
úÁ�ÉÓËÉ ÎÁÕÞÎÙÈÓÅÍÉÎÁÒÏ× ðïíé�ÏÍ 440, 2015 Ç.D. B. KarpNORMALIZED INCOMPLETE BETA FUNCTION:LOG-CONCAVITY IN PARAMETERS AND OTHERPROPERTIESAbstrat. Logarithmi onavity/onvexity in parameters of thenormalized inomplete beta funtion has been demonstrated by Fin-ner and Roters in 1997 as a orollary of a rather diÆult result basedon generalized reprodutive property of ertain distributions. In the�rst part of this paper we give a diret analyti proof of the logarith-mi onavity/onvexity mentioned above. In the seond part, westrengthen these results by proving that power series oeÆients ofthe generalized Tur�an determinants formed by the parameter shiftsof the normalized inomplete beta funtion have onstant sign undersome additional restritions. Our method also leads to various othernew fats whih may be of independent interest. In partiular, weestablish linearization formulas and two-sided bounds for the abovementioned Tur�an determinants. Further, we �nd two identities ofombinatorial type whih we believe to be new.1. Motivation and introdution. The beta distribution is perhaps thesingle most important ontinuous ompatly supported probability distri-bution. Its partiular ases inlude the Wigner semiirle, the Marhenko-Pastur and the arsine laws; it is important in Bayesian analysis as onju-gate prior to binomial and geometri distributions [8℄; it plays a role in alarge number of appliations ranging from population genetis to projetmanagement. The beta distribution is de�ned by the density xa−1(1 −x)b−1=B(a; b) supported on [0; 1℄, where B(a; b) is Euler's beta funtion [3℄.The umulative distribution funtion (CDF) of the beta density is givenby the normalized inomplete beta funtionIx(a; b) = Bx(a; b)B(a; b) = x∫0 ta−1(1− t)b−1 dt1∫0 ta−1(1− t)b−1 dt :Key words and phrases: Inomplete beta funtion, Gauss hypergeometri funtion,log-onavity, ombinatorial identity. 138



NORMALIZED INCOMPLETE BETA FUNCTION 139In a reent paper [4℄ ontaining the mathematial analysis supporting areent investigation related to lottery frauds in Florida, the authors solvethe following optimization problemm∑i=1 i�i → minunder the onstraintf(�1; �2; : : : ; �m) = m∏i=1 Ipi(wi; �i − wi + 1) > ":For eÆient numerial solution of suh problem it is desirable that thefuntion f be quasi-onave whih implies that the feasible set of theproblem is onvex and loal minimizer is also global. Sine monotonitransformations do not alter quasi-onavity it suÆes to show that log fis a onave funtion. This fat, in turn, is implied by log-onavity ofb→ Ix(a; b) on (0;∞). The purpose of this paper is to investigate the log-onavity/onvexity properties of the funtion Ix(a; b) viewed as the fun-tion of parameters a and b. In partiular, we demonstrate that b→ Ix(a; b)is indeed log-onave on (0;∞), while a→ Ix(a; b) is log-onvex on (0;∞)for b ∈ (0; 1) and log-onave for b > 1. Log-onavity of b → Ix(a; b) isequivalent to the positivity of the generalized Tur�an determinantIx(a; b+ �)Ix(a; b+ �)− Ix(a; b)Ix(a; b+ �+ �)for all �; � > 0, while log-onvexity (log-onavity) of a → Ix(a; b) isequivalent to negativity (positivity) ofIx(a+ �; b)Ix(a+ �; b)− Ix(a; b)Ix(a+ �+ �; b):We go one step further and study the signs of the power series oeÆients(in powers of x) of the above Tur�an determinants. Under some additionalrestritions we demonstrate that these oeÆients are of the same sign.We further onjeture that suh restritions an be removed without al-tering the results. Our method of proof also leads to various ompanionresults whih may be of independent interest. In partiular, we establishlinearization formulas and two-sided bounds for the above Tur�an determi-nants. Further, we �nd two ombinatorial style identities for �nite sumswhih we believe to be new.When this paper was nearly ompleted we disovered that log-onavi-ty/onvexity of the CDF of beta distribution has been demonstrated in1997 by Finner and Roters in their fundamental work [7℄. Partial results



