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CRITERIA OF DIVERGENCE ALMOST
EVERYWHERE IN ERGODIC THEORY

ABSTRACT. In this expository paper, we survey nowadays classi-
cal tools or criteria used in problems of convergence everywhere
to build counterexamples: the Stein continuity principle, Bourgain’s
entropy criteria and Kakutani-Rochlin lemma, most classical device
for these questions in ergodic theory. First, we state a L!-version of
the continuity principle and give an example of its usefulness by ap-
plying it to some famous problem on divergence almost everywhere
of Fourier series. Next we particularly focus on entropy criteria in
LP, 2 < p < o0, and provide detailed proofs. We also study the
link between the associated maximal operators and the canonical
Gaussian process on L2. We further study the corresponding crite-
rion in LP, 1 < p < 2, using properties of p-stable processes. Finally
we consider Kakutani-Rochlin’s lemma, one of the most frequently
used tool in ergodic theory, by stating and proving a criterion for
a.e. divergence of weighted ergodic averages.

§1. INTRODUCTION.

This is an expository paper on criteria of divergence almost everywhere
in ergodic theory, and mainly Bourgain’s entropy criteriain LP, 2 < p < oc.
The paper is written in a self-contained and informative way: tools needed
are presented, with (expected to be) helpful and sometimes historical com-
ments, auxiliary results are included, as well as detailed and careful proofs
of main theorems. The preparation of this paper is thus made in order
to be also an efficient tool for investigating these questions. This is in
fact our main objective. We do not study nor present applications. We
refer for these to Bourgain [1-3]. We also refer to Rosenblatt and Wierdl
monograph [26], to our monograph [33] devoted to the study of these cri-
teria and to Chapters 5 and 6 of our book [32] where applications of the
Stein continuity principle are also studied. We further refer to Lacey [18],

Key words and phrases: Bourgain’s entropy criteria, Stein’s continuity principle,
Gaussian process, stable process, metric entropy, GB set, GC set, Kakutani—Rochlin
lemma.
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Lesigne [20], Berkes and Weber [6] notably for other applications. In writ-
ing the present paper, we referred to Chapter 6 of [32]. We were able to
improve and simplify some proofs and also complete it by new results. The
entropy criterion in LP, 1 < p < 2, obtained in Weber [38] is stated and
proved under a less restrictive commutation assumption, and we included
the necessary material from the theory of a-stable processes (here a = p)
for the proof. The metric entropy method (first introduced by Strassen in
the theory of Gaussian processes, see [8]) is briefly and concisely presented
for the need of the study.

The paper is organized as follows. In Section 2, we start with what
is certainly, by the probabilistic argument used in its proof, the basis of
everything: the Stein continuity principle. A less known aspect of this
principle is that it is also a tool for producing counterexamples to almost
everywhere questions. That point is developed in this Section. Next, Sec-
tion 3 is the central part of the paper and concerns Bourgain’s entropy
criteria and extensions of them. In Section 4, we present auxiliary results
concerning LP-isometries, stable random variables and processes, variants
of Banach principle, a metric comparison lemma and basic Gaussian tools.
Section 5 is completely devoted to proofs of the results stated in Section 3.
We conclude the paper with Kakutani—-Rochlin lemma, one of the most
classical devices in ergodic theory. There are many applications of this re-
sult, also called Kakutani—Rochlin towers’ lemma. We refer to Rosenblatt
and Wierdl monograph [26]. We illustrate it by stating and proving a cri-
terion for a.e. divergence of weighted ergodic averages, based on Deniel’s
construction [7].

§2. THE CONTINUITY PRINCIPLE.

Let (X,A,u) be a probability space with a p-complete o-field A.
Throughout the paper S denotes, unless explicitly mentioned, a sequence
of continuous operators S,: L%(u) — L%(p), n > 1. Recall some basic
facts. Let 1 < p < co. By the Banach principle, the set

F(S) ={f € LP(u) : {Snf,n > 1} converges p-almost everywhere}
is closed in LP(u) if and only if:

There exists a non-increasing function C: RY — RT with lim C(a)=0,

and such that for any a > 0 and any f € LP(u), -
p{S*f > a|flp} < Cla) where S*f = sup S fl-
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When the sequence S commutes with a sequence {7;,j > 1} of measurable
transformations of X preserving p and mixing in the following sense:

VA Be A, Va>1,3j>1: u(AﬁT]le)ga,u(A)u(B), (H)

and 1 < p < 2, then by the continuity principle C'(a) = O(a™P).

This is fulﬁlled if S commutes with an ergodic endomorphism of (X,.4,x).
So that the study of the convergence almost everywhere of the sequence
S amounts, under appropriate commutation assumptions, to establish a
maximal inequality and to exhibit a dense subset of L?(u) for which the
convergence almost everywhere already holds.

Before stating the Continuity Principle, recall that the topology of con-

vergence in measure on L°(i) (g, = g if u{|gn —g| >} — 0, for any

e > 0) is metrizable and, endowed with the metric d(f, g) f 1|+f‘—;flg—| du,

(L°(u),d) is a complete metric space. A mapping V from a Banach space
B to L°(p) is said to be continuous in measure or d-continuous, if for
any sequence (f, fn,, n > 1) C B, we have d(Sf,,Sf) — 0 whenever
[ fn = fIl = 0.

Theorem 2.1. Suppose that {S,, n > 1} is a sequence of operators,
Sn: LP(n) — L°(pn), 1 < p < 2, which are continuous in measure and
satisfy the commutation assumption (H). Then the following properties
are equivalent:

@) VYfelLl(n), p{o:S f(z)<oc}=1
(i) FJ0<C<o0:V feLl(n),

sup/\p ple: S*f(x) > A} < C/|f|pd,u
A>

Remark 2.2. If p > 2, the same conclusion holds for positive operators
(Spf 20, if f > 0). This was proved later by Sawyer in [27].

The proof combines quite subtely and remarkably, analysis and proba-
bility. The commutation property of the operators Sy, is crucial, and makes
the proof possible. Earlier, Kolmogorov used already in [13] the fact that
the operators

dt

mf@= [ fa-n7

= f € Lioc(R)

[t]>1/n
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all commute with translations to prove the similar inequality: let H* f(z) =
sup{|H, f(z)|, n > 1}, then

sup Am{z: H' f(z) > A} < C/|f(:1:)|da:,
R

A0

m denoting here the Lebesgue measure on R. The setting considered in
[29] is group theoretic: ) is a commutative compact group, p is the Haar
measure and S, are commuting with translations. Sawyer [27] showed that
this setting is not necessary and that a general principle can be derived
under the above assumptions. We refer to the nice monograph of Garsia
[10].

The Continuity Principle is not only a tool for studying integrability of
maximal operators S*f, but also a device for producing counterexamples
in problems of convergence almost everywhere. This was already observed
and studied by Stein [29], but also by Burkholder [5] and Sawyer [27]. In
[29], Stein has established other forms of this principle with quite striking
applications, proving notably negative convergence results. One of these
applications concerns a deep result of Kolmogorov [14,15] showing the
existence of an integrable function whose Fourier series diverges almost
everywhere. The proof is known to be very difficult. Using a suitable form
of his principle for the space L'(u), Stein could refine and also provide a
simpler proof of Kolmogorov’s result. Convergence criteria for this space
are not frequent, and reveal crucial in many deep questions. We recall it
now.

We assume here that X is a commutative compact group and denote
by “+” the group operation. Let p be the unique invariant measure, the
Haar measure on X. Let C(X) be the space of continuous functions on X,
with the supremum norm, and B(X) be the space of finite Borel measures
on X with the usual norm. Let {S,,n > 1} be a sequence of operators.
We assume:

(a) Each S, is a bounded operator from L'(u) to C(X).
(b) Each S,, commutes with translations.

By Riesz’s representation of bounded linear functionals on L!(u), con-
ditions (a) and (b) are equivalent with

(c) Snf(x) :){Kn(l' —y) f(y) u(dy), where K € L>(X).
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Such an operator has a natural extension to a bounded operator from B(X)
to L (), which we again denote by S,,. Notice that this extension still
commutes with translations. Similarly, we also write S*v = sup,,cy |Snv/|.

Theorem 2.3. Under assumptions (a) and (b), the following assertions
are equivalent:

VieLl(n), p{r:S"f(z)<oo}=1, (2.1)

< C <0 YreB(X), sup/\,u{x 1 S*v(z) > /\/ |d1/|} <C. (2.2)
A0 A

To give an idea of its strength, let us show how to recover Kolmogorov’s
theorem. Introduce the necessary notation. We denote throughout this
article by T the circle R/Z ~ [0, 1].

Take X = T and let u be the normalized Lebesgue measure on T. Let
Sn(f) denote here the partial sum of order n of the Fourier series of f,
and more generally let S, (v) be the partial sum of order n of the Fourier—
Stieltjes expansion of a Borel measure v. Recall that for any integrable f,

Snf(x) = Smf(z) = O(log(l + |m —nl)),  m,n— oo,
almost everywhere. Stein proved the following refinement:

Theorem 2.4. Let p(n) > 0 be any function tending to zero as n tends to
infinity. Then there exists an integrable function f(x) such that the more
restrictive property

Sn(f)(@) = Sm(f)(2) = O(p(jm — n|)log(1 + [m —n|)) (2.3)

is false for almost every x.

