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§1. IntrodutionThe INAR proesses, or \integer-valued autoregressive proesses", area variant of the usual autoregressive proesses in time series analysis. Invarious referenes, the INAR proesses and variations on them have beenstudied as models to use in the statistial analysis of \ount data". Seee.g. [8,12,14,17,18℄, and the referenes therein. In [17℄, for ertain INAR(1)proesses (\integer-valued autoregressive proesses of order 1"), and er-tain variations on them, strong mixing and even absolute regularity wereveri�ed, with exponential mixing rate.In the study of INAR proesses, the �-mixing ondition does not seemto have gotten muh attention, but it ould perhaps play a useful role aswell, given the extensive literature on limit theory under �-mixing that hasbeen developed sine early results on that topi suh as in [10℄ and [16℄.This note here will go in a little di�erent diretion. Within the INARproesses, one partiularly prominent sublass is the stritly stationaryINAR(1) proesses with \Poisson innovations". For that sublass (andsome other related proesses), absolute regularity with exponential mixingrate was already veri�ed in [17℄. In this note, for that prominent sublass,we shall verify the �∗-mixing (\interlaed �-mixing") ondition, whih isstronger than �-mixing. (Both of those latter two mixing onditions andthat sublass of proesses will be expliitly formulated below.) The Poissoninnovations seem to failitate the study of the �∗-mixing ondition for thatsublass. The tehniques in this note involving �∗-mixing an apparentlybe extended to some limited extent to some other INAR proesses, andKey words and phrases: INAR proesses, mixing.56



ON MIXING PROPERTIES OF SOME INAR MODELS 57even to some variations on them suh as ones in [17℄. For simpliity, thisnote will be on�ned to just the sublass identi�ed above.The proesses in the prominent sublass disussed above are stritly sta-tionary, ountable-state Markov hains. It is well known and elementarythat for Markov hains, for either the �-mixing ondition or the �∗-mixingondition, the mixing rate is automatially (at least) exponential. Nowstritly stationary, �nite-state, irreduible, aperiodi Markov hains are�∗-mixing (see [1℄ or [3, Theorem 7.15℄). However, for stritly stationary,ountable-state Markov hains in general, �-mixing does not imply �∗-mixing. (Counterexamples are onstruted in [2℄ and [4℄, with the ones inthe latter referene being reversible.) For the INAR proesses in general,and in partiular for the (Markovian) INAR(1) proesses whose innova-tions are not Poisson, there is more to explore regarding the �-mixing and�∗-mixing onditions and the onnetions between them.Now let us formulate the �-mixing and �∗-mixing onditions, de�ne thesublass of proesses that will be studied here, and then give the mainresult.Suppose X := (Xk, k ∈ Z) is a stritly stationary sequene of randomvariables on a probability spae (
;F ; P ). For any two �-�elds A and
B ⊂ F , de�ne the \maximal orrelation" [9℄:�(A;B) := sup |Corr(f; g)|where the supremum is taken over all pairs of square-integrable randomvariables f and g suh that f is A-measurable and g is B-measurable. Foreah positive integer n, de�ne the following two dependene oeÆients(for the given stritly stationary sequene X):�(X;n) := �(�(Xk; k 6 0); �(Xk; k > n)) (1.1)and �∗(X;n) := sup �(�(Xk ; k ∈ S); �(Xk; k ∈ T )) (1.2)where the supremum is taken over all pairs of nonempty, disjoint setsS; T ⊂ Z suh that dist(S; T ) := mins∈S;t∈T |s− t| > n: (1.3)In (1.1), (1.2), and below, the notation �(: : : ) means the �-�eld generatedby (: : : ). In (1.2){(1.3), the sets S and T an be \interlaed", with eah setontaining elements between ones in the other set. The (stritly stationary)sequene X is said to be \�-mixing" (a ondition introdued in [11℄) if



