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t. In this expository paper, we survey nowadays 
lassi-
al tools or 
riteria used in problems of 
onvergen
e everywhereto build 
ounterexamples: the Stein 
ontinuity prin
iple, Bourgain'sentropy 
riteria and Kakutani{Ro
hlin lemma, most 
lassi
al devi
efor these questions in ergodi
 theory. First, we state a L1-version ofthe 
ontinuity prin
iple and give an example of its usefulness by ap-plying it to some famous problem on divergen
e almost everywhereof Fourier series. Next we parti
ularly fo
us on entropy 
riteria inLp, 2 6 p 6 ∞, and provide detailed proofs. We also study thelink between the asso
iated maximal operators and the 
anoni
alGaussian pro
ess on L2. We further study the 
orresponding 
rite-rion in Lp, 1 < p < 2, using properties of p-stable pro
esses. Finallywe 
onsider Kakutani{Ro
hlin's lemma, one of the most frequentlyused tool in ergodi
 theory, by stating and proving a 
riterion fora.e. divergen
e of weighted ergodi
 averages.
§1. Introdu
tion.This is an expository paper on 
riteria of divergen
e almost everywherein ergodi
 theory, and mainly Bourgain's entropy 
riteria in Lp, 2 6 p 6 ∞.The paper is written in a self-
ontained and informative way: tools neededare presented, with (expe
ted to be) helpful and sometimes histori
al 
om-ments, auxiliary results are in
luded, as well as detailed and 
areful proofsof main theorems. The preparation of this paper is thus made in orderto be also an eÆ
ient tool for investigating these questions. This is infa
t our main obje
tive. We do not study nor present appli
ations. Werefer for these to Bourgain [1{3℄. We also refer to Rosenblatt and Wierdlmonograph [26℄, to our monograph [33℄ devoted to the study of these 
ri-teria and to Chapters 5 and 6 of our book [32℄ where appli
ations of theStein 
ontinuity prin
iple are also studied. We further refer to La
ey [18℄,Key words and phrases: Bourgain's entropy 
riteria, Stein's 
ontinuity prin
iple,Gaussian pro
ess, stable pro
ess, metri
 entropy, GB set, GC set, Kakutani{Ro
hlinlemma. 73



74 M. J.G. WEBERLesigne [20℄, Berkes and Weber [6℄ notably for other appli
ations. In writ-ing the present paper, we referred to Chapter 6 of [32℄. We were able toimprove and simplify some proofs and also 
omplete it by new results. Theentropy 
riterion in Lp, 1 < p < 2, obtained in Weber [38℄ is stated andproved under a less restri
tive 
ommutation assumption, and we in
ludedthe ne
essary material from the theory of �-stable pro
esses (here � = p)for the proof. The metri
 entropy method (�rst introdu
ed by Strassen inthe theory of Gaussian pro
esses, see [8℄) is brie
y and 
on
isely presentedfor the need of the study.The paper is organized as follows. In Se
tion 2, we start with whatis 
ertainly, by the probabilisti
 argument used in its proof, the basis ofeverything: the Stein 
ontinuity prin
iple. A less known aspe
t of thisprin
iple is that it is also a tool for produ
ing 
ounterexamples to almosteverywhere questions. That point is developed in this Se
tion. Next, Se
-tion 3 is the 
entral part of the paper and 
on
erns Bourgain's entropy
riteria and extensions of them. In Se
tion 4, we present auxiliary results
on
erning Lp-isometries, stable random variables and pro
esses, variantsof Bana
h prin
iple, a metri
 
omparison lemma and basi
 Gaussian tools.Se
tion 5 is 
ompletely devoted to proofs of the results stated in Se
tion 3.We 
on
lude the paper with Kakutani{Ro
hlin lemma, one of the most
lassi
al devi
es in ergodi
 theory. There are many appli
ations of this re-sult, also 
alled Kakutani{Ro
hlin towers' lemma. We refer to Rosenblattand Wierdl monograph [26℄. We illustrate it by stating and proving a 
ri-terion for a.e. divergen
e of weighted ergodi
 averages, based on Deniel's
onstru
tion [7℄.
§2. The Continuity Prin
iple.Let (X;A; �) be a probability spa
e with a �-
omplete �-�eld A.Throughout the paper S denotes, unless expli
itly mentioned, a sequen
eof 
ontinuous operators Sn : L2(�) → L2(�), n > 1. Re
all some basi
fa
ts. Let 1 6 p 6 ∞. By the Bana
h prin
iple, the set

F(S) = {f ∈ Lp(�) : {Snf; n > 1} 
onverges �-almost everywhere}is 
losed in Lp(�) if and only if:There exists a non-in
reasing fun
tion C : R+ → R+ with lim�→∞
C(�)=0,and su
h that for any � > 0 and any f ∈ Lp(�),�{S∗f > �‖f‖p} 6 C(�) where S∗f = supn>1 |Snf |:
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e S 
ommutes with a sequen
e {�j ; j > 1} of measurabletransformations of X preserving � and mixing in the following sense:
∀ A;B ∈ A; ∀ � > 1; ∃ j > 1: �(A ∩ �−1j B) 6 ��(A)�(B); (H)and 1 6 p 6 2, then by the 
ontinuity prin
iple C(�) = O(�−p).This is ful�lled if S 
ommutes with an ergodi
 endomorphism of (X;A;�).So that the study of the 
onvergen
e almost everywhere of the sequen
eS amounts, under appropriate 
ommutation assumptions, to establish amaximal inequality and to exhibit a dense subset of Lp(�) for whi
h the
onvergen
e almost everywhere already holds.Before stating the Continuity Prin
iple, re
all that the topology of 
on-vergen
e in measure on L0(�) (gn �→ g if � {|gn − g| > "} → 0, for any" > 0) is metrizable and, endowed with the metri
 d(f; g) = ∫X |f−g|1+|f−g| d�,(L0(�); d) is a 
omplete metri
 spa
e. A mapping V from a Bana
h spa
eB to L0(�) is said to be 
ontinuous in measure or d-
ontinuous, if forany sequen
e (f; fn; n > 1) ⊂ B, we have d(Sfn; Sf) → 0 whenever

‖fn − f‖ → 0.Theorem 2.1. Suppose that {Sn; n > 1} is a sequen
e of operators,Sn : Lp(�) → L0(�), 1 6 p 6 2, whi
h are 
ontinuous in measure andsatisfy the 
ommutation assumption (H). Then the following propertiesare equivalent:(i) ∀ f ∈ Lp(�); �{x : S∗f(x) < ∞} = 1:(ii) ∃ 0 < C <∞ : ∀ f ∈ Lp(�);sup�>0 �p �{x : S∗f(x) > �} 6 C ∫X |f |p d�:Remark 2.2. If p > 2, the same 
on
lusion holds for positive operators(Snf > 0, if f > 0). This was proved later by Sawyer in [27℄.The proof 
ombines quite subtely and remarkably, analysis and proba-bility. The 
ommutation property of the operators Sn is 
ru
ial, and makesthe proof possible. Earlier, Kolmogorov used already in [13℄ the fa
t thatthe operatorsHnf(x) = ∫

|t|>1=n f(x− t)dtt ; f ∈ L1lo
(R)



76 M. J.G. WEBERall 
ommute with translations to prove the similar inequality: letH∗f(x) =sup{|Hnf(x)|; n > 1}, thensup�>0 �m{x : H∗f(x) > �} 6 C ∫

R

|f(x)| dx;m denoting here the Lebesgue measure on R. The setting 
onsidered in[29℄ is group theoreti
: 
 is a 
ommutative 
ompa
t group, � is the Haarmeasure and Sn are 
ommuting with translations. Sawyer [27℄ showed thatthis setting is not ne
essary and that a general prin
iple 
an be derivedunder the above assumptions. We refer to the ni
e monograph of Garsia[10℄.The Continuity Prin
iple is not only a tool for studying integrability ofmaximal operators S∗f , but also a devi
e for produ
ing 
ounterexamplesin problems of 
onvergen
e almost everywhere. This was already observedand studied by Stein [29℄, but also by Burkholder [5℄ and Sawyer [27℄. In[29℄, Stein has established other forms of this prin
iple with quite strikingappli
ations, proving notably negative 
onvergen
e results. One of theseappli
ations 
on
erns a deep result of Kolmogorov [14, 15℄ showing theexisten
e of an integrable fun
tion whose Fourier series diverges almosteverywhere. The proof is known to be very diÆ
ult. Using a suitable formof his prin
iple for the spa
e L1(�), Stein 
ould re�ne and also provide asimpler proof of Kolmogorov's result. Convergen
e 
riteria for this spa
eare not frequent, and reveal 
ru
ial in many deep questions. We re
all itnow.We assume here that X is a 
ommutative 
ompa
t group and denoteby \+" the group operation. Let � be the unique invariant measure, theHaar measure on X . Let C(X) be the spa
e of 
ontinuous fun
tions on X ,with the supremum norm, and B(X) be the spa
e of �nite Borel measureson X with the usual norm. Let {Sn; n > 1} be a sequen
e of operators.We assume:(a) Ea
h Sn is a bounded operator from L1(�) to C(X).(b) Ea
h Sn 
ommutes with translations.By Riesz's representation of bounded linear fun
tionals on L1(�), 
on-ditions (a) and (b) are equivalent with(
) Snf(x) = ∫X Kn(x− y) f(y)�(dy), where K ∈ L∞(X).
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h an operator has a natural extension to a bounded operator from B(X)to L∞(�), whi
h we again denote by Sn. Noti
e that this extension still
ommutes with translations. Similarly, we also write S∗� = supn∈N
|Sn�|.Theorem 2.3. Under assumptions (a) and (b), the following assertionsare equivalent:

∀ f ∈ L1(�); �{x : S∗f(x) < ∞} = 1; (2.1)
∃0 < C <∞ : ∀� ∈ B(X); sup�>0��{x : S∗�(x) > � ∫X |d�|} 6 C: (2.2)To give an idea of its strength, let us show how to re
over Kolmogorov'stheorem. Introdu
e the ne
essary notation. We denote throughout thisarti
le by T the 
ir
le R=Z ∼ [0; 1[.Take X = T and let � be the normalized Lebesgue measure on T. LetSn(f) denote here the partial sum of order n of the Fourier series of f ,and more generally let Sn(�) be the partial sum of order n of the Fourier{Stieltjes expansion of a Borel measure �. Re
all that for any integrable f ,Snf(x)− Smf(x) = O(log(1 + |m− n|)); m; n → ∞;almost everywhere. Stein proved the following re�nement:Theorem 2.4. Let '(n) > 0 be any fun
tion tending to zero as n tends toin�nity. Then there exists an integrable fun
tion f(x) su
h that the morerestri
tive propertySn(f)(x) − Sm(f)(x) = O('(|m− n|) log(1 + |m− n|)) (2.3)is false for almost every x.This of 
ourse implies Kolmogorov's theorem. For the proof, 
onsiderfor n 6= m the family of operators�(m;n)f = Sn(f)− Sm(f)'(|m− n|) log(1 + |m− n|) :These operators satisfy 
onditions (a) and (b) of Theorem 2.3. A lemmais ne
essary.Lemma 2.5. There exists an absolute 
onstant C su
h that for any inte-ger k, there exists a measure � on T with ∫

