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t. Stri
tly stationary INAR(1) pro
esses (\integer-valuedautoregressive pro
esses of order 1") with Poisson innovations are\interla
ed �-mixing".Dedi
ated to the memory of Mikhail Gordin
§1. Introdu
tionThe INAR pro
esses, or \integer-valued autoregressive pro
esses", area variant of the usual autoregressive pro
esses in time series analysis. Invarious referen
es, the INAR pro
esses and variations on them have beenstudied as models to use in the statisti
al analysis of \
ount data". Seee.g. [8,12,14,17,18℄, and the referen
es therein. In [17℄, for 
ertain INAR(1)pro
esses (\integer-valued autoregressive pro
esses of order 1"), and 
er-tain variations on them, strong mixing and even absolute regularity wereveri�ed, with exponential mixing rate.In the study of INAR pro
esses, the �-mixing 
ondition does not seemto have gotten mu
h attention, but it 
ould perhaps play a useful role aswell, given the extensive literature on limit theory under �-mixing that hasbeen developed sin
e early results on that topi
 su
h as in [10℄ and [16℄.This note here will go in a little di�erent dire
tion. Within the INARpro
esses, one parti
ularly prominent sub
lass is the stri
tly stationaryINAR(1) pro
esses with \Poisson innovations". For that sub
lass (andsome other related pro
esses), absolute regularity with exponential mixingrate was already veri�ed in [17℄. In this note, for that prominent sub
lass,we shall verify the �∗-mixing (\interla
ed �-mixing") 
ondition, whi
h isstronger than �-mixing. (Both of those latter two mixing 
onditions andthat sub
lass of pro
esses will be expli
itly formulated below.) The Poissoninnovations seem to fa
ilitate the study of the �∗-mixing 
ondition for thatsub
lass. The te
hniques in this note involving �∗-mixing 
an apparentlybe extended to some limited extent to some other INAR pro
esses, andKey words and phrases: INAR pro
esses, mixing.56



ON MIXING PROPERTIES OF SOME INAR MODELS 57even to some variations on them su
h as ones in [17℄. For simpli
ity, thisnote will be 
on�ned to just the sub
lass identi�ed above.The pro
esses in the prominent sub
lass dis
ussed above are stri
tly sta-tionary, 
ountable-state Markov 
hains. It is well known and elementarythat for Markov 
hains, for either the �-mixing 
ondition or the �∗-mixing
ondition, the mixing rate is automati
ally (at least) exponential. Nowstri
tly stationary, �nite-state, irredu
ible, aperiodi
 Markov 
hains are�∗-mixing (see [1℄ or [3, Theorem 7.15℄). However, for stri
tly stationary,
ountable-state Markov 
hains in general, �-mixing does not imply �∗-mixing. (Counterexamples are 
onstru
ted in [2℄ and [4℄, with the ones inthe latter referen
e being reversible.) For the INAR pro
esses in general,and in parti
ular for the (Markovian) INAR(1) pro
esses whose innova-tions are not Poisson, there is more to explore regarding the �-mixing and�∗-mixing 
onditions and the 
onne
tions between them.Now let us formulate the �-mixing and �∗-mixing 
onditions, de�ne thesub
lass of pro
esses that will be studied here, and then give the mainresult.Suppose X := (Xk, k ∈ Z) is a stri
tly stationary sequen
e of randomvariables on a probability spa
e (
;F ; P ). For any two �-�elds A and
B ⊂ F , de�ne the \maximal 
orrelation" [9℄:�(A;B) := sup |Corr(f; g)|where the supremum is taken over all pairs of square-integrable randomvariables f and g su
h that f is A-measurable and g is B-measurable. Forea
h positive integer n, de�ne the following two dependen
e 
oeÆ
ients(for the given stri
tly stationary sequen
e X):�(X;n) := �(�(Xk; k 6 0); �(Xk; k > n)) (1.1)and �∗(X;n) := sup �(�(Xk ; k ∈ S); �(Xk; k ∈ T )) (1.2)where the supremum is taken over all pairs of nonempty, disjoint setsS; T ⊂ Z su
h that dist(S; T ) := mins∈S;t∈T |s− t| > n: (1.3)In (1.1), (1.2), and below, the notation �(: : : ) means the �-�eld generatedby (: : : ). In (1.2){(1.3), the sets S and T 
an be \interla
ed", with ea
h set
ontaining elements between ones in the other set. The (stri
tly stationary)sequen
e X is said to be \�-mixing" (a 
ondition introdu
ed in [11℄) if



