EG(√1− " supn;m∈I ∣∣Z(Sn(f))− Z(Sm(f))∣∣)
6 Cp sup

‖g‖p;�61 E ∫X G( supn;m∈I ∣∣(Sn − Sm)(g)∣∣) d�:5.4. Proof of Theorem 3.12. Let f ∈ Lp(�). Let J be any positiveinteger and x ∈ X . By (4.5),1J 1p ∑j6J �jTjf(x) D= �1( 1J ∑j6J |Tjf(x)|p)1=p:Thus for any r < p,E |FJ;f (x)|r = (E |�1|r)( 1J ∑j6J |Tjf(x)|p)r=p:By Corollary 4.3, |Tjf(x)|p a:e:= Tj |f |p(x), so that we haveE |FJ;f (x)|r = (E |�1|r)( 1J ∑j6J Tj |f |p(x))r=p: (5.2)



DIVERGENCE CRITERIA IN ERGODIC THEORY 101for almost all x and all J > 1. As trivially Tj |f |p ∈ L1(�), we dedueE ∫X |FJ;f (x)|r d�(x) = (E |�1|r) ∫X ( 1J ∑j6J Tj |f |p(x)) rp d�(x): (5.3)Hene,
∣∣∣E ∫X |FJ;f (x)|r d�(x) − (E |�1|r)‖f‖rp;� ∣∣∣= (E |�1|r) ∣∣∣ ∫X ( 1J ∑j6J Tj |f |p(x)) rp d�(x) − (‖f‖pp;�) rp ∣∣∣

6 (E |�1|r) ∫X ∣∣∣
( 1J ∑j6J Tj |f |p(x)) rp − (‖f‖pp;�) rp ∣∣∣ d�(x)

6 (E |�1|r) ∫X ∣∣∣
1J ∑j6J Tj |f |p(x)− ‖f‖pp;�∣∣∣ rp d�(x)

6 (E |�1|r)( ∫X ∣∣∣
1J ∑j6J Tj |f |p(x) − ‖f‖pp;�∣∣∣ d�(x))r=p → 0;as J tends to in�nity by assumption (C). Therefore,limJ→∞

E ∫X |FJ;f (x)|r d�(x) = (E |�1|r) ‖f‖rp;�; ∀ 0 < r < p:By using H�older's inequality, we dedue thatE ‖FJ;f‖r;� 6

(E ∫
|FJ;f (x)|r d�)1=r

6 2 ‖�1‖r ‖f‖p;�; (5.4)for all J > J0, say.By assumption, property (Br) holds for some 1 < r < p. From Lemma 4.8follows that there exists a non-inreasing funtion C :℄0; 1℄ → R+ suh thatfor any f ∈ Lr(�), for any J > 1, any 0 < " < 1, there exists a measurableset X̃ = X̃";J;f of measure greater than 1−√", suh that for all x ∈ X̃ ,P{! : supn>1 |Sn(FJ;f (!; · ))(x)| > C(")‖FJ;f‖r;�} 6 ": (5.5)



102 M. J.G. WEBERWe assume 0 < " < 1=6 in what follows. Let Æ(") = C(")=". Let alsox ∈ X̃, J > J0. Using Chebyshev's inequality and (5.4), we getP{! : supn>1 |Sn(FJ;f (!; · ))(x)| > 2 Æ(")‖�1‖r ‖f‖p;�}
6 P{! : supn>1 |Sn(FJ;f (!; · ))(x)| > Æ(")E ‖FJ;f‖r;�}

6 P{
‖FJ;f‖r;� > E ‖FJ;f‖r;�="}+P{! : supn>1 |Sn(FJ;f (!; · ))(x)| > Æ(")E ‖FJ;f‖r;�; ‖FJ;f‖r;�

6 E ‖FJ;f‖r;�="}
6 "+P{! : supn>1 |Sn(FJ;f (!; · ))(x)| > C(")‖FJ;f‖r;�}

6 2 ":Therefore,P{! : supn>1 |Sn(FJ;f (!; · ))(x)| 6 2 Æ(") ‖�1‖r ‖f‖p;�} > 1− 2 ";
∀ x ∈ X̃; ∀ J > J0: (5.6)Let Æ be some �xed positive real. Let I be a �nite set of positive integersand let M = #{I}. Assume that ‖Sn(f) − Sm(f)‖p;� > Æ if n 6= m,n;m ∈ I . By Lemma 4.6-(i), there exists an index J and a measurableset A = A";I;f suh that �{A} > 1 − ", and further, for all x ∈ A, thefollowing inequalities(1− ")1=p‖�1‖r ‖Sn(f)− Sm(f)‖p;� 6