This of course implies Kolmogorov’s theorem. For the proof, consider
for n # m the family of operators

Im — n|)log(1+ |m —n|)’

Aty f =
(o) o

These operators satisfy conditions (a) and (b) of Theorem 2.3. A lemma
is necessary.

Lemma 2.5. There exists an absolute constant C' such that for any inte-

ger k, there exists a measure v on T with [ |dv| =1 and
T

sup ‘Sn(u) - Sm(u)‘ > Clogk almost surely.

n,m:n—ml|=~k
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Proof. Let z1,...,£N be some points of T to be specified later, and set

= % Z 2:» where J, denotes the Dirac measure at point z. Then

[ |dv| = T Plainly,

N

=

Sn(v)(x) = Sm(v)(2)

N .
cosm(n+m+1)(x — z;)sinw(n — m)(z — x;)
z:: sinm(z — ;) '

ZIN

Write k =n —m, £ = n + m + 1. Assume that k is odd. Then £ must be
even, but this is the only restriction on £. We choose the z; to be linearly
independent over Q, and such that they are very close to i/N. It is easily
seen then, that for almost every z, the x — x; are linearly independent over
Q. Choosing ¢ large enough, depending on x, we have

sup 1S () () — S Z|sm7rkxfx)|'

n,m:|n—m|=k |sinm(z — x;)]

The fact that z; are very close to ¢/N and N is large enough, shows that
the sum on the right is close to its integral counterpart, and so exceeds
half of its value. Therefore,

|sinTk(z — y)]

> C logk,
|sinm(z — y)] ¢ log

1
sup  [8,0)(a) - Su()@)| > 5 [
T

n,m:n—ml|=~k
as claimed. O

Now we prove Theorem 2.4. Suppose on the contrary that property (2.3)
were true with positive probability, and this for any f € L'(T). Let 7 be an
irrational rotation of T, thereby an ergodic measure preserving transfor-
mation. Note that if A = {sup,,_,, |A¢yn) f| < 00}, then 771(A4) C A. By
Birkhoff’s theorem, this suffices to imply that u(A4) = 1. So that the op-
erators A, ) f would satisfy condition (2.1). Consequently, the maximal
operator

i | Sa)(@) ~ 5, 0)(@)
v AW = S | — ) log(L + [ — )
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would satisfy (2.2). Therefore this would imply the existence of a constant
Cop such that for any v € B(M) with [|dv| = 1, and any ¢t > 0, tu{z :
T

A*I/(JI) > t} < Co.

Let k be a positive integer, which we choose sufficiently large to ensure
that logk > (2Cy)/C, where C is the same constant as in Lemma 2.5.
Apply this for ¢t = (C logk)/2; then,

. C 2Cy
,u{x.A v(z) > Elogk} < Clogh <1

By Lemma 2.5, there exists v € B(M) with [|dv| = 1 such that
T

A*v > Clogk almost surely. Hence a contradiction and condition (2.1)
cannot hold. Therefore there exists an integrable function such that prop-
erty (2.3) is false for almost every .

For recent results related to Kolmogorov’s theorem, see Lacey’s very
nice paper [17], Section 9.3. We refer to [29] (see also [32, Chapter 5]) for
several other applications of this kind.

To f € L*(u), associate the sequence in which we set T f = f o 7,

1
Frp=— Z 9;T; f, (J=1), (2.4)
\/j N
where g1, go, ... are i.i.d. standard Gaussian random variables, defined on

a common joint probability space (2, B, P).

These random elements (with Rademacher weights instead of Gauss-
ian’s) are key tools in Stein’s proof. The same elements (sometimes with
stable weights) are also playing a central role in Bourgain’s entropy crite-
ria and extensions obtained by the author. The notation used in (2.4) will
be later formalized to include these cases, see (4.4). Lifshits and Weber
studied in [21,22] and [35] their oscillations properties and the tightness
properties of their laws.

The Continuity Principle is established in an indirect way in [29]. A
direct proof with Gaussian weights (as in the proofs of Bourgain’s entropy
criteria) was given in [32].

We close this section with an interesting and somehow intriguing obser-
vation. The key point of the proof is contained in the following inequality
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(see [32, p. 211-212])
nu{S*(f) > M(L+n)/7} — 2
i {S*(f) > M(L+n)1/7}
which holds for any M > 0, any integer n > 2, and c¢ is a numerical
constant. Now by simply permuting the order of integration, we get
nu{S*(f) > M(1+n)!/7} — 2
np{ S*(f) > M(1+n)t/r}

<8Ep{S*(Fn,z) > cM}, (2.5)

< S/P{S*(Fn,f) >cM} dp,  (2.6)
X

where this time, S*(f) is controlled by its random counterpart of S*(F,, r)
for an appropriate choice of the integer n. Therefore a good control of the
random counterpart also provides a good control of the initial sequence.

Notation. We reserve the letter g to denote throughout an N(0,1)
distributed random variable. An index or a sub-index always denotes an
infinite increasing sequence of positive integers.

§3. METRIC ENTROPY CRITERIA

Using the theory of Gaussian processes, Bourgain has established in [2]
two very useful criteria linking the regularity properties (boundedness,
convergence almost everywhere) of the sequence S with the metric entropy
properties of the sets 'y below.

The concept of entropy numbers (namely covering numbers) associated
with a metric space is old; it was invented by Kolmogorov as a device
for classifying functional spaces. See Kolmogorov [13], Kolmogorov and
Tikhomirov [16], Lorentz [23]. In many situations, these numbers are com-
putable (typical examples of sets are ellipsoids, see [9]); hence their inter-
est. Recall that any compact set in a separable Hilbert space is included
in some ellipsoid, see Raimi [25] and for relations between their entropy
numbers, see Helemskii and Henkin [11].

Bourgain also showed, by means of imaginative constructions, how to
apply these criteria to several analysis problems, among them Marstrand’s
disproof of Khintchin’s Conjecture, a problem posed by Bellow and a ques-
tion raised by Erdos. This is a quite striking achievement, which adds a
new chapter to Stein’s Continuity Principle. We believe that Bourgain’s
approach goes beyond the setting explored in [1-3] and should deserve
further investigations. The author has obtained in [6, 33, 38] extensions
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of these criteria and applied them to similar questions. He further stud-
ied in [34,36,37] the geometry of the sets C'; defined in (3.1), as well as
and their natural extension C(A) = {S,(f), n > 1, f € A}, in which A is
an arbitrary subset of L?(u). We also refer to Talagrand [31] where this
question was investigated in a larger context.

Introduce the following commutation condition:

(C) There exists a sequence {Tj, j > 1} of L'(u) positive isometries,
such that T;1 = 1, commuting with S, S,.(T; f) = T;(S»f), and such that
for any f € L'(u),

) 1
i |5 2 ms - [ ra],, =
isd

Set for any f € L?(u),

Cy ={S(f), n=1}. (3.1)
Consider for 2 < p < 0o, the following convergence property
(Cp) p{{Sn(f), n > 1} converges} =1, for all f € L”(u).

Bourgain’s first criterion [2, Proposition 1] shows that if (Cp,) holds for
some 2 < p < oo, the sets C'y cannot be too large. More precisely,

Theorem 3.1. Let S be a sequence of L?(p) contractions satisfying con-
dition (C). Assume that (C,) holds for some 2 < p < co. Then there exists
a numerical constant Cy such that for any f € LP(u),

sup € 4/log Ny (e) < Colf|2,

>0
where for any € > 0, N¢(e) denotes the minimal number of L*(u) open
balls of radius e, centered in C'y and enough to cover Cj.

Remark 3.2. By using covering properties of ellipsoids, one can show that
the above entropy estimate is optimal for convolutions on the circle; and
thus admits no improvement. See [33, p. 47]. However, it can be far from

optimal on typical examples. Let S, f = % S Tif, where T is some mea-
Jj<n

sure preserving transformation on (X, A, ). By a theorem of Talagrand

Ny(e) < Cmax(1,|f]5,/€%), 0 < & < |[fll2.u, where C is an absolute

constant. See [31], [32, Theorem 1.4.1].

Bourgain’s second criterion [2, Proposition 2] states as follows.
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Theorem 3.3. Let S be a sequence of L?(u) contractions satisfying con-
dition (C). Assume that (Coo) is fulfilled. Then for any real § > 0,

C(0) = sup Ny (6) < o0.
fer=(u), lIfl=<1

A starting point of the proof is a version (see [2, (9)]) of the Banach
principle for L>°(u), namely the fact that the convergence property (Coo)
implies that

S*
sup /ﬁdu — 0, as ¢ — 0. (3.2)

Hflloo,uéhllsz,uéeX

This result was established few after by Bellow and Jones in [4]. The proof
is however lenghty and indirect. It is possible to provide a direct and
short proof, similar to the one of the standard Banach principle, see [32,
Theorem 5.1.5].