T

|d�| = 1 andsupn;m:|n−m|=k ∣∣Sn(�)− Sm(�)∣∣ > C log k almost surely:



78 M. J.G. WEBERProof. Let x1; : : : ; xN be some points of T to be spe
i�ed later, and set� = 1N N∑i=1 Æxi , where Æx denotes the Dira
 measure at point x. Then
∫
T

|d�| = 1. Plainly,Sn(�)(x) − Sm(�)(x)= 2N N∑i=1 
os�(n+m+ 1)(x− xi) sin�(n−m)(x− xi)sin�(x − xj) :Write k = n −m, ` = n+m+ 1. Assume that k is odd. Then ` must beeven, but this is the only restri
tion on `. We 
hoose the xi to be linearlyindependent over Q, and su
h that they are very 
lose to i=N . It is easilyseen then, that for almost every x, the x−xi are linearly independent over
Q. Choosing ` large enough, depending on x, we havesupn;m:|n−m|=k |Sn(�)(x) − Sm(�)(x)| = 2N N∑i=1 | sin�k(x − xi)|

| sin�(x− xj)| :The fa
t that xi are very 
lose to i=N and N is large enough, shows thatthe sum on the right is 
lose to its integral 
ounterpart, and so ex
eedshalf of its value. Therefore,supn;m:|n−m|=k |Sn(�)(x) − Sm(�)(x)| >
12 ∫

T

| sin�k(x− y)|
| sin�(x− y)| dy > C log k;as 
laimed. �Now we prove Theorem 2.4. Suppose on the 
ontrary that property (2.3)were true with positive probability, and this for any f ∈ L1(T). Let � be anirrational rotation of T, thereby an ergodi
 measure preserving transfor-mation. Note that if A = { supn6=m |�(m;n)f | < ∞

}, then �−1(A) ⊂ A. ByBirkho�'s theorem, this suÆ
es to imply that �(A) = 1. So that the op-erators �(m;n)f would satisfy 
ondition (2.1). Consequently, the maximaloperator � 7→ �∗(�) := supn6=m ∣∣∣∣
Sn(�)(x) − Sm(�)(x)'(|m− n|) log(1 + |m− n|) ∣∣∣∣



DIVERGENCE CRITERIA IN ERGODIC THEORY 79would satisfy (2.2). Therefore this would imply the existen
e of a 
onstantC0 su
h that for any � ∈ B(M) with ∫
T

|d�| = 1, and any t > 0, t�{x :�∗�(x) > t} 6 C0.Let k be a positive integer, whi
h we 
hoose suÆ
iently large to ensurethat log k > (2C0)=C, where C is the same 
onstant as in Lemma 2.5.Apply this for t = (C log k)=2; then,�{x : �∗�(x) > C2 log k} 6
2C0C log k < 1:By Lemma 2.5, there exists � ∈ B(M) with ∫

T

|d�| = 1 su
h that�∗� > C log k almost surely. Hen
e a 
ontradi
tion and 
ondition (2.1)
annot hold. Therefore there exists an integrable fun
tion su
h that prop-erty (2.3) is false for almost every x.For re
ent results related to Kolmogorov's theorem, see La
ey's veryni
e paper [17℄, Se
tion 9.3. We refer to [29℄ (see also [32, Chapter 5℄) forseveral other appli
ations of this kind.To f ∈ L2(�), asso
iate the sequen
e in whi
h we set Tjf = f ◦ �j ,FJ;f = 1√J ∑16j6J gjTjf; (J > 1); (2.4)where g1; g2; : : : are i.i.d. standard Gaussian random variables, de�ned ona 
ommon joint probability spa
e (
;B;P).These random elements (with Radema
her weights instead of Gauss-ian's) are key tools in Stein's proof. The same elements (sometimes withstable weights) are also playing a 
entral role in Bourgain's entropy 
rite-ria and extensions obtained by the author. The notation used in (2.4) willbe later formalized to in
lude these 
ases, see (4.4). Lifshits and Weberstudied in [21, 22℄ and [35℄ their os
illations properties and the tightnessproperties of their laws.The Continuity Prin
iple is established in an indire
t way in [29℄. Adire
t proof with Gaussian weights (as in the proofs of Bourgain's entropy
riteria) was given in [32℄.We 
lose this se
tion with an interesting and somehow intriguing obser-vation. The key point of the proof is 
ontained in the following inequality



80 M. J.G. WEBER(see [32, p. 211{212℄)n�{S∗(f) > M(1 + n)1=p} − 2n�{S∗(f) > M(1 + n)1=p} 6 8E�{S∗(Fn;f ) > 
M}; (2.5)whi
h holds for any M > 0, any integer n > 2, and 
 is a numeri
al
onstant. Now by simply permuting the order of integration, we getn�{S∗(f) > M(1 + n)1=p} − 2n�{S∗(f) > M(1 + n)1=p} 6 8 ∫X P{S∗(Fn;f ) > 
M} d�; (2.6)where this time, S∗(f) is 
ontrolled by its random 
ounterpart of S∗(Fn;f )for an appropriate 
hoi
e of the integer n. Therefore a good 
ontrol of therandom 
ounterpart also provides a good 
ontrol of the initial sequen
e.Notation. We reserve the letter g to denote throughout an N (0; 1)distributed random variable. An index or a sub-index always denotes anin�nite in
reasing sequen
e of positive integers.
§3. Metri
 Entropy CriteriaUsing the theory of Gaussian pro
esses, Bourgain has established in [2℄two very useful 
riteria linking the regularity properties (boundedness,
onvergen
e almost everywhere) of the sequen
e S with the metri
 entropyproperties of the sets Cf below.The 
on
ept of entropy numbers (namely 
overing numbers) asso
iatedwith a metri
 spa
e is old; it was invented by Kolmogorov as a devi
efor 
lassifying fun
tional spa
es. See Kolmogorov [13℄, Kolmogorov andTikhomirov [16℄, Lorentz [23℄. In many situations, these numbers are 
om-putable (typi
al examples of sets are ellipsoids, see [9℄); hen
e their inter-est. Re
all that any 
ompa
t set in a separable Hilbert spa
e is in
ludedin some ellipsoid, see Raimi [25℄ and for relations between their entropynumbers, see Helemski�� and Henkin [11℄.Bourgain also showed, by means of imaginative 
onstru
tions, how toapply these 
riteria to several analysis problems, among them Marstrand'sdisproof of Khint
hin's Conje
ture, a problem posed by Bellow and a ques-tion raised by Erd�os. This is a quite striking a
hievement, whi
h adds anew 
hapter to Stein's Continuity Prin
iple. We believe that Bourgain'sapproa
h goes beyond the setting explored in [1{3℄ and should deservefurther investigations. The author has obtained in [6, 33, 38℄ extensions
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riteria and applied them to similar questions. He further stud-ied in [34, 36, 37℄ the geometry of the sets Cf de�ned in (3.1), as well asand their natural extension C(A) = {Sn(f); n > 1; f ∈ A}, in whi
h A isan arbitrary subset of L2(�). We also refer to Talagrand [31℄ where thisquestion was investigated in a larger 
ontext.Introdu
e the following 
ommutation 
ondition:(C) There exists a sequen
e {Tj ; j > 1} of L1(�) positive isometries,su
h that Tj1 = 1, 
ommuting with S, Sn(Tjf) = Tj(Snf), and su
h thatfor any f ∈ L1(�), limJ→∞

∥∥∥
1J ∑j6J Tjf −

∫ f d�∥∥∥1;� = 0:Set for any f ∈ L2(�), Cf = {Sn(f); n > 1} : (3.1)Consider for 2 6 p 6 ∞, the following 
onvergen
e property(Cp) �{
{Sn(f); n > 1} 
onverges} = 1; for all f ∈ Lp(�).Bourgain's �rst 
riterion [2, Proposition 1℄ shows that if (Cp) holds forsome 2 6 p <∞, the sets Cf 
annot be too large. More pre
isely,Theorem 3.1. Let S be a sequen
e of L2(�) 
ontra
tions satisfying 
on-dition (C). Assume that (Cp) holds for some 2 6 p < ∞. Then there existsa numeri
al 
onstant C0 su
h that for any f ∈ Lp(�),sup">0 "√logNf (") 6 C0‖f‖2;where for any " > 0, Nf (") denotes the minimal number of L2(�) openballs of radius ", 
entered in Cf and enough to 
over Cf .Remark 3.2. By using 
overing properties of ellipsoids, one 
an show thatthe above entropy estimate is optimal for 
onvolutions on the 
ir
le; andthus admits no improvement. See [33, p. 47℄. However, it 
an be far fromoptimal on typi
al examples. Let Snf = 1n ∑j6nT jf , where T is some mea-sure preserving transformation on (X;A; �). By a theorem of TalagrandNf (") 6 Cmax(1; ‖f‖22;�="2), 0 < " 6 ‖f‖2;�, where C is an absolute
onstant. See [31℄, [32, Theorem 1.4.1℄.Bourgain's se
ond 
riterion [2, Proposition 2℄ states as follows.



82 M. J.G. WEBERTheorem 3.3. Let S be a sequen
e of L2(�) 
ontra
tions satisfying 
on-dition (C). Assume that (C∞) is ful�lled. Then for any real Æ > 0,C(Æ) = supf∈L∞(�); ‖f‖261Nf (Æ) < ∞:A starting point of the proof is a version (see [2, (9)℄) of the Bana
hprin
iple for L∞(�), namely the fa
t that the 
onvergen
e property (C∞)implies that sup
‖f‖∞;�61;‖f‖2;�6" ∫X S∗f1 + S∗f d� → 0; as " → 0: (3.2)This result was established few after by Bellow and Jones in [4℄. The proofis however lenghty and indire
t. It is possible to provide a dire
t andshort proof, similar to the one of the standard Bana
h prin
iple, see [32,Theorem 5.1.5℄.Note that the integrability of S∗f , whi
h is required in (3.2), is notensured by the assumption made in Theorem 3.3. This is for instan
eguaranteed when Sn are L2(�)-L∞(�) 
ontra
tions, whi
h is the 
ase ofall appli
ations given in [2℄. Moreover, Bourgain's proof runs with no mod-i�
ation using (3.2) at the 
on
lusion.Given a separable Hilbert spa
e H , re
all that the 
anoni
al Gaussian(also 
alled isonormal) pro
ess Z = {Zh; h ∈ H} on H is the 
enteredGaussian pro
ess with 
ovarian
e fun
tion�(h; h′) = 〈h; h′〉; h; h′ ∈ H:Let {hn; n > 1} be a 
ountable orthonormal basis of H . Let also {gn; n >1} be a sequen
e of i.i.d. N (0; 1) distributed random variables on a basi
probability spa
e (
;A;P). Then Z 
an be de�ned as follows: for anyh ∈ H , Zh = ∞∑n=1 gn〈h; hn〉:A subset A of H is a GB set (for Gaussian bounded) if the restri
tionof Z on A possesses a version whi
h is sample bounded. Further, A is aGC set (for Gaussian 
ontinuous) if the restri
tion of Z on A possesses aversion whi
h is sample ‖ · ‖-
ontinuous. These notions were introdu
ed inDudley [9℄.
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ountable subset A of H is a GB set if E suph∈A |Z(h)| < ∞, orequivalently E suph∈A Z(h) <∞, sin
e as is well-known,E suph∈AZ(h) 6 E suph∈A |Z(h)| 6 2E suph∈AZ(h) + infh0∈AE |Z(h0)|:Under assumptions of Theorem 3.1, Bourgain has also shown that thesets Cf are GB sets. Some remarks are in order. It is not ne
essary toassume that Sn are L2(�)-
ontra
tions. Moreover, the 
on
lusion remainstrue under a weaker 
ondition than (Cp). Theorem 3.1 
an be reformulatedas follows.Theorem 3.4. Let S be satisfying assumption (C). Assume that for some2 6 p <∞,(Bp) �{ supn>1 |Sn(f)| <∞
} = 1; for all f ∈ Lp(�):Then for any f ∈ Lp(�), the sets Cf are GB sets of L2(�). Further thereexists a numeri
al 
onstant C1 and a 
onstant C2 su
h that for any f ∈Lp(�), C1 sup">0 "√logNf (") 6 E supn>1 Z(Sn(f)) 6 C2 ‖f‖2;�:The use of the fa
t that if N(X) is a Gaussian semi-norm, thenP{N(X) 6 s} > 0 ⇒ EN(X) 6