∥∥(Sn − Sm)(FJ;f )(x)∥∥r;P
6 (1+")1=p ‖�1‖r ‖Sn(f)−Sm(f)‖p;�;are satis�ed for all J ∈ J , all n;m ∈ I and all r < p. SetY = Y";I;J;f = X̃ ∩ A:For eah x �xed, the proessSJ;f;x(!; n) = 1J1=p ∑j6J �j(!)TjSn(f)(x); n > 1;is a p-stable random funtion. Further, the proess

SJ;f;x(!′; !′′; n) = 1J1=p ∑16j6J �j(!′) gj(!′′)TjSnf(x); n > 1;



DIVERGENCE CRITERIA IN ERGODIC THEORY 103has the same distribution as {SJ;f;x( · ; n); n > 1}. Reall (sub-setion 4.2)that we have underlying joint probability spaes (
′;B′;P′) and (
′′;B′′;P′′)on whih the sequene {�j ; j > 1} and the sequene {gj ; j > 1} of i.i.d.Gaussian standard random variables are respetively de�ned. Here we takeboth sequenes in�nite.Thus (5.6) reads: for all x ∈ X̃, and all J > J0,P′×P′′
{(!′; !′′) : supn>1 |SJ;f;x(!′; !′′; n)| 6 2 Æ(")‖�1‖r‖f‖p;�}

> 1− 2": (5.7)Let H(!′) = P′′{!′′ : supn>1 |SJ;f;x(!′; !′′; n)| 6 2 Æ(") ‖�1‖r ‖f‖p;�}:By Fubini's theorem, the left-term in (5.7) also writes
∫
′

H(!′) dP′(!′) = ∫!′:H(!′)6" H(!′) dP′(!′) + ∫!′:H(!′)>" H(!′) dP′(!′)
6 "+P′{!′ : H(!′) > "}:HeneP′

{!′ : P′′{!′′ : supn>1 |SJ;f;x(!′; !′′; n)| 6 2 Æ(") ‖�1‖r ‖f‖p;�} > "}
> 1− 3 ": (5.8)For eah �xed !′ ∈ 
′, {SJ;f;x(!′; · ; n); n > 1} is a Gaussian proess.Let EP′′ denote the expetation symbol with respet to P′′. By usingestimate (3.3), for every x ∈ X";J;f ,1− 3 " 6 P′

{!′ : EP′′ supn>1 |SJ;f;x( ·; !′; x))| 6
8Æ(")" ‖�1‖r ‖f‖p;�}: (5.9)Write for a whileD(!; n;m) = DJ;f;x(!; n;m) = SJ;f;x(!; n)− SJ;f;x(!;m)

D(!′; !′′; n;m) =DJ;f;x(!′; !′′; n;m)=SJ;f;x(!′; !′′; n)−SJ;f;x(!′; !′′;m)�(n;m) = �J;f;x(n;m) = ( 1J ∑16j6J ∣∣Tj(Sn − Sm) f(x)∣∣p)1=p:



104 M. J.G. WEBERBy (4.3),EP′EP′′eitD(!′;!′′;n;m) = EPeit(SJ;f;x(:;n)−SJ;f;x(:;m))= EPeit�1�(n;m) = e−|t|p�(n;m)p :As E eitg = e−t2�2=2 where � = (E g2)1=2, we get from (4.2),EP′EP′′eitD(!′;!′′;n;m) = EP′e−t2‖D(!′; · ;n;m)‖22;P′′=2 = e−|t|p�(n;m)p :Put for eah !′ ∈ 
′,dJ;!′;x(n;m) = ‖DJ;f;x(!′; · ; n;m)‖2;P′′ :Moreover, letdJ;x(n;m) = ( 1J ∑j6J Tj |Sn(f)− Sm(f)|p(x))1=p:We note that dJ;x(n;m) = �J;f;x(n;m) for almost all x ∈ X . FurtherEP′e−t2dJ;!′;x(n;m)2=2 = e−|t|pdJ;x(n;m)p :Then P{
∃ n;m ∈ I : dJ;!′;x(n;m) < "dJ;x(n;m)}