58 R. C. BRADLEY�(X;n) → 0 as n → ∞, and �∗-mixing (a ondition apparently �rst studiedin [19℄) if �∗(X;n) → 0 as n → ∞. Obviously �(X;n) 6 �∗(X;n) for eahn > 1, and (hene) �∗-mixing implies �-mixing.The following terminology will be useful.De�nition 1.1. An ordered triplet (A;B; C) of �-�elds (⊂ F) will bealled a \Markov triplet" if any (hene all) of the following three equivalentonditions holds:(i) for all C ∈ C, P (C|A ∨ B) = P (C|B) a.s.;(ii) for all A ∈ A and all C ∈ C, P (A ∩ C|B) = P (A|B) · P (C|B) a.s.;(iii) for all A ∈ A, P (A | B ∨ C) = P (A | B) a.s.The following elementary observation will be useful later on: If (A;B; C)is a Markov triplet, then (A∨B;B;B∨C) is a Markov triplet, and (hene)for any �-�elds G ⊂ A ∨ B and H ⊂ B ∨ C, (G;B;H) is a Markov triplet.In what follows, N denotes the set of all positive integers, and N :=
N ∪ {0} denotes the set of all nonnegative integers.De�nition 1.2. Suppose a ∈ (0; 1) and � > 0. A stritly stationary\INAR(1) proess with Poisson innovations" (with parameters a and �),is a stritly stationary Markov hain X := (Xk; k ∈ Z) with state spae N,with X having the following \ strutural" properties: There exist randomvariables Uk; Vk , k ∈ Z for whih the following onditions hold:(i) For eah k ∈ Z, Xk = Uk + Vk.(ii) For eah k ∈ Z and eah x ∈ N, the onditional distribution of Ukgiven {Xk−1 = x} is binomial with parameters x and a.(iii) For eah k ∈ Z, the ordered triplet of �-�elds(�(Uj ; Vj ; Xj ; j 6 k − 1); �(Xk−1); �(Uk))is a Markov triplet.(iv) For eah k ∈ Z, the distribution of the random variable Vk isPoisson with mean �.(v) For eah k ∈ Z, the random variable Vk is independent of the�-�eld �(Uj ; Vj ; Xj ; j 6 k − 1) ∨ �(Uk).In De�nition 1.2, for a given k ∈ Z, the random variable Vk is the\Poisson innovation". It is well known and elementary (see e.g. [17℄) thatin the ontext of De�nition 1.2, the (invariant) marginal distribution ofeah Xk is Poisson with mean �=(1− a).Here is the main result of this note:



ON MIXING PROPERTIES OF SOME INAR MODELS 59Theorem 1.3. Suppose a ∈ (0; 1) and � > 0; and suppose that X :=(Xk; k ∈ Z) is the stritly stationary INAR(1) proess (Markov hain)in De�nition 1.2, meeting all onditions there (inluding the Poisson (�)\innovations"). Then X is �∗-mixing (with �∗(X;n) → 0 at least exponen-tially fast as n → ∞).The proof of this theorem will be arried out through Setions 2, 3, and4 below. From that proof, one an see that the (of ourse exponential)mixing rate for �∗-mixing in Theorem 1.3 essentially depends only on (anupper bound for) the parameter a, not on �.
§2. PreliminariesThroughout the rest of this note, the setting will be a probability spae(
;F ; P ), rih enough to aommodate all random variables spei�ed.Random variables are real-valued (and often integer-valued or even {0; 1}-valued) unless spei�ed otherwise.Setion 2 here will be devoted to some lemmas that will be used in theproof of Theorem 1.3.The following lemma is due to Cs�aki and Fisher [7℄. (The proof giventhere has a aw. For a fully orret proof, see [20℄ or [3, Theorem 6.1℄.)Lemma 2.1. Suppose An and Bn, n ∈ N are �-�elds (⊂ F), and the�-�elds An ∨ Bn, n ∈ N are independent. Then�( ∨n∈N

An; ∨n∈N

Bn) = supn∈N

�(An;Bn):Next, for any two �-�elds A and B (⊂ F), de�ne the following measureof dependene: �(A;B) := sup |P (A ∩B)− P (A)P (B)|[P (A)℄1=2[P (B)℄1=2 (2.1)where the supremum is taken over all pairs of events A ∈ A and B ∈ Bsuh that P (A) > 0 and P (B) > 0.Lemma 2.2. For any " > 0, there exists Æ = Æ(") > 0 suh that the follow-ing holds: If A and B are �-�elds suh that �(A;B) 6 Æ, then �(A;B) 6 ".Quite sharp versions of Lemma 2.2 an be found in [5, 6℄, [3, Theo-rem 4.15℄, and in a very sharp form, [15℄.



