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ON MIXING PROPERTIES OF SOME INAR MODELS

ABSTRACT. Strictly stationary INAR(1) processes (“integer-valued
autoregressive processes of order 1”) with Poisson innovations are
“interlaced p-mixing”.

Dedicated to the memory of Mikhail Gordin

§1. INTRODUCTION

The INAR processes, or “integer-valued autoregressive processes”, are
a variant of the usual autoregressive processes in time series analysis. In
various references, the INAR processes and variations on them have been
studied as models to use in the statistical analysis of “count data”. See
e.g. [8,12,14,17,18], and the references therein. In [17], for certain INAR(1)
processes (“integer-valued autoregressive processes of order 17), and cer-
tain variations on them, strong mixing and even absolute regularity were
verified, with exponential mixing rate.

In the study of INAR processes, the p-mixing condition does not seem
to have gotten much attention, but it could perhaps play a useful role as
well, given the extensive literature on limit theory under p-mixing that has
been developed since early results on that topic such as in [10] and [16].

This note here will go in a little different direction. Within the INAR
processes, one particularly prominent subclass is the strictly stationary
INAR(1) processes with “Poisson innovations”. For that subclass (and
some other related processes), absolute regularity with exponential mixing
rate was already verified in [17]. In this note, for that prominent subclass,
we shall verify the p*-mixing (“interlaced p-mixing”) condition, which is
stronger than p-mixing. (Both of those latter two mixing conditions and
that subclass of processes will be explicitly formulated below.) The Poisson
innovations seem to facilitate the study of the p*-mixing condition for that
subclass. The techniques in this note involving p*-mixing can apparently
be extended to some limited extent to some other INAR processes, and
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even to some variations on them such as ones in [17]. For simplicity, this
note will be confined to just the subclass identified above.

The processes in the prominent subclass discussed above are strictly sta-
tionary, countable-state Markov chains. It is well known and elementary
that for Markov chains, for either the p-mixing condition or the p*-mixing
condition, the mixing rate is automatically (at least) exponential. Now
strictly stationary, finite-state, irreducible, aperiodic Markov chains are
p*-mixing (see [1] or [3, Theorem 7.15]). However, for strictly stationary,
countable-state Markov chains in general, p-mixing does not imply p*-
mixing. (Counterexamples are constructed in [2] and [4], with the ones in
the latter reference being reversible.) For the INAR processes in general,
and in particular for the (Markovian) INAR(1) processes whose innova-
tions are not Poisson, there is more to explore regarding the p-mixing and
p*-mixing conditions and the connections between them.

Now let us formulate the p-mixing and p*-mixing conditions, define the
subclass of processes that will be studied here, and then give the main
result.

Suppose X := (Xi, k € Z) is a strictly stationary sequence of random
variables on a probability space (Q,F, P). For any two o-fields .4 and
B C F, define the “maximal correlation” [9]:

p(A, B) := sup|Corr(f, g)|

where the supremum is taken over all pairs of square-integrable random
variables f and g such that f is A-measurable and g is B-measurable. For
each positive integer n, define the following two dependence coefficients
(for the given strictly stationary sequence X):

p(Xun) = p(a(Xk,kgO),a(Xk,k>n)) (11)

and
P (X,n) :=supp(c(Xy,k €9),0(Xg,keT)) (1.2)
where the supremum is taken over all pairs of nonempty, disjoint sets

S,T C Z such that

dist(S,T) := min |s—t| > n. (1.3)

seS,;teT
In (1.1), (1.2), and below, the notation o(...) means the o-field generated
by (...). In (1.2)—(1.3), the sets S and T can be “interlaced”, with each set
containing elements between ones in the other set. The (strictly stationary)
sequence X is said to be “p-mixing” (a condition introduced in [11]) if
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p(X,n) — 0asn — oo, and p*-mixing (a condition apparently first studied
in [19]) if p*(X,n) — 0 as n — oo. Obviously p(X,n) < p*(X,n) for each
n > 1, and (hence) p*-mixing implies p-mixing.

The following terminology will be useful.

Definition 1.1. An ordered triplet (A, B,C) of o-fields (C F) will be
called a “Markov triplet” if any (hence all) of the following three equivalent
conditions holds:
(i) for all C € C, P(C|AV B) = P(C|B) a.s.;
(ii) for all A€ Aand all C € C, P(ANC|B) = P(A|B) - P(C|B) a.s.;
(iii) forall Ae A, P(A|BVC)=P(A|B) as.