140 D. B. KARPin this diretion have been previously given by the same authors in [6℄ andby Das Gupta and Sarkar in [9℄. However, their log-onavity proofs arevery involved and indiret { they appear as a by-produt of generalizedreprodutive property of ertain probability measures. Finner and Rotersnote in their paper that "we are now able to onlude a result for the Betadistribution whih seems to be very hard to obtain by usual analyti meth-ods". The proofs presented in this paper are preisely \by usual analytimethods". The power series oeÆients of the Tur�an determinants havenot been onsidered by the above authors, so our results in this diretionstrengthen the ahievements of [7℄.We onlude the introdution by presenting an alternative expressionfor the normalized inomplete beta funtion in terms of the Gauss hyper-geometri funtion [3℄2F1(�; �; ; z) = ∞∑n=0 (�)n(�)n()nn! zn; (�)n = �(�+ n)�(�) :Indeed, using Euler-Pohhammer integral representation2F1(�; �; ;x) = �()�(�)�( − �) 1∫0 u�−1(1− u)−�−1(1− ux)−� duwe get by a hange of variable and appliation of Euler's formula B(a; b) =�(a)�(b)=�(a+ b):Ix(a; b) = �(a+ b)xa�(a+ 1)�(b)2F1(1− b; a; a+ 1;x):Further, applying another Euler's formula2F1(�; �; ;x) = (1− x)−�−�2F1( − �;  − �; ;x);we obtain the following well-known expression:Ix(a; b) = �(a+ b)xa�(a+ 1)�(b) (1− x)b2F1(a+ b; 1; a+ 1;x)= xa(1− x)b ∞∑n=0 �(a+ b+ n)�(b)�(a+ 1 + n)xn: (1)



NORMALIZED INCOMPLETE BETA FUNCTION 1412. Log-onavity of Ix(a; b) in a and b. The proof of the next theo-rem has been inspired by the log-onavity proof for inomplete gammafuntion given in [1℄. See also a related result in [2℄.Theorem 1. For eah �xed a > 0 and x ∈ (0; 1) the funtion b→ Ix(a; b)is stritly log-onave on (0;∞).Proof. We need to show that�2�b2 log(Ix(a; b)) < 0:It is easy to ompute�2�b2 log(B(a; b)) =  ′(b)−  ′(a+ b) > 0; (2)where  (z) = �′(z)=�(z) is the logarithmi derivative of the gamma fun-tion and the inequality follows from the fat that z →  ′(z) is dereasingon (0;∞) sine  ′(z) = ∞∑n=0 1(n+ z)2 :Further,Bx(a; b)2 �2�b2 log(Ix(a; b)) = Bx(a; b) x∫0 ta−1(1− t)b−1[log(1− t)℄2 dt
−





x∫0 ta−1(1− t)b−1 log(1− t) dt2 −Bx(a; b)2( ′(b)−  ′(a+ b))=: Ua;b(x):We have Ua;b(0) = Ua;b(1) = 0. The seond equality an be seen by settingx = 1 in log(Ix(a; b)) and then di�erentiating with respet to b whihis legitimate by ontinuous double di�erentiability; alternatively, one anset x = 1 in the above formula and ompute the integrals. We aim todemonstrate that Ua;b(x) is dereasing on (0; x1) and inreasing on (x1; 1)for some x1 ∈ (0; 1). This will prove that Ua;b(x) < 0 for x ∈ (0; 1) for eah