58 R. C. BRADLEY�(X;n) → 0 as n → ∞, and �∗-mixing (a 
ondition apparently �rst studiedin [19℄) if �∗(X;n) → 0 as n → ∞. Obviously �(X;n) 6 �∗(X;n) for ea
hn > 1, and (hen
e) �∗-mixing implies �-mixing.The following terminology will be useful.De�nition 1.1. An ordered triplet (A;B; C) of �-�elds (⊂ F) will be
alled a \Markov triplet" if any (hen
e all) of the following three equivalent
onditions holds:(i) for all C ∈ C, P (C|A ∨ B) = P (C|B) a.s.;(ii) for all A ∈ A and all C ∈ C, P (A ∩ C|B) = P (A|B) · P (C|B) a.s.;(iii) for all A ∈ A, P (A | B ∨ C) = P (A | B) a.s.The following elementary observation will be useful later on: If (A;B; C)is a Markov triplet, then (A∨B;B;B∨C) is a Markov triplet, and (hen
e)for any �-�elds G ⊂ A ∨ B and H ⊂ B ∨ C, (G;B;H) is a Markov triplet.In what follows, N denotes the set of all positive integers, and N :=
N ∪ {0} denotes the set of all nonnegative integers.De�nition 1.2. Suppose a ∈ (0; 1) and � > 0. A stri
tly stationary\INAR(1) pro
ess with Poisson innovations" (with parameters a and �),is a stri
tly stationary Markov 
hain X := (Xk; k ∈ Z) with state spa
e N,with X having the following \ stru
tural" properties: There exist randomvariables Uk; Vk , k ∈ Z for whi
h the following 
onditions hold:(i) For ea
h k ∈ Z, Xk = Uk + Vk.(ii) For ea
h k ∈ Z and ea
h x ∈ N, the 
onditional distribution of Ukgiven {Xk−1 = x} is binomial with parameters x and a.(iii) For ea
h k ∈ Z, the ordered triplet of �-�elds(�(Uj ; Vj ; Xj ; j 6 k − 1); �(Xk−1); �(Uk))is a Markov triplet.(iv) For ea
h k ∈ Z, the distribution of the random variable Vk isPoisson with mean �.(v) For ea
h k ∈ Z, the random variable Vk is independent of the�-�eld �(Uj ; Vj ; Xj ; j 6 k − 1) ∨ �(Uk).In De�nition 1.2, for a given k ∈ Z, the random variable Vk is the\Poisson innovation". It is well known and elementary (see e.g. [17℄) thatin the 
ontext of De�nition 1.2, the (invariant) marginal distribution ofea
h Xk is Poisson with mean �=(1− a).Here is the main result of this note:



ON MIXING PROPERTIES OF SOME INAR MODELS 59Theorem 1.3. Suppose a ∈ (0; 1) and � > 0; and suppose that X :=(Xk; k ∈ Z) is the stri
tly stationary INAR(1) pro
ess (Markov 
hain)in De�nition 1.2, meeting all 
onditions there (in
luding the Poisson (�)\innovations"). Then X is �∗-mixing (with �∗(X;n) → 0 at least exponen-tially fast as n → ∞).The proof of this theorem will be 
arried out through Se
tions 2, 3, and4 below. From that proof, one 
an see that the (of 
ourse exponential)mixing rate for �∗-mixing in Theorem 1.3 essentially depends only on (anupper bound for) the parameter a, not on �.
§2. PreliminariesThroughout the rest of this note, the setting will be a probability spa
e(
;F ; P ), ri
h enough to a

ommodate all random variables spe
i�ed.Random variables are real-valued (and often integer-valued or even {0; 1}-valued) unless spe
i�ed otherwise.Se
tion 2 here will be devoted to some lemmas that will be used in theproof of Theorem 1.3.The following lemma is due to Cs�aki and Fisher [7℄. (The proof giventhere has a 
aw. For a fully 
orre
t proof, see [20℄ or [3, Theorem 6.1℄.)Lemma 2.1. Suppose An and Bn, n ∈ N are �-�elds (⊂ F), and the�-�elds An ∨ Bn, n ∈ N are independent. Then�( ∨n∈N

An; ∨n∈N

Bn) = supn∈N

�(An;Bn):Next, for any two �-�elds A and B (⊂ F), de�ne the following measureof dependen
e: �(A;B) := sup |P (A ∩B)− P (A)P (B)|[P (A)℄1=2[P (B)℄1=2 (2.1)where the supremum is taken over all pairs of events A ∈ A and B ∈ Bsu
h that P (A) > 0 and P (B) > 0.Lemma 2.2. For any " > 0, there exists Æ = Æ(") > 0 su
h that the follow-ing holds: If A and B are �-�elds su
h that �(A;B) 6 Æ, then �(A;B) 6 ".Quite sharp versions of Lemma 2.2 
an be found in [5, 6℄, [3, Theo-rem 4.15℄, and in a very sharp form, [15℄.



