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t. We 
onsider two unitary representations of the in�nite-dimensional groups of smooth paths with values in a 
ompa
t Liegroup. The �rst representation is indu
ed by quasi-invarian
e of theWiener measure, and the se
ond representation is the energy rep-resentation. We de�ne these representations and their basi
 prop-erties, and then we prove that these representations are unitarilyequivalent.
§1. Introdu
tionThe main subje
t of this paper is a study of two unitary representa-tions of the group H (G) of smooth paths in a 
ompa
t Lie group G. The�rst representation is on the Hilbert spa
e L2 (W (G) ; �), where W (G)is the Wiener spa
e of 
ontinuous path in G and � is the 
orrespondingWiener measure. This representation is indu
ed by the quasi-invarian
e ofthe Wiener measure � with respe
t to the left (right) multipli
ation onW (G) by elements in H (G). The ne
essary preliminaries from sto
hasti
analysis are introdu
ed in Se
tion 2. We de�ne the 
orresponding Brow-nian representations in Se
tion 4. One of the questions mentioned in theprevious works su
h as [1℄ is whether the 
onstant fun
tion 1 is the 
y
li
ve
tor for these representations. This is what we prove in Se
tion 3.Another representation of the the group H (G) is the energy represen-tation. The representation spa
e in this 
ase is L2 (W (g) ; �), where g isthe Lie algebra of G, and � is the standard Gaussian measure on W (g).Our main result in Se
tion 5 is the (unitary) equivalen
e of the Brownianand energy representations.Key words and phrases: quasi-invarian
e; sto
hasti
 di�erential equations; Liegroups; representations of in�nite-dimensional groups.Resear
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h was supported in part by NSF Grant DMS-1007496.Resear
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18 S. ALBEVERIO, B. K. DRIVER, M. GORDINA, A. M. VERSHIKThese representations have been studied previously in a number of arti-
les in
luding [1{4,9,11,12,27,28℄. We will not attempt to give a 
ompre-hensive review of the mathemati
al literature on the subje
t, but ratherexplain the 
hoi
e of this parti
ular topi
 for this volume.A
knowledgment. Even though M.I. had no publi
ations in this �eld,the 
ombination of representation theory, sto
hasti
 analysis and von Neu-mann algebras appealed to him. Moreover, he introdu
ed MG to the lattersubje
t whi
h resulted in [13℄.
§2. NotationLet G be a 
ompa
t 
onne
ted Lie group, e ∈ G denote the identityof G; g be its Lie algebra, and d = dimR g be the dimension of G and g.Without loss of generality we may and do assume that G is a Lie subgroupof GLn(R). By identifying G with a matrix group, we are able to minimizethe di�erential geometri
 notation required of the reader. We assume thatthe Lie algebra g of G is identi�ed with the tangent spa
e at e, and g isequipped with an AdG-invariant inner produ
t 〈·; ·〉, whi
h we 
ould taketo be the negative of the Killing form if g is semi-simple. Asso
iated to theAdG-invariant inner produ
t is the Lapla
e operator des
ribed below.2.1. Heat kernels. This se
tion reviews some basi
 fa
ts about heat ker-nels on unimodular Lie groups. Let dx denote a bi-invariant Haar measureon G whi
h is unique up to normalization. For A ∈ g, let Ã(Â) denotethe unique left (right) invariant ve
tor �eld on G whi
h agrees with A ate ∈ G. Let g0 ⊂ g be an orthonormal basis for g. The left and right invari-ant Lapla
ian is then given � := ∑A∈g0 Ã2 and �′ := ∑A∈g0 Â2 respe
tively.Sin
e G is unimodular, it is easy to 
he
k the formal adjoint, relative toL2 (G; dx), of Ã (Â) is −Ã (−Â). Hen
e, �=2 and �′=2 are symmetri
operators on the smooth fun
tions with 
ompa
t support on G. It is wellknown, see for example Robinson [22, Theorem 2.1, p. 152℄, that �=2 and�′=2 are essentially self-adjoint and the 
losures of �=2 and �′=2 generatestrongly 
ontinuous, self-adjoint 
ontra
tion semigroups et�=2 and et�′=2on L2 (G; dx). Let pt = et�=2Æe, t > 0, be the fundamental solution, i.e.,�pt=�t = 12�pt with limt→0 pt = Æe: (2.1)For a proof of the following theorem see Robinson [22, Theorem 2.1, p.257℄.



BROWNIAN AND ENERGY REPRESENTATIONS OF PATH GROUPS 19Theorem 2.1. Assuming the above notation, let pt denote the funda-mental solution to the left heat equation (2.1). Then pt(x) = pt(x−1) forall x ∈ G andet�=2f(x) = ∫G pt(x−1h)f(h)dh = ∫G pt(h−1x)f(h)dh:Example 2.2. In the 
ase we take G to be g thought of as a Lie groupwith its additive stru
ture, we re
over the standard 
onvolution heat kernelrelative to the Lebesgue measure given bypt (x) = ( 12�t)d=2 exp(− 12t |x|2g) :2.2. Wiener Measures. The reader is referred to [24, p. 502℄, [20, The-orem 1.4℄, [6, 7℄ and perhaps also in [8℄ for more details on the summarypresented here.Notation 2.3. Suppose 0 < T < ∞. Let us introdu
e the Wiener andCameron-Martin (�nite energy) spa
es, and the 
orresponding probabilitymeasures.(1) Wiener spa
e will refer to the 
ontinuous path spa
eW (G) =W ([0; T ℄; G) = {
 ∈ C([0; T ℄; G) : 
0 = e};where we equip W (G) with the uniform metri
d∞ (�; �) := maxt∈[0;T ℄ d (�t; �t) :Here d is the left invariant metri
 on G asso
iated to the left invari-ant Riemannian metri
 on G indu
ed from the AdG{invariant in-ner produ
t 〈 ·; · 〉 on g. [In fa
t, these metri
s are bi-invariant, i.e.,both left and right invariant.℄ Let gt : W (G) → G (for 0 6 t 6 T )be the proje
tion maps de�ned bygt (
) := 
t; for all 
 ∈W (G) :We further make W (G) into a group using pointwise multipli
ationby (hk)t := htkt for all h; k ∈W (G)) and � :W (G) →W (G) bethe group inversion de�ned by�(
) = 
−1 for all 
 ∈W (G) :