6
∑n;m∈IP{e−t2dJ;!′;x(n;m)=2 > e−t2"2d2J;x(n;m)}

6 M2et2"2d2J;x(n;m)−|t|pdJ;x(n;m)p ;and so,P{
∃ n;m ∈ I : dJ;!′;x(n;m) < "dJ;x(n;m)}

6 M2 inft>0 et2"2d2J;x(n;m)−|t|pdJ;x(n;m)p :The funtion '(t) = et2a−tpb has an extremum at the value t∗ = ( pb2a) 12−p ,and '(t∗) = exp{a− p2−p b 22−p [(p=2) 22−p − (p=2) p2−p ]}:Applying this with a = "2d2J;x(n;m), b = dJ;x(n;m)p, we getP{
∃ n;m ∈ I : dJ;!′;x(n;m) < "dJ;x(n;m)}

6 M2 exp{"− 2p2−p (dJ;x(n;m))− 2p2−p dJ;x(n;m) 2p2−p [(p=2) 22−p − (p=2) p2−p ]}:=M2 exp{
− "− 2p2−p C(p)}:



DIVERGENCE CRITERIA IN ERGODIC THEORY 105with C(p) = (p=2) p2−p − (p=2)− 22−p > 0. Choose " = (� logM)− 2−p2p . Weget P{
∃ n;m ∈ I : dJ;!′;x(n;m) < (� logM)− 2−p2p dJ;x(n;m)}

6 M2−�C(p) 6
12 ; (5.10)for � = �(p) depending on p only, and small enough.Now if x ∈ Y , we have

∥∥(Sn − Sm)(FJ;f )(x)∥∥r;P′×P′′ > ("; r; p) ‖Sn(f)− Sm(f)‖p;�;for all J ∈ J , all n;m ∈ I , m 6= n, and all r < p. As (Sn−Sm)(FJ;f )(x) D=(SJ;f;x(n)− (SJ;f;x(m)), we have
∥∥(Sn − Sm)(FJ;f )(x)∥∥r;P′×P′′ = ‖�1‖r dJ;x(n;m);whene dJ;x(n;m) > ("; r; p) ‖Sn(f)− Sm(f)‖p;�; (5.11)for all J ∈ J , all n;m ∈ I , m 6= n.Putting together (5.10) and (5.9) implies that there exists a measurableset 
′0 with P′(
′0) > 0, suh that for any !′ ∈ 
′0, and all n;m ∈ I ,dJ;!′;x(n;m) > ("; r; p) dJ;x(n;m)(log#{I})1=p−1=2 > ("; r; p) Æ(log#{I})1=p−1=2By Sudakov's inequality,

‖f‖p;� > (r; p)EP′′ supn∈I |SJ;f;x( ·; !′; x))|
> (r; p) Æ (log#{I})1=2+1=2−1=p: (5.12)A routine argument together with (5.9) now easily leads to

‖f‖p;� > (r; p) supÆ>0 Æ ( logNpf (Æ))1=q ;where (r; p) > 0 depends on r and p only. It is only at this last stage thatthe fat that p > 1 is neessary.



106 M. J.G. WEBER5.5. Proof of Theorem 3.3. Let f ∈ L∞(�) suh that ‖f‖2 = 1. Let Ibe a �nite subset of N and let M = #{I}. Write for a while N = N! =
|Sn(FJ;f (!; · ))|, �(!) = �{x : N!(x) > 12 EN!(x)}. By Lemma 4.9(),for eah x, P{N!(x) >

12 EN!(x)} > :And so, �⊗P{(!; x) : N!(x) >
12 EN!(x)} > :We have 6 E� = E�(�{�>=2} + �{�6=2}) 6 =2 +P{� > =2}:Hene P{� > =2} > =2, and using the previous notation, we dedue thatfor eah J > 1, there exists a measurable set DJ of probability larger than=2, suh that we have�{x : |Sn(FJ;f (!; · ))(x)| >