The following elementary observation will be useful later on: If (A, B,C)
is a Markov triplet, then (AV B, B, BV ) is a Markov triplet, and (hence)
for any o-fields G C AV B and H C BVC, (G,B,H) is a Markov triplet.

In what follows, N denotes the set of all positive integers, and N :=
N U {0} denotes the set of all nonnegative integers.

Definition 1.2. Suppose a € (0,1) and A > 0. A strictly stationary
“INAR(1) process with Poisson innovations” (with parameters a and X),
is a strictly stationary Markov chain X := (X, k € Z) with state space N,
with X having the following “ structural” properties: There exist random
variables Uy, Vi, k € Z for which the following conditions hold:
(i) For each k € Z, Xy, = Uy, + Vj.
(ii) For each k € Z and each x € N, the conditional distribution of Uy,
given {Xj_1 = x} is binomial with parameters z and a.
(iii) For each k € Z, the ordered triplet of o-fields

(0(U;,V;, X5, <k —1), 0(Xp—1),0(Us))

is a Markov triplet.

(iv) For each k € Z, the distribution of the random variable V}, is
Poisson with mean A.

(v) For each k € Z, the random variable V} is independent of the
o-field O'(Uj,‘/j,Xj, j<k—-1)Vvo(Uy).

In Definition 1.2, for a given k € Z, the random variable V} is the
“Poisson innovation”. Tt is well known and elementary (see e.g. [17]) that
in the context of Definition 1.2, the (invariant) marginal distribution of
each X}, is Poisson with mean A/(1 — a).

Here is the main result of this note:
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Theorem 1.3. Suppose a € (0,1) and A > 0; and suppose that X :=
(X, k € Z) is the strictly stationary INAR(1) process (Markov chain)
in Definition 1.2, meeting all conditions there (including the Poisson (\)
“tnnovations”). Then X is p*-mizing (with p*(X,n) — 0 at least exponen-
tially fast as n — 00).

The proof of this theorem will be carried out through Sections 2, 3, and
4 below. From that proof, one can see that the (of course exponential)
mixing rate for p*-mixing in Theorem 1.3 essentially depends only on (an
upper bound for) the parameter a, not on A.

§2. PRELIMINARIES

Throughout the rest of this note, the setting will be a probability space
(Q,F, P), rich enough to accommodate all random variables specified.
Random variables are real-valued (and often integer-valued or even {0,1}-
valued) unless specified otherwise.

Section 2 here will be devoted to some lemmas that will be used in the
proof of Theorem 1.3.

The following lemma is due to Csaki and Fisher [7]. (The proof given
there has a flaw. For a fully correct proof, see [20] or [3, Theorem 6.1].)

Lemma 2.1. Suppose A,, and B,, n € N are o-fields (C F), and the
o-fields A, V By, n € N are independent. Then

p(\V/ An, \ Bu) = sup pl(As, By).
neN neN n€N

Next, for any two o-fields A and B (C F), define the following measure
of dependence:
(ANB) — P(A)P(B)|
[P(A)2[P(B)]'/?
where the supremum is taken over all pairs of events A € A and B € B
such that P(A4) > 0 and P(B) > 0.

A(A, B) :=sup P (2.1)

Lemma 2.2. For any e > 0, there exists 6 = 6(g) > 0 such that the follow-
ing holds: If A and B are o-fields such that A(A, B) < 4§, then p(A,B) < e.

Quite sharp versions of Lemma 2.2 can be found in [5, 6], [3, Theo-
rem 4.15], and in a very sharp form, [15].
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Lemma 2.3. Suppose 0 < ¢ < 1/9. Suppose (X1, X2,X3,...) is a se-
quence of random variables such that for eachn > 2, P(X,, =0| X,_1 =
0)=1(if P(X,—1 =0) >0) and

P(Xn =0 | O'(Xl,XQ,...,Xn_l)) 2 1—¢ a.s.
Then
Mo (X1, X3, X5, X7,...),0(Xs, X4, Xg, Xg,...)) <3e'/2

A proof of Lemma 2.3 can be found in [1, Lemma 3.1] or [3, Theo-
rem 5.21]. (In Lemma 2.3, the labeling of the “absorbing state” as 0 is just
for convenience.)