4sP{N(X) 6 s} ; (3.3)slightly simpli�es the proof, whi
h otherwise is very similar ([32℄).Remark 3.5. One 
an naturally wonder whether property (Cp) analo-gously implies that the sets Cf are GC sets. This question was investi-gated in [33, § 5.2.2℄, where in Theorem 5.2.4 it is shown that the answeris positive when X = T and Sn are 
ommuting with rotations.Note before 
ontinuing that when ∫X S∗f d� is �nite, no expli
it linkwith E supn>1 Z(Sn(f))
an be drawn from Theorem 3.4. In Theorem 3.6 below, this is established.A general inequality valid for arbitrary partial maxima, 
an be dire
tlyindeed derived from 
ondition (C) only. Before, we add further 
omments.First, say a few words on the way the 
ommutation 
ondition (C) links



84 M. J.G. WEBERZ and S. This explains easily. Let f ∈ L2(�) and let I be a �nite set ofintegers. Then one derives from (C), that there exists an index J su
hthat the two-sided inequalities12‖Sn(f)− Sm(f)‖2;� 6 ‖Sn(FJ;f )− Sm(FJ;f )(x)‖2;P
6 2‖Sn(f)− Sm(f)‖2;�;hold true for all n;m ∈ I and all J ∈ J , and for all x in a measur-able set of positive measure. See Lemma 4.6. Theorem 3.1 is obtained as astraightforward appli
ation of the Bana
h prin
iple, and Slepian's inequal-ity 
ombined with Sudakov's minoration (Lemma 4.9).Bourgain essentially applied Theorem 3.3, and this in the 
ase X = T,and Tj are translation or dilation operators. The 
ounter-examples arebuilt on fun
tions of the typef = 1√#(F ) ∑n∈F en (en(x) = e2i�nx);where F are spe
i�
 arithmeti
 sets. These elements, as well as all Tjf ,j > 1, not only belong to Lp(�) but also to many more spe
i�
 spa
es. Sothat for Bana
h spa
es B su
h that B ⊂ L2(�), a requirement on f ∈ Blike Tjf ∈ B; j > 1;is frequently non void. Call R(B) the set of these elements. Then FJ;f ∈ Bwhenever f ∈ R(B). If B = Lp(�) for instan
e, then by Corollary 4.3 andLemma 4.4, R(B) = B.Theorem 3.6. Let S be satisfying 
ondition (C). Let additionally I be a�nite set of integers and 0 < " < 1. Then there exists a partial index J su
hthat for any J ∈ J , any positive in
reasing 
onvex fun
tion G : R+ → R+,the following are true:(i) Let B ⊂ L2(�) be a Bana
h spa
e with norm ‖ · ‖B. For any f ∈ R(B),

√1− " E supn∈I Z(Sn(f)) 6 E ‖FJ;f‖B sup
‖h‖B61 ∫ supn∈I |Sn(h)| d�:



DIVERGENCE CRITERIA IN ERGODIC THEORY 85Moreover,EG(√1− " supn;m∈I ∣∣Z(Sn(f))− Z(Sm(f))∣∣)
6 E ‖FJ;f‖B sup

‖h‖B61 E ∫X G( supn;m∈I ∣∣(Sn − Sm)(h)∣∣) d�:(ii) In parti
ular, for any f ∈ Lp(�) with 2 6 p < ∞,
√1− " sup

‖f‖2;�61 E supn∈I Z(Sn(f)) 6 Cp sup
‖h‖p;�61 ∫ supn∈I |Sn(h)| d�;where Cp = ‖g‖p=‖g‖2, re
alling the notation used. Furthersup

‖f‖2;�61 EG(√1− " supn;m∈I ∣∣Z(Sn(f))− Z(Sm(f))∣∣)
6 Cp sup

‖h‖p;�61 E ∫X G( supn;m∈I ∣∣(Sn − Sm)(h)∣∣) d�:We have the following 
riterion providing a general form of Theorem 3.4.Theorem 3.7. Let S be satisfying assumption (C). Let B ⊂ L2(�) bea Bana
h spa
e with norm ‖ · ‖B. Assume that the following property isful�lled: �{ supn>1 |Sn(f)| < ∞
} = 1; ∀ f ∈ B:Then there exists a 
onstant K depending on S and B only su
h thatE supn>1 Z(Sn(f)) 6 K lim supH→∞
E ‖FH;f‖B ; ∀ f ∈ R(B):Let us derive a 
riterion whi
h has been re
ently applied in [6℄ toshow the optimality of a famous theorem of Koksma. Let {hn; n ∈ Z}be a 
ountable orthonormal basis of L2(�) and use the notation f ∼∑n∈Z

an(f)hn, ∑n∈Z

a2n(f) < ∞, if f ∈ L2(�). Given a sequen
e of posi-tive reals w = {wn; n ∈ Z} with wn > 1, we re
all that L2w(�) is thesub-spa
e of L2(�) 
onsisting of fun
tions su
h that
∑n∈Z

wn a2n(f) < ∞:
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e with s
alar produ
t de�ned by
〈f; h〉 = ∑n∈Z

wn an(f) an(h);and norm
‖f‖2;w = ( ∑n∈Z

wn a2n(f))1=2:The spa
e L2(�) 
orresponds to the 
ase wn ≡ 1. Moreover, L2w(�) trivially
ontains any f su
h that an(f) = 0 ex
ept for �nitely many n.Corollary 3.8. Let S be satisfying assumption (C). Assume that the fol-lowing property is ful�lled:�{ supn>1 |Sn(f)| <∞
} = 1; for all f ∈ L2w(�):Then there exists a 
onstant K depending on S and w only su
h thatsup">0 "√logNf (") 6 K lim supJ→∞
E ‖FJ;f‖2;w; for all f ∈ R(L2w(�)):Remark 3.9. Let X = T, � the normalized Lebesgue measure and let Tjbe dilation operators, Tjf(x) = f(jx). Then any �nite trigonometri
 sumbelongs to R(L2w(�)).We refer to [32, Chapter 6℄ for a study of the link between the partialmaximum operators (I being a set integers).sup

‖h‖∞;�61
‖h‖2;�6" ∫X supn∈I |Sn(h)| d� and sup

‖f‖2;�61 E supn∈I Z(Sn(f)): (3.4)In the theorem below, we provide a quantitative link.Theorem 3.10. Let Sn, n > 1, be L2(�)-L∞(�) 
ontinuous operatorsverifying 
ondition (C). Let I be any set of integers with 
ardinality M .For any reals A > 0, R > 0, it is true thatsup
‖f‖2;�61 E supn∈I Z(Sn(f))

6 6√M S1(I) exp{−A2=8}+A(√2)S2(I) e−R2=4+ A sup
‖h‖∞;�61

‖h‖2;�6R=A ∫X supn∈I |Sn(h)| d�;
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‖Sn‖2 = sup

‖f‖261 ‖Sn(f)‖2 ‖Sn‖∞ = sup
‖f‖∞61 ‖Sn(f)‖∞:Remark 3.11. It is not 
ompli
ate to derive from this bound Theorem3.3, for L2(�)-L∞(�) 
ontra
tions.Now 
onsider the spa
es Lp(�), 1 < p < 2. A 
orresponding entropy
riterion 
an be also established.Theorem 3.12. Let 1 < p 6 2 with 
onjugate number q. Consider asequen
e S = {Sn; n > 1} of 
ontinuous operators from Lp(�) to Lp(�).Assume that 
ondition (C) is satis�ed.Further assume that for some real 0 < r < p, property (Br) is satis�ed.Then there exists a 
onstant C(r; p) < ∞ depending on r and p only, su
hthat for any f ∈ Lp(�),sup">0 " ( logNpf ("))1=q 6 C(r; p) ‖f‖p;where Npf (") is the minimal number of open Lp-balls of radius ", 
enteredin Cf and enough to 
over it. Further C(r; p) tends to in�nity as r tendsto p.The proof given in [33℄ relies on properties of p-stable pro
esses; it isassumed that S 
ommutes with an ergodi
 endomorphism of (X;A; �),whi
h in fa
t is unne
essary. The restri
tion p 6= 1 is only used at the veryend of the proof, but is then 
ru
ially ne
essary.Remark 3.13. The pending question of a possible 
onvergen
e 
riterionfor the spa
e L1(�) is of 
ourse very interesting. But its true nature isunknown, sin
e we are not operating in a (stri
tly) stationary 
ontext. Inparti
ular, ‖Sn(f) − Sm(f)‖p;�, 
ru
ial in (5.11), does not even dependon n −m only, in general. Moreover, we know (see Talagrand [30, § 8.1℄),that a ne
essary 
ondition for a 1-stable pro
ess to be sample boundedrather expresses in terms of majorizing measures. This important 
on
eptis however not relevant in the present 
ontext be
ause of its diÆ
ulty ofappli
ation.As announ
ed already, we have made the paper self-
ontained. We pro-vide proofs of these theorems in Se
tion 5.
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§4. Auxiliary Results.4.1. Lp-isometries. We �rst re
all a 
lassi
al result of Lamperti [19,Theorem 3.1℄. Let � be a �-�nite measure on (X;A). Some basi
 propertiesof isometries of Lp(�) are used in what follows. Re
all that a regular setisomorphism of the measure spa
e (X;A; �) is a mapping � of A into itselfsu
h that (i) �(A
) = �X \�A(ii) �( ∞⋃n=1An) = ∞⋃n=1�An for disjoint An(iii) �(�A) = 0 if and only if �(A) = 0; (4.1)for all elements A;An of A. Then � indu
es a linear transformation (notedagain by �) on the spa
e of measurable fun
tions, de�ned as follows,��A = ��A.Remark 4.1. The question whether a measure preserving set transforma-tion 
an be obtained from a point mapping has been already 
onsidered.By a result of von Neumann, so is the 
ase if for instan
e X is a 
losedregion in Rn and � is equivalent to the Lebesgue measure, see [19, p. 463℄.Lemma 4.2. Let T be a linear operator on Lp(�) where 1 6 p < ∞ andp 6= 2, and su
h that ‖Tf‖p = ‖f‖p, for all f ∈ Lp(�). Then there existsa regular set-isomorphism � and a fun
tion h(x) su
h that T is given byTf(x) = h(x)� f(x):De�ne a measure �∗ by �∗(A) = �(�−1A). Then

