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NORMALIZED INCOMPLETE BETA FUNCTION:
LOG-CONCAVITY IN PARAMETERS AND OTHER
PROPERTIES

ABSTRACT. Logarithmic concavity/convexity in parameters of the
normalized incomplete beta function has been demonstrated by Fin-
ner and Roters in 1997 as a corollary of a rather difficult result based
on generalized reproductive property of certain distributions. In the
first part of this paper we give a direct analytic proof of the logarith-
mic concavity/convexity mentioned above. In the second part, we
strengthen these results by proving that power series coefficients of
the generalized Turdn determinants formed by the parameter shifts
of the normalized incomplete beta function have constant sign under
some additional restrictions. Our method also leads to various other
new facts which may be of independent interest. In particular, we
establish linearization formulas and two-sided bounds for the above
mentioned Turdn determinants. Further, we find two identities of
combinatorial type which we believe to be new.

1. Motivation and introduction. The beta distribution is perhaps the
single most important continuous compactly supported probability distri-
bution. Its particular cases include the Wigner semicircle, the Marchenko-
Pastur and the arcsine laws; it is important in Bayesian analysis as conju-
gate prior to binomial and geometric distributions [8]; it plays a role in a
large number of applications ranging from population genetics to project
management. The beta distribution is defined by the density %~ 1(1 —
z)~1/B(a,b) supported on [0, 1], where B(a, b) is Euler’s beta function [3].
The cumulative distribution function (CDF) of the beta density is given
by the normalized incomplete beta function

[ (1 — b dt
By g0
Im(a7b) - B(a,b) -1 .

St (1 —t)b-tdt
0

Key words and phrases: Incomplete beta function, Gauss hypergeometric function,
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In a recent paper [4] containing the mathematical analysis supporting a
recent investigation related to lottery frauds in Florida, the authors solve
the following optimization problem

m
E C;Qy — min
i=1

under the constraint

m
flal,an, ... am) = HI w0 —w+1) > e

i=1
For efficient numerical solution of such problem it is desirable that the
function f be quasi-concave which implies that the feasible set of the
problem is convex and local minimizer is also global. Since monotonic
transformations do not alter quasi-concavity it suffices to show that log f
is a concave function. This fact, in turn, is implied by log-concavity of
b — I,(a,b) on (0,00). The purpose of this paper is to investigate the log-
concavity /convexity properties of the function I, (a,b) viewed as the func-
tion of parameters ¢ and b. In particular, we demonstrate that b — I, (a, )
is indeed log-concave on (0, 00), while a — I (a,b) is log-convex on (0, c0)
for b € (0,1) and log-concave for b > 1. Log-concavity of b — I (a,b) is
equivalent to the positivity of the generalized Turdn determinant

I (a,b+ )L (a,b+ B) — L(a,b) 1. (a,b + o + )

for all a,5 > 0, while log-convexity (log-concavity) of a — I,(a,b) is
equivalent to negativity (positivity) of

I.(a+ a,b)I,(a+ 8,b) — I, (a,b) [, (a + a+ 5,b).

We go one step further and study the signs of the power series coefficients
(in powers of x) of the above Turdn determinants. Under some additional
restrictions we demonstrate that these coefficients are of the same sign.
We further conjecture that such restrictions can be removed without al-
tering the results. Our method of proof also leads to various companion
results which may be of independent interest. In particular, we establish
linearization formulas and two-sided bounds for the above Turdn determi-
nants. Further, we find two combinatorial style identities for finite sums
which we believe to be new.

When this paper was nearly completed we discovered that log-concavi-
ty/convexity of the CDF of beta distribution has been demonstrated in
1997 by Finner and Roters in their fundamental work [7]. Partial results
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in this direction have been previously given by the same authors in [6] and
by Das Gupta and Sarkar in [9]. However, their log-concavity proofs are
very involved and indirect — they appear as a by-product of generalized
reproductive property of certain probability measures. Finner and Roters
note in their paper that ”we are now able to conclude a result for the Beta
distribution which seems to be very hard to obtain by usual analytic meth-
ods”. The proofs presented in this paper are precisely “by usual analytic
methods”. The power series coefficients of the Turdn determinants have
not, been considered by the above authors, so our results in this direction
strengthen the achievements of [7].

We conclude the introduction by presenting an alternative expression
for the normalized incomplete beta function in terms of the Gauss hyper-
geometric function [3]

oo

P B 7:2) Z‘ann, " (a) = L2

Indeed, using Euler-Pochhammer integral representation

1
2 Fi(a, 837 2) = /“B "1 =) (1 —uz) " du
0

we get by a change of variable and application of Euler’s formula B(a,b) =

I'(a)T'(b)/T (a + b):

T'(a + b)z®

I(a,b) = I(a+ 1)T(b)

oF1(1—0,a;a + 1;z).

Further, applying another Euler’s formula
oFi(a, Bivie) = (1 —2) " P Fi(y — a,y - By @),
we obtain the following well-known expression:

T'(a + b)z®
T(a+1)T'(b)

= T(a+b+n)
— 17 b n'
=2 7) ZI‘ a—l—l—i—n)x

Iz(a’ab) = (171’)b2F1((l+b,1;a+1;1’)
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2. Log-concavity of I,(a,b) in a and b. The proof of the next theo-
rem has been inspired by the log-concavity proof for incomplete gamma
function given in [1]. See also a related result in [2].