Next, for any (not necessarily stationary) sequence X := (Xy,k € Z)
or X := (X, k € N), define the dependence coefficients p*(n), n € N by
(1.2)—(1.3). (In the case of index set N, the sets S and T are restricted to
that set.)

In what follows, if S is a nonempty finite set C N, J is its cardinality, X},
k € S, are random variables, and (say) f : R/ — R is a Borel function,
then the notation f(Xg,k € S) means f(Xp1), Xi(2),.--,Xg(s)) where
k(1) < k(2) < -+ < k(J) are the elements of S in strictly increasing order.

Lemma 2.4. For any a € (0,1) and any ¢ > 0, there exists a positive
integer m = m(a,e) such that the following holds:

Suppose (o is a {0,1}-valued random wvariable. Suppose that
1 := (m,12,M3,.-.) is a sequence of independent, identically distributed
{0,1}-valued random wvariables such that P(m = 1) = a, with this se-
quence 1 being independent of (o. For each k € N, define the {0, 1}-valued
random variable

k
G i=2Co- Hm~ (2.2)
i=1

Then the random sequence ¢ := ((o, (1, (2, - --) satisfies
o (Cm) <. (23

Proof. Supposea € (0,1) and ¢ > 0. Our first task is to define the positive
integer m = m(a,¢).

Referring to (2.1), let 6 = §(¢) > 0 be as in Lemma 2.2. Let v € (0,1/9]
be such that

3y12 L. (2.4)
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Note that ¢ and (hence) v depend only on €. Let m = m(a, &) be a positive

integer such that
m

a™ < . (2.5)
That completes the definition of m = m(a,¢).

Now suppose the random variable (o, the random sequence 7, and (then)
the random sequence ( are as in the statement of Lemma 2.4. Our task is
to prove (2.3).

Suppose S and T are any two nonempty, disjoint subsets of N such that
dist(S,T) = m. To complete the proof of (2.3), it suffices to show that

p(o(Cosk € S),0(Cr k€ T)) <e. (2.6)

By a standard measure-theoretic argument, it suffices to show (2.6) in the
case where both index sets S and T are finite. We make that assumption.

Just for convenience, without loss of generality (after switching S and T'
if necessary, and after enlarging T' by one element if necessary), we assume
that the least and greatest elements of the set S UT belong to S and T
respectively. Then there exists a positive even integer L and nonempty,
(pairwise) disjoint sets Q1,Q2,...,Qr C N with the following properties:

S = U s

i€{1,3,5,....L—1}
T = U 2;; and
i€{2,4,6,....L}
Vie{l,2,...,L—1}, m+[max@;] < minQ;+1].  (2.7)
For each positive integer .J, let ¢5 : {0,1}/ — N be a one-to-one func-
tion such that ¢;(0,0,...,0) = 0. For each ¢ € {1,2,...,L}, define the

(N-valued) random variable X; = ¢(;,((k, k € Q;) where J(i) is the car-
dinality of @?;. Then

Vie{l,2,...,L},

o(X) = oGk € Q) and {Xi=0} = {Go=0Vke Q) D
and (hence)
o, keS) = o(Xy,Xs,Xs,...,X1_1) and
ol keT) = o(Xs, Xy, Xe,...,X1). (2.9)

For each k£ € N, by (2.2) and the assumptions in Lemma 2.4, one has
that (i) (¢ = Cgk—1 - e and hence {(x—1 = 0} C {¢ = 0}, and (ii) the
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o-fields o(n;,i > k) and 0((;, < k — 1) are independent. These facts have
the following two consequences:

First, by (2.7) and (2.8), foreachi € {2,3,..., L}, {X;-1 =0} C {X; =
0} and hence P(X; =0| X;_; =0) = 1.