|h(x)|p = d�∗d� (x) a.e. on �X :Corollary 4.3. Let � be a probability measure. Let T be a positive isometryof Lp(�) with 1 6 p < ∞ and p 6= 2, su
h that T1 = 1. Then Tf(x) =� f(x) with �1 = 1 and � is a regular set-isomorphism. Moreover for anyf ∈ L∞(�), |Tf |a a.e.= T |f |a, for any 0 6 a < ∞. Further |Tf |p a.e.= T |f |p,if f ∈ Lp(�).Proof. By Lemma 4.2, Tf(x) = h(x)� f(x). As �(X) = 1 and T1 = 1it follows from the proof of Theorem 3.1 in [19℄ that h(x) a.e.= 1, andT = �. But as ��A = ��A, we get |Tf |a = T |f |a for simple fun
tions,for any 0 6 a < ∞. Hen
e by approximation |Tf |a a.e.= T |f |a holds for
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e T is an isometry ofLp(�), |Tf |p a.e.= T |f |p, if f ∈ Lp(�). �For the sake of 
ompleteness, we in
luded the following lemma 
on
ern-ing the (simpler) 
ase p = 2.Lemma 4.4. Let T be a positive isometry of L2(�) su
h that T1 = 1.Then (Tf)2 a.e.= Tf2, for any f ∈ L2(�).Proof. Let A ∈ A with 0 < �(A) < 1. Trivially f; g ∈ L2+(�) have disjointsupports if and only if ‖f + g‖22;� = ‖f‖22;� + ‖g‖22;�. Hen
e it followsthat T1A and T1A
 have disjoint supports. Let E = {0 < T1A < 1} =
{0 < T1A
 < 1}. As E ⊂ supp(T1A)∩ supp(T1A
), we 
on
lude that T1Aand T1A
 are indi
ator fun
tions. Thus any simple fun
tion is mapped byT into a simple fun
tion. For these fun
tions we have (Tf)2 = Tf2. Now letf ∈ L2+(�); there exists a sequen
e (fn) ⊂ L∞(�) su
h that ‖f − fn‖2 → 0as n→ ∞. First observe by applying twi
e H�older's inequality that

∫X (T |f2n − f2|)1=2 d� 6

( ∫X T |f2n − f2| d�)1=2= ‖f2n − f2‖1=21 6
(
‖fn − f‖2 · ‖fn + f‖2)1=2:Consequently,

‖Tf −√Tf2‖1 6 ‖Tf −Tfn‖1+ ‖Tfn−√Tf2n‖1+ ‖
√Tf2n−√Tf2‖1= ‖f − fn‖1 + ‖

√Tf2n −
√Tf2‖1

6 ‖f − fn‖1 + (
‖fn − f‖2 · ‖fn + f‖2)1=2 → 0;as n → ∞. Hen
e (Tf)2 = f2 a. e. . As f = f+ − f−, we dedu
e that thisholds for any f ∈ L2(�). �4.2. Stable pro
esses. This part was essentially written for the ergodi-
ian reader not ne
essarily familiar with stable pro
esses. We use very fewfrom the theory. We refer to [24℄. We also refer the interested reader to thevery ni
e book of Talagrand [30℄ for a thorough study of the regularity ofstable pro
esses. For the same reason, the last part of the proof of Theo-rem 3.12 is detailed and we refer to [24℄. The stable pro
esses we 
onsiderare simple, of �nite rank. They are however not strongly stationary. Re-
all and brie
y explain some basi
 fa
ts and properties of stable randomvariables and stable pro
esses.



90 M. J.G. WEBERLet 0 < � 6 2. A real valued random variable � is symmetri
 �-stableof parameter � if E eit� = e−��|t|� ; ∀ t ∈ R: (4.2)Then for all 0 < r < �, (E |�|r)1=r = Æ(r; �)�, where Æ(r; �) depends onlyon r and �. Stable random variables are mixtures of Gaussian randomvariables. Indeed, as is well-known the fun
tion f(�) = e−�� is 
ompletelymonotone on R+, for ea
h 0 < � 6 1. Consequently, there exists a ran-dom variable v(�) su
h that E e−�v(�) = f(�), for all � > 0. Let �(�) :=(2 v(�=2))1=2. Let g be standard Gaussian independent from �. By tak-ing Fourier transforms E eit�(�)·g = E e−t2�(�)2=2 = E e−t2v(�=2) = e−|t|� .When
e it follows that � D= �(�) · g. Let �1; : : : ; �J be i.i.d. �-stable realvalued random variables, and let 
1; : : : ; 
J be real numbers. From (4.2)we get J∑j=1 
j�j D= �1( J∑j=1 |
j |�)1=�: (4.3)A sto
hasti
 pro
ess {X(t); t ∈ T} is a real valued �-stable if any �nitelinear 
ombination ∑j 
jX(tj) is an �-stable real valued random variable.From now on, we extend the notation used in (2.4) in the following way.To any f ∈ Lp(�), 1 < p 6 ∞, we asso
iate the random element,FJ;f (!; x) = 1J1=p ∑16j6J �j(!)Tjf(x); ! ∈ 
; x ∈ X: (4.4)Remark 4.5. As long as entropy 
riteria are studied in Lp(�) with 2 6p 6 ∞, the relevant random elements FJ;f are Gaussian (� = 2). When1 < p < 2, we 
hoose them p-stable (� = p).Clearly (4.4) de�nes a real valued �-stable pro
ess. It follows in parti
-ular that for any x ∈ X ,FJ;f ( · ; x) D= �1( 1J ∑16j6J |Tjf(x)|�)1=�: (4.5)Let {�j ; j = 1; : : : ; J} be a sequen
e of i.i.d. random variables with thesame law than �(�), and let {gj ; j = 1; : : : ; J } be a sequen
e of i.i.d. Gauss-ian standard random variables. We assume that these sequen
es are respe
-tively de�ned on joint probability spa
es (
′;B′;P′) and (
′′;B′′;P′′).
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ess
FJ;f (!′; !′′; x) = ∑j6J �j(!′) gj(!′′)Tjf(x); x ∈ X;has the same distribution as {FJ;f (x); x ∈ X}.4.3. A 
omparison Lemma. In the next lemma, we denote the norms
orresponding to the spa
es Lr(�) and Lr(P) respe
tively by ‖ · ‖r;� and

‖ · ‖r;P.Lemma 4.6. Let 1 6 p 6 2. Let Sn : Lp(�) → Lp(�), n = 1; 2; : : : , be
ontinuous operators verifying assumption (C).(i) Let 1 6 p < 2. Let f ∈ Lp(�) and 0 < " < 1. Let also I be a �niteset of integers su
h that
‖Sn(f)− Sm(f)‖p;� 6= 0; for all n 6= m, n;m ∈ I:Then given any index J0, there exists a sub-index J and a measurable setA with �{A} > 1− ", and su
h that for all x ∈ A, we have(1− ")1=p 6

∥∥(Sn − Sm)(FJ;f )(x)∥∥r;P
(r) ‖Sn(f)− Sm(f)‖p;� 6 (1 + ")1=p; (4.6)for all J ∈ J , all n;m ∈ I, m 6= n, and r < p. Moreover, 
(r) = ‖�1‖r.(ii) Let p = 2. We have in pla
e of (4.6),(1− ")1=2 6

∥∥(Sn − Sm)(FJ;f )(x)∥∥2;P
‖Sn(f)− Sm(f)‖2;� 6 (1 + ")1=2; (4.7)for all J ∈ J , all n;m ∈ I, m 6= n. Further, for any positive in
reasing
onvex fun
tion G on R+, any J ∈ J ,EG(√1− " supn;m∈I Z(Sn(f))− Z(Sm(f)))

6 E ∫X G( supn;m∈I Sn(FJ;f )− Sm(FJ;f )) d�:In parti
ular for any J ∈ J ,
√1− " E supn∈I Z(Sn(f)) 6 E ∫X supn∈I Sn(FJ;f ) d�: (4.8)



92 M. J.G. WEBERProof. We assume J0 = N, the 
ase of an arbitrary index J0 being treatedidenti
ally.Proof of (i): Let f ∈ Lp(�). By the 
ommutation assumption,Sn(FJ;f ) = 1J 1p ∑j6J �jSn(Tj(f)) = 1J1=p ∑j6J �jTj(Sn(f));
∀ n > 1; ∀ J > 1:Hen
e by (4.3), for any �xed x ∈ X ,1J 1p ∑j6J �jTj(Sn(f)−Sm(f))(x) D= �1( 1J ∑j6J ∣∣Tj(Sn(f)−Sm(f))(x)∣∣p)1=p:Using the fa
t that |Tjh|p a:e:= Tj |h|p if h ∈ Lp(�), it follows thatE ∣∣(Sn − Sm)(FJ;f )(x)∣∣r = (E |�1|r)( 1J ∑j6J ∣∣Tj(Sn(f)− Sm(f))(x)∣∣p)r=p= (E |�1|r)( 1J ∑j6J Tj(∣∣Sn(f)− Sm(f)∣∣p)(x))r=p; (4.9)for almost all x.Let I be a �nite set of integers su
h that

‖Sn(f)− Sm(f)‖p;� > Æ > 0; for all n 6= m, n;m ∈ I:Let 0 < " < 1 and 
hoose an integer L suÆ
iently large so that 2−L 6 "and Æ > 2−L−1=". Assumption (C) implies thatlimJ→∞

∥∥∥
1J ∑j6J Tj(∣∣Sn(f)− Sm(f)∣∣p)− ‖Sn(f)− Sm(f)‖pp;�∥∥∥1;� = 0;for all n;m ∈ I . By extra
tion, we 
an �nd an index J = {Jk; k > L}(depending on I and "), su
h that

∥∥∥
1Jk ∑j6Jk Tj(∣∣Sn(f)− Sm(f)∣∣p)− ‖Sn(f)− Sm(f)‖pp;�∥∥∥1;� 6

1#(I)222k ;



DIVERGENCE CRITERIA IN ERGODIC THEORY 93for all n;m ∈ I and all k > L. PutAk = {
∃ n;m ∈ I :

∣∣∣
1Jk ∑j6Jk Tj(∣∣Sn(f)− Sm(f)∣∣p)− ‖Sn(f)− Sm(f)‖pp;�∣∣∣ > 2−k};k > L:By Chebyshev's inequality, we have �(Ak) 6 2−k. LetA"(n;m; J)= {(1− ")‖Sn(f)− Sm(f)‖pp;� 6