20 S. ALBEVERIO, B. K. DRIVER, M. GORDINA, A. M. VERSHIK(2) Given h ∈W (G), let
‖h‖2H;T =  ∞; if h is not absolutely 
ontinuous,T∫0 |h(s)−1h′(s)|2ds; if h is absolutely 
ontinuous:Here | · | is the norm indu
ed by the inner produ
t 〈 ·; · 〉 on the Liealgebra g.(3) The Cameron{Martin (�nite energy) subgroup, H(G)⊂W(G),is de�ned byH(G) = {h ∈W (G) : ‖h‖H;T <∞} :(4) The 
orresponding spa
es of paths with values in the Lie algebra gand starting at 0 are denoted by W (g), and H (g), and the Wienermeasure on W (g) is denoted by �.Theorem 2.4 (Wiener measures). Let B be the Borel �{algebra onW (G).There is a probability measure � on (W (G);B) uniquely determined byspe
ifying its �nite dimensional distributions as follows. For all k ∈ N,partitions 0 = s0 < s1 < s2 < : : : < sk−1 < sk = T of [0; T ℄, and for allbounded measurable fun
tions f : Gk → R�(f(gs1 ; : : : ; gsk)) = ∫Gk f(x1; : : : ; xk) k∏i=1 p�si(x−1i−1xi)dx1 · · · dxk; (2.2)where x0 := e, �si ≡ si − si−1, pt(x) is the 
onvolution heat kernel de-s
ribed in Theorem 2.1.The pro
ess, {gt}06t6T , is a G-valued Brownian motion with respe
t tothe �ltered probability spa
e (W (G); {Bt};B; �). In more detail, {gt}06t6Tis a di�usion pro
ess on G with generator 12� su
h that g0 = e a.s.As usual, this pro
ess has the following martingale property: for all f ∈(C∞(G)) the pro
essMft := f(gt)− f(g0)− 12 t∫0 �f(g� )d� (2.3)is a lo
al martingale. In di�erential form this 
an be written asdf (g) m= 12 (�f) (g) dt; (2.4)where da m= db if a− b is a lo
al martingale.



BROWNIAN AND ENERGY REPRESENTATIONS OF PATH GROUPS 21Proof. Equation (2.3) is well known from the theory of Markov pro
esses,see [25℄. Indeed, using the Markovian property of � one 
omputes for s > t,F a bounded Bt-measurable fun
tion, and f ∈ C∞ (G)dds�(f(gs)F ) = dds�((e s−t2 �f)(gt)F )= 12�(e s−t2 ��f)(gt)F ) = �(12�f(gs)F ):Integrating the last expression from t to s shows that�([Mft −Mfs ℄F ) = �({f(gt)− f(gs)− t∫s 12�f(g� )d�}F) = 0;whi
h shows that Mf is a martingale. �Remark 2.5. Note that the martingale property (2.2) 
an be extendedto ve
tor-valued fun
tion. In parti
ular, this applies to G-valued fun
tionssin
e G is assumed to be a matrix-valued Lie group.2.3. Left and right Brownian motions.Theorem 2.6 (Quadrati
 variations). If u and v are smooth fun
tions onG thend [u (gt)℄ · d [v (gt)℄ = dMut dMvt= (∇u (gt) · ∇v (gt)) dt = ∑A∈g0 (Ãu) (gt) Ãv (gt) dt:In parti
ular, dgt ⊗ dgt = gt ⊗ gtCdt;where C := ∑A∈g0A⊗A.Proof. On one hand,d [uv(g)℄ m= 12� (uv) (g) dt = 12 (�uv + u�v + 2∇u · ∇v) (gt) dtwhile on the other by Itô's formula,d [u (g) v (g)℄ =du (g) · v (g) + u (g) · dv (g) + du (g) dv (g)m=12 (�uv + u�v) (gtdt+ dMudMv



22 S. ALBEVERIO, B. K. DRIVER, M. GORDINA, A. M. VERSHIKComparing these two equations showsdMudMv m= (∇u · ∇v) (gt)dtwhi
h gives the �rst result. More generally, suppose that u and v are ve
torvalued, thend [u⊗ v℄ (g) m= 12� (u⊗ v) (g) dt= 12 (�u⊗ v+u⊗�v+2Ãu⊗ Ãv) (gt) dtwhile on the other hand by Itô's formula,d [u (g)⊗ v (g)℄ = d [u (g)℄⊗ v (g) + u (g)⊗ d [v (g)℄ + d [u (g)℄⊗ d [v (g)℄m= 12 (�u⊗ v + u⊗�v) (gt) dt+ dMu ⊗ dMvComparing these two equations showsdMu ⊗ dMv m= ∑A∈g0 (Ãu⊗ Ãv) (gt) dt:By Remark 2.5 we 
an take u (g) = g and v (g) = g to see thatdgt ⊗ dgt = ∑A∈g0 gA⊗ gAdt (2.5)and dg = dM + 12gCdt, where C = ∑A∈g0A2. �Remark 2.7. Note that C is independent of the 
hoi
e of the orthonormalbasis of g as was pointed out in [14, Lemma 3.1℄.De�nition 2.8 (Left and right Brownian motions). The pro
ess {gt}06t6Tis a semi-martingale and therefore we may de�ne two g{valued pro
essesby BLt := t∫0 g−1� Æg� and BRt := t∫0 Æg�g−1� :We refer to BL (BR) as the left (right) Brownian motion asso
iated to
{gt}06t6T . The terminology will be justi�ed by the next theorem.Theorem 2.9. BLt := t∫0 g−1� Æg� and BRt := t∫0 Æg�g−1� are standard g-va-lued Brownian motions with 
ovarian
es determined by 〈 ·; · 〉g.