Second, for each i € {2,3,...,L}, letting j := max);_1, one has by
(2.2), (2.7), and (2.8) that {X; =0} D Ui:?:,l{nu = 0}, this latter event is
independent of 0({;;, k < j) and hence independent of o(X1, Xo, ..., Xi—1),
and hence now by (2.5), almost surely

P<X¢ =0| U(X13X27---3X2'—1)>

>P( ij {n. = 0}

(X1, X, ... 7Xi—1))

u=it
- P(;ql{nu )
1o P(ﬁl{m - 1))

=1-ad">21-1.
It now follows from (2.9), Lemma 2.3, and (2.4) that
Mo (S, k € S),0(C,k €T))
= /\(U(X17X37X57 s 7XL71)70—(X27X47X67 s 7XL)) < 3’71/2 < J.

Hence by the definition of § (just before (2.4), and based on Lemma 2.2),
(2.6) holds. That completes the proof. O

Note that by adapting the proof of Lemma 2.4, one can extend Lem-
ma 2.4 to the broader class of random sequences in the hypothesis of
Lemma 2.3, with the & < 1/9 there replaced by a € (0,1). However,
Lemma 2.4 in its present form will suffice for our purposes here.

This section will conclude with a lemma giving just a few related stan-
dard elementary facts which will be used later on. Here and below, for a
given a € (0, 1), the “binomial distribution with parameters 0 and a” is of
course the point mass at 0.
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Lemma 2.5. Suppose a € (0,1). Suppose A1, A2, Az... is a sequence of

(oo}

positive numbers such that > A; < oo. Suppose (Y1,Z7Z1),(Ya, Z2),
i=1

(Y3, Z3),... is a sequence of independent random vectors such that for

each i € N, (i) the distribution of Y; is Poisson with mean X;, and (ii) for
each y € N, the conditional distribution of Z; given {Y; = y} is binomial
with parameters y and a.

(A) Then'Y := > V; < 00 a.s., and this random variable Y has the
i=1

o0
Poisson distribution with mean Y \;.
i=1

(o] —
(B) Also, Z := >. 7Z; <Y < oo a.s. Further, for any y € N, the
i=1

conditional distribution of Z given {Y =y} is binomial with parameters y
and a.

(C) The ordered triplet of o-fields (o(Y;,i € N),0(Y),0(Z)) is a Markov
triplet.

Statement (A) holds by a simple limiting argument. Statements (B)
and (C) both follow from the elementary fact that if m is a nonnegative
integer and (y1,y2,¥s,-..) is a sequence of nonnegative integers whose
sum is m (which allows at most finitely many y;’s to be nonzero), then the
event (2, {Y; = y;} has positive probability and is an atom of the o-field
o(Y1,Y3,Y3,...), and the conditional distribution of Z given that event is
binomial with parameters m and a.

§3. Two MARKOV CHAINS

In this section, in preparation for the main argument for Theorem 1.3
to be given in Section 4, the property of p*-mixing will be verified for two
classes of (nonstationary) Markov chains.

Lemma 3.1. Supposea € (0,1), p € (0,1), and N € N. Suppose Y := (Yp,
Y1, Ys, ...) is a Markov chain whose states are nonnegative integers, such
that (i) the distribution of Yy is binomial (N, p), and (ii) for each j € N
and each integer y such that P(Y; = y) > 0, the conditional distribution
of Y1 given {Y; =y} is binomial (y,a).
Suppose € > 0, and the positive integer m = m(a,€) is as in Lemma 2.4.
Then
p*(Y,m) <e. (3.1
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Proof. By a standard measure-theoretic argument, the dependence coef-
ficients p*(-,n), n € N for a given random sequence depend only on the
distribution of that whole random sequence. Also, the distribution of a (say
discrete-state) Markov chain YV := (}5,Y7,Y5,...) is uniquely determined
by the marginal distribution of Yy and the one-step transition probabili-
ties. Hence it suffices to carry out the proof of Lemma 3.1 for a Markov
chain Y that satisfies the conditions in Lemma 3.1 and is embedded in a
convenient context.

Refer to the parameters a, p, and N in the statement of Lemma 3.1.
Let n:= (mn,;, L <h < N, j € N) be an array of independent, identically
distributed {0, 1}-valued random variables such that p(m 1 = 1) = a.