1J ∑j6J Tj(∣∣Sn(f)− Sm(f)∣∣p)
6 (1 + ")‖Sn(f)− Sm(f)‖pp;�};and AI;" = ⋂k>L ⋂n;m∈IA"(n;m; Jk):Then, �{AI;"} > �{ ⋂k>LA
k} > 1− ∑k>L 2−k = 1− 2−L > 1− ":As by (4.9), for any r < p,

∥∥(Sn − Sm)(FJ;f )(x)∥∥r;P = ‖�1‖r( 1J ∑j6J Tj(∣∣Sn(f)− Sm(f)∣∣p)(x))1=p;it follows that for every x ∈ AI;", we have(1− ")1=p 6

∥∥(Sn − Sm)(FJ;f )(x)∥∥r;P
‖�1‖r ‖Sn(f)− Sm(f)‖p;� 6 (1 + ")1=p;for all J ∈ J , all n;m ∈ I , m 6= n, and r < p.Proof of (ii): The proof is the �rst inequality is identi
al and so we omitit. Let f ∈ L2(�). Let 0 < " < 1 be �xed. Let I be a �nite set of integerssu
h that

‖Sn(f)− Sm(f)‖p;� 6= 0; for all n 6= m, n;m ∈ I:
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e that �{ E supn∈I Sn(FJ;f ) > 0 } = 1. Using (4.7), nextSlepian 
omparison lemma, we have along the index J ,
∫X E supn∈I Sn(FJ;f ) d� >

∫A E supn∈I Sn(FJ;f ) d�
>

√1− " �(A)E supn∈I Z(Sn(f))
> (1− ")E supn∈I Z(Sn(f)):Similarly,

∫X EG( supn;m∈I Sn(FJ;f )− Sm(FJ;f )) d�
>

∫A EG( supn;m∈I Sn(FJ;f )− Sm(FJ;f )) d�
>

∫A EG(√1− " supn;m∈I Z(Sn(f))− Z(Sm(f))) d�
>

√1− " EG(√1− " supn;m∈I Z(Sn(f))− Z(Sm(f)))
>

√1− " EG(√1− " supn;m∈I Z(Sn(f))− Z(Sm(f))):This 
ompletes the proof of Lemma 4.6. �4.4. Bana
h Prin
iple. Let
Y = {f ∈ L∞(�) : ‖f‖∞ 6 1}:A mapping V : (Y; d) → L0(�) is said to be 
ontinuous at 0, if V is d-
ontinuous at 0 on Y. When V is linear, then V is 
ontinuous at 0 if andonly if V is d-
ontinuous on L∞(�).Lemma 4.7 ( [4℄). Let {Sn; n > 1} be a sequen
e of linear operators ofL∞(�) in L0(�). Assume that the following 
onditions are realized:(i) Ea
h Sn is 
ontinuous at 0,(ii) For any f ∈ L∞(�), �{x : {Sn(f)(x); n > 1} 
onverges} = 1.Then S∗ : Y → L0(�) is 
ontinuous at 0.For a short proof, we refer to [32, p. 205℄. The next lemma is usedrepeatedly.
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h spa
e and let Sn : B → L0(�),n > 1, be 
ontinuous in measure operators. Assume that�{ supn>1 |Sn(f)| <∞
} = 1; for all f ∈ B:Then there exists a non-in
reasing fun
tion C :℄0; 1℄ → R+ su
h that forany 0 < " < 1, any J > 1 and any f ∈ R(B), there exists a measurableset X";J;f with �(X";J;f ) > 1− ", su
h thatP{! : supn>1 |Sn(FJ;f (!; · ))(x) |6 C(")E ‖FJ;f‖B}

> 1− ";for any x ∈ X";J;f , re
alling that FJ;f are de�ned in (4.4).Proof. By the Bana
h prin
iple, there exists a non-in
reasing fun
tionÆ :℄0; 1℄ → R+ su
h that�{ supn |Sn(h)| > Æ(") ‖h‖B}
6 "2=2; ∀ 0 < " 6 1; ∀ h ∈ B:Let f ∈ R(B), then FJ;f ∈ R(B) almost surely. Taking h = FJ;f and usingFubini's theorem, gives

∫X P{ supn>1 |Sn(FJ;f )| > Æ(") ‖FJ;f‖B} d� 6 "2=2:Now we bound as follows
∫X P{ supn>1 |Sn(FJ;f )| >

2 Æ(")"2 E ‖FJ;f‖B} d�
6

∫X P{ supn>1 |Sn(FJ;f )| >
2 Æ(")"2 E ‖FJ;f‖B ; ‖FJ;f‖B 6

2"2 E ‖FJ;f‖B} d�+ P{
‖FJ;f‖B > 2"2 E ‖FJ;f‖B}

6

∫X P{ supn>1 |Sn(FJ;f )| > Æ(") ‖FJ;f‖B} d�+ "2=2 6 "2=2 + "2=2 = "2:Hen
e,�{x ∈ X : P{! : supn>1 |Sn(FJ;f (!; · ))(x)| >
2 Æ(")"2 E ‖FJ;f‖B}

> "} 6 ";



96 M. J.G. WEBERor�{x ∈ X : P{! :supn>1 |Sn(FJ;f (!; · ))(x)| 6
2 Æ(")"2 E ‖FJ;f‖B}

> 1− "} > 1− ":By letting C(") = 2Æ(")"2 , we easily 
on
lude. �4.5. Some Gaussian tools. The next lemma is well-known in the theoryof Gaussian pro
esses. We refer for instan
e to [32, Chapter 10℄.Lemma 4.9. Let X = {Xt; t ∈ T} and Y = {Yt; t ∈ T} be two 
enteredGaussian pro
esses de�ned on a �nite set T .(a) [Slepian's Lemma℄ Assume that for any s; t ∈ T ,
‖Xs −Xt‖2 6 ‖Ys − Yt‖2:Then for any positive in
reasing 
onvex fun
tion f on R+,E f[ supT×T (Xs −Xt)] 6 E f[ supT×T (Ys − Yt)]:In parti
ular, E supt∈T Xt 6 E supt∈T Yt:(b) [Sudakov's minoration℄ There exists a universal 
onstant B su
hthat for any Gaussian pro
ess X = {Xt; t ∈ T}E supt∈T Xt > B infs;t∈Ts6=t ‖Xs −Xt‖2;P√log#(T ):(
) [Lower bound for Gaussian norms℄ Let X be a Gaussian ve
tor andN a non-negative semi-norm. ThenP{N(X) < ∞} = 1 ⇒ P{N(X) >

12 EN(X)} > 
where 0 < 
 < 1 is a universal 
onstant.(d) [Mill's ratio℄ The Mill's ratio R(x) = ex2=2 ∞∫x e−t2=2 dt veri�es forany x > 0, 2√x2 + 4 + x 6 R(x) 6
2√x2 + 8� + x 6

√�2 :



DIVERGENCE CRITERIA IN ERGODIC THEORY 97It follows that for any standard Gaussian random variable g, any T > 0,E g2�{|g| > T} 6 6 e−T 2=4:
§5. Proofs.As 
lari�ed in Remark 4.5, we use the random elements FJ;f introdu
edin (4.4) di�erently, a

ording to the 
ases 2 6 p 6 ∞, in whi
h they areGaussian, and 1 < p < 2, where we 
hoose them p-stable.5.1. Proof of Theorem 3.7. Let 0 < " < 1=2. Let f ∈ R(B). By Lemma4.8, there exists a non-in
reasing fun
tion C :℄0; 1℄ → R+ and a set X";J;fof measure greater than 1− " su
h that for all x ∈ X";J;f ,P{! : supn>1 |Sn(FJ;f (!; · )(x)| 6 C(")E ‖FJ;f‖B}

> 1− ":Estimate (3.3) impliesE supn>1 |Sn(FJ;f (!; · ))(x)| 6
4C(")1− " E ‖FJ;f‖B ; ∀ x ∈ X";J;f :Re
all that B ⊂ L2(�). Let I be a �nite set of integers su
h that

‖Sn(f)− Sm(f)‖2 6= 0, for all m;n ∈ I , m 6= n. By Lemma 4.6(ii), taking
J0 = N, there exists a sub-index J su
h that ifA(I)={

∀J ∈J ; ∀n;m ∈ I; m 6= n; ‖Sn(FJ;f )− Sm(FJ;f )‖2;P
‖Sn(f)− Sm(f)‖2;� >

√1− "};then � {A(I)} >
√1− ".By integrating on X";J;f ∩ A(I), next using the fa
t thatE supn∈I Sn(FJ;f ) > 0;and Lemma 4.9(a), we get for any J ∈ J ,

∫X";J;f E supn∈I Sn(FJ;f ) d� >

∫X";J;f∩A(I) E supn∈I Sn(FJ;f ) d�
>

√1− " �{X";J;f ∩ A(I)} E supn∈I Z(Sn(f))
>

√1− " (√1− "− ") E supn∈I Z(Sn(f))
> (1− 2 ") E supn∈I Z(Sn(f)):



98 M. J.G. WEBERBy 
ombining, for any J ∈ J ,E supn∈I Z(Sn(f)) 6
1(1− 2 ") ∫X";J;f E supn∈I Sn(FJ;f ) d�

6 K(")E ‖FJ;f‖B; (5.1)with K(") = 4C(")(1− 2 ")(1− ") :Therefore, for any f ∈ R(B), any �nite set I ,E supn∈I Z(Sn(f)) 6 K(") infJ∈J
supH>J E ‖FH;f‖B = K(") lim supH→∞

E ‖FH;f‖B :Taking I = [1; N ℄ and letting next N tends to in�nity, givesE supn>1 Z(Sn(f)) 6 K(") lim supH→∞
E ‖FH;f‖B:5.2. Proof of Theorem 3.4. Let f ∈ L∞(�). Fubini's theorem andLemma 4.4 allow us to write,E ∫

|FJ;f |pd� 6 Cpp ∫ (E |FJ;f |2)p=2d�= Cpp ∫ ( 1J ∑j6J Tjf2(x))p=2d�(x):By assumption limJ→∞

∥∥∥
1J ∑j6J Tjf2 − ‖f‖22;�∥∥∥1;� = 0:By pro
eeding by extra
tion, this 
onvergen
e also holds almost surelyalong some subsequen
e J0. As 1J ∑j6J Tjf2(x) 6 ‖f‖2∞, we further dedu
efrom the dominated 
onvergen
e theorem,lim