Theorem 1. For each fized a > 0 and z € (0,1) the function b — I,(a,b)
is strictly log-concave on (0,00).

Proof. We need to show that

It is easy to compute

82

O loa(Bla,)) = v/(8) — /(a+ 1) > 0, )
where (z) = IV(z)/T'(2) is the logarithmic derivative of the gamma func-
tion and the inequality follows from the fact that z — ¢/(z) is decreasing
on (0, 00) since

Further,

B, (a,b)? o log(I(a,b)) = B;(a,b)

o t" 11— )" log(1 — t)]* dt

v O\&

T

_ /t“*1(1 — )" log(1 — t)dt| — Ba(a,b)*(1'(b) — ¢'(a +b))
0
=: Ua,b(x)'

We have U, 5(0) = U, (1) = 0. The second equality can be seen by setting
z = 1 in log(I;(a,b)) and then differentiating with respect to b which
is legitimate by continuous double differentiability; alternatively, one can
set x = 1 in the above formula and compute the integrals. We aim to
demonstrate that U, (x) is decreasing on (0, 1) and increasing on (z1,1)
for some x; € (0,1). This will prove that U, 3(z) < 0 for z € (0,1) for each
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a,b > 0. We have

Vap(z) == xa1(iyb(xx))b1

- /t”‘l(l " log(1 — B2 dt + B (a, b)[log(1 — 2)]?

T

—2log(1—x) / t77 11— 1) Llog(1 —t) dt — 2B, (a, b) (' (b) — ' (a+b)).
0

It is rather straightforward to see that V, ,(0) = 0 and V, (1) = +00. We
aim to demonstrate that V, () is decreasing on (0, z2) and increasing on
(x2,1) for some z2 € (0,1). This will imply that it changes sign on (0, 1)
exactly once from minus to plus which, in turn, implies the same conclusion
for U, ;(z). Taking the next derivative we obtain after cancelations:

B

Wap(z) := %(1 —x) a’b(x) = —By(a,b)log(1l — x)
+ /t“_l(l — )" og(1 —t)dt — 2271 (1 — 2)° (W' (b) — ¢ (a + b)).

It is clear that W, (1) = +o00. The value at zero depends on a: if 0 < a < 1
then W, (0) = —oo; if @ = 1 then W, ,(0) = —('(b) — ¢¥'(a + b)) < 0;
if a > 1 then W, (0) = 0. We will demonstrate below that W, p(z) is
increasing on (0,1) when 0 < a < 1 and W, () is decreasing on (0, z3)
and increasing on (z3,1) for some z3 € (0,1) when a > 1. This will imply
that it changes sign on (0,1) exactly once from minus to plus which in
turns implies the same conclusion for V; ;(z). Taking the next derivative
we get:

Zap(x) = (1= 2)Wq ()
= By (a,b) = ('(0) = ¢'(a+1))2"*(1 = 2)"((a — 1)(1 — z) — ba).
We have Z, (1) = B(a,b) > 0. At x = 0 five cases reveal themselves:

Case I: if 0 < a < 1 then Z,,(0) = +o0. In this case Z,5(z) > 0 on
(0,1) since ((@ —1)(1 — ) — bz) <0 and ¢'(b) — ¢'(a +b) > 0;
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Case II: if a = 1 then Z, ,(0) = b(¢'(b) — ¢'(a + b)) > 0; We will show
below that 7, ,(x) = 0 on (0,1) so that Z, () = b(¢'(b) —¢'(a+b)) > 0
for all z € (0,1);

Case III: if 1 < @ < 2 then Z, 4(0) = —o0;

Case IV: if a = 2 then Z, ;(0) = —(¢¥'(b) — ¢'(a + b)) < 0;

Case V: if a > 2 then Z, ;,(0) = 0.

Taking one more derivative we get:

Qap(@) = Zg 4 (2)2° (1 — 2)' "
=2’ — (¥'() = ¢'(a+b)((a+b—1)%2
—(a—1)(2a+2b—3)x + (a — 1)(a — 2)).

Straightforward calculation yields:

Qas(0) = —(¥'(b) —¢'(a + b)) (a — 1)(a - 2),
Qap(1) =1 =0 (@' (b) — ¢'(a+b)).

We see that Qo (1) =1 and Q1,(1) = 0, because ¥’ (1+b) = ¢’(b) — 1/b%.
Since a — Qq(1) is decreasing on (0,00), these formulas lead to the
following conclusions.

Case I if 0 < @ < 1 then Q,,(0) < 0 and Q. (1) > 0 for all b > 0.
Since Qq5(x) is a quadratic this implies that it has exactly one change of
sign on (0,1).

Case II: if @ = 1 then Q4 4(2) = 0 on [0, 1] for all b > 0 since ¢'(1+b) =
P'(b) — 1/b°.