Let ¢ := (¢nj, 1 < h < N, j € N) be an array of {0, 1}-valued random
variables that meets the following two conditions (interpreted appropri-
ately if N = 1): (i) The random variables (p0, 1 < h < N are inde-
pendent, identically distributed {0, 1}-valued random variables such that
P((10 = 1) = p, with the sequence ((p0, 1 < h < N) being independent
of the array 7. (ii) For each h € {1,2,..., N} and each j € N,

J
Chg = Cno - | [ i (3.2)
i=1

Define the sequence YV := (Yp,Y7,Y5,...) of (nonnegative, integer-valu-
ed) random variables as follows: For each j € N,

N
Y= (nje (3.3)
h=1
By (3.2), for every h € {1,2,..., N} and every j € N,
Chyjt1 = Chyj * Mhj+1- (3.4)
By (3.3) and (3.4),
NzYozYi>2Ye>...20. (35)

By (3.3) and the properties of the array ¢,
the distribution of Yp is binomial (N, p). (3.6)

Our next task, starting with (3.6), is to establish the distribution of the
entire sequence Y.
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Define (with some redundancy) the o-fields G;, j € N as follows:
Go := 0(Ch0,1 <h < N); and
VjieN, Gj:=0(lur,1<h<N,0<

Vo, 1<h<N,

For each j € N, the o-field G; is independent of o(npk, 1 < A < N,
kE>j+1).

Now suppose j € N; and supposey € {1,2,..., N}, and Sc{1,2,...,N}
is a set with cardinality y. Define the event

A={vheS (hn;=1 andVhe {1,....N} - S, Cu; =0}.  (3.8)

(If y = N then A = ﬂf:;l{chﬂ- = 1}.) Suppose G € G; (see (3.7)) is an
N

event, and that P(GN A) > 0. Then Y11 = > (i - 0n,j+1 by (3.3) and
h=1

(3.4); and hence by the sentence after (3.7) and a simple argument, for
every z € {0,1,...,y},

P(Yj1=2|GNA)= <Z) a*(1—a)? . (3.9)

Next suppose again that j € N and y € {1,2,...,N}. By (3.3), the
event {Y; = y} is the union of finitely many (pairwise) disjoint events of
the form A in (3.8). Hence by (3.9) and a simple calculation, if G € G;,
P(GNn{Y;=y})>0,and z € {0,1,...,y}, then

PG =2 G == (Y- )

Of course (recall (3.5)) eq. (3.10) also holds for y = 0 (and z =
by (3.3) and (3.7), each of the random variables Y3, 0 < k <
measurable. Hence (3.10) has the following consequences:

The sequence Y is a Markov chain. For every j € N and every y €
{0,1,...,N}, P(Y; = y) > 0 (by (3.6) followed by (3.10) and induction,
with G = Q). Finally, for each j € N and each y € {0,1,...,N}, the
conditional distribution of Yj;14 given {Y; = y} is binomial (y,a). Hence
by (3.6), the sequence Y meets all conditions specified in Lemma 3.1.

Now suppose € > 0, and m = m(a,¢) is as in Lemma 2.4. To complete
the proof of Lemma 3.1, it suffices to prove for the sequence Y above that
(3.1) holds.

0). Also,
j is gj—
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For each h € {1,2,..., N}, define the random sequence ¢h) = (Cho,
Ch1s Chy2,--- ). By (3.2) and the properties of the arrays n and ¢ here, for
each h € {1,2,..., N}, the sequence (") fulfills the conditions in Lemma
2.4. Hence from Lemma 2.4,

Vhe{l,...,N}, p*(c™ m)<e. (3.11)

Also, by (3.2) and the properties of the arrays n and ¢ here, the sequences
¢™, h € {1,2,...,N} are independent of each other. Hence by (3.3),
(3.11), and Lemma 2.1, eq. (3.1) holds. That completes the proof. d

Lemma 3.2. Suppose a € (0,1) and A > 0. Suppose Y := (Yy,Y1,Y5,...)
is a Markov chain with state space N, such that (i) the distribution of the
random variable Yy is Poisson (X\), and (i) for each j € N and each y € N,
the conditional distribution of Y11 given {Y; =y} is binomial (y,a).

(A) For each j € N, the distribution of the random variable Y; is Poisson
(\a?).

(B) Suppose € > 0, and suppose the positive integer m = m(a,e) is as
in Lemma 2.4. Then p*(Y,m) < e.

Proof. For statement (A), conditions (i) and (i) in Lemma 3.2 imply
that Y7 is Poisson (Aa) by a standard calculation, and by repeating that
argument one obtains (A) by induction.