Note that the integrability of S*f, which is required in (3.2), is not
ensured by the assumption made in Theorem 3.3. This is for instance
guaranteed when S,, are L?(u)-L°(u) contractions, which is the case of
all applications given in [2]. Moreover, Bourgain’s proof runs with no mod-
ification using (3.2) at the conclusion.

Given a separable Hilbert space H, recall that the canonical Gaussian
(also called isonormal) process Z = {Zp,h € H} on H is the centered
Gaussian process with covariance function

T(h,h') = (h,h), h,h € H.

Let {hp,n > 1} be a countable orthonormal basis of H. Let also {g,,n >
1} be a sequence of i.i.d. N'(0,1) distributed random variables on a basic
probability space (9, A,P). Then Z can be defined as follows: for any
he H,

Zn =" gn(h,hn).
n=1

A subset A of H is a GB set (for Gaussian bounded) if the restriction
of Z on A possesses a version which is sample bounded. Further, A is a
GC set (for Gaussian continuous) if the restriction of Z on A possesses a
version which is sample || - ||-continuous. These notions were introduced in
Dudley [9].
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A countable subset A of H is a GB set if E sup,c4|Z(h)| < oo, or
equivalently E sup,c4 Z(h) < oo, since as is well-known,

E sup Z(h) < E sup |Z(h)| < 2E sup Z(h) + inf E|Z(ho)|.
heA heA heA hoeA

Under assumptions of Theorem 3.1, Bourgain has also shown that the
sets Cy are GB sets. Some remarks are in order. It is not necessary to
assume that S,, are L?(u)-contractions. Moreover, the conclusion remains
true under a weaker condition than (C,). Theorem 3.1 can be reformulated
as follows.

Theorem 3.4. Let S be satisfying assumption (C). Assume that for some
2<p<oo,

(Bp) 1 sup (S (f)] < oo} =1, for all f € LP(p).
Then for any f € LP(u), the sets Cy are GB sets of L*>(u). Further there

exists a numerical constant C, and a constant Cs such that for any f €
LP (),

Cy sup e4/log Ny(e) < E sup Z(S,(f)) < Ca||f]

e>0 n>1

2,pe

The use of the fact that if N(X) is a Gaussian semi-norm, then
4s
S Svvi S
P{N(X) < s}
slightly simplifies the proof, which otherwise is very similar ([32]).

P{N(X)<s}>0 =  EN(X) (3.3)

Remark 3.5. One can naturally wonder whether property (C,) analo-
gously implies that the sets C'y are GC sets. This question was investi-
gated in [33, §5.2.2], where in Theorem 5.2.4 it is shown that the answer
is positive when X = T and S,, are commuting with rotations.

Note before continuing that when [ S*fdu is finite, no explicit link
X

with
E sup Z(5n(f))
n>1
can be drawn from Theorem 3.4. In Theorem 3.6 below, this is established.
A general inequality valid for arbitrary partial maxima, can be directly
indeed derived from condition (C) only. Before, we add further comments.
First, say a few words on the way the commutation condition (C) links
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Z and S. This explains easily. Let f € L?(u) and let I be a finite set of
integers. Then one derives from (C), that there exists an index J such
that the two-sided inequalities

L1Su(F) — Sm(1)

20 < [|Sn (FJf) Sm(Fy1)(@)|2,p

2,1

hold true for all n,m € I and all J € 7, and for all z in a measur-
able set of positive measure. See Lemma 4.6. Theorem 3.1 is obtained as a
straightforward application of the Banach principle, and Slepian’s inequal-
ity combined with Sudakov’s minoration (Lemma 4.9).

Bourgain essentially applied Theorem 3.3, and this in the case X =T,
and T} are translation or dilation operators. The counter-examples are
built on functions of the type

f enx:e%ﬂ'nm’
\/—Z (en(x) )

neF

where F' are specific arithmetic sets. These elements, as well as all T} f,
j = 1, not only belong to LP(u) but also to many more specific spaces. So
that for Banach spaces B such that B C L?(u), a requirement on f € B
like

ijGBa ]217

is frequently non void. Call R(B) the set of these elements. Then F; € B
whenever f € R(B). If B = LP(u) for instance, then by Corollary 4.3 and
Lemma 4.4, R(B) = B.

Theorem 3.6. Let S be satisfying condition (C). Let additionally I be a
finite set of integers and 0 < ¢ < 1. Then there exists a partial index J such
that for any J € J, any positive increasing conver function G: Rt — RT,
the following are true:

(i) Let B C L?(u) be a Banach space with norm || - ||g. For any f € R(B),

VIZZ Esup Z(Su(f)) <E|Fssls sup /sup 1Su(B)] d.

nerl Irls<1 J nel
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Moreover,

n,mel

BG(VI—2 sw |Z(Su(f) ~ Z(Sn(F)])
G

( sup |(Sn - Sm)(h)‘) dp.

n,mel

<E|Filn s B [
Irllz<t &

(i) In particular, for any f € LP(u) with 2 < p < oo,

VITE swp Bsuwp Z(Su()<Cy sup [ sup [S,(0)] du

[1f]l2,n <1 nel llp, . <1 nel

where Cy, = ||gp/|lgll2, recalling the notation used. Further

sup  EG(VI=¢ sup |Z(Su() = Z(Sn(F)])

Hf”2,;.z§1 n,meI

< Cp, sup E/XG( sup |(Sn—Sm)(h)‘)du.

17l <1 nymel

We have the following criterion providing a general form of Theorem 3.4.

Theorem 3.7. Let S be satisfying assumption (C). Let B C L*(u) be
a Banach space with norm || - ||p. Assume that the following property is

Fulfilled:
u{sgri 1Su(f)] < oo} =1, VfeB.

Then there ezists a constant K depending on S and B only such that
E sup Z(Sn(f)) < K limsup E|Fg ¢ 5, V f € R(B).
n>1 H—o00

Let us derive a criterion which has been recently applied in [6] to
show the optimality of a famous theorem of Koksma. Let {h,, n € Z}
be a countable orthonormal basis of L?(u) and use the notation f ~
ST an(f) hny, Y. @2(f) < oo, if f € L%*(n). Given a sequence of posi-

neZ nez
tive reals w = {wp, n € Z} with w, > 1, we recall that L2 (u) is the

sub-space of L?(u) consisting of functions such that

ana%(f) < 0.

neEZ
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This is a Hilbert space with scalar product defined by

<f7 h> = an an(f) an(h),

neZ

£l = (S waaz(r) "

neZ
The space L?(u) corresponds to the case w,, = 1. Moreover, L2 (u) trivially
contains any f such that a,(f) = 0 except for finitely many n.

and norm

Corollary 3.8. Let S be satisfying assumption (C). Assume that the fol-
lowing property is fulfilled:

p{sup |S,(f)| <oo} =1, forall f € L2(p).
n>1

Then there exists a constant K depending on S and w only such that

sup €4/log N¢(e) < K limsup E||Fyfll2m, for all f € R(L2(p)).
J—oo

e>0
Remark 3.9. Let X =T, p the normalized Lebesgue measure and let T}
be dilation operators, T; f(x) = f(jz). Then any finite trigonometric sum
belongs to R(L?2,(w)).

We refer to [32, Chapter 6] for a study of the link between the partial
maximum operators (I being a set integers).

sup /sup |Sn(h)] dps and sup  Esup Z(S,(f)). (3.4)

Ihloo,u<t J nerl Ifllz.u<l  nel
bl u<e X

In the theorem below, we provide a quantitative link.

Theorem 3.10. Let S,, n > 1, be L*(u)-L>(u) continuous operators
verifying condition (C). Let I be any set of integers with cardinality M.
For any reals A > 0, R > 0, it is true that

sup B sup Z(Su(f))
I £ll2,,<1 nel

< 6VM Si(I) exp{—A%/8} + A(V2) Sy(I) e F/4
+ A sup / sup |Sy(h)| dp,
nel

P lloo,p <1
Irll2, . <R/A X
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where S1(I) = maxuer [|Snll2, S2(I) = maxper [|Sn ]|, and

HSnIIz:”SHp [Sn(Pllz [Snllee = sup [1Sn(f)lloo-

2<1 <1

Remark 3.11. It is not complicate to derive from this bound Theorem
3.3, for L?(u)-L>°(p) contractions.

Now consider the spaces LP(u), 1 < p < 2. A corresponding entropy
criterion can be also established.

Theorem 3.12. Let 1 < p < 2 with conjugate number q. Consider a
sequence S = {Sp,n > 1} of continuous operators from LP(u) to LP(u).
Assume that condition (C) is satisfied.

Further assume that for some real 0 < r < p, property (B,.) is satisfied.
Then there exists a constant C(r,p) < oo depending on r and p only, such
that for any f € LP(u),

1
sup < (1o N7()) " < C(r,) /]
where NJ{)(E) is the minimal number of open LP-balls of radius €, centered
in Cy and enough to cover it. Further C(r,p) tends to infinity as r tends
to p.