Case ITI: if 1 < a < 2 then Q4(0) > 0 and Q,(1) < O for all b > 0.
Since Qq5(x) is a quadratic this implies that it has exactly one change of
sign on (0,1).

Case IV: If @ = 2 then @Q,,;(0) = 0 and Q,(1) < 0 for all b > 0.
It follows that Qqp(x) > 0 on (0,a) and Q4 s(x) < 0 on (a,1) for some
a € (0,1). An apparent alternative Q4 (z) < 0 on (0,1) cannot hold
since Z,p(x) would then be decreasing on (0,1) while Z,5(0) < 0 and
Zap(1) > 0 rules out such possibility.

Case V: @ > 2 then Q,,(0) < 0 and Qg4 4(1) < 0 for all b > 0. This
implies that Q,(x) follows the sign pattern (—,+,—) on (0,1). An ap-
parent alternative Qq5(z) < 0 on (0,1) cannot hold since Z, ;(x) would
then be decreasing on (0,1) while Z,,(0) = 0 and Z, (1) > 0 rules out
such possibility.
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Looking carefully at each case we see that for all b > 0 the function
Zqp(x) is positive on (0,1) if 0 < @ < 1 and changes sign from minus to
plus if @ > 1. This implies that W, ,(z) behaves in the same way, so that
in all cases W, s (x) changes sign exactly once from minus to plus. This, in
turn, implies that V, , () has the same behavior and hence V,, y() is first
decreasing and then increasing. In view of the boundary values at = 0
and z = 1 this means that V, ;(z) changes sign exactly once from minus to
plus. Finally, it follows that U; ,(z) is negative on (0,21) and positive on
(21,1) for some x; € (0,1), yielding U, 3(z) < 0 on (0,1) as claimed. O

Definition of I,(a,b) immediately leads to the reflection formula
I,(a,b) =1—1_,(b,a).
This implies

P og(L(a,8))

Oa?
=[I, (a,b)]_Q{Il_w(b, a)aa—;ll_w(b, a) — [%Il_w(b,a)r}
—[I.(a, b)]’zaa—;ll_w(b,a).

The first term is negative according to Theorem 1. The second term, how-
ever, may change sign depending on the values of b and = as demonstrated
by numerical evidence. Hence, we cannot draw any definitive conclusion
about log-concavity of a — I,(a,b) from the reflection formula. Indeed,
it turns out that the result depends on the value of b. Nevertheless, a
method similar to that used in the proof of Theorem 1 also works here
when combined with the following lemma.

Lemma 1. For fized oo > 0 define fo(z) : (0,00) — (—00,00) by
fa(@) = (W(a + @) = ¢(2))* +¢'(z + @) — ¢/ (2).
Then fo(z) <0 if 0 < a <1 and fo(z) >0 if a > 1.

Proof. Using recurrence relations ¢(z + 1) = ¢(z) + 1/z and ¢(z + 1) =
(x) — 1/22, we calculate
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fe+1) = f@)= W@ +at+1)—¢@+1))° - @+ a) — ()
+P' (@ +a+1) =Y (z+a)+¢(z) - (z+1)
=Wxzt+a+l)—YE+1)+vx+a)—¢@)We+a+1)

1 1
7¢(x+1)f¢($+a)+¢(x))+ﬁfm

~(2erat 20 1) (52 1) Y E oo

x4+« x z2 (x4 «a)?

)) L a2 +a)

o

22 (x + a)?
_ 2 <¢(m)¢(x+a)+%>.

z(r + «)

Writing g, (x) for the function in parentheses and utilizing the integral
representations

oo o0

et —e 1 ot
w(l‘) = —’)/-i-/ﬁ dt and E = /6 dt,
0 0

where v stands for Euler-Mascheroni constant, we get:

1—et
0

The last formula makes it obvious that g,(z) > 0 for 0 < a < 1 and

ga(x) <0 for a > 1. Further, from the asymptotic formulas
1 ‘ 1 1
= 1 —_ -2 / = — —_— -3
¥(z) = log(x) 5 +0(z%), ¢'() - + 572 +0(z™"), x— oo,

we conclude that IILH;O f(z) = 0. Altogether this implies that for 0 < « < 1:
f@)<fx+) < flza+2)<--- <7r}iinwf(x+m) =0,

and for a > 1:
flx)> fla+1)> flz+2)>--- >n}Erlwf(m+m) =0,

which proves the lemma. O
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Stronger results for a function similar to f,(x) but still slightly different
from it can be found in [16, Theorem 1.2].

Theorem 2. Suppose © € (0,1) is fized. Then:

(a) if 0 < b < 1 the function a — I.(a,b) is strictly log-convezr on
(0, 00).

(b) if b =1, the function a — I,(a,b) = x* and so is log-neutral.

(c) if b > 1 the function a — I,(a,b) is strictly log-concave on (0,00).

Proof. The case b = 1 can be verified directly. It remains to show that

0? o?

@log(fz(a,b)) >0if0<b<l and Eyel log(I(a,b)) <0 ifb>1.
For completeness, however, we will include b = 1 into the forgoing consid-
erations. By symmetry we have from (2)

2

% log(B(a, b)) = ¢'(a) — ¢'(a + b) > 0.