60 R. C. BRADLEYLemma 2.3. Suppose 0 < " 6 1=9. Suppose (X1; X2; X3; : : : ) is a se-quene of random variables suh that for eah n > 2, P (Xn = 0 | Xn−1 =0) = 1 (if P (Xn−1 = 0) > 0) andP (Xn = 0 | �(X1; X2; : : : ; Xn−1)) > 1− " a.s.Then �(�(X1; X3; X5; X7; : : : ); �(X2; X4; X6; X8; : : : )) 6 3 "1=2:A proof of Lemma 2.3 an be found in [1, Lemma 3.1℄ or [3, Theo-rem 5.21℄. (In Lemma 2.3, the labeling of the \absorbing state" as 0 is justfor onveniene.)Next, for any (not neessarily stationary) sequene X := (Xk; k ∈ Z)or X := (Xk; k ∈ N), de�ne the dependene oeÆients �∗(n), n ∈ N by(1.2){(1.3). (In the ase of index set N, the sets S and T are restrited tothat set.)In what follows, if S is a nonempty �nite set⊂ N, J is its ardinality,Xk,k ∈ S, are random variables, and (say) f : R
J → R is a Borel funtion,then the notation f(Xk; k ∈ S) means f(Xk(1); Xk(2); : : : ; Xk(J)) wherek(1) < k(2) < · · · < k(J) are the elements of S in stritly inreasing order.Lemma 2.4. For any a ∈ (0; 1) and any " > 0, there exists a positiveinteger m = m(a; ") suh that the following holds:Suppose �0 is a {0; 1}-valued random variable. Suppose that� := (�1; �2; �3; : : : ) is a sequene of independent, identially distributed

{0; 1}-valued random variables suh that P (�1 = 1) = a, with this se-quene � being independent of �0. For eah k ∈ N, de�ne the {0; 1}-valuedrandom variable �k := �0 · k∏i=1 �i: (2.2)Then the random sequene � := (�0; �1; �2; : : : ) satis�es�∗(�;m) 6 ": (2.3)Proof. Suppose a ∈ (0; 1) and " > 0. Our �rst task is to de�ne the positiveinteger m = m(a; ").Referring to (2.1), let Æ = Æ(") > 0 be as in Lemma 2.2. Let  ∈ (0; 1=9℄be suh that 31=2 6 Æ: (2.4)



ON MIXING PROPERTIES OF SOME INAR MODELS 61Note that Æ and (hene)  depend only on ". Let m = m(a; ") be a positiveinteger suh that am 6 : (2.5)That ompletes the de�nition of m = m(a; ").Now suppose the random variable �0, the random sequene �, and (then)the random sequene � are as in the statement of Lemma 2.4. Our task isto prove (2.3).Suppose S and T are any two nonempty, disjoint subsets of N suh thatdist(S; T ) > m. To omplete the proof of (2.3), it suÆes to show that�(�(�k ; k ∈ S); �(�k ; k ∈ T )) 6 ": (2.6)By a standard measure-theoreti argument, it suÆes to show (2.6) in thease where both index sets S and T are �nite. We make that assumption.Just for onveniene, without loss of generality (after swithing S and Tif neessary, and after enlarging T by one element if neessary), we assumethat the least and greatest elements of the set S ∪ T belong to S and Trespetively. Then there exists a positive even integer L and nonempty,(pairwise) disjoint sets Q1; Q2; : : : ; QL ⊂ N with the following properties:S = ⋃i∈{1;3;5;:::;L−1}Qi;T = ⋃i∈{2;4;6;:::;L}

Qi; and
∀ i ∈ {1; 2; : : : ; L− 1}; m+ [maxQi℄ 6 [minQi+1℄: (2.7)For eah positive integer J , let �J : {0; 1}J → N be a one-to-one fun-tion suh that �J (0; 0; : : : ; 0) = 0. For eah i ∈ {1; 2; : : : ; L}, de�ne the(N-valued) random variable Xi = �J(i)(�k ; k ∈ Qi) where J(i) is the ar-dinality of Qi. Then