60 R. C. BRADLEYLemma 2.3. Suppose 0 < " 6 1=9. Suppose (X1; X2; X3; : : : ) is a se-quen
e of random variables su
h that for ea
h n > 2, P (Xn = 0 | Xn−1 =0) = 1 (if P (Xn−1 = 0) > 0) andP (Xn = 0 | �(X1; X2; : : : ; Xn−1)) > 1− " a.s.Then �(�(X1; X3; X5; X7; : : : ); �(X2; X4; X6; X8; : : : )) 6 3 "1=2:A proof of Lemma 2.3 
an be found in [1, Lemma 3.1℄ or [3, Theo-rem 5.21℄. (In Lemma 2.3, the labeling of the \absorbing state" as 0 is justfor 
onvenien
e.)Next, for any (not ne
essarily stationary) sequen
e X := (Xk; k ∈ Z)or X := (Xk; k ∈ N), de�ne the dependen
e 
oeÆ
ients �∗(n), n ∈ N by(1.2){(1.3). (In the 
ase of index set N, the sets S and T are restri
ted tothat set.)In what follows, if S is a nonempty �nite set⊂ N, J is its 
ardinality,Xk,k ∈ S, are random variables, and (say) f : R
J → R is a Borel fun
tion,then the notation f(Xk; k ∈ S) means f(Xk(1); Xk(2); : : : ; Xk(J)) wherek(1) < k(2) < · · · < k(J) are the elements of S in stri
tly in
reasing order.Lemma 2.4. For any a ∈ (0; 1) and any " > 0, there exists a positiveinteger m = m(a; ") su
h that the following holds:Suppose �0 is a {0; 1}-valued random variable. Suppose that� := (�1; �2; �3; : : : ) is a sequen
e of independent, identi
ally distributed

{0; 1}-valued random variables su
h that P (�1 = 1) = a, with this se-quen
e � being independent of �0. For ea
h k ∈ N, de�ne the {0; 1}-valuedrandom variable �k := �0 · k∏i=1 �i: (2.2)Then the random sequen
e � := (�0; �1; �2; : : : ) satis�es�∗(�;m) 6 ": (2.3)Proof. Suppose a ∈ (0; 1) and " > 0. Our �rst task is to de�ne the positiveinteger m = m(a; ").Referring to (2.1), let Æ = Æ(") > 0 be as in Lemma 2.2. Let 
 ∈ (0; 1=9℄be su
h that 3
1=2 6 Æ: (2.4)



ON MIXING PROPERTIES OF SOME INAR MODELS 61Note that Æ and (hen
e) 
 depend only on ". Let m = m(a; ") be a positiveinteger su
h that am 6 
: (2.5)That 
ompletes the de�nition of m = m(a; ").Now suppose the random variable �0, the random sequen
e �, and (then)the random sequen
e � are as in the statement of Lemma 2.4. Our task isto prove (2.3).Suppose S and T are any two nonempty, disjoint subsets of N su
h thatdist(S; T ) > m. To 
omplete the proof of (2.3), it suÆ
es to show that�(�(�k ; k ∈ S); �(�k ; k ∈ T )) 6 ": (2.6)By a standard measure-theoreti
 argument, it suÆ
es to show (2.6) in the
ase where both index sets S and T are �nite. We make that assumption.Just for 
onvenien
e, without loss of generality (after swit
hing S and Tif ne
essary, and after enlarging T by one element if ne
essary), we assumethat the least and greatest elements of the set S ∪ T belong to S and Trespe
tively. Then there exists a positive even integer L and nonempty,(pairwise) disjoint sets Q1; Q2; : : : ; QL ⊂ N with the following properties:S = ⋃i∈{1;3;5;:::;L−1}Qi;T = ⋃i∈{2;4;6;:::;L}

Qi; and
∀ i ∈ {1; 2; : : : ; L− 1}; m+ [maxQi℄ 6 [minQi+1℄: (2.7)For ea
h positive integer J , let �J : {0; 1}J → N be a one-to-one fun
-tion su
h that �J (0; 0; : : : ; 0) = 0. For ea
h i ∈ {1; 2; : : : ; L}, de�ne the(N-valued) random variable Xi = �J(i)(�k ; k ∈ Qi) where J(i) is the 
ar-dinality of Qi. Then