Further,

B, (a, b)z% log(I(a,b)) = B;(a,b) /t“_l(l — )" Mlog(t)]? dt

p 2

_ / 171 — )" log(t) dt | — Ba(a,b)*(¥'(a) — ¥/(a + b))
0
=: Ua b(x)

)

Direct verification yields Uy 4(0) = U, 5(1) = 0. Next, we have

Ut;,b(‘r)
zi1(1 — )b
_ / $9-1(1 — 1)t log()dt + Ba (a, b)[log()]?

0
z

~ 2log(z) / #9711 — )P log(t)dt — 2B, (a, b) (W' (a) — ¥ (a + b)).

0

Va7b($) =
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Repeatedly using Hopital’s rule we compute the limits:

i Be(@bd) ettt L (log(1/)®
2—0 [log(z)]=2 ~ 2-02(log(1/z))~3  22-0 z~

_ Ly 3llog(1/2)?

T 2250 axr—?

=0.

€

z—0 aza«;—a r—0 a3x—a

Similarly,

T

lirrb log(x) /t“*1(1 — )" log(t) dt = 0,
xTr—

0
so that V, ;,(0) = 0. Further,

/t“_1 (1=)"*[log(t)]*dt = B(a, b)[(v(a) —¥(a+b))* +¢'(a) =¥ (a+D)],

so that

Vas(1) = B(a,0)[(¥(a) — ¥(a +0))* — (¢'(a) — ¢'(a +b))].
It follows from Lemma 1 that (a) V,5(1) < 0for 0 < b < 1; (b) Vo 4(1) =0
for b=1; (c) V(1) > 0 for b > 1. We aim to demonstrate that V, ,(z)
has precisely one change of sign in cases (a) and (c) and is identically zero
in case (b). Taking the next derivative we obtain after cancelations:

Wan(@) = SV () = Bu(a, ) log(a)

t27 1 — )" Llog(t)dt — z°(1 — )7L (¥ (a) — ¥'(a + b)).

o — .

The boundary values are: W, ,(0) = 0 and

—00, 0<b<1
Was(1) = { 0, b=1,
B(a,b)(¥(a +b) —¢(a)) >0, b>1.

These values follow from the evaluation

T

/ 1711 — 1) log(t) dt = B(a, b)((a) — (a + b))

0
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and the recurrence relations ¢(a + 1) — ¥ (a) = 1/a, ¥'(a + 1) — ¢/(a) =
—1/a®. Taking the next derivative we get

Zap(x) =W, ,(x)
= Bala,b) + (¥(a) — /(a+ B)a*(1— 2)'((b— e —a(l — ).

Clearly, Z,5(0) = 0. At 2 = 1 five cases reveal themselves:

Case I: if 0 < b < 1 then Z,5(1) = —o0;

Case II: if b = 1 then Z, (1) = 0; we will show below that Z| ,(z) =0
on (0,1) so that Z,,(z) =0 for all z € (0,1);

Case IIT: if 1 < b < 2 then Z, 5(1) = +o0;

Case IV: if b = 2 then Z, (1) = B(a,b) + ¢¥'(a) — ¢'(a + b) > 0;

Case V: if b > 2 then Z, 4(1) = B(a,b) > 0.

Finally, computing one more derivative and making some rearrange-
ments we arrive at

Zy ()
Qap(r) = W

= (1-2)2— (' (a)—t (a+b)) ((a-+D—1)% —((2a+1) (b—1) +20%)a—+a?).
The boundary values are

Qap(0) = 1 - a*(¢'(a) — ¥'(a +1b)),
Qap(1) = =(¥'(a) = ¢'(a+b))(b—1)(b—2).

We see that Q,,0(0) = 1 and Q,1(0) = 0, because ¥’ (14a) = ¢'(a) — 1/a’.
Since b — (Q4,5(0) is decreasing on (0, 00), these formulas lead to the
following conclusions.

Case I: if 0 < b < 1 then Q,,(0) > 0 and Qa4(1) < 0 for all @ > 0.
Since Qq5(x) is a quadratic this implies that it has exactly one change of
sign on (0,1).

Case II: if b = 1 then Q4 p(z) = 0 on [0, 1] for all @ > 0 since ¢’ (1+a) =
' (a) — 1/a?.

Case III: if 1 < b < 2 then Q,,,(0) < 0 and Q, (1) > 0 for all b > 0.
Since Qq5(x) is a quadratic this implies that it has exactly one change of
sign on (0,1).

Case IV: if b = 2 then Q44(0) < 0 and Q4 (1) = 0 for all @ > 0.
It follows that Qup(x) < 0 on (0,a) and Qqp(x) > 0 on («,1) for some
a € (0,1). An apparent alternative Qq(z) < 0 on (0,1) cannot hold
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since Zg p(x) would then be decreasing on (0,1) while Z,;,(0) = 0 and
Z45(1) > 0 rules out such possibility.