The proof given in [33] relies on properties of p-stable processes; it is
assumed that S commutes with an ergodic endomorphism of (X, A, ),
which in fact is unnecessary. The restriction p # 1 is only used at the very
end of the proof, but is then crucially necessary.

Remark 3.13. The pending question of a possible convergence criterion
for the space L!(u) is of course very interesting. But its true nature is
unknown, since we are not operating in a (strictly) stationary context. In
particular, S, (f) — Sm(f)|lp,u, crucial in (5.11), does not even depend
on n —m only, in general. Moreover, we know (see Talagrand [30, §8.1]),
that a necessary condition for a 1-stable process to be sample bounded
rather expresses in terms of majorizing measures. This important concept
is however not relevant in the present context because of its difficulty of
application.

As announced already, we have made the paper self-contained. We pro-
vide proofs of these theorems in Section 5.
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§4. AUXILIARY RESULTS.

4.1. LP-isometries. We first recall a classical result of Lamperti [19,
Theorem 3.1]. Let p be a o-finite measure on (X, .A). Some basic properties
of isometries of LP(u) are used in what follows. Recall that a regular set
isomorphism of the measure space (X, A, 1) is a mapping © of A into itself
such that

i) ©)=6ex\04
() (| 4n) =] 4, fordisjoint A,

=1 n=1

(iii) w(©A) =0 if and only if p(A) =0, (4.1)
for all elements A, A, of A. Then O induces a linear transformation (noted
again by ©) on the space of measurable functions, defined as follows,
Oxa = Xxoa-
Remark 4.1. The question whether a measure preserving set transforma-
tion can be obtained from a point mapping has been already considered.
By a result of von Neumann, so is the case if for instance X is a closed
region in R™ and p is equivalent to the Lebesgue measure, see [19, p. 463].

Lemma 4.2. Let T be a linear operator on LP(u) where 1 < p < oo and
p # 2, and such that | T f||, = || fllp, for all f € LP(u). Then there exists
a regular set-isomorphism © and a function h(x) such that T is given by
Tf(z) = h(z) O f(x).
Define a measure p* by p*(A) = u(©~tA). Then
du*

h{z)|P = (z) a.e. on ©X.

) = %
Corollary 4.3. Let u be a probability measure. Let T be a positive isometry
of LP(u) with 1 < p < oo and p # 2, such that T1 = 1. Then T f(z) =
O f(z) with© 1 =1 and O is a reqular set-isomorphism. Moreover for any
f e LX), |TF* = T|f|%, for any 0 < a < co. Further |Tf|P *= T|fP,
if feLP(u).
Proof. By Lemma 4.2, Tf(z) = h(z)O f(z). As u(X) =1 and T1 =1
it follows from the proof of Theorem 3.1 in [19] that A(z) “= 1, and
T = O. But as Oxa = xoa, we get |Tf|* = T|f|* for simple functions,
for any 0 < a < oo. Hence by approximation |T'f|* %= T|f|* holds for
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all f € L°°(u). Further by approximation again, since T' is an isometry of
LP(u), [T "= TIf|P, i f € LP(n). O

For the sake of completeness, we included the following lemma concern-
ing the (simpler) case p = 2.

Lemma 4.4. Let T be a positive isometry of L?(u) such that T1 = 1.
Then (Tf)? "= Tf2, for any f € L*(u).

Proof. Let A € A with 0 < p(A) < 1. Trivially f,g € L2 () have disjoint
supports if and only if ||f + gll3,, = [IfII3, + llgll3 - Hence it follows
that T14 and T'14c have disjoint supports. Let E = {0 <T14 <1} =
{0 <T14. <1}. As E C supp(T14)Nsupp(T14.), we conclude that T'1 4
and T'1 4. are indicator functions. Thus any simple function is mapped by
T into a simple function. For these functions we have (T'f)2 = T f2. Now let
f € L% (w); there exists a sequence (f,,) C L°(p) such that || f — fp|2 — 0
as n — oo. First observe by applying twice Holder’s inequality that

Jawz-pyeans ([ - )"

X X

= 1£2 = P22 < (I fn = Flla - 11+ FlI2) .

Consequently,

ITf= VT <ITf=Thli +1ITfo = VT + VT = VT
=If = fuls + IVTFZ = VT 21

<NF = Falls + (fo = Fllo - 1 fn + Fll2)7 —

as n — oo. Hence (Tf)? = f? a.e.. As f = fT — f~, we deduce that this
holds for any f € L?(u). O

4.2. Stable processes. This part was essentially written for the ergodi-
cian reader not necessarily familiar with stable processes. We use very few
from the theory. We refer to [24]. We also refer the interested reader to the
very nice book of Talagrand [30] for a thorough study of the regularity of
stable processes. For the same reason, the last part of the proof of Theo-
rem 3.12 is detailed and we refer to [24]. The stable processes we consider
are simple, of finite rank. They are however not strongly stationary. Re-
call and briefly explain some basic facts and properties of stable random
variables and stable processes.



90 M. J.G. WEBER

Let 0 < a < 2. A real valued random variable € is symmetric a-stable
of parameter o if

Eelt! = eIt VtcR. (4.2)

Then for all 0 < r < o, (E|6]")"/" = §(r,a) o, where §(r,a) depends only
on r and «a. Stable random variables are mixtures of Gaussian random
variables. Indeed, as is well-known the function f(\) = e~ is completely
monotone on RT, for each 0 < o < 1. Consequently, there exists a ran-
dom variable v(a) such that Ee~*v(®) = f()), for all A > 0. Let n(a) :=
(2v(a/2))'/?. Let g be standard Gaussian independent from 7. By tak-
ing Fourier transforms E ei(@)0 = Ee=t"1(@)?/2 = Ee=t"v(a/2) = ¢t
Whence it follows that § 2 n(«a) - g. Let 81,...,0; be ii.d. a-stable real
valued random variables, and let ¢i,...,cy be real numbers. From (4.2)
we get

J 5 J 1/a
chgj :91(Z|cj|a) _ (4.3)
j=1 j=1

A stochastic process {X (t),t € T} is a real valued a-stable if any finite

linear combination ) ¢; X (¢;) is an a-stable real valued random variable.
J

From now on, we extend the notation used in (2.4) in the following way.
To any f € LP(u), 1 < p < 0o, we associate the random element,

Fyp(w,z) = ﬁ S 65w T f(a), e zeX.  (44)

NS

Remark 4.5. As long as entropy criteria are studied in LP(u) with 2 <
p < 00, the relevant random elements Fy ¢ are Gaussian (o = 2). When
1 < p < 2, we choose them p-stable (a = p).

Clearly (4.4) defines a real valued a-stable process. It follows in partic-
ular that for any x € X,

D 1 1/

FrgCoa) 2ou(5 0 Ims@) (4:5)
1<5<d

Let {n;,j = 1,...,J} be a sequence of i.i.d. random variables with the

same law than n(a), and let {g;,j = 1,...,J } be asequence of i.i.d. Gauss-

ian standard random variables. We assume that these sequences are respec-

tively defined on joint probability spaces (@', B’,P’) and (Q"”,B"”,P").
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Then the process
Fipw' ", ) Zn] (W) T f(z), ze X,
is<d

has the same distribution as {Fy s(z),z € X }.

4.3. A comparison Lemma. In the next lemma, we denote the norms
corresponding to the spaces L"(u) and L"(P) respectively by || - ||, and

- lirp-
Lemma 4.6. Let 1 < p < 2. Let Sp: LP(u) — LP(u), n = 1,2,..., be
continuous operators verifying assumption (C).

(i) Let 1 < p< 2. Let f € LP(p) and 0 < € < 1. Let also I be a finite
set of integers such that

||Sn(f)75m(f)”p7ﬂ7éou fOT‘ a”n#m; n,mGI.

Then given any index Jo, there exists a sub-index J and a measurable set
A with p{A} > 1 — e, and such that for all x € A, we have

FJ ZL’)
(1 *6) H f HT,P
c(r) [|Sn ( ) S (f)
forall J € TJ, alln,m €I, m #n, and r < p. Moreover, c¢(r) = ||61].
(ii) Let p = 2. We have in place of (4.6),

< (1+e)'/7, (4.6)

1650 = Sm)(E2.0) @) p
B ) S (1)

forall J € J, all n,m € I, m # n. Further, for any positive increasing
convex function G on RT, any J € 7,

(1—e)/?2 < <(1+¢)'7?, (4.7)

2,

EG(VI=2 sup Z(Su(f) = Z(Sn(f)

n,mel

/G sup S FJf) Sm(FJ7f))dll,.

n,mel

In particular for any J € J,

v1—eEsup Z(S.(f)) < E /sup Sn(Fryz) du. (4.8)

nel nel
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Proof. We assume Jy = N, the case of an arbitrary index Jy being treated
identically.

Proof of (i): Let f € LP(u). By the commutation assumption,

Sn( Zas Jl/pZHT

p]<J i<
Vn>1,vJ> 1.