J0∋J→∞
E ∫ ( 1J ∑j6J Tjf2(x))p=2d� = ‖f‖p2;�:Let 0 < " < 1. Extra
ting if ne
essary from J0 a sub-index whi
h we 
allagain J0, we thus 
on
lude thatE ‖FJ;f‖p;� 6 (1 + ")Cp ‖f‖2;�; ∀ J ∈ J0:Next the proof is exa
tly the same as before ex
ept that we repla
e every-where the norm ‖:‖B by the norm ‖:‖p;�. Let I be a �nite set of integers.
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an extra
t from J0 a partial index J su
h that theanalog of (5.1) holds, namely for any J ∈ J ,E supn∈I Z(Sn(f)) 6 K(")E ‖FJ;f‖p;� 6 CpK(") (1 + ") ‖f‖p;�:A simple approximation argument allows to get the same inequality for allf ∈ Lp. Sudakov's minoration impliessup%>0 %√logNf (%) 6 CpK(") (1 + ") ‖f‖p:5.3. Proof of Theorem 3.6. (i) By Lemma 4.6-(b), given any index J0,there exists an index J ⊆ J0 su
h that for any J ∈ J ,(1− ")E supn∈I Z(Sn(f)) 6 E ∫ supn∈I Sn(FJ;f ) d�:Moreover, for any positive in
reasing 
onvex fun
tion G on R+, any J ∈ J ,EG(√1− " supn;m∈I Z(Sn(f))− Z(Sm(f)))
6 E ∫X G( supn;m∈I (Sn − Sm)(FJ;f )) d�:In the following 
al
ulation we putL = sup

‖g‖B61 ∫ supn∈I |Sn(g)| d�;and we let u0 = 0, un = "(1 + ")n−1 n > 1. ThenE ∫ supn∈I |Sn(FJ;f )| d�= ∞∑k=1E (1uk−16‖FJ;f‖B<uk · ∫ supn∈I |Sn(FJ;f )| d� )

6

∞∑k=1P{uk−1 6 ‖FJ;f‖B < uk} supuk−16‖g‖B<uk ∫ supn∈I |Sn(g)| d�
6 L ∞∑k=1ukP{uk−1 6 ‖FJ;f‖B < uk}
6 L(u1P{‖FJ;f‖B < u1}+ (1 + ")E ‖FJ;f‖B · 1u16‖FJ;f‖B)

6 L("+ (1 + ")E ‖FJ;f‖B):



100 M. J.G. WEBERBy 
ombining, and letting next " tends to 0, we get for any f ∈ L2(�),E supn∈I Z(Sn(f)) 6 E ‖FJ;f‖B sup
‖g‖B61 ∫ supn∈I |Sn(g)| d�:SimilarlyEG(√1− " supn;m∈I ∣∣Z(Sn(f))− Z(Sm(f))∣∣)

6 E ‖FJ;f‖B sup
‖g‖B61 E ∫X G( supn;m∈I ∣∣(Sn − Sm)(g)∣∣) d�:(ii) Let B = Lp(�). We have seen that there exists an index J0 su
h thatE ‖FJ;f‖p;� 6 (1 + ")Cp‖f‖2;�; ∀ J ∈ J0:Therefore sup

‖f‖2;�61 E supn∈I Z(Sn(f)) 6 Cp sup
‖g‖p;�61 ∫ supn∈I |Sn(g)| d�:Moreover,sup

‖f‖2;�61 EG(√1− " supn;m∈I ∣∣Z(Sn(f))− Z(Sm(f))∣∣)
6 Cp sup

‖g‖p;�61 E ∫X G( supn;m∈I ∣∣(Sn − Sm)(g)∣∣) d�:5.4. Proof of Theorem 3.12. Let f ∈ Lp(�). Let J be any positiveinteger and x ∈ X . By (4.5),1J 1p ∑j6J �jTjf(x) D= �1( 1J ∑j6J |Tjf(x)|p)1=p:Thus for any r < p,E |FJ;f (x)|r = (E |�1|r)( 1J ∑j6J |Tjf(x)|p)r=p:By Corollary 4.3, |Tjf(x)|p a:e:= Tj |f |p(x), so that we haveE |FJ;f (x)|r = (E |�1|r)( 1J ∑j6J Tj |f |p(x))r=p: (5.2)



DIVERGENCE CRITERIA IN ERGODIC THEORY 101for almost all x and all J > 1. As trivially Tj |f |p ∈ L1(�), we dedu
eE ∫X |FJ;f (x)|r d�(x) = (E |�1|r) ∫X ( 1J ∑j6J Tj |f |p(x)) rp d�(x): (5.3)Hen
e,
∣∣∣E ∫X |FJ;f (x)|r d�(x) − (E |�1|r)‖f‖rp;� ∣∣∣= (E |�1|r) ∣∣∣ ∫X ( 1J ∑j6J Tj |f |p(x)) rp d�(x) − (‖f‖pp;�) rp ∣∣∣

6 (E |�1|r) ∫X ∣∣∣
( 1J ∑j6J Tj |f |p(x)) rp − (‖f‖pp;�) rp ∣∣∣ d�(x)

6 (E |�1|r) ∫X ∣∣∣
1J ∑j6J Tj |f |p(x)− ‖f‖pp;�∣∣∣ rp d�(x)

6 (E |�1|r)( ∫X ∣∣∣
1J ∑j6J Tj |f |p(x) − ‖f‖pp;�∣∣∣ d�(x))r=p → 0;as J tends to in�nity by assumption (C). Therefore,limJ→∞

E ∫X |FJ;f (x)|r d�(x) = (E |�1|r) ‖f‖rp;�; ∀ 0 < r < p:By using H�older's inequality, we dedu
e thatE ‖FJ;f‖r;� 6

(E ∫
|FJ;f (x)|r d�)1=r

6 2 ‖�1‖r ‖f‖p;�; (5.4)for all J > J0, say.By assumption, property (Br) holds for some 1 < r < p. From Lemma 4.8follows that there exists a non-in
reasing fun
tion C :℄0; 1℄ → R+ su
h thatfor any f ∈ Lr(�), for any J > 1, any 0 < " < 1, there exists a measurableset X̃ = X̃";J;f of measure greater than 1−√", su
h that for all x ∈ X̃ ,P{! : supn>1 |Sn(FJ;f (!; · ))(x)| > C(")‖FJ;f‖r;�} 6 ": (5.5)



102 M. J.G. WEBERWe assume 0 < " < 1=6 in what follows. Let Æ(") = C(")=". Let alsox ∈ X̃, J > J0. Using Chebyshev's inequality and (5.4), we getP{! : supn>1 |Sn(FJ;f (!; · ))(x)| > 2 Æ(")‖�1‖r ‖f‖p;�}
6 P{! : supn>1 |Sn(FJ;f (!; · ))(x)| > Æ(")E ‖FJ;f‖r;�}

6 P{
‖FJ;f‖r;� > E ‖FJ;f‖r;�="}+P{! : supn>1 |Sn(FJ;f (!; · ))(x)| > Æ(")E ‖FJ;f‖r;�; ‖FJ;f‖r;�

6 E ‖FJ;f‖r;�="}
6 "+P{! : supn>1 |Sn(FJ;f (!; · ))(x)| > C(")‖FJ;f‖r;�}

6 2 ":Therefore,P{! : supn>1 |Sn(FJ;f (!; · ))(x)| 6 2 Æ(") ‖�1‖r ‖f‖p;�} > 1− 2 ";
∀ x ∈ X̃; ∀ J > J0: (5.6)Let Æ be some �xed positive real. Let I be a �nite set of positive integersand let M = #{I}. Assume that ‖Sn(f) − Sm(f)‖p;� > Æ if n 6= m,n;m ∈ I . By Lemma 4.6-(i), there exists an index J and a measurableset A = A";I;f su
h that �{A} > 1 − ", and further, for all x ∈ A, thefollowing inequalities(1− ")1=p‖�1‖r ‖Sn(f)− Sm(f)‖p;� 6

∥∥(Sn − Sm)(FJ;f )(x)∥∥r;P
6 (1+")1=p ‖�1‖r ‖Sn(f)−Sm(f)‖p;�;are satis�ed for all J ∈ J , all n;m ∈ I and all r < p. SetY = Y";I;J;f = X̃ ∩ A:For ea
h x �xed, the pro
essSJ;f;x(!; n) = 1J1=p ∑j6J �j(!)TjSn(f)(x); n > 1;is a p-stable random fun
tion. Further, the pro
ess

SJ;f;x(!′; !′′; n) = 1J1=p ∑16j6J �j(!′) gj(!′′)TjSnf(x); n > 1;



DIVERGENCE CRITERIA IN ERGODIC THEORY 103has the same distribution as {SJ;f;x( · ; n); n > 1}. Re
all (sub-se
tion 4.2)that we have underlying joint probability spa
es (
′;B′;P′) and (
′′;B′′;P′′)on whi
h the sequen
e {�j ; j > 1} and the sequen
e {gj ; j > 1} of i.i.d.Gaussian standard random variables are respe
tively de�ned. Here we takeboth sequen
es in�nite.Thus (5.6) reads: for all x ∈ X̃, and all J > J0,P′×P′′
{(!′; !′′) : supn>1 |SJ;f;x(!′; !′′; n)| 6 2 Æ(")‖�1‖r‖f‖p;�}

> 1− 2": (5.7)Let H(!′) = P′′{!′′ : supn>1 |SJ;f;x(!′; !′′; n)| 6 2 Æ(") ‖�1‖r ‖f‖p;�}:By Fubini's theorem, the left-term in (5.7) also writes
∫
′

H(!′) dP′(!′) = ∫!′:H(!′)6" H(!′) dP′(!′) + ∫!′:H(!′)>" H(!′) dP′(!′)
6 "+P′{!′ : H(!′) > "}:Hen
eP′

{!′ : P′′{!′′ : supn>1 |SJ;f;x(!′; !′′; n)| 6 2 Æ(") ‖�1‖r ‖f‖p;�} > "}
> 1− 3 ": (5.8)For ea
h �xed !′ ∈ 
′, {SJ;f;x(!′; · ; n); n > 1} is a Gaussian pro
ess.Let EP′′ denote the expe
tation symbol with respe
t to P′′. By usingestimate (3.3), for every x ∈ X";J;f ,1− 3 " 6 P′

{!′ : EP′′ supn>1 |SJ;f;x( ·; !′; x))| 6
8Æ(")" ‖�1‖r ‖f‖p;�}: (5.9)Write for a whileD(!; n;m) = DJ;f;x(!; n;m) = SJ;f;x(!; n)− SJ;f;x(!;m)

D(!′; !′′; n;m) =DJ;f;x(!′; !′′; n;m)=SJ;f;x(!′; !′′; n)−SJ;f;x(!′; !′′;m)�(n;m) = �J;f;x(n;m) = ( 1J ∑16j6J ∣∣Tj(Sn − Sm) f(x)∣∣p)1=p:



104 M. J.G. WEBERBy (4.3),EP′EP′′eitD(!′;!′′;n;m) = EPeit(SJ;f;x(:;n)−SJ;f;x(:;m))= EPeit�1�(n;m) = e−|t|p�(n;m)p :As E eitg = e−t2�2=2 where � = (E g2)1=2, we get from (4.2),EP′EP′′eitD(!′;!′′;n;m) = EP′e−t2‖D(!′; · ;n;m)‖22;P′′=2 = e−|t|p�(n;m)p :Put for ea
h !′ ∈ 
′,dJ;!′;x(n;m) = ‖DJ;f;x(!′; · ; n;m)‖2;P′′ :Moreover, letdJ;x(n;m) = ( 1J ∑j6J Tj |Sn(f)− Sm(f)|p(x))1=p:We note that dJ;x(n;m) = �J;f;x(n;m) for almost all x ∈ X . FurtherEP′e−t2dJ;!′;x(n;m)2=2 = e−|t|pdJ;x(n;m)p :Then P{
∃ n;m ∈ I : dJ;!′;x(n;m) < "dJ;x(n;m)}