Case V: if b > 2 then Qu4(0) < 0 and Qq,s(1) < 0 for all @ > 0.
This implies that @, (x) follows the sign pattern (—,+,—) on (0,1). An
apparent alternative @, (%) < 0 on (0,1) cannot hold since Z, p(z) would
then be decreasing on (0,1) while Z, ;(0) = 0 and Z, ;(1) > 0 rules out
such possibility.

Tracing back the primitives Qg6 — Zop — Wap — Vap — Usp we see
that for all a > 0 the function Z, (x) changes sign from plus to minus on
(0,1) if 0 < b < 1, is identically zero if b = 1, and changes sign from minus
to plus if b > 1. This implies that W, ,(z) and V, s(x) behave in the same
way, so that U, p(z) is first increasing and then decreasing for 0 < b < 1,
is identically zero if b = 1 and is first decreasing and then increasing if
b > 1. In view of the boundary values at x = 0 and x = 1 this means
that Ugp(z) > 0 on (0,1) for 0 < b < 1 and Uzp(z) < 0 for b > 1 as
claimed. d

3. Coefficient-wise log-concavity of I, (a,b). As mentioned in the in-
troduction, logarithmic concavity of b — I, (a,b) demonstrated in Theo-
rem 1 is equivalent to the inequality

bapa,8(@) = I (a,b+ o), (a,b+ ) — I (a,b) [, (a,b+a+ ) >0 (3)

valid for all positive values of a, b, & and 8 and each z € (0,1). This
inequality expresses the strict Wright log-concavity of b — I,(a,b) - a
property equivalent to log-concavity for all continuous functions [13, Chap-
ter 1.4], [14, Section 1.1]. On the other hand, formula (1) implies that the
function of ¢q,q,3(x) defined in (3) has the power series expansion

bass(e) = 22 (1= 745 3 gk »
k=0

It is then natural to ask whether and when the coeflicients ¢y, are positive.
In general, for a given formal power series

Flusz) =" fulpw)a (5)
k=0

with nonnegative coefficients fi (1) which depend continuously on a param-
eter p from a real interval I, we will say that p — f(u; ) is coefficient-wise
Wright log-concave on I for « € A C [0,00), f € B C [0,00) if the formal
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power series for the product difference

flutaz)f(p+ Biz) — f2) f(p + a+ B52)

has nonnegative coeflicients at all powers of z fora € A, § € Band all u €
I.Tf coefficients are strictly positive we say that the corresponding property
holds strictly. If coefficients are non-positive we talk about coeflicient-wise
Wright log-convexity. These concepts using slightly different terminology
were introduced by the author (jointly with S.I. Kalmykov) in [10].
Conclusions of Theorem 2 can be restated in terms of the function

Yapas(®) = I (a+ o, b)(a+ B,b) — I,(a,b)I,(a +a+ 3,b)

— x2a+a+5(1 _ ZL‘)% Z ,(/kak (6)
k=0

as follows: if & > 0 and 0 < & < 1 then ¢, p05(x) < 0for 0 < b < 1
and ¢qp.q0,8(x) > 0 for b > 1. Just like with @,,q,8(x) it is then natural
to consider the coefficient-wise log-convexity and log-concavity of a —
2721 —z)7 "I, (a,b), i.e. study the sign of the coefficients 1.

The main purpose of this section is to give partial solution to the fol-
lowing conjectures representing substantial strengthenings of Theorems 1
and 2, respectively.

Conjecture 1. The coefficients ¢y are positive for all a,b,a,8 > 0 and
z € (0,1), so that b — z~%(1 — x)""I.(a,b) is strictly coefficient-wise
Wright log-concave on (0,00) for these values of parameters.

Conjecture 2. The coefficients v, are negative for all a,a, 3 > 0 and x €
(0,1) if 0 < b < 1 and positive if b > 1, so that a — x~%(1 —x)""I,(a,b) is
strictly coefficient-wise Wright log-convex on (0,00) for a, 8 > 0, z € (0,1)
and 0 < b < 1; and a — z~*(1 — x) "I, (a,b) is strictly coefficient-wise
Wright log-concave on (0,00) for a,8 >0, z € (0,1) and b > 1.

Our approach also leads to a number of related results which may be
of independent interest. These include alternative formulas for the coeffi-
cients ¢ and 1y, linearization identities for the product differences of hy-
pergeometric functions, two-sided inequalities for the Turdn determinants
formed by normalized incomplete beta functions and two presumably new
combinatorial identities.

We will need the following lemma (see [10, Lemma 3]).