∀ i ∈ {1; 2; : : : ; L};�(Xi) = �(�k ; k ∈ Qi) and {Xi = 0} = {�k = 0 ∀ k ∈ Qi}; (2.8)and (hene) �(�k ; k ∈ S) = �(X1; X3; X5; : : : ; XL−1) and�(�k ; k ∈ T ) = �(X2; X4; X6; : : : ; XL): (2.9)For eah k ∈ N, by (2.2) and the assumptions in Lemma 2.4, one hasthat (i) �k = �k−1 · �k and hene {�k−1 = 0} ⊂ {�k = 0}, and (ii) the



62 R. C. BRADLEY�-�elds �(�i; i > k) and �(�i; i 6 k− 1) are independent. These fats havethe following two onsequenes:First, by (2.7) and (2.8), for eah i ∈ {2; 3; : : : ; L}, {Xi−1 = 0} ⊂ {Xi =0} and hene P (Xi = 0 | Xi−1 = 0) = 1.Seond, for eah i ∈ {2; 3; : : : ; L}, letting j := maxQi−1, one has by(2.2), (2.7), and (2.8) that {Xi = 0} ⊃
⋃j+mu=j+1{�u = 0}, this latter event isindependent of �(�k ; k 6 j) and hene independent of �(X1; X2; : : : ; Xi−1),and hene now by (2.5), almost surelyP(Xi = 0 | �(X1; X2; : : : ; Xi−1))

> P( j+m⋃u=j+1{�u = 0} ∣∣∣∣ �(X1; X2; : : : ; Xi−1))= P( j+m⋃u=j+1{�u = 0})= 1− P( j+m⋂u=j+1{�u = 1})= 1− am > 1− :It now follows from (2.9), Lemma 2.3, and (2.4) that�(�(�k ; k ∈ S); �(�k ; k ∈ T ))= �(�(X1; X3; X5; : : : ; XL−1); �(X2; X4; X6; : : : ; XL)) 6 31=2 6 Æ:Hene by the de�nition of Æ (just before (2.4), and based on Lemma 2.2),(2.6) holds. That ompletes the proof. �Note that by adapting the proof of Lemma 2.4, one an extend Lem-ma 2.4 to the broader lass of random sequenes in the hypothesis ofLemma 2.3, with the " 6 1=9 there replaed by a ∈ (0; 1). However,Lemma 2.4 in its present form will suÆe for our purposes here.This setion will onlude with a lemma giving just a few related stan-dard elementary fats whih will be used later on. Here and below, for agiven a ∈ (0; 1), the \binomial distribution with parameters 0 and a" is ofourse the point mass at 0.



ON MIXING PROPERTIES OF SOME INAR MODELS 63Lemma 2.5. Suppose a ∈ (0; 1). Suppose �1, �2, �3 : : : is a sequene ofpositive numbers suh that ∞∑i=1�i < ∞. Suppose (Y1; Z1); (Y2; Z2);(Y3; Z3); : : : is a sequene of independent random vetors suh that foreah i ∈ N, (i) the distribution of Yi is Poisson with mean �i, and (ii) foreah y ∈ N, the onditional distribution of Zi given {Yi = y} is binomialwith parameters y and a.(A) Then Y := ∞∑i=1 Yi < ∞ a.s., and this random variable Y has thePoisson distribution with mean ∞∑i=1�i.(B) Also, Z := ∞∑i=1Zi 6 Y < ∞ a.s. Further, for any y ∈ N, theonditional distribution of Z given {Y = y} is binomial with parameters yand a.(C) The ordered triplet of �-�elds (�(Yi; i ∈ N); �(Y ); �(Z)) is a Markovtriplet.Statement (A) holds by a simple limiting argument. Statements (B)and (C) both follow from the elementary fat that if m is a nonnegativeinteger and (y1; y2; y3; : : : ) is a sequene of nonnegative integers whosesum is m (whih allows at most �nitely many yi's to be nonzero), then theevent ⋂∞i=1{Yi = yi} has positive probability and is an atom of the �-�eld�(Y1; Y2; Y3; : : : ), and the onditional distribution of Z given that event isbinomial with parameters m and a.
§3. Two Markov hainsIn this setion, in preparation for the main argument for Theorem 1.3to be given in Setion 4, the property of �∗-mixing will be veri�ed for twolasses of (nonstationary) Markov hains.Lemma 3.1. Suppose a ∈ (0; 1), p ∈ (0; 1), and N ∈ N. Suppose Y := (Y0,Y1, Y2, : : : ) is a Markov hain whose states are nonnegative integers, suhthat (i) the distribution of Y0 is binomial (N; p), and (ii) for eah j ∈ Nand eah integer y suh that P (Yj = y) > 0, the onditional distributionof Yj+1 given {Yj = y} is binomial (y; a).Suppose " > 0, and the positive integer m = m(a; ") is as in Lemma 2.4.Then �∗(Y;m) 6 ": (3.1)