Proof of (B). For each integer n > A, let Y () := (YO("),Yl("),YQ(n), o)
be a Markov chain with state space {0,1,...,n} such that (i) the dis-
tribution of Y™ is binomial (n,\/n), and (i) for each j € N and each
y € {0,1,...,n}, the conditional distribution of Y;4; given {Y; = y} is bi-
nomial (y,a). Then Yb(n) converges in distribution to Yy (which is Poisson
(X)) as n — oo. Since the one-step transition probabilities for each of the
Markov chains (™ are the same as for the Markov chain Y, one has that

for every j € N and every choice of nonnegative integers 3o, 91, - . - , Yj
J J
P <n {Y;m = yl}> — P <ﬂ {V; = yl}> as n — oo. (3.12)
i=0 =0

The rest of this argument is routine, but let us go through it. Suppose
e > 0, and suppose m = m(a,€) is as in Lemma 2.4. Suppose S and T" are
nonempty, finite, disjoint subsets of N such that dist(S,7") > m. Suppose

I N’ — R and g: NJ — R are bounded functions, where I and J are the
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cardinalities of S and T respectively. To complete the proof, it suffices to
show that (see the sentence right before Lemma 2.4)

|Corr(f(Yi,k€8),gVi,keT))| <e. (3.13)
Now by Lemma 3.1, for each integer n > A,
|Corr(fF(V™ k€ 8),g(V{" k€ T))| <e. (3.14)

If the left side of (3.13) is nonzero, then the left side of (3.14) converges to
the left side of (3.13) as n — oo by (3.12) and a routine calculation. Hence
by (3.14), eq. (3.13) holds. That completes the proof. O

§4. PROOF OF THEOREM 1.3

As in the statement of Theorem 1.3, suppose a € (0,1) and A > 0. The
argument here will be divided into four “steps”.

Step 1. Construction of the sequence X. For each integer £ (that is,
each ¢ € Z), let YO := (YO([)7 Yl(‘q), YQ([), ...) be a Markov chain with
state space N, such that the distribution of this Markov chain Y () (on
NN) is the same as that of the Markov chain Y in Lemma 3.2. Let these
Markov chains Y, ¢ € Z be constructed in such a way that they are
independent of each other.

Just for convenient “bookkeeping” later on, for each £ € Z and each
integer k < —1, define the degenerate random variable Yk([) = 0. For each
{ € 7, thereby extend the Markov chain Y(©) (retaining that notation)
to the form Y® = (v\9 k € z) = (...,0,0,0,¥?, v\, v . .).
These random sequences Y}, ¢ € Z are each a Markov chain, they are
independent of each other, and they all have the same distribution (on,
say, NZ). This extension does not change any of the dependence coefficients
(YO n).

Now for each £ € Z and each j € N, the distribution of the random
variable Y(Z) is Poisson with mean Aa’ (see Lemma 3. 2(A)) Hence in
particular, for each £ € Z, Z EY (=) < oo, and hence Z Y(Z ) <

7=0
a.s. Define the sequence X = (Xi, k € Z) of the random variables as
follows: For each k € Z,

(oo} (o]
— (k—j) _ (k—3)
Xp=Y v = Ny, (4.1)
=0

j=—00
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Since the (nonstationary) Markov chains Y9, ¢ € Z are independent
of each other and have the same distribution, it follows from an elemen-
tary (if tedious) measure-theoretic argument that this random sequence
X is strictly stationary. (Eq. (4.1) and the resulting stationarity of X are
adapted from a scheme used in [13] to “convert” a nonstationary sequence
to a stationary one preserving certain properties.)

Note that by (4.1) and the comments preceding it, one has (as in Lemma
2.5(A)) that for each k € Z,

the distribution of X}, is Poisson (A/(1 — a)). (4.2)

Step 2. Verification of some features of the INAR(1) model with Pois-
son innovations. For each integer k, referring to the comments preceding
(4.1), define the random variables Uy and V}, as follows:

oo
Up =3 V" and Vj, = v,V (4.3)

j=1

Then by (4.1), for each k € Z,
Xp, = Uy, + V. (4.4)
By (4.3) and the comments preceding (4.1), one has that for each k € Z,
the distribution of Vj is Poisson (A). (4.5)

By (4.1) and (4.3), for each k € Z,

cUp) co(YO 0 <k—1), 0(Vy) Co(Y*®), and o(Xy) C o(Y O, 0 < k).