BROWNIAN AND ENERGY REPRESENTATIONS OF PATH GROUPS 23Proof. Let bt := BLt := t∫0 g−1� Æg� temporarily. Thendb = g−1Æg = g−1dg + 12d [g−1] dg= g−1dM + 12Cdt− 12 dbg−1dg= g−1dM + 12Cdt− 12 dbdbbut dbdb = (g−1dg) (g−1dg) = Cdt from (2.5). This shows db is a martin-gale and thatdb⊗ db = (g−1 ⊗ g−1) dg ⊗ dg= (g−1 ⊗ g−1) ∑A∈g0 gA⊗ gAdt = ∑A∈g0A⊗Adt;and so by L�evy's 
riterion b is a standard g-valued Brownian motion. Wenow 
all b = BL. �Theorem 2.10. Let '∈H(G).The pro
esses {BLt }06t6T and {BRt }06t6Tare g-valued Brownian motions satisfying the following properties(1) dBRt = Adgt dBLt = Adgt ÆBLt ,(2) dBLt = Adg−1t dBRt = Adg−1t ÆBRt ,(3) BLt ('−1g) = BLt −
t∫0 Adg−1 (Æ''−1),(4) BLt (g') = t∫0 Ad'−1 dBL + t∫0 '−1Æ'(5) BRt ('−1g) = −

t∫0 '−1Æ'+ t∫0 Ad'−1 ÆBR(6) BRt (g') = BRt + t∫0 Adg (Æ''−1).Proof. For (1)ÆBRt = Ægtg−1t = gtg−1t Ægtg−1t = Adgt ÆBLt= Adgt dBLt + 12 (d [Adgt ℄) dBLt= Adgt dBLt + 12 Adg addBLdBLt = Adgt dBLt ;



24 S. ALBEVERIO, B. K. DRIVER, M. GORDINA, A. M. VERSHIKwhere we have used the fa
t that Æg = gÆBL implies ÆAdg = Adg adÆBL ,and addBLdBLt = 0. For (2)dBLt = g−1t Ægt = g−1t [Ægtg−1t ] gt = Adg−1t ÆBRt : (2.6)Sin
e Æg = ÆBRg implies that Æg−1 = −g−1ÆBR, and therefore ÆAdg−1 =
−Adg−1 adÆBR , and so the Itô form of (2.6) isdBLt = Adg−1t dBRt + 12 (d [Adg−1t ]) dBRt= Adg−1t dBRt − 12 Adg−1 adÆBRdBRt = Adg−1t dBRt :The remaining items, (3{6), follow from simple 
omputations in Itô's 
al-
ulusBLt ('−1g) = t∫0 ('−1g)−1 Æ ('−1g) = t∫0 g−1' (−'−1Æ''−1g + '−1Æg)= BLt −

t∫0 Adg−1 (Æ''−1) ;BLt (g') = t∫0 (g')−1 Æ (g') = t∫0 '−1g−1 (Æg'+ gÆ')= t∫0 Ad'−1 dBL + t∫0 '−1Æ';BRt ('−1g) = t∫0 Æ ('−1g) ('−1g)−1 = t∫0 (−'−1Æ''−1g + '−1Æg) g−1'= −
t∫0 '−1Æ'+ t∫0 Ad'−1 ÆBR; andBRt (g') = t∫0 Æ (g') (g')−1 = t∫0 (Æg'+ gÆ')'−1g−1



BROWNIAN AND ENERGY REPRESENTATIONS OF PATH GROUPS 25= BRt + t∫0 Adg [Æ''−1] : �Before introdu
ing Itô maps, re
all some standard de�nitions.Notation 2.11. Suppose (X;B; �) is a measurable spa
e with a �-�niteBorel measure �, and R is a measurable bije
tion on X. Then the push-forward of � is de�ned by(R∗�) (A) := (� ◦R−1) (A) = � (R−1 (A)) ; A ∈ B:If the pushforward measure R∗� is equivalent to �, we will denote theRadon{Nikodym derivative as usual bydR∗�d� (x) ; x ∈ X:In parti
ular, for any A ∈ B (X) we have
∫X 1A (x) dR∗� = ∫X 1R−1(A) (x) d� = ∫X 1A (R (x)) d�:Notation 2.12. Let (X;Q1), (Y;Q2) be two measurable spa
es, and letI : X → Y be a measurable map. Then for any measurable fun
tion f :Y → R we denote by (I∗f) (x) := f (I (x))the indu
ed map on the set of measurable fun
tions on X.Proposition 2.13. The maps BL; BR : (W (G) ; �) → (W (g) ; �) are �-a.e. de�ned maps su
h that BL∗ � = � = BR∗ �. In fa
t, these maps aremeasure-preserving isomorphisms from (W (G) ; �) to (W (g) ; �) with theinverse maps given by solving the SDEsÆw = wÆBL or Æw = ÆBRw with w0 = efor w. Moreover, we have the identitiesBL ◦� = −BR a.e. and BR ◦� = −BL a.e.; (2.7)where the inversion map � is de�ned in Notation 2.3.