Hence by (4.3), for any fixed z € X,

LS OSSN 20 (53 T~ Sut@))

T i< i<

B (S0 - S Er)@)] = @ 1) (53 10500 - sur@))”
i<J
= @® 100 (5 3 T3(150(f )\”xx))””, (49)
is<d

for almost all z.

Let I be a finite set of integers such that
1Sn(f) = Sm(f)llp,u =0 >0, for all n Zm, n,m € I.

Let 0 < € < 1 and choose an integer L sufficiently large so that 2=F < e
and § > 27L~1/e. Assumption (C) implies that

=0
J—o0 p7uH17H ’

tim |5 3275008000 = Sn(HP) = 18(5) = S ()
F<T

for all n,m € I. By extraction, we can find an index J = {Jx,k > L}
(depending on I and €), such that

|5 3 1500 = Sul) = 1800) = DI, < e

J<Jk
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for all n,m € I and all £ > L. Put
Ak:{ElnmEI:

5 3 T80(0) = SmNIP) = 184(7) = (s

J< Tk

e | =274},
k> L.
By Chebyshev’s inequality, we have u(Ay) < 27F. Let

Ac(n,m, J)
= {1 -2)I5.() ~ Sm

b < 5 ST =500
< (L+)lISu(f) — Sm<f>||p7ﬂ},

and

AI,E = n n As(numqu)'

k>L nmel
Then,

M{A,7E}>u{ ﬂA;}>1—22—’“: 1-27L>1-¢

k>L k>L

As by (4.9), for any r < p,

1S~ S E @], = 1600 (5 S T08.00) — suh)P)@) .

i<T

it follows that for every x € Ay ., we have

_ IS0 = Sw)(Frp) @), p
S o ||S ( ) = Sm(f)
forall J € J,alln,m eI, m#n,and r < p.

Proof of (ii): The proof is the first inequality is identical and so we omit
it. Let f € L?(u). Let 0 < & < 1 be fixed. Let I be a finite set of integers
such that

(1—e)/r

<1+,

1Sn(f) — Sm(f)llp,p # 0, for all n #m, n,m e I.
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Now notice that p{ E sup,c; Sn(Fjf) > 0 } = 1. Using (4.7), next
Slepian comparison lemma, we have along the index 7,

/E sup Sn(Frys) dpu > /E sup Sn(Fys) dp
nel nel

>V1—e u(A)E sup Z(Sn(f))

nel
> (1—¢)E sup Z(Sn(f))-
nel
Similarly,

/ EG( sup Su(Frs) — Sm(Fy.0)) du
X

n,mel

>

=

EG( sup Sn(FJ,f)me(FLf)) dp

n,mel

WV

S .

EG(V l-¢ sup Z(Sn(f)) - Z(Sm(f))) d;u

n,mel
>V1-eEG(V1-¢ sup_ Z(Sn(f)) = Z(Sm(f)))

>V1-eEG(V1—¢ sup Z(Sn(f)) — Z(Sm(f))).

n,mel

This completes the proof of Lemma 4.6. (|
4.4. Banach Principle. Let

Y=A{feL>:|flle <1}
A mapping V: (V,d) — L°(u) is said to be continuous at 0, if V is d-
continuous at 0 on ). When V is linear, then V is continuous at 0 if and
only if V' is d-continuous on L*(u).

Lemma 4.7 ( [4]). Let {Sn, n > 1} be a sequence of linear operators of
L% () in L°(u). Assume that the following conditions are realized:

(i) Each S, is continuous at 0,
(i) For any f € L>®(pu), pu{z : {Sn(f)(x),n > 1} converges} = 1.

Then S*: Y — L°(p) is continuous at 0.

For a short proof, we refer to [32, p.205]. The next lemma is used
repeatedly.
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Lemma 4.8. Let (B,|| - ||g) be a Banach space and let S,,: B — L°(p),
n > 1, be continuous in measure operators. Assume that

p{sup |S,(f)| < oo} =1, for all f € B.
n=1

Then there exists a non-increasing function C :)0,1] — Ry such that for
any 0 < e <1, any J > 1 and any f € R(B), there exists a measurable
set X gy with p(X. jr) > 1 —¢, such that

P{w:sup [Su(Fy s, )(@) < CEOB|Fssls} > 1,
n>1

for any x € X. 5y, recalling that Fy ; are defined in (4.4).

Proof. By the Banach principle, there exists a non-increasing function
4 :]0,1] — Ry such that

,u{sup 1S (h)| = 8(e) ||h||B} <e?)2, V0<e<1 VheB.

Let f € R(B), then Fj ;y € R(B) almost surely. Taking h = F;y and using
Fubini’s theorem, gives

[ B{su 18,(F10)1 = 66 [1Faglla} du < 222
n>1
X

Now we bound as follows

26
[®{sw Isu(rnp) = 22
n>1

2

E|Fyls} du

g/P{sup Sn(Fyp)| > 226)

2
E||Fy s |Fs /s < = E||F }d
sup = ElFssls: 1Frsls < EFrslls p du
X

2
+  P{IFuslls > SE|Fusln}

< [B{sup 18.(F20)| > 66 [Fala} 2 < 22 =2
n>1
X

Hence,

pfo € X P{uwssup [Su(Fyw, ))(o)| > 200

n>1 g2

E|Fulls) >e} <e,
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or
,u{x eX: P{w :
sup 15,(Fy (0 )@)| < 25 BB 15} 2 1-e) 21—
By letting C'(g) = 2‘2(25), we easily conclude. O

4.5. Some Gaussian tools. The next lemma is well-known in the theory
of Gaussian processes. We refer for instance to [32, Chapter 10].

Lemma 4.9. Let X = {X;,t € T} and Y = {Y,,t € T} be two centered
Gaussian processes defined on a finite set T.
(a) [Slepian’s Lemma)] Assume that for any s,t € T,

[Xs — Xell2 < IV — Yillo-
Then for any positive increasing convex function f on RT,

Ef[sup (X; = X)] <Ef[sup (Vs = ¥7)].

In particular,

E sup X; < E sup Y;.
teT teT

(b) [Sudakov’s minoration] There exists a universal constant B such
that for any Gaussian process X = {X;,t € T'}

Esup X, > B S'}tnefT |1 Xs — Xill2,p /1og #(T).

teT St

(c) [Lower bound for Gaussian norms] Let X be a Gaussian vector and
N a non-negative semi-norm. Then

1
P(N(X)<oo}=1 = P{N(X) > = EN(X)} >
where 0 < ¢ < 1 is a universal constant.
(d) [Mill’s ratio] The Mill’s ratio R(x) = e* /2 [ e~t"/2 dt verifies for
any ¢ > 0, !

2

< R@) < ———— <, /2.
214 ; 2
TE+itz Vit i+
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1t follows that for any standard Gaussian random variable g, any T > 0,

_ 2
Eg’x{lg| >T} <6e /"

§5. PROOFS.

As clarified in Remark 4.5, we use the random elements Fy ¢ introduced
in (4.4) differently, according to the cases 2 < p < oo, in which they are
Gaussian, and 1 < p < 2, where we choose them p-stable.

5.1. Proofof Theorem 3.7. Let 0 < & < 1/2. Let f € R(B). By Lemma
4.8, there exists a non-increasing function C :]0,1] — R4 and a set X, 7 ;
of measure greater than 1 — € such that for all z € X, j,

P{w: sup [Sn(Fys(w, )(x)| < O) B IFaflln} >1-e.
Estimate (3.3) implies

4C (e

E sup [Su(Fuslw, (@) < 2CE)

] E|FysllB, Vae Xy
n=1 — &

Recall that B C L?*(u). Let T be a finite set of integers such that
1Sn(f) = Sm ()2 # 0, for all m,n € I, m # n. By Lemma 4.6(ii), taking
Jo = N, there exists a sub-index J such that if

Hsn(FJ,f) - Sm(FJ,f)|

A(I):{Wej, Vn,m e I, m#n, 2P 1—5},

2,p

then p{A()} > V1 —e.

By integrating on X, j ; N A(), next using the fact that

E sup Sp(Fyy) >0,
nel

and Lemma 4.9(a), we get for any J € 7,

/ E sup S,(Fry)dp > / E sup Sy (Fry)dp

%), X jam
> VI-ep{X. s NAI)} E sup Z(Sn(f))
ne
> Vi—e(V1—c—¢)Esup Z(Sn(f))
nel
> (1-2¢) Esup Z(Sn(f))E
nel
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By combining, for any J € 7,

1
E sup Z(Su(f)) < T 29 / E sup Sn(Fyy)dp

Xy, nel
< K(e)E||Fyyl B, (5.1)
with e
£
FO=t a0 o

Therefore, for any f € R(B), any finite set I,
Esup Z(Sn(f)) gK(&‘) inf sup EHFH,fHB = K(&‘) limsupE||FH7fHB.
nel JeT Hzg H—co

Taking I = [1, N] and letting next N tends to infinity, gives
Esup Z(S:(f)) < K(e) limsupE|[Fy s|lp-

n=1

5.2. Proof of Theorem 3.4. Let f € L°(u). Fubini’s theorem and
Lemma 4.4 allow us to write,

E /|FJ7f|de<Cg/(E|FJ,f|2)p/2dﬂ

=¢p [ (52 mrw) " duto)

i<J

By assumption

5 =0.
hlly

i [S S

J<J
By proceeding by extraction, this convergence also holds almost surely

along some subsequence Jo. As % > Tj f*(z) < || f|%, we further deduce
J<J
from the dominated convergence theorem,

. 1 9 p/2 »
L B[ (G nrw) =11,
J<J
Let 0 < € < 1. Extracting if necessary from J, a sub-index which we call
again Jy, we thus conclude that

EErtllpu <1 +e)Cpllfll2,u VJed.