12 E |Sn(FJ;f )(x)|}>=2; ∀ ! ∈ DJ : (5.13)Let 0 <  < 1 be �xed. By Lemma 4.6(ii), there exists an index J anda measurable set A with �{A} > 2, and suh that for all x ∈ A, we have E supn∈I Z(Sn(f)) 6 E ∫ supn∈I Sn(FJ;f ) d� ∀ J ∈ J : (5.14)Hene,�{x : |Sn(FJ;f (!; · ))(x)| >
2E supn∈I Z(Sn(f))}>=3; ∀! ∈ DJ ; (5.15)assuming  suÆiently lose to 1 and all J ∈ J greater than some suÆ-iently large number, whih we do.We simplify the notation in what follows and write FJ = FJ;f : Put forany A > 0,EA = {(!; x) ∈ 
×X : |FJ (!; x)| 6 A}; EA;! = {x ∈ X : (!; x) ∈ EA};and let for any ! ∈ 
, x ∈ X ,FA;J (x) = FA;J;!(x) = FJ (!; x) · 1EA;!(x);FA;J(x) = FA;J;!(x) = FJ (!; x) · 1EA;!(x):



DIVERGENCE CRITERIA IN ERGODIC THEORY 107Obviously, E ∫ supn∈I Sn(FJ;f ) d� 6 E ∫ supn∈I |Sn(FA;J)| d�+E ∫ supn∈I |Sn(FA;J )| d�: (5.16)By de�nition FA;J;!( · ) (resp. FA;J;!( · )) is A-measurable. As f ∈ L∞(�),we have P{! : FA;J;!( · ) and FA;J;!( · ) ∈ L∞(�)} = 1:As maxi6n xi 6 (∑i6nx2i )1=2 for any nonnegative real numbers, by usingtwie Cauhy{Shwarz's inequality, next Fubini's inequality, we getE ∫ supn∈I |Sn(FA;J)| d� 6 E(∑n∈I ∫
|Sn(FA;J)|2 d�)1=2

6

( ∑n∈I ∫ E |Sn(FA;J)|2 d�)1=2
6

√M E ‖FA;J‖2;�: (5.17)We have to estimate ‖FA;J‖2;�. By Fubini's theorem, next Lemma 4.9(d)applied with g = FJ;f=‖FJ;f‖2;P and T = A=‖FJ;f‖2;P, it follows thatE ‖FA;J‖22;� = ∫X E |FJ;f (x)|2 · 1(|FJ;f (x)|>A) d�(x)
6 6 ∫X ‖FJ;f (x)‖22;P exp{

− A24 ‖FJ;f (x)‖22;P} d�(x):We have ‖FJ;f (x)‖22;P a:e:= 1J ∑j6J Tj(f2)(x). By assumption (C), 1J ∑j6J Tjf2onverges to 1 in L1(�), along some subsequene extrated from J , we anmake this onvergene almost everywhere too. The requirement that f ∈L∞(�), together with the dominated onvergene theorem, then impliesthat
∫X ‖FJ;f (x)‖22;P exp{

− A24 ‖FJ;f (x)‖22;P} d�(x) → exp{−A2=4};along this index.



108 M. J.G. WEBERExtrating again if neessary we obtain thatE ‖FA;J‖22;� 6 2 exp{−A2=4};along some index, whih we still denote by J . Choose now A = √8 logM .We getE ∫ supn∈I |Sn(FA;J;!)| d� 6 9√M exp{−A2=8} 6 9M−1=2: (5.18)Assume that minn;m∈In6=m ‖Sn(f)− Sm(f)‖2;� > Æ: (5.19)Using Lemma 4.9(b), we get�{x : supn∈I |Sn(FA;J;!)(x)| >
BÆ2 √logM − 9M−1=2}

> =3;
∀ ! ∈ DJ ; (5.20)for all J ∈ J . Let �I;J;! = FA;J;!A :It follows that�{x : supn∈I |Sn(�I;J;!)(x)| > ′Æ} > =3; ∀ ! ∈ DJ ; (5.21)where ′ is a positive universal onstant. Suppose that for some Æ > 0,C(Æ) = ∞. This means that we an selet sets I verifying (5.19) withardinality M as large as we wish. Butd(S∗(�I;J;!); 0) > d(supn∈I |Sn(�I;J;!); 0)

>

∫supn∈I |Sn(�I;J;!)>′Æ supn∈I |Sn(�I;J;!)|1 + supn∈I |Sn(�I;J;!)| d�
> (=3) ′Æ1 + ′Æ : (5.22)Moreover, we haveE ‖�I;J;!‖22;� 6

18 logM E ∫
|Fj;f |2 d� 6

18 logM :Hene on a subset D′J of DJ of positive measure, we have
‖�I;J;!‖∞;� 6 1; ‖�I;J;!‖2;� 6 K=√logM:



DIVERGENCE CRITERIA IN ERGODIC THEORY 109Moreover, K depend on  only. Piking ! in D′J , J varying, we deduethat S∗ annot be ontinuous at 0. Hene a ontradition with (3.2). Thisahieves the proof.5.6. Proof of Theorem 3.10. We start as in the proof of Theorem 3.3.By using exatly the same arguments for proving (5.17), we get hereE ∫ supn∈I |Sn(FA;J)| d� 6 E(∑n∈I ∫
|Sn(FA;J)|2 d�)1=2

6

( ∑n∈I ∫ E |Sn(FA;J)|2 d�)1=2
6

√MS1(I)E ‖FA;J‖2;�: (5.23)Next estimate (5.18) is modi�ed as follows. Let � > 1 be some �xed real.By extrating we obtain that E ‖FA;J‖22;� 6 � exp{−A2=4}, along someindex, still denoted J . Thus with (5.23),E ∫ supn∈I |Sn(FA;J;!)| d� 6
√MS1(I)E ‖FA;J‖2;�

6 6√�MS1(I) exp{−A2=8}: (5.24)Let Æ = min{(�−1) e−A2=4�; 1)} and Æk = Æ 2−k, k > 1. We an extratfrom J a subsequene J ∗ = {Jk; k > 1} depending on f and �, suh that�{∣∣∣
1Jk ∑j6Jk Tjf2 − 1∣∣∣ > Æk} 6 Æk; for all k > 1.Put B = {

∀ k > 1; ∣∣∣
1Jk ∑j6Jk Tjf2 − 1∣∣∣ 6 Æk}:Plainly, E ∫ supn∈I |Sn(FA;J )| d� 6 E ∫B supn∈I |Sn(FA;J )| d�+E ∫B supn∈I |Sn(FA;J )| d�: (5.25)



110 M. J.G. WEBERThe �rst integral in the right-hand side of (5.25) an be bounded for anyR > 0 by
∫B E ( supn∈I |Sn(FA;J )| 1{‖FA;J‖2;�>R}

) d�+ ∫B E ( supn∈I |Sn(FA;J)| 1{‖FA;J‖2;�6R}
) d�: (5.26)Consider the �rst integral in (5.26). The fat that Sn is ontinuous onL∞(�) and Chebyshev's inequality allow to write

∫B E( supn∈I |Sn(FA;J )| 1{‖FA;J‖2;�>R}
) d�

6 E(∥∥ supn∈I |Sn(FA;J )|∥∥∞;� · 1{‖FA;J‖2;�>R}
)

6 AS2(I)P{
‖FA;J‖2;� > R}

6 AS2(I) e−R2=4�E exp{ 14�‖FA;J‖22;�}: (5.27)
We laim that for any J ∈ J ∗,E exp{ 14�‖FA;J‖22;�} 6

√2 + �− 1: (5.28)Admit this for a while. We get
∫B E( supn∈I |Sn(FA;J )| 1{‖FA;J‖2;�>R}

) d�
6 AS2(I) e−R2=4�(√2 + �− 1): (5.29)Now we prove (5.28). Let a = 14� . At �rst by using Jensen's inequality,E exp{a ‖FA;J‖22;�} = E exp{a ∫X F 2A;J d�}

6 E ∫X exp{aF 2A;J} d�
6 E ∫B exp{aF 2A;J} d�+ eaA2�(B�):



DIVERGENCE CRITERIA IN ERGODIC THEORY 111Next on B, we have 1J ∑j6J Tjf2 6 1 + Æ < �, so that1− 2 a( 1J ∑j6J Tjf2) > 1− 2 a� = 12 for all J ∈ J ∗.As E ebg2 = 1√1−2b if 0 6 b < 12 , we get
∫B E exp{aF 2A;J} d� 6

∫B E exp{aF 2J} d�= ∫B d�√1− 2 a ( 1J ∑j6J Tjf2) 6
√2:Hene for any J ∈ J ∗,E exp{a ‖FA;J‖22;�} 6

√2 + eaA2�(B) 6
√2 + Æ eA2a 6

√2 + �− 1:For the seond integral in (5.26), we have the straightforward bound
∫B E ( supn∈I |Sn(FA;J )| 1{‖FA;J‖2;�6R}