26 S. ALBEVERIO, B. K. DRIVER, M. GORDINA, A. M. VERSHIKProof. Sin
e Æg = ÆBRg =⇒ Æg−1 = −g−1ÆBRand hen
e BL ◦� = BL ◦�(g)= ·∫0 (g−1)−1 Æg−1= ·∫0 g (−g−1ÆBR)= ·∫0 −ÆBR=−BR:Similarly one shows BR ◦� = −BL a.e. �Note that the maps BL and BR indu
e maps on measurable fun
tionsfrom (W (G) ; �) to (W (g) ; �) as des
ribed in Notation 2.12.2.4. Quasi-invarian
e. Our goal in this se
tion is to understand thequasi-invarian
e properties of � under left and right translations by ' ∈H (G).Theorem 2.14. For ' ∈ H (G) letZRT (') := exp−
T∫0 〈'′'−1; ÆBL〉− 12 ∫ T0 ∣∣'′'−1∣∣2 dtand ZLT (') := exp T∫0 〈'′'−1; ÆBR〉− 12 ∫ T0 ∣∣'′'−1∣∣2 dtthen LawZRT ·� (g') = Law� (g) = LawZLT ·� ('−1g) :That is, for every bounded and measurable fun
tion F on W (G)

∫W (G) F (g')ZRT (') d� = ∫W (G) Fd� = ∫W (G) F ('−1g)ZLT (') d�:



BROWNIAN AND ENERGY REPRESENTATIONS OF PATH GROUPS 27Proof. We will only prove the assertion involving the right translationhere as the se
ond 
ase is proved similarly. To simplify notation let b := BL,Mt := −
t∫0 〈'′'−1; Æb〉 = −

t∫0 〈'′'−1; db〉and let Z solvedZ = ZdM = −Z 〈'′'−1; db〉 with Z0 = 1; (2.8)i.e., Zt := exp−
t∫0 〈'′'−1; Æb〉− 12 t∫0 ∣∣'′'−1∣∣2 dt = ZRt (') :By (4) of Theorem 2.10(g')−1 Æ (g') = Ad'−1 Æb+ '−1d':So given a smooth fun
tion, f : G → R, we have by Itô's lemma thatÆ (f (g')) = f ′ (g') (Ad'−1 Æb+ '−1d') ; (2.9)where for A;B ∈ gf ′ (g)A = Ãf (g) := ddt ∣∣∣∣0 f (getA) andf ′′ (g) [A⊗B℄ := (ÃB̃f) (g) = ddt ∣∣∣∣0 dds ∣∣∣∣0 f (getAesB) :Note thatf ′ (g')Ad'−1 Æb = f ′ (g')Ad'−1 db+ 12d [f ′ (g')℄ Ad'−1 db= f ′ (g')Ad'−1 db+ 12 [f ′′ (g')℄ [Ad'−1 db⊗Ad'−1 db]= f ′ (g')Ad'−1 db+ 12�f (g') dt:Now we 
an use the fa
t that

∫0 Ad'−1 db (2.10)



28 S. ALBEVERIO, B. K. DRIVER, M. GORDINA, A. M. VERSHIKis a g-valued Brownian motion by L�evy's 
riterion and due to the Ad-invarian
e of the inner produ
t on g. Then the Itô form of (2.9) isd [f (g')℄ = f ′ (g')Ad'−1 db+ [f ′ (g')'−1'′ + 12�f (g')] dt:So if we de�ne Nt = Nft := f (gt't)− 12 t∫0 �f (g�'� ) d�;then dN = f ′ (g')Ad'−1 db+ f ′ (g')'−1'′dt:Observe that using the orthonormal basis g0 of the Lie algebra g we have(using db⊗ db = ∑A∈g0A⊗Adt) that
(Ad'−1 db) 〈'′'−1; db〉 = ∑A∈g0 (Ad'−1 A) 〈'′'−1; A〉 dt= Ad'−1 ('′'−1) dt = '−1'′dt:Another appli
ation of Itô's lemma then impliesd [NZ℄ = dNZ +NdZ + dNdZm= Z [f ′ (g')'−1'′dt]− (f ′ (g')Ad'−1 db) · Z 〈'′'−1; db〉= Z [f ′ (g')'−1'′dt]− Z (f ′ (g')Ad'−1 '′'−1) dt = 0;where as in (2.4) we write dX m= dY if X and Y are two pro
esses su
h thatY −X is a martingale. The previous 
omputations show NZ is martingaleand so

E [(Nt −Ns)FZT ℄ = 0for all bounded Bs{measurable fun
tions F . Therefore {Nft }06t6T is aZT ·�{martingale for all smooth f . Thus it follows from uniqueness to themartingale problems that LawZT ·� (g') = Law� (g). �Theorem 2.14 
an be interpreted also using Notation 2.11. Namely, forX =W (G) and a measurable bije
tion R on W (G) we have that for anyBorel measurable f on W (G)
ER∗�f (g) = ER�f (R (g)) :



BROWNIAN AND ENERGY REPRESENTATIONS OF PATH GROUPS 29Let L'; R' be the left and right multipli
ation on W (G) de�ned byL'g := '−1g;R'g := g'; (2.11)where ' ∈ H (G), and g ∈ W (G), together with their 
ounterparts onfun
tions on W (G) denoted by L'∗ and R'∗ a

ording to Notation 2.12.In addition, taking inverses in (W (G) ; �) indu
es a map on the set ofmeasurable fun
tions on (W (G) ; �) by(Jf) (
) := f ◦�(
) = f (
−1) : (2.12)Note that by Proposition 2.13 the map J is a unitary involution onL2 (W (G) ; �).Then Theorem 2.10 
an be re-written as follows. For any ' ∈ H (G)and g ∈W (G) we haveBL (L'g) = BL (g)− ·∫0 Adg−1 (d''−1) ;BL (R'g) = ·∫0 '−1d'+ ·∫0 Ad'−1 (ÆBL) ;BR (L'g) = −
·∫0 '−1d'+ ·∫0 Ad'−1 (ÆBR) ;BR (R'g) = BR (g) + ·∫0 Adg (d''−1) ; (2.13)

where we use d' to indi
ate that it is the usual di�erential sin
e ' issmooth.Then the right Radon-Nikodym density ZR (') for R'∗� with respe
tto � is in L1 (W (G); �) is des
ribed in Theorem 2.14. Similarly the Wienermeasure � is quasi-invariant under the left multipli
ation by elements inH(G), and the left Radon-Nikodym density for � is in L1 (W (G); �) aswell.Proposition 2.15. The left and right Radon-Nikodym densities for � sat-isfy ZR' = JZL' = ZL' ◦�



30 S. ALBEVERIO, B. K. DRIVER, M. GORDINA, A. M. VERSHIKfor �-almost every g. Here J is the map de�ned by (2.12).Proof. First proof. By Proposition 2.13 � is invariant under the takinggroup inverses, that is, for any bounded measurable f
∫W (G) f(g−1)d�(g) = ∫W (G) f(g)d�(g):Then∫W (G) f(g')d�(g) = ∫W (G) f(g−1')d�(g) = ∫W (G) f (('−1g−1)−1) d�(g)= ∫W (G) f (g−1)ZL' (g)d�(g) ∫W (G) f (g)ZL' (g−1)d�(g): �

§3. Cy
li
ityCy
li
ty is one of the basi
 properties of representations of H (G) we
onsider later. Note that the main result of this se
tion, Theorem 3.1,follows from Corollary 14 in [17℄. In that paper B. Hall and A. Senguptaused the Segal{Bargmann transform to prove the 
y
li
ity of 1, and alsothat the Radon{Nikodym densities are 
oherent states as Theorem 10 in[17℄ states. We give a more dire
t proof using the inverse Itô map BL andideas of L. Gross in [15℄.Theorem 3.1 (Cy
li
ity of 1). Suppose that G is a 
ompa
t 
onne
tedLie group, then
HG := Span{(ZR' (g))1=2 ; ' ∈ H (G)}is dense in L2 (W (G) ; �).Proof. Note that (BL)∗ (ZR' )1=2 is a fun
tion onW (g) sin
e BL is a mea-sure spa
e isomorphism, so we 
an redu
e the problem to the Lie algebralevel. Namely, let 0 = t0 < t1 < ::: < tn−1 < tn = T , �0 = 0; �1; :::; �n ∈ g.We assume that
|�j ||tj − tj−1| = 1; for any j = 1; 2; :::; n; (3.1)unless �j = 0. It is known that the linear span of multidimensional Hermitepolynomials in 〈�j ; w(tj) − w(tj−1)〉 is dense in L2 (W (g) ; �) (e.g. [21℄).



BROWNIAN AND ENERGY REPRESENTATIONS OF PATH GROUPS 31This means that it is enough to show that the linear span of 
ylinder Her-mite polynomials is 
ontained in the L2 (W (g) ; �)-
losure of (BL)∗ (HG).First we observe that HG, and therefore (BL)∗ (HG), 
ontains all 
on-stant fun
tions. Let 0 = t0 < t1 < ::: < tn−1 < tn = T , �0 = 0; �1; :::; �n ∈
g. We de�ne a fun
tion ' = '�1;:::;�n (s) re
ursively for j = 1; 2; :::; n by' (t0) = ' (0) = e; ' (s) = e−(s−tj−1)�j' (tj−1) ; s ∈ [tj−1; tj): (3.2)Then '′(s)'(s)−1 = −�j ; s ∈ [tj−1; tj);therefore ' ∈ H (G) and

(BL)∗ (ZR' )1=2 (wt)= n∏j=1 exp(12 〈�j ; w(tj)− w(tj−1)〉 − 14 |�j |2 (tj − tj−1)2) :Suppose x1; ::: ; xn ∈ R and de�ne '~x(s) := 'x1�1; ::: ;xn�n(s),then '′~x(s)'~x(s)−1 = xj�j . Now let a fun
tion F on R
n be de�ned asF (~x) := (BL)∗ (ZR'~x)1=2 then�F�xj (0) = 12〈�j ; w(tj)− w(tj−1)〉;Note that for any ~x ∈ R

n we have F (~x) ∈ (BL)∗ (HG). Therefore �F�xj (0)as well as all other partial derivatives of F at 0 are in (BL)∗ (HG), the L2-
losure of (BL)∗ (HG). Indeed, this follows from the simple observationthat F (0) = 1 ∈
(BL)∗ (HG) and�F�xj (0) = limxj→0 F ((0; :::; xj ; 0; :::; 0))− 1xj :Now we would like to des
ribe the fun
tions we 
an get by taking partialderivatives of F . First we observe that we 
an write F asF (~x) = n∏j=1 eajxj−b2jx2j ; aj = 〈�j ; w(tj)− w(tj−1)〉2 ; bj = |�j ||tj − tj−1|2 = 12



32 S. ALBEVERIO, B. K. DRIVER, M. GORDINA, A. M. VERSHIKby assumption (3.1). Using [5, Lemma 1.3.2 (part (iii))℄ we 
an take partialderivatives of F of all orders to see that all multidimensional Hermitepolynomials in 〈�j ; w(tj)− w(tj−1)〉 are in (BL)∗ (HG). �

§4. Brownian measure representation4.1. De�nitions and notation. The unitary representations of H (G)on the Hilbert spa
e L2 (W (G) ; �) we de�ne in this se
tion are indu
ed byquasi-invarian
e of the Wiener measure �. Re
all that L' and R' are leftand right multipli
ation on W (G) by elements H (G) as de�ned in (2.11),i.e., R'
 = 
' and L'
 = '−1
.De�nition 4.1. Let W (G) and H(G) be as before.(1) The right Brownian measure representation UR of H(G) onL2 (W (G); �) is de�ned as
(UR' f) (g) := (ZR' (g))1=2 f (R'g)for any f ∈ L2 (W (G); �), ' ∈ H(G), g ∈W (G);(2) the left Brownian measure representation ULon L2(W(G); �)is de�ned as
(UL' f) (g) := (ZL' (g))1=2 f (L'g)for any f ∈ L2 (W (G); �), ' ∈ H(G), g ∈W (G).Re
all that by Proposition 2.15 we have ZR' = JZL' , where J a unitaryinvolution on L2 (W (G); �) de�ned by (2.12). In addition, the fun
tions(ZR' )1=2 and (ZL' )1=2 have the norm 1 in L2 (W (G); �) for any ';  ∈H(G), whi
h is a 
onsequen
e of the next Proposition.Proposition 4.2. For any ';  ∈ H (G)