NORMALIZED INCOMPLETE BETA FUNCTION 151

Lemma 2. Suppose u — f(u;x) is coefficient-wise Wright log-concave on
[0,00) fora=1, >0, i.e.

flu+ L) f(u+B52) — fsz)f(p+ B8+ 1)

has nonnegative coefficients at all powers of x for all u,3 > 0. Then p —
flu;z) is coefficient-wise Wright log-concave on [0,00) for « € N, § >
a—1.
Theorem 3. Suppose a € N. Then the following identily holds true:

S Ta+b+)T(a+b+B+a—j—1)

waba,/g’( ) :Z
gatatB (1 — g)2b .ﬁOF@WFW+j+DNa+5+a—ﬁ

a+b+j La+b+j+1
X § ———o Fj . T
a+j+1 a+j+2
a+b+B+a—-1—j Lat+tb+p+a—j
— 3| . ; (7
a+pB+a—j f21<a+6+ay+1 v @

Proof. First we investigate the function g 41 ,(x) defined in (6). Using
(1) we compute

=Aab,1,p.
Pab,1,0(2)[L(0)] Fm+m @+b+m
Pt (1= )%~ Tla+ D(a+p+ 1)

a+b lLa+b+1 7 La+b+p
2P o2 ) EE WP
a+b+p _[(1a+b [ La+brp+l
- — [ ;T ;T
a+up+1 a+1 a+u—|—2

a+ba+b+)(a+b+mm%
= A,
’“”2% E:{ D(a+2)(a+p+ L)m

(a+b+u)a+dpla+b+pu+ 1),
(a+u+nm+1)m+u+mm%

m

(@+b)k(a+b+ w)m—k
(@+2)p(a+p+2)mk

— A, 5717,” b — 1 i l,m

(m — 2k + p)
@ Darnt D) 22" &
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a+b l,a+b+1
:Aa,b,l,u{a_H2Fl<a+2 ;fE)
7a—|—b—|—/ULF l,a—l—b—i-u—i-l_x
a+’u+12 1 a_|_,u+2 ’ ’

where we have used the summation formula

" (a+b)p(a+b+ p)mk
2 (o Dulat it ooy )
_e+Da+p+1) [(a+b)mpr  (a+b+@)mp
(b—-1) (@+Dmy1 (a+p+Lmp

demonstrated in [11, p.72]. Next, we set g(a) = I,(a,b)/z?(1 — z)* and
calculate

xmjfzf(’i’ﬁ oy = 9(a+ )gla+8) —gla)g(a+a+ )

=lgla+a)gla+B) —gla+a—1)gla+ B +1)]
+gla+a—1)gla+B8+1)—glata—2)gla+8+2)]+---
+[gla+2)gla+B8+a—2)—gla+1)gla+ S+ a—1)]
+[g(a+gla+ B +a—1)—gla)gla+f + a)]

12 a+b+j La+b+j+1
= — A - 9 —_— F ’ . .
W@ﬂzg%’HMAW% ”1{a+j+121(a+1+2 ’a

a+b+pf+a—-1—j La+b+p4+a—j
- — I . sz o
at+pf+a—j at+f+a—j+1

Substituting the value of Ag4;p1,0+3—2;—1 into this formula yields (7). O

The next corollary refines Theorem 2 and gives partial solution to Con-
jecture 2.
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Corollary 1. Suppose a € N. Then the coefficients 1y, defined in (6) can
be computed by
s _ofl“(a+b+j)l“(a+b+[3+a—j—1)
b [CO)PT(a+j+1)(a+B+a—j)

X{m+b+jmﬂ w+b+6+a—1—jnﬂ}. (®)

=0

(a+7+Drn (a+B+a—j)r

Furthermore, if 0 < b < 1 then ¥, <0 for all a,8 > 0 and if b > 1 then
v >0 for>2a—1,8>0 and a € N.

Proof. Formula (8) follows immediately from (7). The case 0 < b < 1
falls under conditions of [10, Theorem 3] and the claim follows from this
theorem. Further, according to Lemma 2 for § > o — 1 the sign of ¢ =
Yr(a, 8) is determined by the sign of (1, 8). In view of (a)y = T'(a +
k)/T(a) for a = 1 we have

Fla+b)(a+b+u) [Ta+k+b)I(a+1)
Fa+ 1)l (a+p+1)|Tla+dl(a+k+1)

77/11;71(175) =

Tla+p+k+0)IT(a+pn+1)
Tla+p+blla+p+k+1)|

Define the function

Fla+p+k+2)(a+2)

flw) = lMa+k+2)T(a+p+z)

This function is decreasing according to [5, Theorem 6]. It is straightfor-
ward that ¢g_1 (1, 3) < 0 is equivalent to f(1) < f(b) while ¢;_1(1,3) >0
is equivalent to f(1) > f(b), so that the claim follows from decrease of

f(z). O

This corollary can also be derived from our previous results in [10,
Theorem 3] and [11, Theorem 2], however, the above derivation has the
advantage of presenting the explicit formulas for the coefficients 15, which
do not follow from these references.

Remark. Substituting (1) for I, into the definition of ¢, 54,3 given in
(6) and changing notation we can rewrite (7) as the following linearization
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identity for the quadratic form in Gauss hypergeometric functions

(a)n+12F1(a+n+1,1 ;a:) 2Fl(a—l—ﬁ,l ;:1:)

(€)ni1 c+n+1 c+p
(a+ B)n+1 a,1 a+B+n+1,1
W E Pt m (%) LR b
ct B Ne )N etptn+1 77

= @ila+ By fat+i fa+j+1,1
—Z -0 Fy Liv1 T
o (@le+ By Lety™ et
a+p+n—j a+B+n+1-j1
- L F . ; .
cxBtn—j’ <c+6+n+1—a o ©)

Here n = a — 1 is any nonnegative integer, while other parameters as
well as z can be arbitrary complex by analytic continuation. In particular,
when n = 0 the above identity reduces to (after some rearrangement):

a lL,a+1 La+pg |\
E2F1<c+l 7$> 2F1<c+ﬁ aUU) 1
l,a
2F1<C ,$>—1‘|.