64 R. C. BRADLEYProof. By a standard measure-theoreti argument, the dependene oef-�ients �∗( · ; n), n ∈ N for a given random sequene depend only on thedistribution of that whole random sequene. Also, the distribution of a (saydisrete-state) Markov hain Y := (Y0; Y1; Y2; : : : ) is uniquely determinedby the marginal distribution of Y0 and the one-step transition probabili-ties. Hene it suÆes to arry out the proof of Lemma 3.1 for a Markovhain Y that satis�es the onditions in Lemma 3.1 and is embedded in aonvenient ontext.Refer to the parameters a, p, and N in the statement of Lemma 3.1.Let � := (�h;j , 1 6 h 6 N , j ∈ N) be an array of independent, identiallydistributed {0; 1}-valued random variables suh that �(�1;1 = 1) = a.Let � := (�h;j , 1 6 h 6 N , j ∈ N) be an array of {0; 1}-valued randomvariables that meets the following two onditions (interpreted appropri-ately if N = 1): (i) The random variables �h;0, 1 6 h 6 N are inde-pendent, identially distributed {0; 1}-valued random variables suh thatP (�1;0 = 1) = p, with the sequene (�h;0, 1 6 h 6 N) being independentof the array �. (ii) For eah h ∈ {1; 2; : : : ; N} and eah j ∈ N,�h;j := �h;0 · j∏i=1 �h;i: (3.2)De�ne the sequene Y := (Y0; Y1; Y2; : : : ) of (nonnegative, integer-valu-ed) random variables as follows: For eah j ∈ N,Yj := N∑h=1 �h;j : (3.3)By (3.2), for every h ∈ {1; 2; : : : ; N} and every j ∈ N,�h;j+1 = �h;j · �h;j+1: (3.4)By (3.3) and (3.4), N > Y0 > Y1 > Y2 > : : : > 0: (3.5)By (3.3) and the properties of the array �,the distribution of Y0 is binomial (N; p). (3.6)Our next task, starting with (3.6), is to establish the distribution of theentire sequene Y .



ON MIXING PROPERTIES OF SOME INAR MODELS 65De�ne (with some redundany) the �-�elds Gj , j ∈ N as follows:
G0 := �(�h;0; 1 6 h 6 N); and
∀ j ∈ N; Gj := �(�h;k ; 1 6 h 6 N; 0 6 k 6 j)

∨ �(�h;k ; 1 6 h 6 N; 1 6 k 6 j): (3.7)For eah j ∈ N, the �-�eld Gj is independent of �(�h;k , 1 6 h 6 N ,k > j + 1).Now suppose j ∈ N; and suppose y ∈ {1; 2; : : : ; N}, and S⊂{1; 2; : : : ; N}is a set with ardinality y. De�ne the eventA := {∀h ∈ S; �h;j = 1; and ∀h ∈ {1; : : : ; N} − S; �h;j = 0}: (3.8)(If y = N then A = ⋂Nh=1{�h;j = 1}.) Suppose G ∈ Gj (see (3.7)) is anevent, and that P (G ∩ A) > 0. Then Yj+1 = N∑h=1 �h;j · �h;j+1 by (3.3) and(3.4); and hene by the sentene after (3.7) and a simple argument, forevery z ∈ {0; 1; : : : ; y},P (Yj+1 = z | G ∩A) = (yz)az(1− a)y−z: (3.9)Next suppose again that j ∈ N and y ∈ {1; 2; : : : ; N}. By (3.3), theevent {Yj = y} is the union of �nitely many (pairwise) disjoint events ofthe form A in (3.8). Hene by (3.9) and a simple alulation, if G ∈ Gj ,P (G ∩ {Yj = y}) > 0, and z ∈ {0; 1; : : : ; y}, thenP (Yj+1 = z | G ∩ {Yj = y}) = (yz)az(1− a)y−z: (3.10)Of ourse (reall (3.5)) eq. (3.10) also holds for y = 0 (and z = 0). Also,by (3.3) and (3.7), eah of the random variables Yk, 0 6 k 6 j is Gj-measurable. Hene (3.10) has the following onsequenes:The sequene Y is a Markov hain. For every j ∈ N and every y ∈
{0; 1; : : : ; N}, P (Yj = y) > 0 (by (3.6) followed by (3.10) and indution,with G = 
). Finally, for eah j ∈ N and eah y ∈ {0; 1; : : : ; N}, theonditional distribution of Yj+1 given {Yj = y} is binomial (y; a). Heneby (3.6), the sequene Y meets all onditions spei�ed in Lemma 3.1.Now suppose " > 0, and m = m(a; ") is as in Lemma 2.4. To ompletethe proof of Lemma 3.1, it suÆes to prove for the sequene Y above that(3.1) holds.