∀ i ∈ {1; 2; : : : ; L};�(Xi) = �(�k ; k ∈ Qi) and {Xi = 0} = {�k = 0 ∀ k ∈ Qi}; (2.8)and (hen
e) �(�k ; k ∈ S) = �(X1; X3; X5; : : : ; XL−1) and�(�k ; k ∈ T ) = �(X2; X4; X6; : : : ; XL): (2.9)For ea
h k ∈ N, by (2.2) and the assumptions in Lemma 2.4, one hasthat (i) �k = �k−1 · �k and hen
e {�k−1 = 0} ⊂ {�k = 0}, and (ii) the



62 R. C. BRADLEY�-�elds �(�i; i > k) and �(�i; i 6 k− 1) are independent. These fa
ts havethe following two 
onsequen
es:First, by (2.7) and (2.8), for ea
h i ∈ {2; 3; : : : ; L}, {Xi−1 = 0} ⊂ {Xi =0} and hen
e P (Xi = 0 | Xi−1 = 0) = 1.Se
ond, for ea
h i ∈ {2; 3; : : : ; L}, letting j := maxQi−1, one has by(2.2), (2.7), and (2.8) that {Xi = 0} ⊃
⋃j+mu=j+1{�u = 0}, this latter event isindependent of �(�k ; k 6 j) and hen
e independent of �(X1; X2; : : : ; Xi−1),and hen
e now by (2.5), almost surelyP(Xi = 0 | �(X1; X2; : : : ; Xi−1))

> P( j+m⋃u=j+1{�u = 0} ∣∣∣∣ �(X1; X2; : : : ; Xi−1))= P( j+m⋃u=j+1{�u = 0})= 1− P( j+m⋂u=j+1{�u = 1})= 1− am > 1− 
:It now follows from (2.9), Lemma 2.3, and (2.4) that�(�(�k ; k ∈ S); �(�k ; k ∈ T ))= �(�(X1; X3; X5; : : : ; XL−1); �(X2; X4; X6; : : : ; XL)) 6 3
1=2 6 Æ:Hen
e by the de�nition of Æ (just before (2.4), and based on Lemma 2.2),(2.6) holds. That 
ompletes the proof. �Note that by adapting the proof of Lemma 2.4, one 
an extend Lem-ma 2.4 to the broader 
lass of random sequen
es in the hypothesis ofLemma 2.3, with the " 6 1=9 there repla
ed by a ∈ (0; 1). However,Lemma 2.4 in its present form will suÆ
e for our purposes here.This se
tion will 
on
lude with a lemma giving just a few related stan-dard elementary fa
ts whi
h will be used later on. Here and below, for agiven a ∈ (0; 1), the \binomial distribution with parameters 0 and a" is of
ourse the point mass at 0.



ON MIXING PROPERTIES OF SOME INAR MODELS 63Lemma 2.5. Suppose a ∈ (0; 1). Suppose �1, �2, �3 : : : is a sequen
e ofpositive numbers su
h that ∞∑i=1�i < ∞. Suppose (Y1; Z1); (Y2; Z2);(Y3; Z3); : : : is a sequen
e of independent random ve
tors su
h that forea
h i ∈ N, (i) the distribution of Yi is Poisson with mean �i, and (ii) forea
h y ∈ N, the 
onditional distribution of Zi given {Yi = y} is binomialwith parameters y and a.(A) Then Y := ∞∑i=1 Yi < ∞ a.s., and this random variable Y has thePoisson distribution with mean ∞∑i=1�i.(B) Also, Z := ∞∑i=1Zi 6 Y < ∞ a.s. Further, for any y ∈ N, the
onditional distribution of Z given {Y = y} is binomial with parameters yand a.(C) The ordered triplet of �-�elds (�(Yi; i ∈ N); �(Y ); �(Z)) is a Markovtriplet.Statement (A) holds by a simple limiting argument. Statements (B)and (C) both follow from the elementary fa
t that if m is a nonnegativeinteger and (y1; y2; y3; : : : ) is a sequen
e of nonnegative integers whosesum is m (whi
h allows at most �nitely many yi's to be nonzero), then theevent ⋂∞i=1{Yi = yi} has positive probability and is an atom of the �-�eld�(Y1; Y2; Y3; : : : ), and the 
onditional distribution of Z given that event isbinomial with parameters m and a.
§3. Two Markov 
hainsIn this se
tion, in preparation for the main argument for Theorem 1.3to be given in Se
tion 4, the property of �∗-mixing will be veri�ed for two
lasses of (nonstationary) Markov 
hains.Lemma 3.1. Suppose a ∈ (0; 1), p ∈ (0; 1), and N ∈ N. Suppose Y := (Y0,Y1, Y2, : : : ) is a Markov 
hain whose states are nonnegative integers, su
hthat (i) the distribution of Y0 is binomial (N; p), and (ii) for ea
h j ∈ Nand ea
h integer y su
h that P (Yj = y) > 0, the 
onditional distributionof Yj+1 given {Yj = y} is binomial (y; a).Suppose " > 0, and the positive integer m = m(a; ") is as in Lemma 2.4.Then �∗(Y;m) 6 ": (3.1)