〈
(ZR' )1=2 ; (ZR )1=2〉 =exp(−‖'‖2H;T + ‖ ‖2H;T8 ) exp14 T∫0 〈

('−1'′
) (t) ; ( −1 ′

) (t)〉dt :Proof. This follows from Theorem 2.14. �



BROWNIAN AND ENERGY REPRESENTATIONS OF PATH GROUPS 33Proposition 4.3. For any ';  ∈ H (I;G) we haveZR' ( · ) = ZR ( · ) if and only if ' =  ;and similarly ZL' ( · ) = ZL ( · ) if and only if ' =  ;where ZR (') ( · ) and ZL (') ( · ) are viewed as random variables, and theequalities hold for �-a.e. g; t ∈ [0; T ℄.Proof. If ZR' ( · ) = ZR ( · ) ;then for any t ∈ [0; T ℄,
E
(ZR' ( · ) |Ft) = E

(ZR ( · ) |Ft)and thereforet∫0 〈 −1 ′(s)− '−1'′(s); dBLs 〉 = 12 t∫0 (|'−1'′|2 − | −1 ′|2) ds:Taking expe
tations of this equation then shows0 = 12 t∫0 (|'−1'′|2 − | −1 ′|2) ds for all tand therefore |'−1'′|2 = | −1 ′|2 a.e. In parti
ular, we then have0 = E

[( t∫0 〈 −1 ′(s)− '−1'′(s); dBLs 〉)2]= t∫0 ∣∣ −1 ′(s)− '−1'′(s)∣∣2 dsfrom whi
h it follows  −1 ′(t) − '−1'′(t) = 0 for any t ∈ [0; T ℄. Finally,we see that for any t ∈ [0; T ℄
(' −1)′ (t) = '′ −1 (t)−' −1 ′ −1 (t) = '′ −1 (t)−''−1'′ −1 (t) = 0and therefore '−1 ≡ e. �



34 S. ALBEVERIO, B. K. DRIVER, M. GORDINA, A. M. VERSHIKProposition 4.4. For any ';  ; '1; :::; 'n;  1; ::;  n ∈ H(G),f ∈ L2 (W (G); �)
(UR'1 :::UR'n) f (g) = (ZR'n:::'1)1=2 (g) f (R'1:::'ng) ;
(UL 1 :::UL n) f (g) = (ZL n::: 1)1=2 (g) f (L 1::: ng) ;
(UR' )−1 = (UR' )∗ = UR'−1 ;
(UL )−1 = (UL )∗ = UL −1 :In parti
ular, this implies that UR' ; UL are unitary operators onL2 (W (G); �).Proof. For any f; h ∈ L2 (W (G); �), '; '1; '2 ∈ H (G) we have
(UR'1UR'2f) (g) = (ZR'1 (g)ZR'2 (g'1))1=2 f (g'1'2)= (ZR'2'1)1=2 (g) f (g'1'2)by the properties of the Radon{Nikodym densities, and

〈
(UR' )∗f; h〉L2(W (G);�) = 〈f; UR' h〉L2(W (G);�)= ∫W (G) f(g)h(g')h'(g)d�(g)= ∫W (G) f(g'−1)h(g) (ZR' )1=2 (g'−1)ZR'−1 (g) d�(g)= ∫W (G) f(g'−1)(ZR'−1)1=2 (g)h(g)d�(g) = 〈UR'−1f; h〉L2(W (G);�):The 
ase of UL 
an be 
he
ked similarly. �4.2. Properties of the Brownian representations.Notation 4.5. We denote by

MR := (UR' ; ' ∈ H(G))′′
ML := (UL' ; ' ∈ H(G))′′the von Neumann algebras generated by the operators UR' , UL' respe
tively.
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olle
ts some basi
 fa
ts about the left and right Brownianrepresentations. Most of these properties are what one expe
ts from the
lassi
al 
ase of regular representations of lo
ally 
ompa
t groups. Butsome of the proofs are fundamentally di�erent. For example, the fa
t thatthe von Neumann algebras generated by the left and right representationsare 
ommutants of ea
h other has been originally proved by I. Segal in [23℄for the regular representation of a unimodular lo
ally 
ompa
t Lie groupwith a bi-invariant Haar measure. One of the major fa
ts he used wasexisten
e of an approximating identity and the one-to-one 
orresponden
ebetween unitary representation of the group G and the non-degenerate ∗-representations of the group algebra L1 (G) (e.g. [10, Se
tion 3.2℄). Thesefundamental 
onstru
tions are not available in our 
ase. Theorem 4.6 doesnot answer the question whether ML and MR are 
ommutants of ea
hother, whi
h will be addressed in another arti
le.Theorem 4.6. (1) the unitary operators UR' and UL 
ommute forany ';  ∈ H (G), and so (MR)′ ⊆ ML and (ML)′ ⊆ MR.The representations UL and UR are unitarily equivalent, and theintertwining operator is the unitary involution J de�ned by (2.12);(2) 
 = 1 is a separating 
y
li
 ve
tor of norm 1 for both MR and MLin L2 (W (G); �). If G is abelian, then the 
orresponding von Neu-mann algebra MR = ML is maximal abelian in B (L2 (W (G);�)).(3) For any T ∈ MR the map T 7−→ T1 is inje
tive.(4) The va
uum ve
tor 
 = 1 de�nes a faithful normal weight � on
MR (and similarly on ML) by� (m) := 〈m
;
〉L2(W (G);�) = ∫W (G) m (1) (g) d� (g) (4.1)for any m ∈ MR. In addition, �(I) is �nite, and so � is a faithfulnormal state.Proof. 1. First we observe that UL' and UR 
ommute. Indeed, for any';  ∈ H (G), f ∈ L2 (W (G) ; �) we have

(UL UR' f) (g) = (d� ( −1g)d� (g) )1=2(d� ( −1g')d� ( −1g) )1=2 f ( −1g')