66 R. C. BRADLEYFor eah h ∈ {1; 2; : : : ; N}, de�ne the random sequene �(h) := (�h;0,�h;1, �h;2,: : : ). By (3.2) and the properties of the arrays � and � here, foreah h ∈ {1; 2; : : : ; N}, the sequene �(h) ful�lls the onditions in Lemma2.4. Hene from Lemma 2.4,
∀ h ∈ {1; : : : ; N}; �∗(�(h);m) 6 ": (3.11)Also, by (3.2) and the properties of the arrays � and � here, the sequenes�(h), h ∈ {1; 2; : : : ; N} are independent of eah other. Hene by (3.3),(3.11), and Lemma 2.1, eq. (3.1) holds. That ompletes the proof. �Lemma 3.2. Suppose a ∈ (0; 1) and � > 0. Suppose Y := (Y0; Y1; Y2; : : : )is a Markov hain with state spae N, suh that (i) the distribution of therandom variable Y0 is Poisson (�), and (ii) for eah j ∈ N and eah y ∈ N,the onditional distribution of Yj+1 given {Yj = y} is binomial (y; a).(A) For eah j ∈ N, the distribution of the random variable Yj is Poisson(�aj).(B) Suppose " > 0, and suppose the positive integer m = m(a; ") is asin Lemma 2.4. Then �∗(Y;m) 6 ".Proof. For statement (A), onditions (i) and (ii) in Lemma 3.2 implythat Y1 is Poisson (�a) by a standard alulation, and by repeating thatargument one obtains (A) by indution.Proof of (B). For eah integer n > �, let Y (n) := (Y (n)0 ; Y (n)1 ; Y (n)2 ; : : : )be a Markov hain with state spae {0; 1; : : : ; n} suh that (i) the dis-tribution of Y (n)0 is binomial (n; �=n), and (ii) for eah j ∈ N and eahy ∈ {0; 1; : : : ; n}, the onditional distribution of Yj+1 given {Yj = y} is bi-nomial (y; a). Then Y (n)0 onverges in distribution to Y0 (whih is Poisson(�)) as n → ∞. Sine the one-step transition probabilities for eah of theMarkov hains Y (n) are the same as for the Markov hain Y , one has thatfor every j ∈ N and every hoie of nonnegative integers y0; y1; : : : ; yj ,P ( j⋂i=0{Y (n)i = yi}) −→ P ( j⋂i=0 {Yi = yi}) as n → ∞: (3.12)The rest of this argument is routine, but let us go through it. Suppose" > 0, and suppose m = m(a; ") is as in Lemma 2.4. Suppose S and T arenonempty, �nite, disjoint subsets of N suh that dist(S; T ) > m. Supposef : N

I
→ R and g : N

J
→ R are bounded funtions, where I and J are the



ON MIXING PROPERTIES OF SOME INAR MODELS 67ardinalities of S and T respetively. To omplete the proof, it suÆes toshow that (see the sentene right before Lemma 2.4)
|Corr(f(Yk; k ∈ S); g(Yk; k ∈ T ))| 6 ": (3.13)Now by Lemma 3.1, for eah integer n > �,

|Corr(f(Y (n)k ; k ∈ S); g(Y (n)k ; k ∈ T ))| 6 ": (3.14)If the left side of (3.13) is nonzero, then the left side of (3.14) onverges tothe left side of (3.13) as n → ∞ by (3.12) and a routine alulation. Heneby (3.14), eq. (3.13) holds. That ompletes the proof. �

§4. Proof of Theorem 1.3As in the statement of Theorem 1.3, suppose a ∈ (0; 1) and � > 0. Theargument here will be divided into four \steps".Step 1. Constrution of the sequene X. For eah integer ` (that is,eah ` ∈ Z), let Y (`) := (Y (`)0 , Y (`)1 , Y (`)2 , : : : ) be a Markov hain withstate spae N, suh that the distribution of this Markov hain Y (`) (on
N

N) is the same as that of the Markov hain Y in Lemma 3.2. Let theseMarkov hains Y (`), ` ∈ Z be onstruted in suh a way that they areindependent of eah other.Just for onvenient \bookkeeping" later on, for eah ` ∈ Z and eahinteger k 6 −1, de�ne the degenerate random variable Y (`)k ≡ 0. For eah` ∈ Z, thereby extend the Markov hain Y (`) (retaining that notation)to the form Y (`) := (Y (`)k ; k ∈ Z) = (: : : ; 0; 0; 0; Y (`)0 ; Y (`)1 ; Y (`)2 ; : : : ).These random sequenes Y (`), ` ∈ Z are eah a Markov hain, they areindependent of eah other, and they all have the same distribution (on,say, NZ). This extension does not hange any of the dependene oeÆients�∗(Y (`); n).Now for eah ` ∈ Z and eah j ∈ N, the distribution of the randomvariable Y (`)j is Poisson with mean �aj (see Lemma 3.2(A)). Hene inpartiular, for eah ` ∈ Z, ∞∑j=0EY (`−j)j < ∞, and hene ∞∑j=0 Y (`−j)j < ∞a.s. De�ne the sequene X := (Xk, k ∈ Z) of the random variables asfollows: For eah k ∈ Z,Xk := ∞∑j=0 Y (k−j)j = ∞∑j=−∞

Y (k−j)j : (4.1)



68 R. C. BRADLEYSine the (nonstationary) Markov hains Y (`), ` ∈ Z are independentof eah other and have the same distribution, it follows from an elemen-tary (if tedious) measure-theoreti argument that this random sequeneX is stritly stationary. (Eq. (4.1) and the resulting stationarity of X areadapted from a sheme used in [13℄ to \onvert" a nonstationary sequeneto a stationary one preserving ertain properties.)Note that by (4.1) and the omments preeding it, one has (as in Lemma2.5(A)) that for eah k ∈ Z,the distribution of Xk is Poisson (�=(1− a)). (4.2)Step 2. Veri�ation of some features of the INAR(1) model with Pois-son innovations. For eah integer k, referring to the omments preeding(4.1), de�ne the random variables Uk and Vk as follows:Uk := ∞∑j=1 Y (k−j)j and Vk := Y (k)0 : (4.3)Then by (4.1), for eah k ∈ Z,Xk = Uk + Vk: (4.4)By (4.3) and the omments preeding (4.1), one has that for eah k ∈ Z,the distribution of Vk is Poisson (�): (4.5)By (4.1) and (4.3), for eah k ∈ Z,�(Uk) ⊂ �(Y (`); ` 6 k− 1); �(Vk) ⊂ �(Y (k)); and �(Xk) ⊂ �(Y (`); ` 6 k):(4.6)Sine the Markov hains Y (`), ` ∈ Z are independent of eah other, onehas by (4.6) that for eah k ∈ Z,�(Vk) is independent of �(Uj ; Vj ; Xj ; j 6 k − 1) ∨ �(Uk): (4.7)(Eqs. (4.4), (4.5), and (4.7) together have the interpretation that Vk is a\Poisson innovation".)Next, suppose k ∈ Z. Consider the independent random vetors
(Y (k−1)0 ; Y (k−1)1 ) ;(Y (k−2)1 ; Y (k−2)2 ) ;(Y (k−3)2 ; Y (k−3)3 ) ; : : : :By (4.1) and (4.3), the �rst oordinates of these random vetors addup to Xk−1, and the seond oordinates add up to Uk. From the on-ditions in Lemma 3.2 (and the omments preeding (4.1)), the hypothesisof Lemma 2.5 is ful�lled.