Next the proof is exactly the same as before except that we replace every-
where the norm |.||g by the norm ||.||, .. Let I be a finite set of integers.
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From Lemma 4.6, we can extract from Jy a partial index 7 such that the
analog of (5.1) holds, namely for any J € 7,

Estgl) Z(Sn(f) < KEE|Fitllpn < CpE(e) (1 +2) [|fllpu

A simple approximation argument allows to get the same inequality for all
f € L?. Sudakov’s minoration implies

Sup 0 log Ny(0) < CpK(e)(1+e) £l
4

5.3. Proof of Theorem 3.6. (i) By Lemma 4.6-(b), given any index Jy,
there exists an index J C Jp such that for any J € 7,

(1—2)E sup Z(Su(f)) <E /sup Sn(Fus) dp.
nel nel

Moreover, for any positive increasing convex function G on R™, any J € J,

EG(VI=2 sup Z(Su(f) = Z(Sm(f)

n,mel

gE/G( sup (Su — o) (Fy.)) di.

n,mel

In the following calculation we put

L= sup /sup 1Sn(9)| dp,

llgllz<1 nel

and we let ug = 0, u, = (1 +¢&)""' n > 1. Then

E / sup |Su(Frp)| dp
nel

:ZE <1uk1§FJ,f||B<uk ~/sup |Sn(FJ,f)| d,lt)
nel
k=1
< ZP{kal < HFJ’fHB < uk} sup /sup |Sn(g)| d‘u
k=1 ur—1<||gllB<ur ncl

—~

wP{||Frsllg <ui}+ (1 +e)E||Frsls - lu<ir,s)
e+ (1+e)E|FsslB)-

—~
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By combining, and letting next ¢ tends to 0, we get for any f € L?(u),

E sup Z(S.(f) <E|Frslls sup / sup |5, (g)| d.

nel llgllB<1 nel
Similarly
BG(VI—e sup |Z(5.(0) ~ Z(Sm(f)])
n,mel

<E|Fsfls sup E/G sup | (Sn — Sm)(9)]) dp-

llgllB<1 n,mel

(ii) Let B = LP(1). We have seen that there exists an index Jp such that
E(|Fy¢llpu < (1 +)Cpll 12,0, v.J e J.

Therefore

sup Esup Z(S,(f)) <Cp sup /sup 1Sn(9)| dps.

1£ll2,u<1 mel lgllp,n<t v/ €D

Moreover,

sup EG(VI=2 sup |Z(Su(F) — Z(Sm(/))])

112, <1 n,mel

<C, swp /G sup (S — S (9)]) dit

||9||P uS1 n,mel

5.4. Proof of Theorem 3.12. Let f € LP(u). Let J be any positive
integer and = € X. By (4.5),

LS omie 2o (A miwr)”

J7 i<d i<d

Thus for any r < p,

B IR @) = 0 (5 mser)”

Jisd
By Corollary 4.3, |T; f(2)[P *=" Tj|f|P(x), so that we have
r/p
BIF @) = @ o) (5 Tlrr@) " (5.2)

i<
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for almost all z and all J > 1. As trivially T;|f[P € L' (1), we deduce

E [ 1F1@) duls) - mwlu/(Eijp) wa).  (53)
X

i<d

Hence,

|

B [ 1@l duto) - ® 6111
X

=@ [ (5 STl )" duta) — (I11,% |
<Eof /“ }ijp)ifwmmﬁdmm
X j<J
<E® B [[5 S TIrE - 1115 duto)
X i<d
r/p
<®BIN( [ |5 S B1P@ - 1518, du) " 0.
X i<J

as J tends to infinity by assumption (C). Therefore,

Jim B [\ duto) = B B0 1, VO<r<p
X

By using Holder’s inequality, we deduce that

1/r
o< (B [IFs@r ) <206l e G

for all J > Jy, say.

By assumption, property (8,) holds for some 1 < r < p. From Lemma 4.8
follows that there exists a non-increasing function C :]0, 1] — R4 such that
for any f € L"(u), for any J > 1, any 0 < € < 1, there exists a measurable
set X = X, jr of measure greater than 1 — /¢, such that for all z € X,

Plw:sup |Su(Frp(w, )(@)] > CEFssllru} <e (5.9)

n>1
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We assume 0 < & < 1/6 in what follows. Let d(¢) = C(e)/e. Let also
z € X, J > Jy. Using Chebyshev’s inequality and (5.4), we get

P{w: sup 1Sn(Fr.p(w, - ) (@) > 268(e)100llr 11l p.1e}
<P{w: Sup 1Sn(Frp(w, ) (@) > () E || Fryllru}

}

+P{wzsup [S4(Frp(w, @) > 3(e)

<E|Fslrale}
et P{wisup [Su(Frs(w, @) > CEFryllen)

< 2e.

Therefore,

Plw: Sup S (Fyp (w, - ))(@)] < 20(e) (161 ]l 1 £llp} =1

3 (5.6)
VeeX,VJ>J

Let 0 be some fixed positive real. Let I be a finite set of positive integers
and let M = #{I}. Assume that ||S,(f) — Sm(F)llpp = 0 if n # m,
n,m € I. By Lemma 4.6-(i), there exists an index J and a measurable
set A = A, 1 such that u{A} > 1 — ¢, and further, for all 2 € A, the
following inequalities

(L =) 200l 1Sa(f) —

< [[(Sn = Sm)(Frp) @), p
< (1+€)1/p 161l [[Sn () = Sm(f)]
are satisfied for all J € 7, all n,m € I and all r < p. Set
Y=Y.rs;=XNA
For each x fixed, the process

Sitz(w,n) Jl/pZO (x), n>1,

i<J

Dss

is a p-stable random function. Further, the process

1
Sy (W W n) = i Z nj(w") gj(W") T;Sn f(z), n>l,

1<5<T
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has the same distribution as {Sjr.(-,n), n > 1}. Recall (sub-section 4.2)
that we have underlying joint probability spaces (', B, P’) and (Q”, B”, P")
on which the sequence {n;, j > 1} and the sequence {g;, j > 1} of i.i.d.
Gaussian standard random variables are respectively defined. Here we take
both sequences infinite.

Thus (5.6) reads: for all z € X, and all .J > Jy,

P xP{(,w") : 5D S, 1,0 (", m)| < 20()]101 11 |
n>1 (5.7)

>1—2e.

Let
H(W') =P"{W" :sup Sy, w" ) <26() |61 ]| ]

n=1

P}

By Fubini’s theorem, the left-term in (5.7) also writes

/H(w’) dP’ (') = / H(W")dP' (W) + / H(W") dP'(w')
Q' w:H(w')<e w':H(w')>e
<e+P{w':HW') > e}

Hence
P P s sup (S0 (6" m)| < 20() 6] [ Fllpu) > <}
n>1

>1-—3e.

(5.8)

For each fixed w’ € O, {Sss.(w’, -,n),n > 1} is a Gaussian process.
Let Ep~ denote the expectation symbol with respect to P”. By using
estimate (3.3), for every z € X, j,

1-3e <P B sup |8y (50,0 < 22 03, £} (59)

n>1
Write for a while
D(w,n,m) =Dy .(w,n,m) = Sjyfrz(w,n)—Sss(w,m)

D(wla wlla n, m) :DJ,f,.’t (wla wlla n, m) :SJ,f,.’t (wla wlla ﬂ) _SJ,f,.t(wl7 w”7 m)

AOLWD:=ALﬁzU%"U::<% E: LQ(&z—Sm)f@gV)uﬁ

1<5<T
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By (4.3),
EpE P”eitD(w’,w”,n,m) - Pez’t(sj,f,w (n)—=S87,7,2(.,m))
B petiatm) _ o ltPA(mm)?
As Eeitd = e=°7°/2 where 1 = (E ¢%)'/2, we get from (4.2),
E p E pretP@ @ mm) — g o, o=t IP@ - nm)llf g /2 — —ItIPAlnm)”

Put for each w’ € ',

szwl7m(n7m) = HDJ,f,m(w/a . ,n,m)| 2,P/.

Moreover, let
Ji<J

We note that dj(n,m) = Ay ¢ .(n,m) for almost all x € X. Further

1/p

42 2 /¢ _|#|P P
Epre 0w e mm)®/2 — o= [t dys(nm)?