_a+p 7 l,a+B8+1 .
IR R

Formula (9) leads to a curious combinatorial identity which is presum-

ably new.

Corollary 2. For arbitrary nonnegative integers m, n the following iden-
tity holds

Ui (l a+6m k{(a+k)n+1(a+ﬁ+mk)n+1}

O+ Bm—rt LO+E)pt1  (b+B+m— k)t
:§EMMm+BMj{@H4MH1_m+B+nﬁmﬂ}

Proof. The claimed identity follows on equating coefficients at =™ on

both sides of the (9) and using the formula (p)p41(+n+1)g = (W)r(p+

k)nJrl- O

k=0

The next corollary presents two-sided bounds for the Turan determinant
formed by shifts of I,(a,b) in the first parameter.
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Corollary 3. Suppose b> 1, ve N anda >v — 1. Then
mz®(1 —z)° < I.(a,0)? — I.(a — v,b)I,(a + v,b) < MI,(a,b)> (10)
for all x € (0,1). Here
[[(a+b))? Fla+b—v)I'(a+b+v)

TP (a+1)]? B LB (a—v+1)(a+v+1)
(a+1),(a+b-v), —(a+1 fy),,(a—i-b),,'

(a+1),(a+b—vr),

M =

Proof. Inequality from below is just a rewriting of the inequality

wafll,b,ll,l/ Z :L,Za(l - x)ZdeO

which follows from nonnegativity of the coefficients v, for all £ =0,1,...
To prove the upper bound consider the function

o0

L@hla+1) _ (a+b o
aHG(a)_xa(lfx)bF(a—i-b Z (a+1),

According to [12, Theorem 2] the above function is log-convex for b > 1,
so that for @ > v — 1 we have G(a — v)G(a +v) > [G(a)]?. This inequality
can be rewritten as

C(a+1)P’T(a+b+v)T(a+b—v) (L, (a, b)]2
C(a+b)PTa+v+1DI(a—v+1)" 7707
Simple rearrangement of the above inequality gives the upper bound in
(10). O

I.(a,b—v)I,(a,b+v) >

To investigate the power series coefficients of the function ¢g 4 o 5(2)
defined in (3) we need the following lemma.

Lemma 3. The following identity holds:

zm: (a + b) a—i—b—l—ﬁ)m k

@t Detat Do s (b(2k —m) + B(a + k))

k=0
a((a +b+ B)M-‘rl - (a + b)m-i—l)
(a+ 1) )

Proof. Denote
(a+b)r(a+b+B)m—r
(a+ D(a+1)m—tp

up = b2k —m)+B(a+k)), k=0,1,....m.
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An application of Gosper’s algorithm yields anti-differences:
a*(a+b)r(a+b+ B)m—kt
(@)k (@) m k41
Straightforward substitution provides verification of this formula. Hence,

we get

, k=0,1,...,m+1.

Uk = Vg1 — Vg, Uk = —

Zuk = Um41 — Vo = al(atb+ iitmillm(a + b)mﬂ). O

Theorem 4. Suppose a € N. Then the following identity holds true

¢a7b,a,,3(x)

p2a(1 — g)2b+ath —

a—1

E:tfm+b+ﬂfm+b+5+a*jfﬂ
— [[la+ DPLO+j+ 100+ 8+ a—j)

. 1 b —7J
x{(a—i—b%—ﬂ—i—ayl)zﬂ(a’ii_ Fhta—] ;x)

. La+b+j+1
m+b+ﬁﬁ<ail J ;%}.un

Proof. First we investigate the function ¢, 1,3(x) defined in (3). We have
Pa,b,1,8(2)

z20(1 — x)2b+1+6

L m Tla+b+1+k(a+b+B8+m—k)
_E:x { L+ 1T (a+1+ KT+ BT (a+1+m—k)
I'(a
(a

m=0
+b+EkT(a+b+p5+1+m—k) }
T(O)T(a+1+kDO+1+8)(a+1+m—k)
- Tla+b+ kT (a+b+B8+m—k)
_sz z:F Frb+p)(a+1+kT(a+1+m—k)
a+b+k a+b+pF+m—k
b b+ }
T(a+b)(a+b+pB)
Fro+1ro+8+ 1)+ 1)>2
>3 DD Dt 51 o)

m=0 k=0 a+1)

m=0

X
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Application of Lemma 3 then gives

Pab,1,8 al'(a +b)T'(a+ b+ 5)

z20(1 — 2)2+148 — T(b+ 1)T(b+ B+ 1)T(a + 1)2

(a+b+B)mt1 — (a+b)mi1 o
(a+1)m

_ al'la+b)T(a+ b+ B) La+b+p5+1
_F@+DF®+B+DFW+1P{m+b+ﬁhﬂ<a+1 7%

—w+bhﬂ(;ifb+l;a}- (12)