64 R. C. BRADLEYProof. By a standard measure-theoreti
 argument, the dependen
e 
oef-�
ients �∗( · ; n), n ∈ N for a given random sequen
e depend only on thedistribution of that whole random sequen
e. Also, the distribution of a (saydis
rete-state) Markov 
hain Y := (Y0; Y1; Y2; : : : ) is uniquely determinedby the marginal distribution of Y0 and the one-step transition probabili-ties. Hen
e it suÆ
es to 
arry out the proof of Lemma 3.1 for a Markov
hain Y that satis�es the 
onditions in Lemma 3.1 and is embedded in a
onvenient 
ontext.Refer to the parameters a, p, and N in the statement of Lemma 3.1.Let � := (�h;j , 1 6 h 6 N , j ∈ N) be an array of independent, identi
allydistributed {0; 1}-valued random variables su
h that �(�1;1 = 1) = a.Let � := (�h;j , 1 6 h 6 N , j ∈ N) be an array of {0; 1}-valued randomvariables that meets the following two 
onditions (interpreted appropri-ately if N = 1): (i) The random variables �h;0, 1 6 h 6 N are inde-pendent, identi
ally distributed {0; 1}-valued random variables su
h thatP (�1;0 = 1) = p, with the sequen
e (�h;0, 1 6 h 6 N) being independentof the array �. (ii) For ea
h h ∈ {1; 2; : : : ; N} and ea
h j ∈ N,�h;j := �h;0 · j∏i=1 �h;i: (3.2)De�ne the sequen
e Y := (Y0; Y1; Y2; : : : ) of (nonnegative, integer-valu-ed) random variables as follows: For ea
h j ∈ N,Yj := N∑h=1 �h;j : (3.3)By (3.2), for every h ∈ {1; 2; : : : ; N} and every j ∈ N,�h;j+1 = �h;j · �h;j+1: (3.4)By (3.3) and (3.4), N > Y0 > Y1 > Y2 > : : : > 0: (3.5)By (3.3) and the properties of the array �,the distribution of Y0 is binomial (N; p). (3.6)Our next task, starting with (3.6), is to establish the distribution of theentire sequen
e Y .



ON MIXING PROPERTIES OF SOME INAR MODELS 65De�ne (with some redundan
y) the �-�elds Gj , j ∈ N as follows:
G0 := �(�h;0; 1 6 h 6 N); and
∀ j ∈ N; Gj := �(�h;k ; 1 6 h 6 N; 0 6 k 6 j)