36 S. ALBEVERIO, B. K. DRIVER, M. GORDINA, A. M. VERSHIK= (d� ( −1g')d� (g) )1=2 f ( −1g') = (UR' UL f) (g) :To see that UL and UR are unitarily equivalent we use Proposition 2.15,and the following simple observation. Using Notation 2.12 for the left andright multipli
ation operators on W (G), we see thatJR' ∗ = L' ∗J:Then by Proposition 2.15 for any f ∈ L2 (W (G) ; �)
(JUR' f) (g) = J (ZR' (g) (R' ∗f) (g)) = ZL' (g) J (R' ∗f (g))= ZL' (g) (L' ∗Jf (g)) = (UL' Jf) (g) :2. Theorem 3.1 shows that 1 is 
y
li
 for MR, and similarly one 
anshow that it is 
y
li
 for ML.Now suppose that G is abelian. It is 
lear that in this 
ase M = MR =

ML is abelian, and therefore M′ = M whi
h implies that it is maximalabelian. Note that another explanation for M being maximal abelian isthat as we know it has a 
y
li
 ve
tor. Then by [19, Corollary 7.2.16℄ Mis maximal abelian as an abelian subalgebra with a 
y
li
 ve
tor.3. This is a standard fa
t from the Tomita-Takesaki theory, but in this
ase it is easy to verify and we in
lude the argument for 
ompleteness. LetT ∈ MR be su
h that T1 = 0. Then T 
ommutes with all operators in
ML, and therefore UL −1TUL 1 = T1 = 0;and so TUL 1 = 0for all  ∈ H (G). Sin
e 1 is 
y
li
 for both left and right representations,we see that T = 0.4. The �rst part of this statement is a standard fa
t following from theGNS 
onstru
tion (e.g. [26℄). To see that � is a state, we note that theidentity operator I in MR 
an be represented as URe , where e(t) ≡ e fort ∈ [0; T ℄. Thus � (I) = � (URe ) = 1:



BROWNIAN AND ENERGY REPRESENTATIONS OF PATH GROUPS 37The same holds for ML. �Proposition 4.7 (� is not a tra
e). For any ';  ∈ HT (G) ;� (UR' UR ) = � (UR UR' )if and only if T∫0 〈'−1'′;  ′ −1〉ds = T∫0 〈'′'−1;  −1 ′〉ds: (4.2)Proof. By de�nition of � and Propositions 4.2 and 4.4 we see that� (UR' UR ) = E�ZR ' (g) = exp −‖ '‖2H;T8= exp −‖'‖2H;T − ‖ ‖2H;T8 exp 14 T∫0 〈Ad' '′'−1;  ′ −1〉 dt= exp −‖'‖2H;T − ‖ ‖2H;T8 exp 14 T∫0 〈'′';  −1 ′〉 dt:Applying this 
omputation to � (UR UR' ) 
ompletes the proof. �

§5. Energy representationLet (H;W;�) be an abstra
t Wiener spa
e, that is, H is a real separableHilbert spa
e densely 
ontinuously embedded into a real separable Bana
hspa
e W , and � is the Gaussian measure de�ned by the 
hara
teristi
fun
tional
∫W ei'(x)d� (x) = exp(−|'|2H∗2 )for any ' ∈ W ∗ ⊂ H∗. We will identify W ∗ with a dense subspa
e of Hsu
h that for any h ∈ W ∗ the linear fun
tional 〈·; h〉 extends 
ontinuouslyfrom H to W . We will usually write 〈';w〉 := ' (w) for ' ∈ W ∗, w ∈ W .More details 
an be found in [5℄.It is known that � is a Borel measure, that is, it is de�ned on theBorel �-algebra B (W ) generated by the open subsets of W. The Gaussian



38 S. ALBEVERIO, B. K. DRIVER, M. GORDINA, A. M. VERSHIKmeasure � is quasi-invariant under the translations from H and invariantunder orthogonal transformations of H . We want to be more pre
ise here.Notation 5.1. We 
all an orthogonal transformation of H whi
h is atopologi
al homeomorphism of W ∗ a rotation of W ∗. The spa
e of allsu
h rotations is denoted by O(W ∗). For any R ∈ O(W ∗) its adjoint, R∗,is de�ned by
〈';R∗w〉 := 〈R−1';w〉; w ∈ W;' ∈ W ∗:Theorem 5.2. For any R ∈ O(W ∗) the map R∗ is a B (W )-measurablemap from W to W and � ◦ (R∗)−1 = �:Proof. The measurability of R∗ follows from the fa
t that R is 
ontinuouson H . For any ' ∈W ∗

∫W ei'(x)d�((R∗)−1 x) = ∫W ei〈';x〉d�((R∗)−1 x) = ∫W ei〈';R∗x〉d� (x)= exp(−|R−1'|2H∗2 ) = exp(−|'|2H∗2 )= ∫W ei'(x)d� (x)sin
e R is an isometry. �Corollary 5.3. Any R ∈ O(W ∗) extends to a unitary map on L2 (W;�).The Cameron{Martin theorem states that � is quasi-invariant undertranslations by elements in H , namely, Th :W →W , Th (w) = w+h. TheRadon{Nikodym derivative is given byd (Th)∗ �d� (w) = d (� ◦ T−1h )d� (w) = d (� ◦ T−h)d� (w) = e−〈h;w〉− |h|22 ;w ∈ W; h ∈ H:Following [9℄ we 
onsider the Gaussian regular representation of the Eu-
lidean group of transformations w 7→ R∗w + h, x ∈ H ,h ∈ H , R ∈O(W ∗) on L2 (W;�) de�ned as