Next, denote f(b) = I,(a,b)/z%(1 — z)*. For a € N we have

X

i

S = [0 (0 8) [ () f(rra+B) = [ (b+0) (b+5)

—f(b+a—1)f(b+B+1)]+[f (b+a—1) f(b+8+1)—f(b+a—2) f (b+5+2)]+- - -
+[fb+2)fb+B+a—2)— fb+1)f(b+ 0 +a—1)]
HO+DfO++a—-1) = f)fb+ 5+ )l

Each expression in brackets has the form

71— ) 2 B a1 sar2j1, J=1,2,... 0

Hence, we can apply formula (12) to each such bracket which yields (11).
(I

The next corollary refines Theorem 1 and gives partial solution to Con-
jecture 1.

Corollary 4. Suppose a € N. Then the coefficients ¢y, defined in (4) can
be computed by

+DPTG+j+ D0+ B8+ a—j5)(a+ 1)k
x{(la+b+B+a—j— Dy —(@+b+j)pea}. (13)

= Ta+b+j)T(a+b+B8+a—j—1)
b=

‘— [['(a

7=0

If, furthermore, > a — 1 and 8 > 0 then ¢ > 0.
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Proof. Formula (13) follows immediately from (11). According to
Lemma 2 for § > «— 1 the sign of ¢, = ¢r(a, §) is determined by the sign
of ¢r(1,8). In view of (12) for « = 1 we have

B al(a + b)'(a + b+ B)
Pl ﬁ)_l“(b + )T+ B+ Dl(a+ 1)2(a + 1) ((a+b+B)epr—(atb)irr),

which is clearly positive for 5 > 0. O

Remark. Substituting (1) for I, into the definition of ¢4 ,q,5 given in (3)
and changing notation we can rewrite (11) as the following linearization
identity for the quadratic form in Gauss hypergeometric functions

b)n
(a + b) +12F1<a+b+n+1,1 _x>2F1<a+b+6,1 ;x>

Bt a+1 ’ a+1
(a+b+ B)nt1 a+b1 a+b+pF+n+1,1
0T B 2F1 at1 F 2 F1 atl 3x

n

_a Z(a+b)j(a+b+6)n7]‘
S b+ B) 2 b+ 1);(b+ B+ Dy

j=

, b 1—j,1
X{(a+b+6+n3)zF1<Zil+6+n+ Js ;:v>

. btj+1,1
_(a+b+])2Fl<Zil+J+ afF)} (14)

Here n = a — 1 is any nonnegative integer, while other parameters as
well as x can be arbitrary complex by analytic continuation. In particular,
when n = 0 the above identity after some rearrangement reduces to

a l,a+1 1,b c—1
PRSP l(c 793) [z 1(0 ’x>+bc+1}

b 1,6+1 1,a c—1
= . m(> cx) R 0 ) ]
P l(c ,51?) [2 l(c ’x)—i_ac—i-l}

Formula (14) leads to a curious combinatorial identity which is presum-
ably new.
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Corollary 5. For arbitrary nonnegative integers m, n the following iden-
tity holds

n

a (a+b)j(a+b+B)
b(b+6)z

(b+1);(b+1+ B)H_]j {(atb+B+n—f)m+1—(a+b+j)m+1}
§=0 J n=d

_ (a+ b)ifa+ b+ A
=@ D ) et D

{(a+b+k)n+1 (a+b+6+m—k)n+1}

(b)n+1 (b+ 6)n+1

Proof. The claimed identity follows on equating coeflicients at 2™ on both
sides of the (14) and using the formula (4 n + 1)k (W)n+1 = (W) (1 +
k)nt1- O

The next corollary presents two-sided bounds for the Turédn determinant
formed by shifts of I,(a,b) in the second parameter.

Corollary 6. Suppose v is a positive integer b > v, a > 0. Then
mz*?(1 — 2)* < [I.(a,b))* — I.(a,b + v) L (a,b— v) < M[I,(a,b)]> (15)
for all x € (0,1). Here
_ [Cla+b)? Tla+b—v)T(a+b+v)
[Cla+ DRG] [Cla+DPCO—-v)T(b+v)’
O)(a+b—v), —(a+b),(b—v),
D)la+b—v), '

Proof. Inequality from below is just a rewriting of the inequality

Gab—vww = 221 —2)* g

which follows from nonnegativity of the coefficients ¢y for all £ =0,1,...
To prove the upper bound consider the function

M =

 L@hr®) & (a+b.
b_’F(b)_xa(px)br(Hb)—ZF;

It is easy to check that the coefficients {n!/T'(a +n + 1)}, form a log-
convex sequence. Then according to [12, Theorem 1] the above function is
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log-convex, so that for b > v we have F(b— v)F(b+v) > [F(b)]?. This

inequality can be rewritten as

[L(b)’T(a+b+v)T(a+b—v)
[C(a + BTG + )b —v)

Simple rearrangement of the above inequality gives the upper bound in
(15). O

I.(a,b—v)I,(a,b+v) > [I.(a,b)].
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