Then
P{E n,m el :dj. (n,m) < Ed(]7w(n’m)}
< Y Pl hawatnm/2 5 o (nm)y
n,mel
< ]\42675252d2‘1,a:(”vm)—mde,m(n,m)P7
and so,

P{H n,me€l:dj,z(n,m)< Edj7w(ﬂ,m)}

< M2 inf et252d3’m(n,m)f\t|pd‘1’m(n,m)p.
t>0

p_b)ﬁy

The function ¢(t) = et”*~" has an extremum at the value t* = (&

and
o(t") = exp {a= 77677 (/)77 — (p/2)77 ] }.
Applying this with a = £°d} ,(n,m), b = dj.(n,m)?, we get
P{3n,mel:ds. (n,m)<edj,(n,m)}
< M2 exp {755 (dya (n,m)) 775 dya(n,m) P [(0/2)757 = (/2)7°7 ]}
= Mexp { — e 7 C(p)}.
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with C(p) = (p/2)77 — (p/2) =7 > 0. Choose ¢ = (Tlog M)~ 7 . We
get

P{3nmel:dj..(n,m)< (TlogM)fg;deJ@(n,m)}

5.10
< M2-7C(@) < i ( )
2
for 7 = 7(p) depending on p only, and small enough.
Now if z € Y, we have
1(Sn = Suw)(Ezp) (@), prypr = (€ 7,0) |1Sa(f) = S (H)llpus
forall J € J,alln,m eI, m #n,and all 7 < p. As (S, — Sm)(Fy5)(x) 24
(Sj7f7m(n) — (8J7f7x(m)), we have
H(Sn - Sm)(FJyf)(x)Hr’p/XpN = HelHT dJﬂﬁ(n?m)?
whence
draz(n,m) = c(e,r,p) |Sn(f) = Sm(F)llp.us (5.11)

forall J € J,alln,m eI, m #n.
Putting together (5.10) and (5.9) implies that there exists a measurable
set Qp with P’/(Q) > 0, such that for any w’ € ), and all n,m € I,

dJaI(na m) S 1)
log #1172 = “& TP g1

dJ,w/,w (ﬂ, m) = 0(87 T7p)

By Sudakov’s inequality,
[fllp.c = c(r;p) Epr sup [Syf0(-w', 7))
nel (5.12)
> c(r,p) & (log #{1})/>+1/2=1/p,

A routine argument together with (5.9) now easily leads to

1]

1
p = (7, D) sup J (log N7(9)) e,

where ¢(r, p) > 0 depends on r and p only. It is only at this last stage that
the fact that p > 1 is necessary.
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5.5. Proof of Theorem 3.3. Let f € L°(u) such that ||f|l = 1. Let T
be a finite subset of N and let M = #{I}. Write for a while N = N, =
|Sn(Frp(w, )|, Bw) = p{z : Ny(z) > § EN,(z)}. By Lemma 4.9(c),
for each x,

And so,

We have

¢ <EB =EpB(X{s2c/2} + X{B<es2}) < ¢/2+P{B >¢/2}.

Hence P{8 > ¢/2} > ¢/2, and using the previous notation, we deduce that
for each J > 1, there exists a measurable set D of probability larger than
¢/2, such that we have

{2 |Sn(Fy s (w, ))(x)] = E|S (Frp)@)|}>c¢/2, Vwe Dy (5.13)

Let 0 < v < 1 be fixed. By Lemma 4.6(ii), there exists an index J and
a measurable set A with u{A} > 42, and such that for all z € A, we have

vE sup Z(S,(f)) < E /sup Sp(Frp)du YJeJ. (5.14)
nel nel

Hence,

pf{a < [Sn(Frp(w, ) (x)| > 2E51£Z N}=e/3, Ywe Dy, (5.15)

assuming v sufficiently close to 1 and all J € J greater than some suffi-
ciently large number, which we do.

We simplify the notation in what follows and write Fiy = Fj ;. Put for
any A > 0,

Ey={(w,z) € AxX : |Fs(w,z)| < A}, Ean={r€X:(w,z)€E4},
and let for any w € Q, ¢ € X,

Fu5(x) = Fagu(z) = Fr(w,z) 18, ,(2),
FY (@) = FY9 () = Fy(w,2) - 1pg (2).
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Obviously,

E /sup Sn(Fr¢) du < E /sup S (FA7)] dps
nel nel (5.16)

+E /supl) |Sn(Fa,7)| dp.
ne

By definition Fa s, (-) (resp. F47<(.)) is A-measurable. As f € L>(u),

we have
P{w: Fa.(-) and FA74(.) € L®(u)} = 1.
As max;c, z; < (Y 27)'/? for any nonnegative real numbers, by using
i<n
twice Cauchy—Schwarz’s inequality, next Fubini’s inequality, we get

E/sup 1S, (FAJ|d,u<E Z/|5 FAJ|2d,u)

nel
/2

nEI

SVM E|[F4 .

We have to estimate ||F'4+/||5,,. By Fubini’s theorem, next Lemma 4.9(d)
applied with g = it follows that

E |[FY)3, = /E 1Fsp (@) - 117, 5 21> ) da(@)
X

v A2
G/HFJ, @2p exp { = g5y § @)
/ 1@)llz,p { 4||FJ,f($)||§,P}

We have ||Fj ¢ (z)|3p = & ;J T;(f*)(z). By assumption (C), & ZJ T, f?
FAS J<

converges to 1 in L'(u), along some subsequence extracted from 7, we can
make this convergence almost everywhere too. The requirement that f €
L>°(u), together with the dominated convergence theorem, then implies
that

N

J1Es @l ex0{ g o) = espl—47),

along this index.
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Extracting again if necessary we obtain that
E|[FAY)3, < 2 exp{—A%/4},

along some index, which we still denote by J. Choose now A = /8log M.
We get,

E /sup |Sn(FAT9) | dp < 9VM exp{—A%/8} <9M~Y/2.  (5.18)
nel

Assume that
min [1Sa(f) = Sm(Fllz > 0. (5.19)

n,mel

n#Em
Using Lemma 4.9(b), we get

Bé
,u{x zsup |Sn(Fa,70)(x)] = 7T\/log]\/[ - 9M_1/2} > cf3,

nel (520)
Vwe Dy,
forall J € J. Let
4 _ Fagw
I,Jw — A -
It follows that
p{z :sup [Sp(dr,u0)(@)| =6} >¢/3, Ywe Dy, (5.21)

nel

where ¢ is a positive universal constant. Suppose that for some § > 0,
C(6) = oo. This means that we can select sets I verifying (5.19) with
cardinality M as large as we wish. But

d(S*(¢1,7,w),0) > d(SUI? |Sn(é1,70),0)
ne

2/ SUPper |Sn(dr,rw)| du
Sup,cy |Sn(dr,5,0)>c"8 1 + SUPper |Sn(¢I7J,w)|
o
> (¢/3)—2_. 22
(c/3) oo (5:22)

Moreover, we have

1 1
E|[¢r,.]

2 < E/F 2dp < )
2,0 810gM |J7f| 1% SIOgM

Hence on a subset D’; of D of positive measure, we have

o1, 00ll00n <1, o1,00ll2,n < K/+/log M.
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Moreover, K depend on c¢ only. Picking w in D'}, J varying, we deduce
that S* cannot be continuous at 0. Hence a contradiction with (3.2). This
achieves the proof.

5.6. Proof of Theorem 3.10. We start as in the proof of Theorem 3.3.
By using exactly the same arguments for proving (5.17), we get here

E/ilg 1S, (FAJ|d,u<E Z/|s (FA)2 4 )
Z/E|S FAJ|2 )

nel

SVMSI(DE|F s, (5.23)

Next estimate (5.18) is modified as follows. Let « > 1 be some fixed real.
By extracting we obtain that E||[F47|3 | < aexp{—A%4}, along some
index, still denoted J. Thus with (5.23),

E /sup 1S (FA94)| dp < VIS, (D) E||FA |,

nel
< 6VaM S (I) exp{—A?/8}. (5.24)
Let § = min {(a—1) e~ A/ 1)} and 6y = 627%, k > 1. We can extract
from J a subsequence J* = {J, k > 1} depending on f and «, such that

{‘ ZTf2_1‘>5k}<5k, forall k> 1

]\k

Put

LT <a)

]<J;e

Plainly,

E /sulfl) 1S (Fas)| di < E /su[I) 1S (Fas)| dp
ne ne
B

(5.25)

+B [ sup [Su(Fa) di

nel
BC
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The first integral in the right-hand side of (5.25) can be bounded for any
R >0 by

/E(Stér; Su(Fan)| LiFa sla.>Ry) dit

(5.26)

—|—/E SUP |S FA J)| 1{HFA Jll2,. < }> dp.
B

Consider the first integral in (5.26). The fact that S, is continuous on
L>°(u) and Chebyshev’s inequality allow to write

/E (Sup 1Sn(Fa,) 1{||FA,J||2,M>R}) dpe
nel

E (H sup 1S (Fan)lll o - 1{HFA,JH2,#>R}) (5.27)
ASZ P{HFAJ||2”>R}
Su

< ASy(I) e 1 /tag exp{4a
We claim that for any J € J*,
1 2
EGXP{RHFA,JHz,N} <V2ta-l. (5.28)

Admit this for a while. We get
/E (Sup 1S (Fa,) 1{||FA,J||2,M>R}) dp
nel (5.29)
< AS(I)e /(24 a-1).