∨ �(�h;k ; 1 6 h 6 N; 1 6 k 6 j): (3.7)For ea
h j ∈ N, the �-�eld Gj is independent of �(�h;k , 1 6 h 6 N ,k > j + 1).Now suppose j ∈ N; and suppose y ∈ {1; 2; : : : ; N}, and S⊂{1; 2; : : : ; N}is a set with 
ardinality y. De�ne the eventA := {∀h ∈ S; �h;j = 1; and ∀h ∈ {1; : : : ; N} − S; �h;j = 0}: (3.8)(If y = N then A = ⋂Nh=1{�h;j = 1}.) Suppose G ∈ Gj (see (3.7)) is anevent, and that P (G ∩ A) > 0. Then Yj+1 = N∑h=1 �h;j · �h;j+1 by (3.3) and(3.4); and hen
e by the senten
e after (3.7) and a simple argument, forevery z ∈ {0; 1; : : : ; y},P (Yj+1 = z | G ∩A) = (yz)az(1− a)y−z: (3.9)Next suppose again that j ∈ N and y ∈ {1; 2; : : : ; N}. By (3.3), theevent {Yj = y} is the union of �nitely many (pairwise) disjoint events ofthe form A in (3.8). Hen
e by (3.9) and a simple 
al
ulation, if G ∈ Gj ,P (G ∩ {Yj = y}) > 0, and z ∈ {0; 1; : : : ; y}, thenP (Yj+1 = z | G ∩ {Yj = y}) = (yz)az(1− a)y−z: (3.10)Of 
ourse (re
all (3.5)) eq. (3.10) also holds for y = 0 (and z = 0). Also,by (3.3) and (3.7), ea
h of the random variables Yk, 0 6 k 6 j is Gj-measurable. Hen
e (3.10) has the following 
onsequen
es:The sequen
e Y is a Markov 
hain. For every j ∈ N and every y ∈
{0; 1; : : : ; N}, P (Yj = y) > 0 (by (3.6) followed by (3.10) and indu
tion,with G = 
). Finally, for ea
h j ∈ N and ea
h y ∈ {0; 1; : : : ; N}, the
onditional distribution of Yj+1 given {Yj = y} is binomial (y; a). Hen
eby (3.6), the sequen
e Y meets all 
onditions spe
i�ed in Lemma 3.1.Now suppose " > 0, and m = m(a; ") is as in Lemma 2.4. To 
ompletethe proof of Lemma 3.1, it suÆ
es to prove for the sequen
e Y above that(3.1) holds.



66 R. C. BRADLEYFor ea
h h ∈ {1; 2; : : : ; N}, de�ne the random sequen
e �(h) := (�h;0,�h;1, �h;2,: : : ). By (3.2) and the properties of the arrays � and � here, forea
h h ∈ {1; 2; : : : ; N}, the sequen
e �(h) ful�lls the 
onditions in Lemma2.4. Hen
e from Lemma 2.4,
∀ h ∈ {1; : : : ; N}; �∗(�(h);m) 6 ": (3.11)Also, by (3.2) and the properties of the arrays � and � here, the sequen
es�(h), h ∈ {1; 2; : : : ; N} are independent of ea
h other. Hen
e by (3.3),(3.11), and Lemma 2.1, eq. (3.1) holds. That 
ompletes the proof. �Lemma 3.2. Suppose a ∈ (0; 1) and � > 0. Suppose Y := (Y0; Y1; Y2; : : : )is a Markov 
hain with state spa
e N, su
h that (i) the distribution of therandom variable Y0 is Poisson (�), and (ii) for ea
h j ∈ N and ea
h y ∈ N,the 
onditional distribution of Yj+1 given {Yj = y} is binomial (y; a).(A) For ea
h j ∈ N, the distribution of the random variable Yj is Poisson(�aj).(B) Suppose " > 0, and suppose the positive integer m = m(a; ") is asin Lemma 2.4. Then �∗(Y;m) 6 ".Proof. For statement (A), 
onditions (i) and (ii) in Lemma 3.2 implythat Y1 is Poisson (�a) by a standard 
al
ulation, and by repeating thatargument one obtains (A) by indu
tion.Proof of (B). For ea
h integer n > �, let Y (n) := (Y (n)0 ; Y (n)1 ; Y (n)2 ; : : : )be a Markov 
hain with state spa
e {0; 1; : : : ; n} su
h that (i) the dis-tribution of Y (n)0 is binomial (n; �=n), and (ii) for ea
h j ∈ N and ea
hy ∈ {0; 1; : : : ; n}, the 
onditional distribution of Yj+1 given {Yj = y} is bi-nomial (y; a). Then Y (n)0 
onverges in distribution to Y0 (whi
h is Poisson(�)) as n → ∞. Sin
e the one-step transition probabilities for ea
h of theMarkov 
hains Y (n) are the same as for the Markov 
hain Y , one has thatfor every j ∈ N and every 
hoi
e of nonnegative integers y0; y1; : : : ; yj ,P ( j⋂i=0{Y (n)i = yi}) −→ P ( j⋂i=0 {Yi = yi}) as n → ∞: (3.12)The rest of this argument is routine, but let us go through it. Suppose" > 0, and suppose m = m(a; ") is as in Lemma 2.4. Suppose S and T arenonempty, �nite, disjoint subsets of N su
h that dist(S; T ) > m. Supposef : N