6
∑n;m∈IP{e−t2dJ;!′;x(n;m)=2 > e−t2"2d2J;x(n;m)}

6 M2et2"2d2J;x(n;m)−|t|pdJ;x(n;m)p ;and so,P{
∃ n;m ∈ I : dJ;!′;x(n;m) < "dJ;x(n;m)}

6 M2 inft>0 et2"2d2J;x(n;m)−|t|pdJ;x(n;m)p :The fun
tion '(t) = et2a−tpb has an extremum at the value t∗ = ( pb2a) 12−p ,and '(t∗) = exp{a− p2−p b 22−p [(p=2) 22−p − (p=2) p2−p ]}:Applying this with a = "2d2J;x(n;m), b = dJ;x(n;m)p, we getP{
∃ n;m ∈ I : dJ;!′;x(n;m) < "dJ;x(n;m)}

6 M2 exp{"− 2p2−p (dJ;x(n;m))− 2p2−p dJ;x(n;m) 2p2−p [(p=2) 22−p − (p=2) p2−p ]}:=M2 exp{
− "− 2p2−p C(p)}:



DIVERGENCE CRITERIA IN ERGODIC THEORY 105with C(p) = (p=2) p2−p − (p=2)− 22−p > 0. Choose " = (� logM)− 2−p2p . Weget P{
∃ n;m ∈ I : dJ;!′;x(n;m) < (� logM)− 2−p2p dJ;x(n;m)}

6 M2−�C(p) 6
12 ; (5.10)for � = �(p) depending on p only, and small enough.Now if x ∈ Y , we have

∥∥(Sn − Sm)(FJ;f )(x)∥∥r;P′×P′′ > 
("; r; p) ‖Sn(f)− Sm(f)‖p;�;for all J ∈ J , all n;m ∈ I , m 6= n, and all r < p. As (Sn−Sm)(FJ;f )(x) D=(SJ;f;x(n)− (SJ;f;x(m)), we have
∥∥(Sn − Sm)(FJ;f )(x)∥∥r;P′×P′′ = ‖�1‖r dJ;x(n;m);when
e dJ;x(n;m) > 
("; r; p) ‖Sn(f)− Sm(f)‖p;�; (5.11)for all J ∈ J , all n;m ∈ I , m 6= n.Putting together (5.10) and (5.9) implies that there exists a measurableset 
′0 with P′(
′0) > 0, su
h that for any !′ ∈ 
′0, and all n;m ∈ I ,dJ;!′;x(n;m) > 
("; r; p) dJ;x(n;m)(log#{I})1=p−1=2 > 
("; r; p) Æ(log#{I})1=p−1=2By Sudakov's inequality,

‖f‖p;� > 
(r; p)EP′′ supn∈I |SJ;f;x( ·; !′; x))|
> 
(r; p) Æ (log#{I})1=2+1=2−1=p: (5.12)A routine argument together with (5.9) now easily leads to

‖f‖p;� > 
(r; p) supÆ>0 Æ ( logNpf (Æ))1=q ;where 
(r; p) > 0 depends on r and p only. It is only at this last stage thatthe fa
t that p > 1 is ne
essary.



106 M. J.G. WEBER5.5. Proof of Theorem 3.3. Let f ∈ L∞(�) su
h that ‖f‖2 = 1. Let Ibe a �nite subset of N and let M = #{I}. Write for a while N = N! =
|Sn(FJ;f (!; · ))|, �(!) = �{x : N!(x) > 12 EN!(x)}. By Lemma 4.9(
),for ea
h x, P{N!(x) >

12 EN!(x)} > 
:And so, �⊗P{(!; x) : N!(x) >
12 EN!(x)} > 
:We have
 6 E� = E�(�{�>
=2} + �{�6
=2}) 6 
=2 +P{� > 
=2}:Hen
e P{� > 
=2} > 
=2, and using the previous notation, we dedu
e thatfor ea
h J > 1, there exists a measurable set DJ of probability larger than
=2, su
h that we have�{x : |Sn(FJ;f (!; · ))(x)| >

12 E |Sn(FJ;f )(x)|}>
=2; ∀ ! ∈ DJ : (5.13)Let 0 < 
 < 1 be �xed. By Lemma 4.6(ii), there exists an index J anda measurable set A with �{A} > 
2, and su
h that for all x ∈ A, we have
 E supn∈I Z(Sn(f)) 6 E ∫ supn∈I Sn(FJ;f ) d� ∀ J ∈ J : (5.14)Hen
e,�{x : |Sn(FJ;f (!; · ))(x)| >

2E supn∈I Z(Sn(f))}>
=3; ∀! ∈ DJ ; (5.15)assuming 
 suÆ
iently 
lose to 1 and all J ∈ J greater than some suÆ-
iently large number, whi
h we do.We simplify the notation in what follows and write FJ = FJ;f : Put forany A > 0,EA = {(!; x) ∈ 
×X : |FJ (!; x)| 6 A}; EA;! = {x ∈ X : (!; x) ∈ EA};and let for any ! ∈ 
, x ∈ X ,FA;J (x) = FA;J;!(x) = FJ (!; x) · 1EA;!(x);FA;J(x) = FA;J;!(x) = FJ (!; x) · 1E
A;!(x):



DIVERGENCE CRITERIA IN ERGODIC THEORY 107Obviously, E ∫ supn∈I Sn(FJ;f ) d� 6 E ∫ supn∈I |Sn(FA;J)| d�+E ∫ supn∈I |Sn(FA;J )| d�: (5.16)By de�nition FA;J;!( · ) (resp. FA;J;!( · )) is A-measurable. As f ∈ L∞(�),we have P{! : FA;J;!( · ) and FA;J;!( · ) ∈ L∞(�)} = 1:As maxi6n xi 6 (∑i6nx2i )1=2 for any nonnegative real numbers, by usingtwi
e Cau
hy{S
hwarz's inequality, next Fubini's inequality, we getE ∫ supn∈I |Sn(FA;J)| d� 6 E(∑n∈I ∫
|Sn(FA;J)|2 d�)1=2

6

( ∑n∈I ∫ E |Sn(FA;J)|2 d�)1=2
6

√M E ‖FA;J‖2;�: (5.17)We have to estimate ‖FA;J‖2;�. By Fubini's theorem, next Lemma 4.9(d)applied with g = FJ;f=‖FJ;f‖2;P and T = A=‖FJ;f‖2;P, it follows thatE ‖FA;J‖22;� = ∫X E |FJ;f (x)|2 · 1(|FJ;f (x)|>A) d�(x)
6 6 ∫X ‖FJ;f (x)‖22;P exp{

− A24 ‖FJ;f (x)‖22;P} d�(x):We have ‖FJ;f (x)‖22;P a:e:= 1J ∑j6J Tj(f2)(x). By assumption (C), 1J ∑j6J Tjf2
onverges to 1 in L1(�), along some subsequen
e extra
ted from J , we 
anmake this 
onvergen
e almost everywhere too. The requirement that f ∈L∞(�), together with the dominated 
onvergen
e theorem, then impliesthat
∫X ‖FJ;f (x)‖22;P exp{

− A24 ‖FJ;f (x)‖22;P} d�(x) → exp{−A2=4};along this index.



108 M. J.G. WEBERExtra
ting again if ne
essary we obtain thatE ‖FA;J‖22;� 6 2 exp{−A2=4};along some index, whi
h we still denote by J . Choose now A = √8 logM .We getE ∫ supn∈I |Sn(FA;J;!)| d� 6 9√M exp{−A2=8} 6 9M−1=2: (5.18)Assume that minn;m∈In6=m ‖Sn(f)− Sm(f)‖2;� > Æ: (5.19)Using Lemma 4.9(b), we get�{x : supn∈I |Sn(FA;J;!)(x)| >

BÆ2 √logM − 9M−1=2}

> 
=3;
∀ ! ∈ DJ ; (5.20)for all J ∈ J . Let �I;J;! = FA;J;!A :It follows that�{x : supn∈I |Sn(�I;J;!)(x)| > 
′Æ} > 
=3; ∀ ! ∈ DJ ; (5.21)where 
′ is a positive universal 
onstant. Suppose that for some Æ > 0,C(Æ) = ∞. This means that we 
an sele
t sets I verifying (5.19) with
ardinality M as large as we wish. Butd(S∗(�I;J;!); 0) > d(supn∈I |Sn(�I;J;!); 0)

>

∫supn∈I |Sn(�I;J;!)>
′Æ supn∈I |Sn(�I;J;!)|1 + supn∈I |Sn(�I;J;!)| d�
> (
=3) 
′Æ1 + 
′Æ : (5.22)Moreover, we haveE ‖�I;J;!‖22;� 6

18 logM E ∫
|Fj;f |2 d� 6

18 logM :Hen
e on a subset D′J of DJ of positive measure, we have
‖�I;J;!‖∞;� 6 1; ‖�I;J;!‖2;� 6 K=√logM:
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 only. Pi
king ! in D′J , J varying, we dedu
ethat S∗ 
annot be 
ontinuous at 0. Hen
e a 
ontradi
tion with (3.2). Thisa
hieves the proof.5.6. Proof of Theorem 3.10. We start as in the proof of Theorem 3.3.By using exa
tly the same arguments for proving (5.17), we get hereE ∫ supn∈I |Sn(FA;J)| d� 6 E(∑n∈I ∫
|Sn(FA;J)|2 d�)1=2

6

( ∑n∈I ∫ E |Sn(FA;J)|2 d�)1=2
6

√MS1(I)E ‖FA;J‖2;�: (5.23)Next estimate (5.18) is modi�ed as follows. Let � > 1 be some �xed real.By extra
ting we obtain that E ‖FA;J‖22;� 6 � exp{−A2=4}, along someindex, still denoted J . Thus with (5.23),E ∫ supn∈I |Sn(FA;J;!)| d� 6
√MS1(I)E ‖FA;J‖2;�

6 6√�MS1(I) exp{−A2=8}: (5.24)Let Æ = min{(�−1) e−A2=4�; 1)} and Æk = Æ 2−k, k > 1. We 
an extra
tfrom J a subsequen
e J ∗ = {Jk; k > 1} depending on f and �, su
h that�{∣∣∣
1Jk ∑j6Jk Tjf2 − 1∣∣∣ > Æk} 6 Æk; for all k > 1.Put B = {

∀ k > 1; ∣∣∣
1Jk ∑j6Jk Tjf2 − 1∣∣∣ 6 Æk}:Plainly, E ∫ supn∈I |Sn(FA;J )| d� 6 E ∫B supn∈I |Sn(FA;J )| d�+E ∫B
 supn∈I |Sn(FA;J )| d�: (5.25)



110 M. J.G. WEBERThe �rst integral in the right-hand side of (5.25) 
an be bounded for anyR > 0 by
∫B E ( supn∈I |Sn(FA;J )| 1{‖FA;J‖2;�>R}