) d�
6 A sup

‖h‖∞;�61
‖h‖2;�6R=A ∫X supn∈I |Sn(h)| d�: (5.30)By substituting estimates (5.29), (5.30) into (5.26), we an bound the �rstintegral in the right-term of (5.25) as follows,E ∫B supn∈I |Sn(FA;J)| d� 6 AS2(I) e−R2=4�(√2 + �− 1)+A sup

‖h‖∞;�61
‖h‖2;�6R=A ∫X supn∈I |Sn(h)| d�: (5.31)Consider the seond integral in the right-term of (5.25). We use Cauhy-Shwarz's inequality and the fats that �(B) 6 Æ,E ‖FA;J‖2;� 6 E ‖FJ‖2;� 6 1;



112 M. J.G. WEBERto getE ∫B supn∈I |Sn(FA;J )| d� 6
√�(B)E ∥∥ supn∈I |Sn(FA;J )|∥∥2;�

6
√Æ√M S1(I)E ‖FA;J‖2;�

6
√�− 1 e−A2=8�√M S1(I): (5.32)By inserting estimates (5.31), (5.32) into (5.25), we next arrive toE ∫ supn∈I |Sn(FA;J )| d� 6 AS2(I) e−R2=4�(√2 + �− 1)+A sup

‖h‖∞;�61
‖h‖2;�6R=A ∫X supn∈I |Sn(h)| d�+√�− 1 e−A2=8�√M S1(I): (5.33)Now we insert (5.24), (5.33) into (5.14), and next use estimate (5.18).Piking J arbitrarily in J ∗, we get E supn∈I Z(Sn(f))

6 6√�M S1(I) exp{−A2=8}+AS2(I) e−R2=4�(√2 + �− 1)+ A sup
‖h‖∞;�61

‖h‖2;�6R=A ∫X supn∈I |Sn(h)| d�+√�− 1 e−A2=8�√M S1(I) : (5.34)But � > 1 and  an be hosen arbitrarily lose to 1. We �nally obtain,E supn∈I Z(Sn(f)) 6 6√M S1(I) exp{−A2=8}+A (√2)S2(I) e−R2=4+A sup
‖h‖∞;�61

‖h‖2;�6R=A ∫X supn∈I |Sn(h)| d�: (5.35)This last inequality being satis�ed for any f ∈ L∞(�) suh that ‖f‖2;� = 1,we easily dedue the laimed result by ontinuity in quadrati mean of Z.
§6. Kakutani{Rohlin's lemmaWe onlude with this extremely useful tool in ergodi theory.Lemma 6.1. If T is aperiodi, then for every " > 0 and for every n >1 there exists F ∈ A suh that the sets F , T−1(F ); : : : ; T−(n−1)(F ) aremutually disjoint, and suh that we have,�(F ∪ T−1(F ) ∪ · · · ∪ T−(n−1)(F )) > 1− ":



DIVERGENCE CRITERIA IN ERGODIC THEORY 113Any set F ∈ A satisfying the onlusions of Lemma 6.1 is alled an("; n)-Kakutani{Rohlin set.We illustrate its usefulness by establishing two divergene riteria forergodi summation methods. The proof is based on an argument due toDeniel (see [7℄). Let {wn;k; 1 6 k 6 n; n > 1} be a triangular array ofnonnegative reals, and set Wn = n∑k=1wn;k, n > 1. Consider an automor-phism � from a probability spae (X;A; �). Put for f ∈ L0(�),Tnf(x) = 1Wn n∑h=1wn;h f(�hx):Theorem 6.2. Let ' : N → N be suh that limn→∞ '(n) = ∞. Assumethat there exist � > 0, an in�nite sequene N of integers suh that for anyn ∈ N min'(n)6j6n−'(n)( 1Wn−j n−j−1∑k=n−j−'(n)wn−j;k) > �; (6.1)and further that the series ∑n∈N
'(n)=n onverges. Let 0 < � < �. Thenthere exists B ∈ A with 0 < �(B) 6 � suh that lim sup

N∋n→∞
Tn �B > � almostsurely.Remark 6.3. Suppose there exists a ountable dense lass D of funtionsfrom L1(�) suh that {Tnf; n ∈ N} onverges almost everywhere to ∫ f d�for any f ∈ D. Then if ondition (6.1) is satis�ed, there is no maximalinequality for the sequene {Tn; n ∈ N}. Indeed, otherwise by the Banahpriniple, we would have that {Tnf; n ∈ N} onverges almost everywhereto ∫ fd� for any f ∈ L1(�). Taking f = �B where B is in the propositionabove provides a ontradition.Now let {wk; k > 1} be a sequene of non-negative reals and onsiderthe ergodi sums Anf(x) = n∑h=1wh f(�hx):Theorem 6.4. Let ' : N → N be suh that limn→∞ '(n) = ∞. Assumethat there exist � > 0, an in�nite sequene N of integers suh that for any