I
→ R and g : N

J
→ R are bounded fun
tions, where I and J are the
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ardinalities of S and T respe
tively. To 
omplete the proof, it suÆ
es toshow that (see the senten
e right before Lemma 2.4)
|Corr(f(Yk; k ∈ S); g(Yk; k ∈ T ))| 6 ": (3.13)Now by Lemma 3.1, for ea
h integer n > �,

|Corr(f(Y (n)k ; k ∈ S); g(Y (n)k ; k ∈ T ))| 6 ": (3.14)If the left side of (3.13) is nonzero, then the left side of (3.14) 
onverges tothe left side of (3.13) as n → ∞ by (3.12) and a routine 
al
ulation. Hen
eby (3.14), eq. (3.13) holds. That 
ompletes the proof. �

§4. Proof of Theorem 1.3As in the statement of Theorem 1.3, suppose a ∈ (0; 1) and � > 0. Theargument here will be divided into four \steps".Step 1. Constru
tion of the sequen
e X. For ea
h integer ` (that is,ea
h ` ∈ Z), let Y (`) := (Y (`)0 , Y (`)1 , Y (`)2 , : : : ) be a Markov 
hain withstate spa
e N, su
h that the distribution of this Markov 
hain Y (`) (on
N

N) is the same as that of the Markov 
hain Y in Lemma 3.2. Let theseMarkov 
hains Y (`), ` ∈ Z be 
onstru
ted in su
h a way that they areindependent of ea
h other.Just for 
onvenient \bookkeeping" later on, for ea
h ` ∈ Z and ea
hinteger k 6 −1, de�ne the degenerate random variable Y (`)k ≡ 0. For ea
h` ∈ Z, thereby extend the Markov 
hain Y (`) (retaining that notation)to the form Y (`) := (Y (`)k ; k ∈ Z) = (: : : ; 0; 0; 0; Y (`)0 ; Y (`)1 ; Y (`)2 ; : : : ).These random sequen
es Y (`), ` ∈ Z are ea
h a Markov 
hain, they areindependent of ea
h other, and they all have the same distribution (on,say, NZ). This extension does not 
hange any of the dependen
e 
oeÆ
ients�∗(Y (`); n).Now for ea
h ` ∈ Z and ea
h j ∈ N, the distribution of the randomvariable Y (`)j is Poisson with mean �aj (see Lemma 3.2(A)). Hen
e inparti
ular, for ea
h ` ∈ Z, ∞∑j=0EY (`−j)j < ∞, and hen
e ∞∑j=0 Y (`−j)j < ∞a.s. De�ne the sequen
e X := (Xk, k ∈ Z) of the random variables asfollows: For ea
h k ∈ Z,Xk := ∞∑j=0 Y (k−j)j = ∞∑j=−∞

Y (k−j)j : (4.1)
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e the (nonstationary) Markov 
hains Y (`), ` ∈ Z are independentof ea
h other and have the same distribution, it follows from an elemen-tary (if tedious) measure-theoreti
 argument that this random sequen
eX is stri
tly stationary. (Eq. (4.1) and the resulting stationarity of X areadapted from a s
heme used in [13℄ to \
onvert" a nonstationary sequen
eto a stationary one preserving 
ertain properties.)Note that by (4.1) and the 
omments pre
eding it, one has (as in Lemma2.5(A)) that for ea
h k ∈ Z,the distribution of Xk is Poisson (�=(1− a)). (4.2)Step 2. Veri�
ation of some features of the INAR(1) model with Pois-son innovations. For ea
h integer k, referring to the 
omments pre
eding(4.1), de�ne the random variables Uk and Vk as follows:Uk := ∞∑j=1 Y (k−j)j and Vk := Y (k)0 : (4.3)Then by (4.1), for ea
h k ∈ Z,Xk = Uk + Vk: (4.4)By (4.3) and the 
omments pre
eding (4.1), one has that for ea
h k ∈ Z,the distribution of Vk is Poisson (�): (4.5)By (4.1) and (4.3), for ea
h k ∈ Z,�(Uk) ⊂ �(Y (`); ` 6 k− 1); �(Vk) ⊂ �(Y (k)); and �(Xk) ⊂ �(Y (`); ` 6 k):(4.6)Sin
e the Markov 
hains Y (`), ` ∈ Z are independent of ea
h other, onehas by (4.6) that for ea
h k ∈ Z,�(Vk) is independent of �(Uj ; Vj ; Xj ; j 6 k − 1) ∨ �(Uk): (4.7)(Eqs. (4.4), (4.5), and (4.7) together have the interpretation that Vk is a\Poisson innovation".)Next, suppose k ∈ Z. Consider the independent random ve
tors
(Y (k−1)0 ; Y (k−1)1 ) ;(Y (k−2)1 ; Y (k−2)2 ) ;(Y (k−3)2 ; Y (k−3)3 ) ; : : : :By (4.1) and (4.3), the �rst 
oordinates of these random ve
tors addup to Xk−1, and the se
ond 
oordinates add up to Uk. From the 
on-ditions in Lemma 3.2 (and the 
omments pre
eding (4.1)), the hypothesisof Lemma 2.5 is ful�lled.
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e by Lemma 2.5(B), one has that for ea
h k ∈ Z and ea
h x ∈ N,the 
onditional distribution of Uk given {Xk−1 = x}is binomial with parameters x and a. (4.8)Also, from Lemma 2.5(C), one has that for ea
h k ∈ Z,
(�(Y (k−1−j)j ; j > 0); �(Xk−1); �(Uk)) is a Markov triplet. (4.9)Step 3. Two Markov triplets. For ea
h ` ∈ Z, de�ne the �-�eld