Now we prove (5.28). Let a = i. At first by using Jensen’s inequality,

E exp{a|Faul3,} =B exp {a / Fidu} <E / exp{aF3 ;} dp
X X

<E /exp {aF3 ;} du+ "’ 1(BC).
B
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Next on B, we have & > T;f? <1+ 6 < a, so that
i<

1—2q(L T-f2>1—2aoz:1 for all J € J*.
(J J 2

JisJ

AsEe = L if 0<b< 1, we get

/E exp{aFfLJ} d,ué/E exp{aF;} du
B

dp

:B/\/l?a(%Zijz)gﬂ

isJ
Hence for any J € J*,
E exp {al|Fasl2,} < V2+eu(B) < V246 < V2+a—1.

For the second integral in (5.26), we have the straightforward bound

/E(Stér; Su(Fan)| LiFa sla.<ry) dit

(5.30)
<A swp [ sup S, du

IR lloo,u<1 nel
Ikllo, <R/A X

By substituting estimates (5.29), (5.30) into (5.26), we can bound the first
integral in the right-term of (5.25) as follows,
E /sup |[Sn(Fa,5)| du < AS2(1) e*R2/4°‘(\/§+ a—1)
nel
(5.31)
+A  sup /sup |Sn(R)| dp.
nel

Ihlloo,p <1
Ihll2,,<R/A X

Consider the second integral in the right-term of (5.25). We use Cauchy-
Schwarz’s inequality and the facts that pu(B°) <4,

E|Fasllen <E[Fs|2,u <1,



112 M. J.G. WEBER

to get

E /su;; |Sn(Fa,7)| dp < /p(B¢)E || SUI; |Sn(FA,J)|||2u
ne ne ’
B (5.32)
<VIVM Si(DE |Fa g2,
<Va—1e MB/M S (1),

By inserting estimates (5.31), (5.32) into (5.25), we next arrive to

E /sup |Sy(Fa,5)| du < ASy(I) e_Rz/m(\/i—l—a— 1)
nel

(5.33)
+A  sup /sup [Sn(h)| dp+ Va—1 e*A2/8“\/M51(I).
T S

Now we insert (5.24), (5.33) into (5.14), and next use estimate (5.18).
Picking J arbitrarily in J*, we get
vE sup Z(Sn(f))
nel

< 6VaM Si(I) exp{—A2/8} + ASy(I) e /4 (/2 + o — 1)
+ A  sup /sup [Sp(h)| dp+ Va -1 e‘Az/BO‘\/MSl(I).
nel

Ihlloo,u<1
ko, <E/A X

(5.34)

But a > 1 and 7y can be chosen arbitrarily close to 1. We finally obtain,
Esup Z(Su(f)) < 6VM Si(I) exp{—A%/8} + A (v2) Sp(I) e R /4
nel

+A  sup /sup |Sn(h)| dp. (5.35)
1A ]loo,p <1 nel
Ihll2, <R/A X

This last inequality being satisfied for any f € L*°(u) such that || f|l2,, = 1,
we easily deduce the claimed result by continuity in quadratic mean of 7.
§6. KAKUTANI-ROCHLIN’S LEMMA

We conclude with this extremely useful tool in ergodic theory.

Lemma 6.1. If T is aperiodic, then for every € > 0 and for every n >
1 there exists F € A such that the sets F, T-(F),..., T~(""D(F) are
mutually disjoint, and such that we have,

p(FUT Y F)U---uT- " D(F)) > 1 —e.
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Any set F' € A satisfying the conclusions of Lemma 6.1 is called an
(e,n)-Kakutani-Rochlin set.

We illustrate its usefulness by establishing two divergence criteria for
ergodic summation methods. The proof is based on an argument due to
Deniel (see [7]). Let {wy,, 1 <k <n, n > 1} be a triangular array of

n

nonnegative reals, and set W, = > wp, n > 1. Consider an automor-
k=1

phism 7 from a probability space (X, A, u). Put for f € LO(p),

Tnf(x) = WL Z Wn,h f(Thx)'
" h=1

Theorem 6.2. Let ¢ : N — N be such that lim,_ . ¢(n) = co. Assume
that there exist p > 0, an infinite sequence N of integers such that for any
neN
n—j—1

S wesk) e (6.1)

T k=n—j—p(n)

. 1
min
e(n)<j<n—p(n) (Wn

and further that the series > (n)/n converges. Let 0 < n < p. Then
neN
there exists B € A with 0 < pu(B) < n such that limsup T, xp > p almost
N>3n—oo
surely.

Remark 6.3. Suppose there exists a countable dense class D of functions
from L'(p) such that {T, f,n € N'} converges almost everywhere to [ f du
for any f € D. Then if condition (6.1) is satisfied, there is no maximal
inequality for the sequence {7, n € N'}. Indeed, otherwise by the Banach
principle, we would have that {T,f, n € N'} converges almost everywhere
to [ fdu for any f € L' (). Taking f = xp where B is in the proposition
above provides a contradiction.

Now let {wg, k > 1} be a sequence of non-negative reals and consider
the ergodic sums

Anf(@) = wn f(7").
h=1

Theorem 6.4. Let ¢ : N — N be such that lim,_ . ¢(n) = co. Assume
that there exist p > 0, an infinite sequence N of integers such that for any
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nenN

h+e(n
A, = min ( Z wk) — 00, (6.2)

1<h<n—p(n

as n — oo along N, and further that the series Y. p(n)/n converges.
neN

Let 0 < n < p. Then there exists B € A with 0 < w(B) < n such that

limsup A, (xB) = oo almost surely.
N3n—oo

Proof of Theorem 6.2. There is no loss of generality to assume

> e(n)/n<n

neN
By Rochlin’s lemma, for any € > 0, any integer IV, there exists A € A such
that A, TA,..., TN~ A, are pairwise disjoint and 1 — e < Nu(A4) < 1. By
applying it for N = n, € = ¢(n)/n, we obtain that for each n € N, there
exists A, € A such that A,,7A,,...,7 1A, are mutually disjoint and

,u(ng: TUAyp) = nu(4,) = 1— ¢(n)/n. Let

B, = Z TV Ay, D, = Z T A,,.
n—p(n)<un e(n)<j<n—p(n)
Then we have

p(B) < ) () < 2,

Now let 0 < £ < n—(n). As rz € B, iff z € 7%t A,, for some n—¢(n) <
u < n, we can write

xp. ()= > X{ru-ta,3(T) = > X{rv A, (T)-
n—p(n)<u<n n—p(n)—f<v<n—~
Let £ =n—p(n) — A with 1 <X <n —p(n). We have
B, (P =y Xrean (@),
ASv< A to(n)

As ¢(n)/n — 0 when n — oo along NV, we have 2 p(n) < n once n is large.
Fix some ¢(n) < j <n — ¢(n) and pick = € 77 4,,. If we choose \ so that
A< j < A+ ¢(n), by letting v = j in the equation above we see that
e Ag ¢ B,
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Thus z € 77 A, and A€ {j —¢(n) +1,j —¢(n) +2,...,5} imply
e =Ag ¢ B,,.

Consequently, if z € 77 4,,

n—j
Ta-iXB, () = ) Wnjin—jk XB, (7" "2)
k=1

¢(n) ‘
> Wnjnjok XB. (7" )
k=1

; (6.3)
(k = tp(ﬂ) +A - ]) = Z Wn—jn—p(n)—A XBn (Tni(p(n)i)\m)
A=jop(n)+1
J e(n)
= Z Wn—jn—p(n)—x = Z Wn—jn—j—k-
A=j—p(n)+1 k=1

By the assumption made,

1 e(n)
Wn—jn—j—k

1 w(n)
g min ( Wn—j,n—j— ) = p. 6.4
pn)<j<n—p(n) \ W, Z Jn—j—k p. (6.4)

"I =1
Note that n — j > ¢(n). Thus on D,,

sup Tim(XB,) = p-

m>p(n)
Set
E=|JB., Fy=/() Dn
= o5
We observe that u(Fn) > 1—4 > ¢(n)/n — 1 as N — co. Thus on Fy,
nEN
limsup T, (xr) = p. (6.5)
N3on—oo
Further u(E) < ) ¢(n)/n < n. This establishes Theorem 6.2. O

neN
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Proof of Theorem 6.4. We start with (6.3) which here becomes

o(n)
Anojxp, (@) = ) W jk,
k=1

and next modify the previous proof as follows:

w(n)

©(n)
Z Wp_j_f 2 min ( Z wnfjfk)
P @ (n) =1

n)<j<n—¢

htp(n)
> min ( Z wk) =A,.

1<h<n—yp(n) Py
Thus sup,,5e(n) Am(xs,) = Ay, on Dy Therefore on Fly,

limsup T,xg = 0.
N3n—o0

Further p(E) < > o(n)/n <. O
neN
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