(4.6)
Since the Markov chains Y9, ¢ € Z are independent of each other, one
has by (4.6) that for each k € Z,

o(V) is independent of o(U;, V;, X;, j < k— 1)V o(Uy). (4.7)
(Egs. (4.4), (4.5), and (4.7) together have the interpretation that Vj is a

“Poisson innovation”.)
Next, suppose k € Z. Consider the independent random vectors

(Yo(k—l)’Yl(k—l)) ’ (Yl(k—Q)’Yz(k—2)) : (1”2(’“‘3),1’3(’“_3)) N

By (4.1) and (4.3), the first coordinates of these random vectors add
up to Xg_1, and the second coordinates add up to Uy. From the con-
ditions in Lemma 3.2 (and the comments preceding (4.1)), the hypothesis
of Lemma 2.5 is fulfilled.
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Hence by Lemma, 2.5(B), one has that for each k € Z and each z € N,

the conditional distribution of Uy, given {X;_1 = z}

is binomial with parameters z and a. (4.8)
Also, from Lemma 2.5(C), one has that for each k € Z,
(o *179,5 2 0),0(Xp 1), 0(Uk) ) is a Markov triplet.  (4.9)
Step 3. Two Markov triplets. For each ¢ € Z, define the o-field
HO = oY), j € z). (4.10)
By (4.1) and (4.3), for each ¢ € Z,
O—(U[7W7X£) C H(z) (4].].)

Now for the rest of Step 3, let k be an arbitrary fixed integer. For this
integer k, the task in the rest of Step 3 here is to establish two Markov
triplets connected with the conditions in Definition 1.2.

For each j € Z, the ordered triplet of o-fields

(P00 <k 2007, 07)

is a Markov triplet. Since the Markov chains Y/)| j € Z are independent,
one has by (4.10) and a standard measure-theoretic argument that

\/ HO HE=D (k)
i<k—2
is a Markov triplet. Hence by (4.11),
\/ HD HED o(U) (4.12)
i<k—2

is a Markov triplet. .
Also, by (4.9) and the fact that Y;* ') = 0 for j < 1,

(H“*l),a(xk,l),a(m)) (4.13)

is a Markov triplet.
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Since 0(X3_1) € H*~Y by (4.11), one has that for any event C' €
o(Uy), by the sentences containing (4.12) and (4.13),

P|C

\ HO | =P (CIHED) = P(C | o(Xy1) ass

i<k—1

and hence the ordered triplet

\/ HD, o(Xi—1),0(Us)

i<k—1
is a Markov triplet. Hence by (4.11) again,
(0(U}, Vi, X5, < k= 1),0(Xs1),0(UL)) (1.14)

is a Markov triplet. Hence by (4.7) and a standard measure-theoretic ar-
gument,

(a(U;,V}, X5, <k —1),0(X1),0(Uk) V o (Vi)
is a Markov triplet. Hence by (4.4),
(0(X,7 < —1),0(Xe 1), 0(X)) (4.15)

is a Markov triplet.

Since k € Z was arbitrary, the sequence X is by (4.15) a Markov chain,
a property stipulated in Definition 1.2. Eq. (4.14) is (again for arbitrary
k € Z) the other “Markov triplet” property stipulated in Definition 1.2.
The other properties in Definition 1.2 (and the subsequent paragraph) were
verified in (4.2), (4.4), (4.5), (4.7), and (4.8). That completes the verifica-
tion that the sequence X is an INAR(1) model with Poisson innovations.

To complete the proof of Theorem 1.3, all that remains is to show that
the sequence X is p*-mixing.