H(`) := �(Y (j)`−j ; j ∈ Z): (4.10)By (4.1) and (4.3), for ea
h ` ∈ Z,�(U`; V`; X`) ⊂ H(`): (4.11)Now for the rest of Step 3, let k be an arbitrary �xed integer. For thisinteger k, the task in the rest of Step 3 here is to establish two Markovtriplets 
onne
ted with the 
onditions in De�nition 1.2.For ea
h j ∈ Z, the ordered triplet of �-�elds
(�(Y (j)u ; u 6 k − 2− j); �(Y (j)k−1−j ); �(Y (j)k−j ))is a Markov triplet. Sin
e the Markov 
hains Y (j), j ∈ Z are independent,one has by (4.10) and a standard measure-theoreti
 argument that



∨i6k−2H(i);H(k−1);H(k)is a Markov triplet. Hen
e by (4.11),




∨i6k−2H(i);H(k−1); �(Uk) (4.12)is a Markov triplet.Also, by (4.9) and the fa
t that Y (k−1−j)j ≡ 0 for j 6 −1,

(
H(k−1); �(Xk−1); �(Uk)) (4.13)is a Markov triplet.
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e �(Xk−1) ⊂ H(k−1) by (4.11), one has that for any event C ∈�(Uk), by the senten
es 
ontaining (4.12) and (4.13),P C ∣∣∣∣ ∨i6k−1H(i) = P (C | H(k−1)) = P (C | �(Xk−1)) a.s.;and hen
e the ordered triplet


∨i6k−1H(i); �(Xk−1); �(Uk)is a Markov triplet. Hen
e by (4.11) again,(�(Uj ; Vj ; Xj ; j 6 k − 1); �(Xk−1); �(Uk)) (4.14)is a Markov triplet. Hen
e by (4.7) and a standard measure-theoreti
 ar-gument, (�(Uj ; Vj ; Xj ; j 6 k − 1); �(Xk−1); �(Uk) ∨ �(Vk))is a Markov triplet. Hen
e by (4.4),(�(Xj ; j 6 k − 1); �(Xk−1); �(Xk)) (4.15)is a Markov triplet.Sin
e k ∈ Z was arbitrary, the sequen
e X is by (4.15) a Markov 
hain,a property stipulated in De�nition 1.2. Eq. (4.14) is (again for arbitraryk ∈ Z) the other \Markov triplet" property stipulated in De�nition 1.2.The other properties in De�nition 1.2 (and the subsequent paragraph) wereveri�ed in (4.2), (4.4), (4.5), (4.7), and (4.8). That 
ompletes the veri�
a-tion that the sequen
e X is an INAR(1) model with Poisson innovations.To 
omplete the proof of Theorem 1.3, all that remains is to show thatthe sequen
e X is �∗-mixing.Step 4. Proof that X is �∗-mixing. For ea
h j ∈ Z, de�ne the \shiftedrandom sequen
e" Ỹ (j) := (Ỹ (j)k ; k ∈ Z) by Ỹ (j)k := Y (j)k−j . Then by (4.1) (or(4.10){(4.11)), for ea
h k ∈ Z, �(Xk) ⊂ ∨j∈Z

�(Ỹ (j)k ). Hen
e by Lemma2.1 and the �rst two paragraphs of Step 1, for any n ∈ N,�∗(X;n) 6 supj∈Z

�∗(Ỹ (j); n) = supj∈Z

�∗(Y (j); n) = �∗(Y; n)where the sequen
e Y is as in Lemma 3.2. By Lemma 3.2(B), that se-quen
e Y is �∗-mixing. Hen
e X is �∗-mixing. That 
ompletes the proofof Theorem 1.3. �
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