BROWNIAN AND ENERGY REPRESENTATIONS OF PATH GROUPS 39(UR;hf) (w) := (d (� ◦ (ThR∗))d� (w))1=2 f ((ThR∗)−1 (w))= (d (� ◦ Th)d� (w))1=2 f ((R∗)−1 (w − h))= e〈h;w〉− |h|22 f ((R∗)−1 (w − h)) ; w ∈W (5.1)whi
h is well-de�ned by Corollary 5.3. It is 
lear that this is a unitaryrepresentation.Now we need to de�ne the Fourier-Wiener transform F on L2 (W;�).This 
an be done in several ways, and for now we refer to De�nition 17in [9℄ with the parameter r = 1=2. In parti
ular, one 
an 
he
k that F4 ≡ Ion L2 (W;�) by doing a 
omputation on Hermite fun
tions.The following formula is very 
onvenient for 
omputations, but some
are should be taken over its appli
ability. One of the ways of making thisformula rigorous is to de�ne it on Hermite fun
tions using the Fo
k spa
e,as it is done in [16℄.(Ff) (w) = ∫W f (iw +√2u) d� (u) ; f ∈ L2 (W;�) :In parti
ular, identities in Proposition 5.4 follow from this formula quiteeasily.Proposition 5.4. 1. Let E := SpanC{'̂ (w) := ei〈';w〉; ' ∈ W ∗; w ∈W}.Then E is an algebra whi
h is dense in L2(W;�).2. For any ' ∈W ∗ we have
∫W '̂(w) d�(w) = e− |'|2H∗2 ;(F '̂) (w) = e−|'|2H∗e−〈';w〉; and (Fe〈';·〉) (w) = e|'|2H∗ '̂(w): (5.2)Proof. The �rst statement is proven in a number of referen
es, one ofwhi
h is [18℄, Theorem 4.1, so we omit the proof for now. Identities in(5.2) follow from similar �nite-dimensional 
al
ulations using the methodsin [9℄ or approximations by Hermite fun
tions. �



40 S. ALBEVERIO, B. K. DRIVER, M. GORDINA, A. M. VERSHIKProposition 5.5 (Proposition 18 [9℄). If f ∈ L2 (W;�) ; R ∈ O(W ∗) ;h ∈ W ∗; then
(
FUR;hF−1f) (w) = e− i〈h;w〉2 f (R∗w) for w ∈W:Proof. By Proposition 5.4 it is enough to 
he
k the statement for f (w) ='̂ (w). First, let us 
ompute F3'̂ (w) using (5.2)

(
F3'̂) (w) = e−|'|2H∗

(
F2e−〈';·〉) (w)= e−|'|2H∗e|'|2H∗

(
Fe−i〈';·〉) (w) = e−|'|2H∗e〈';w〉:Then

(
FUR;hF−1'̂) (w) = (FUI;hUR;0F3'̂) (w)= e−|'|2H∗

(
FUI;hUR;0e〈';·〉) (w)= e−|'|2H∗e− |h|24 (

Fe 〈h;·〉2 e〈R';·+h〉) (w)= e−|'|2H∗e− |h|24 e〈R';h〉 (Fei 〈−i(h+2R');·〉2 ) (w)= e− |h+2R'|2H∗4 e |h+2R'|2H∗4 ei〈h2+R';w〉= ei〈h2 ;w〉'̂ (R∗w) ;where we used the fa
t that |R'|H∗ = |'|H∗ . �Corollary 5.6. By taking f ≡ 1 in Proposition 5.5, we see that for anyh ∈ H
Fe〈h;w〉− |h|22 = e− i〈h;w〉2 :We now work on the measure spa
e (W (g) ;BW (g); �) and let ws :W (g) → g be the proje
tion map, ws (!) = !s for all 0 6 s 6 T and! ∈ W (g) : [Note, we may also view w as the identity map from W (g) toW (g) :℄ The energy representation is a unitary representation of H (G) onthe spa
e L2 (W (g) ; �). First we introdu
e an operator on W (g) used tode�ne the energy representation. Note that sin
e the inner produ
t on g isAd-invariant, the operator O' de�ned by



BROWNIAN AND ENERGY REPRESENTATIONS OF PATH GROUPS 41O' (w) := ·∫0 Ad' Æws; w ∈ W (g) ; ' ∈ H (G) (5.3)is well-de�ned onW (g) by L�evy's 
riterion as we indi
ated in (2.10). More-over, sin
e the Itô and Stratonovi
h integrals of deterministi
 integrandsare equal, we see thatO' (w) = ·∫0 Ad' Æws = ·∫0 Ad' dws:De�nition 5.7. For any ' ∈ H (G)(E'f) (w) := ei T∫0 〈'−1'′(s);dws〉f (O'−1w) :for any f ∈ L2 (W (g) ; �). Then E' is 
alled the energy representation ofH (G).Again using the fa
t that the Itô and Stratonovi
h integrals are equalfor deterministi
 integrands, we see that(E'f) (w) = ei T∫0 〈'−1'′(s);dws〉f (O'−1w) :It is easy to see that E∗' = E'−1 , so it is a unitary representation of H (G)on L2 (W (g) ; �). For our future results using Itô integrals will be more
onvenient, so this is what we will be using from now on mostly.Theorem 5.8. Both UR and UL are unitarily equivalent to the energyrepresentation E.Proof. As we noted in Theorem 4.6, UR and UL are unitarily equivalent.Using (2.13) we see that under the inverse Itô map BL the left multipli
a-tion is mapped to the following operator
((BL)∗R∗') f (w) = f(O'−1w + ·∫0 '−1d'); (5.4)where f ∈ L2(W (g); �), w ∈W (g), and R∗' is the adjoint operator.Then the representation UR' 
orresponds to the following representationon L2 (W (g) ; �)
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(uR'f)(w) := ((BL)∗UR' f)(w) (5.5)= e 12 T∫0 〈'−1'′(s);dws〉− 14‖'‖2H;·f(O'−1w + ·∫0 '−1d'):Here we used O'−1 to denote the operator introdu
ed by (5.3). Note that(uR'f) (w) = UR;h, where UR;h is de�ned by (5.1) with R∗ (w) = O'−1wand h = −'−1d'. The adjoint representation of G on g is unitary, andtherefore O'−1 is a 
ontinuous unitary transformation on H (g). Thus we
an apply Proposition 5.5 to see that uR' is unitarily equivalent to E'.The intertwining operator here is the Fourier{Wiener transform F , andthe intertwining map between UL and E is then F ◦

(BL)∗. �Corollary 5.9. Theorem 3.1 implies that 1 is a 
y
li
 ve
tor for the energyrepresentation. Referen
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