) d�+ ∫B E ( supn∈I |Sn(FA;J)| 1{‖FA;J‖2;�6R}
) d�: (5.26)Consider the �rst integral in (5.26). The fa
t that Sn is 
ontinuous onL∞(�) and Chebyshev's inequality allow to write

∫B E( supn∈I |Sn(FA;J )| 1{‖FA;J‖2;�>R}
) d�

6 E(∥∥ supn∈I |Sn(FA;J )|∥∥∞;� · 1{‖FA;J‖2;�>R}
)

6 AS2(I)P{
‖FA;J‖2;� > R}

6 AS2(I) e−R2=4�E exp{ 14�‖FA;J‖22;�}: (5.27)
We 
laim that for any J ∈ J ∗,E exp{ 14�‖FA;J‖22;�} 6

√2 + �− 1: (5.28)Admit this for a while. We get
∫B E( supn∈I |Sn(FA;J )| 1{‖FA;J‖2;�>R}

) d�
6 AS2(I) e−R2=4�(√2 + �− 1): (5.29)Now we prove (5.28). Let a = 14� . At �rst by using Jensen's inequality,E exp{a ‖FA;J‖22;�} = E exp{a ∫X F 2A;J d�}

6 E ∫X exp{aF 2A;J} d�
6 E ∫B exp{aF 2A;J} d�+ eaA2�(B
�):



DIVERGENCE CRITERIA IN ERGODIC THEORY 111Next on B, we have 1J ∑j6J Tjf2 6 1 + Æ < �, so that1− 2 a( 1J ∑j6J Tjf2) > 1− 2 a� = 12 for all J ∈ J ∗.As E ebg2 = 1√1−2b if 0 6 b < 12 , we get
∫B E exp{aF 2A;J} d� 6

∫B E exp{aF 2J} d�= ∫B d�√1− 2 a ( 1J ∑j6J Tjf2) 6
√2:Hen
e for any J ∈ J ∗,E exp{a ‖FA;J‖22;�} 6

√2 + eaA2�(B
) 6
√2 + Æ eA2a 6

√2 + �− 1:For the se
ond integral in (5.26), we have the straightforward bound
∫B E ( supn∈I |Sn(FA;J )| 1{‖FA;J‖2;�6R}

) d�
6 A sup

‖h‖∞;�61
‖h‖2;�6R=A ∫X supn∈I |Sn(h)| d�: (5.30)By substituting estimates (5.29), (5.30) into (5.26), we 
an bound the �rstintegral in the right-term of (5.25) as follows,E ∫B supn∈I |Sn(FA;J)| d� 6 AS2(I) e−R2=4�(√2 + �− 1)+A sup

‖h‖∞;�61
‖h‖2;�6R=A ∫X supn∈I |Sn(h)| d�: (5.31)Consider the se
ond integral in the right-term of (5.25). We use Cau
hy-S
hwarz's inequality and the fa
ts that �(B
) 6 Æ,E ‖FA;J‖2;� 6 E ‖FJ‖2;� 6 1;



112 M. J.G. WEBERto getE ∫B
 supn∈I |Sn(FA;J )| d� 6
√�(B
)E ∥∥ supn∈I |Sn(FA;J )|∥∥2;�

6
√Æ√M S1(I)E ‖FA;J‖2;�

6
√�− 1 e−A2=8�√M S1(I): (5.32)By inserting estimates (5.31), (5.32) into (5.25), we next arrive toE ∫ supn∈I |Sn(FA;J )| d� 6 AS2(I) e−R2=4�(√2 + �− 1)+A sup

‖h‖∞;�61
‖h‖2;�6R=A ∫X supn∈I |Sn(h)| d�+√�− 1 e−A2=8�√M S1(I): (5.33)Now we insert (5.24), (5.33) into (5.14), and next use estimate (5.18).Pi
king J arbitrarily in J ∗, we get
 E supn∈I Z(Sn(f))

6 6√�M S1(I) exp{−A2=8}+AS2(I) e−R2=4�(√2 + �− 1)+ A sup
‖h‖∞;�61

‖h‖2;�6R=A ∫X supn∈I |Sn(h)| d�+√�− 1 e−A2=8�√M S1(I) : (5.34)But � > 1 and 
 
an be 
hosen arbitrarily 
lose to 1. We �nally obtain,E supn∈I Z(Sn(f)) 6 6√M S1(I) exp{−A2=8}+A (√2)S2(I) e−R2=4+A sup
‖h‖∞;�61

‖h‖2;�6R=A ∫X supn∈I |Sn(h)| d�: (5.35)This last inequality being satis�ed for any f ∈ L∞(�) su
h that ‖f‖2;� = 1,we easily dedu
e the 
laimed result by 
ontinuity in quadrati
 mean of Z.
§6. Kakutani{Ro
hlin's lemmaWe 
on
lude with this extremely useful tool in ergodi
 theory.Lemma 6.1. If T is aperiodi
, then for every " > 0 and for every n >1 there exists F ∈ A su
h that the sets F , T−1(F ); : : : ; T−(n−1)(F ) aremutually disjoint, and su
h that we have,�(F ∪ T−1(F ) ∪ · · · ∪ T−(n−1)(F )) > 1− ":
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on
lusions of Lemma 6.1 is 
alled an("; n)-Kakutani{Ro
hlin set.We illustrate its usefulness by establishing two divergen
e 
riteria forergodi
 summation methods. The proof is based on an argument due toDeniel (see [7℄). Let {wn;k; 1 6 k 6 n; n > 1} be a triangular array ofnonnegative reals, and set Wn = n∑k=1wn;k, n > 1. Consider an automor-phism � from a probability spa
e (X;A; �). Put for f ∈ L0(�),Tnf(x) = 1Wn n∑h=1wn;h f(�hx):Theorem 6.2. Let ' : N → N be su
h that limn→∞ '(n) = ∞. Assumethat there exist � > 0, an in�nite sequen
e N of integers su
h that for anyn ∈ N min'(n)6j6n−'(n)( 1Wn−j n−j−1∑k=n−j−'(n)wn−j;k) > �; (6.1)and further that the series ∑n∈N
'(n)=n 
onverges. Let 0 < � < �. Thenthere exists B ∈ A with 0 < �(B) 6 � su
h that lim sup

N∋n→∞
Tn �B > � almostsurely.Remark 6.3. Suppose there exists a 
ountable dense 
lass D of fun
tionsfrom L1(�) su
h that {Tnf; n ∈ N} 
onverges almost everywhere to ∫ f d�for any f ∈ D. Then if 
ondition (6.1) is satis�ed, there is no maximalinequality for the sequen
e {Tn; n ∈ N}. Indeed, otherwise by the Bana
hprin
iple, we would have that {Tnf; n ∈ N} 
onverges almost everywhereto ∫ fd� for any f ∈ L1(�). Taking f = �B where B is in the propositionabove provides a 
ontradi
tion.Now let {wk; k > 1} be a sequen
e of non-negative reals and 
onsiderthe ergodi
 sums Anf(x) = n∑h=1wh f(�hx):Theorem 6.4. Let ' : N → N be su
h that limn→∞ '(n) = ∞. Assumethat there exist � > 0, an in�nite sequen
e N of integers su
h that for any



114 M. J.G. WEBERn ∈ N �n := min16h6n−'(n)( h+'(n)∑k=h wk) → ∞; (6.2)as n → ∞ along N , and further that the series ∑n∈N
'(n)=n 
onverges.Let 0 < � < �. Then there exists B ∈ A with 0 < �(B) 6 � su
h thatlim sup

N∋n→∞
An (�B) = ∞ almost surely.Proof of Theorem 6.2. There is no loss of generality to assume

∑n∈N
'(n)=n 6 �:By Ro
hlin's lemma, for any " > 0, any integer N , there exists A ∈ A su
hthat A, TA; : : : ; TN−1A, are pairwise disjoint and 1− " 6 N�(A) 6 1. Byapplying it for N = n, " = '(n)=n, we obtain that for ea
h n ∈ N , thereexists An ∈ A su
h that An; � An; : : : ; �n−1An are mutually disjoint and�( n−1∑u=0 �uAn) = n�(An) > 1− '(n)=n. LetBn = ∑n−'(n)6u<n �uAn; Dn = ∑'(n)6j<n−'(n) � jAn:Then we have�(Bn) 6 '(n)�(An) 6

'(n)n ;�(Dn) >
n− 2'(n)n (1− '(n)n )

>

(1− 2 '(n)n )2
> 1− 4 '(n)n :Now let 0 6 ` < n−'(n). As � `x ∈ Bn i� x ∈ �u−`An for some n−'(n) 6u < n, we 
an write�Bn(� `x) = ∑n−'(n)6u<n �{�u−`An}(x) = ∑n−'(n)−`6v<n−` �{�vAn}(x):Let ` = n− '(n)− � with 1 6 � < n− '(n). We have�Bn(�n−'(n)−�x) = ∑�6v<�+'(n) �{�vAn}(x):As '(n)=n → 0 when n → ∞ along N , we have 2'(n) 6 n on
e n is large.Fix some '(n) 6 j < n− '(n) and pi
k x ∈ � jAn. If we 
hoose � so that� 6 j < � + '(n), by letting v = j in the equation above we see that�n−'(n)−�x ∈ Bn.
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{j − '(n) + 1; j − '(n) + 2; : : : ; j} imply�n−'(n)−�x ∈ Bn:Consequently, if x ∈ � jAnTn−j�Bn(x) = n−j∑k=1wn−j;n−j−k �Bn(�n−j−kx)

>

'(n)∑k=1 wn−j;n−j−k �Bn(�n−j−kx)(k = '(n) + �− j) = j∑�=j−'(n)+1wn−j;n−'(n)−� �Bn(�n−'(n)−�x)= j∑�=j−'(n)+1wn−j;n−'(n)−� = '(n)∑k=1 wn−j;n−j−k :
(6.3)

By the assumption made,1Wn−j '(n)∑k=1 wn−j;n−j−k
> min'(n)6j6n−'(n)( 1Wn−j '(n)∑k=1 wn−j;n−j−k) > �: (6.4)Note that n− j > '(n). Thus on Dn,supm>'(n) Tm(�Bn) > �:Set E = ⋃n∈N

Bn; FN = ⋂n∈Nn>N Dn:We observe that �(FN ) > 1− 4 ∑n∈Nn>N '(n)=n → 1 as N → ∞. Thus on FN ,lim sup
N∋n→∞

Tn(�E) > �: (6.5)Further �(E) 6
∑n∈N

'(n)=n < �. This establishes Theorem 6.2. �



116 M. J.G. WEBERProof of Theorem 6.4. We start with (6.3) whi
h here be
omesAn−j�Bn(x) >

'(n)∑k=1 wn−j−k ;and next modify the previous proof as follows:'(n)∑k=1 wn−j−k > min'(n)6j6n−'(n)( '(n)∑k=1 wn−j−k)
> min16h6n−'(n)( h+'(n)∑k=h wk) = �n:Thus supm>'(n) Am(�Bn) > �n on Dn. Therefore on FN ,lim sup
N∋n→∞

Tn�E = ∞:Further �(E) 6
∑n∈N

'(n)=n < �. �A
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