114 M. J.G. WEBERn ∈ N �n := min16h6n−'(n)( h+'(n)∑k=h wk) → ∞; (6.2)as n → ∞ along N , and further that the series ∑n∈N
'(n)=n onverges.Let 0 < � < �. Then there exists B ∈ A with 0 < �(B) 6 � suh thatlim sup

N∋n→∞
An (�B) = ∞ almost surely.Proof of Theorem 6.2. There is no loss of generality to assume

∑n∈N
'(n)=n 6 �:By Rohlin's lemma, for any " > 0, any integer N , there exists A ∈ A suhthat A, TA; : : : ; TN−1A, are pairwise disjoint and 1− " 6 N�(A) 6 1. Byapplying it for N = n, " = '(n)=n, we obtain that for eah n ∈ N , thereexists An ∈ A suh that An; � An; : : : ; �n−1An are mutually disjoint and�( n−1∑u=0 �uAn) = n�(An) > 1− '(n)=n. LetBn = ∑n−'(n)6u<n �uAn; Dn = ∑'(n)6j<n−'(n) � jAn:Then we have�(Bn) 6 '(n)�(An) 6

'(n)n ;�(Dn) >
n− 2'(n)n (1− '(n)n )

>

(1− 2 '(n)n )2
> 1− 4 '(n)n :Now let 0 6 ` < n−'(n). As � `x ∈ Bn i� x ∈ �u−`An for some n−'(n) 6u < n, we an write�Bn(� `x) = ∑n−'(n)6u<n �{�u−`An}(x) = ∑n−'(n)−`6v<n−` �{�vAn}(x):Let ` = n− '(n)− � with 1 6 � < n− '(n). We have�Bn(�n−'(n)−�x) = ∑�6v<�+'(n) �{�vAn}(x):As '(n)=n → 0 when n → ∞ along N , we have 2'(n) 6 n one n is large.Fix some '(n) 6 j < n− '(n) and pik x ∈ � jAn. If we hoose � so that� 6 j < � + '(n), by letting v = j in the equation above we see that�n−'(n)−�x ∈ Bn.
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{j − '(n) + 1; j − '(n) + 2; : : : ; j} imply�n−'(n)−�x ∈ Bn:Consequently, if x ∈ � jAnTn−j�Bn(x) = n−j∑k=1wn−j;n−j−k �Bn(�n−j−kx)

>

'(n)∑k=1 wn−j;n−j−k �Bn(�n−j−kx)(k = '(n) + �− j) = j∑�=j−'(n)+1wn−j;n−'(n)−� �Bn(�n−'(n)−�x)= j∑�=j−'(n)+1wn−j;n−'(n)−� = '(n)∑k=1 wn−j;n−j−k :
(6.3)

By the assumption made,1Wn−j '(n)∑k=1 wn−j;n−j−k
> min'(n)6j6n−'(n)( 1Wn−j '(n)∑k=1 wn−j;n−j−k) > �: (6.4)Note that n− j > '(n). Thus on Dn,supm>'(n) Tm(�Bn) > �:Set E = ⋃n∈N

Bn; FN = ⋂n∈Nn>N Dn:We observe that �(FN ) > 1− 4 ∑n∈Nn>N '(n)=n → 1 as N → ∞. Thus on FN ,lim sup
N∋n→∞

Tn(�E) > �: (6.5)Further �(E) 6
∑n∈N

'(n)=n < �. This establishes Theorem 6.2. �



116 M. J.G. WEBERProof of Theorem 6.4. We start with (6.3) whih here beomesAn−j�Bn(x) >

'(n)∑k=1 wn−j−k ;and next modify the previous proof as follows:'(n)∑k=1 wn−j−k > min'(n)6j6n−'(n)( '(n)∑k=1 wn−j−k)
> min16h6n−'(n)( h+'(n)∑k=h wk) = �n:Thus supm>'(n) Am(�Bn) > �n on Dn. Therefore on FN ,lim sup
N∋n→∞

Tn�E = ∞:Further �(E) 6
∑n∈N
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