ON MIXING PROPERTIES OF SOME INAR MODELS 69Hene by Lemma 2.5(B), one has that for eah k ∈ Z and eah x ∈ N,the onditional distribution of Uk given {Xk−1 = x}is binomial with parameters x and a. (4.8)Also, from Lemma 2.5(C), one has that for eah k ∈ Z,
(�(Y (k−1−j)j ; j > 0); �(Xk−1); �(Uk)) is a Markov triplet. (4.9)Step 3. Two Markov triplets. For eah ` ∈ Z, de�ne the �-�eld

H(`) := �(Y (j)`−j ; j ∈ Z): (4.10)By (4.1) and (4.3), for eah ` ∈ Z,�(U`; V`; X`) ⊂ H(`): (4.11)Now for the rest of Step 3, let k be an arbitrary �xed integer. For thisinteger k, the task in the rest of Step 3 here is to establish two Markovtriplets onneted with the onditions in De�nition 1.2.For eah j ∈ Z, the ordered triplet of �-�elds
(�(Y (j)u ; u 6 k − 2− j); �(Y (j)k−1−j ); �(Y (j)k−j ))is a Markov triplet. Sine the Markov hains Y (j), j ∈ Z are independent,one has by (4.10) and a standard measure-theoreti argument that



∨i6k−2H(i);H(k−1);H(k)is a Markov triplet. Hene by (4.11),




∨i6k−2H(i);H(k−1); �(Uk) (4.12)is a Markov triplet.Also, by (4.9) and the fat that Y (k−1−j)j ≡ 0 for j 6 −1,

(
H(k−1); �(Xk−1); �(Uk)) (4.13)is a Markov triplet.



70 R. C. BRADLEYSine �(Xk−1) ⊂ H(k−1) by (4.11), one has that for any event C ∈�(Uk), by the sentenes ontaining (4.12) and (4.13),P C ∣∣∣∣ ∨i6k−1H(i) = P (C | H(k−1)) = P (C | �(Xk−1)) a.s.;and hene the ordered triplet


∨i6k−1H(i); �(Xk−1); �(Uk)is a Markov triplet. Hene by (4.11) again,(�(Uj ; Vj ; Xj ; j 6 k − 1); �(Xk−1); �(Uk)) (4.14)is a Markov triplet. Hene by (4.7) and a standard measure-theoreti ar-gument, (�(Uj ; Vj ; Xj ; j 6 k − 1); �(Xk−1); �(Uk) ∨ �(Vk))is a Markov triplet. Hene by (4.4),(�(Xj ; j 6 k − 1); �(Xk−1); �(Xk)) (4.15)is a Markov triplet.Sine k ∈ Z was arbitrary, the sequene X is by (4.15) a Markov hain,a property stipulated in De�nition 1.2. Eq. (4.14) is (again for arbitraryk ∈ Z) the other \Markov triplet" property stipulated in De�nition 1.2.The other properties in De�nition 1.2 (and the subsequent paragraph) wereveri�ed in (4.2), (4.4), (4.5), (4.7), and (4.8). That ompletes the veri�a-tion that the sequene X is an INAR(1) model with Poisson innovations.To omplete the proof of Theorem 1.3, all that remains is to show thatthe sequene X is �∗-mixing.Step 4. Proof that X is �∗-mixing. For eah j ∈ Z, de�ne the \shiftedrandom sequene" Ỹ (j) := (Ỹ (j)k ; k ∈ Z) by Ỹ (j)k := Y (j)k−j . Then by (4.1) (or(4.10){(4.11)), for eah k ∈ Z, �(Xk) ⊂ ∨j∈Z

�(Ỹ (j)k ). Hene by Lemma2.1 and the �rst two paragraphs of Step 1, for any n ∈ N,�∗(X;n) 6 supj∈Z

�∗(Ỹ (j); n) = supj∈Z

�∗(Y (j); n) = �∗(Y; n)where the sequene Y is as in Lemma 3.2. By Lemma 3.2(B), that se-quene Y is �∗-mixing. Hene X is �∗-mixing. That ompletes the proofof Theorem 1.3. �
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