Step 4. Proof that X is p*-mizing. For each j € Z, define the “shifted
random sequence” V(@) := (?k(j),k € Z) by ?k(j) = Yk(j)j. Then by (4.1) (or

(4.10)—(4.11)), for each k € Z, 0(Xx) C V ez U(Yk(j)). Hence by Lemma
2.1 and the first two paragraphs of Step 1, for any n € N,
p*(X,n) < sup p* (T, n) = sup p* (Y, m) = p* (¥, m)
JEL JEZ
where the sequence Y is as in Lemma 3.2. By Lemma 3.2(B), that se-

quence Y is p*-mixing. Hence X is p*-mixing. That completes the proof
of Theorem 1.3. (]



ON MIXING PROPERTIES OF SOME INAR MODELS 71

A

cknowledgment. The author thanks Mikhail Lifshits for his encour-

agement and helpful comments. The author also thanks the organizers of
the Workshop on Recent Developments in Statistics for Complex Depen-
dent Data, in Loccum, Germany, August 2015. The author was inspired
by talks on INAR and related processes at that conference; and part of
the research for this paper was done at that conference. That workshop
was partly funded by the German Academic Exchange Service (DAAD)
and by the Volkswagen Foundation (program: Niedersaechsisches Vorab
for female professors of Lower Saxony).

10.

11.

12.

13.

14.

15.

16.

REFERENCES

. R. C. Bradley, Fvery “lower psi-mizing” Markov chain is “interlaced rho-mizing”.
— Stochastic Process. Appl. 72 (1997), 221-239.

. R. C. Bradley, A stationary rho-mizing Markov chain which is not “interlaced”
rho-mizing. — J. Theor. Probab. 14 (2001), 717-727.

. R. C. Bradley, Introduction to Strong Mizing Conditions, Vol. 1, Kendrick Press,
Heber City (Utah), 2007.

. R. C. Bradley, On mizing properties of reversible Markov chains. — New Zealand
J. Math. (accepted for publication). arXiv:1403.4895v1 [math.PR] 19 Mar 2014.

. R. C. Bradley, W. Bryc, Multilinear forms and measures of dependence between
random varialbes. — J. Multivariate Anal. 16 (1985), 335-367.

. A. V. Bulinskii, On mizing conditions of random fields. — Theor. Probab. Appl.
30 (1985), 219-220.

. P. Cséki, J. Fischer, On the general notion of mazimal correlation. — Magyar Tud.
Akad. Mat. Kutaté Int. Kozl. 8 (1963), 27-51.

. J. G. Du, Y. Li, The integer-valued autoregressive (INAR(p)) model. — J. Time
Series Anal. 12 (1991), 129-142.

. H. O. Hirschfeld, A connection between correlation and contingency. — Proc. Camb.

Phil. Soc. 31 (1935), 520-524.

I. A. Tbragimov, A note on the central limit theorem for dependent random wvari-

ables. — Theor. Probab. Appl. 20 (1975), 135-141.

A. N. Kolmogorov, Y. A. Rozanov, On strong mizing conditions for stationary

Gaussian processes. — Theor. Probab. Appl. 5 (1960), 204-208.

E. McKenzie, Some simple models for discrete variate time series. — Water Resour.

Bull. 21 (1985), 645-650.

R. A. Olshen, The coincidence of measure algebras under an exchangeable proba-

bility. — Z. Wahrsch. verw. Gebiete 18 (1971), 153-158.

X. Pedeli, D. Karlis, Some properties of multivariate INAR(1) processes. — Com-

put. Statist. Data Anal. 67 (2013), 213-225.

R. Peyre, Sharp equivalence between p- and T-mixing coefficients. — Studia Math.

216 (2013), 245-270.

M. Rosenblatt, Markov Processes. Structure and Asymptotic Behavior. Springer-

Verlag, Berlin, 1971.



72 R. C. BRADLEY

17. S. Schweer, C. H. Weifl, Compound Poisson INAR(1) processes: Stochastic prop-
erties and testing for overdispersion. — Comput. Statist. Data Anal. 77 (2014),
267-284.

18. I. Silva, M. E. Silva, Parameter estimation for INAR processes based on high-order
statistics. — REVSTAT 7 (2009), 105-117.

19. C. Stein, A bound for the error in the normal approxzimation to the distribution of
a sum of dependent random wvariables. In: Proceedings of the Sixth Berkeley Sym-
posium on Probability and Statistics, Vol. 2, pp. 583-602. University of California
Press, Los Angeles, 1972.

20. H.S. Witsenhausen, On sequences of pairs of dependent random variables. — STAM
J. Appl. Math. 28 (1975), 100-113.

Department of Mathematics
Indiana University
Bloomington, Indiana 47405, USA

FE-mail: bradleyr@indiana.edu

HocTynuao 12 cenTabpsa 2015 r.