142 D. B. KARPa; b > 0. We haveVa;b(x) := U ′a;b(x)xa−1(1− x)b−1= x∫0 ta−1(1− t)b−1[log(1− t)℄2 dt+Bx(a; b)[log(1− x)℄2
−2 log(1−x) x∫0 ta−1(1− t)b−1 log(1− t) dt−2Bx(a; b)( ′(b)− ′(a+b)):It is rather straightforward to see that Va;b(0) = 0 and Va;b(1) = +∞. Weaim to demonstrate that Va;b(x) is dereasing on (0; x2) and inreasing on(x2; 1) for some x2 ∈ (0; 1). This will imply that it hanges sign on (0; 1)exatly one from minus to plus whih, in turn, implies the same onlusionfor U ′a;b(x). Taking the next derivative we obtain after anelations:Wa;b(x) := 12(1− x)V ′a;b(x) = −Bx(a; b) log(1− x)+ x∫0 ta−1(1− t)b−1 log(1− t) dt− xa−1(1− x)b( ′(b)−  ′(a+ b)):It is lear thatWa;b(1) = +∞. The value at zero depends on a: if 0 < a < 1then Wa;b(0) = −∞; if a = 1 then Wa;b(0) = −( ′(b) −  ′(a + b)) < 0;if a > 1 then Wa;b(0) = 0. We will demonstrate below that Wa;b(x) isinreasing on (0; 1) when 0 < a 6 1 and Wa;b(x) is dereasing on (0; x3)and inreasing on (x3; 1) for some x3 ∈ (0; 1) when a > 1. This will implythat it hanges sign on (0; 1) exatly one from minus to plus whih inturns implies the same onlusion for V ′a;b(x). Taking the next derivativewe get:Za;b(x) := (1− x)W ′a;b(x)= Bx(a; b)− ( ′(b)−  ′(a+ b))xa−2(1− x)b((a− 1)(1− x)− bx):We have Za;b(1) = B(a; b) > 0. At x = 0 �ve ases reveal themselves:Case I: if 0 < a < 1 then Za;b(0) = +∞. In this ase Za;b(x) > 0 on(0; 1) sine ((a− 1)(1− x)− bx) < 0 and  ′(b)−  ′(a+ b) > 0;



NORMALIZED INCOMPLETE BETA FUNCTION 143Case II: if a = 1 then Za;b(0) = b( ′(b)−  ′(a+ b)) > 0; We will showbelow that Z ′a;b(x) = 0 on (0; 1) so that Za;b(x) = b( ′(b)− ′(a+ b)) > 0for all x ∈ (0; 1);Case III: if 1 < a < 2 then Za;b(0) = −∞;Case IV: if a = 2 then Za;b(0) = −( ′(b)−  ′(a+ b)) < 0;Case V: if a > 2 then Za;b(0) = 0.Taking one more derivative we get:Qa;b(x) := Z ′a;b(x)x3−a(1− x)1−b= x2 − ( ′(b)−  ′(a+ b))((a+ b− 1)2x2
− (a− 1)(2a+ 2b− 3)x+ (a− 1)(a− 2)):Straightforward alulation yields:Qa;b(0) = −( ′(b)−  ′(a+ b))(a− 1)(a− 2);Qa;b(1) = 1− b2( ′(b)−  ′(a+ b)):We see that Q0;b(1) = 1 and Q1;b(1) = 0, beause  ′(1+ b) =  ′(b)−1=b2.Sine a → Qa;b(1) is dereasing on (0;∞), these formulas lead to thefollowing onlusions.Case I: if 0 < a < 1 then Qa;b(0) < 0 and Qa;b(1) > 0 for all b > 0.Sine Qa;b(x) is a quadrati this implies that it has exatly one hange ofsign on (0; 1).Case II: if a = 1 then Qa;b(x) = 0 on [0; 1℄ for all b > 0 sine  ′(1+ b) = ′(b)− 1=b2.Case III: if 1 < a < 2 then Qa;b(0) > 0 and Qa;b(1) < 0 for all b > 0.Sine Qa;b(x) is a quadrati this implies that it has exatly one hange ofsign on (0; 1).Case IV: If a = 2 then Qa;b(0) = 0 and Qa;b(1) < 0 for all b > 0.It follows that Qa;b(x) > 0 on (0; �) and Qa;b(x) < 0 on (�; 1) for some� ∈ (0; 1). An apparent alternative Qa;b(x) < 0 on (0; 1) annot holdsine Za;b(x) would then be dereasing on (0; 1) while Za;b(0) < 0 andZa;b(1) > 0 rules out suh possibility.Case V: a > 2 then Qa;b(0) < 0 and Qa;b(1) < 0 for all b > 0. Thisimplies that Qa;b(x) follows the sign pattern (−;+;−) on (0; 1). An ap-parent alternative Qa;b(x) < 0 on (0; 1) annot hold sine Za;b(x) wouldthen be dereasing on (0; 1) while Za;b(0) = 0 and Za;b(1) > 0 rules outsuh possibility.



144 D. B. KARPLooking arefully at eah ase we see that for all b > 0 the funtionZa;b(x) is positive on (0; 1) if 0 < a 6 1 and hanges sign from minus toplus if a > 1. This implies that W ′a;b(x) behaves in the same way, so thatin all ases Wa;b(x) hanges sign exatly one from minus to plus. This, inturn, implies that V ′a;b(x) has the same behavior and hene Va;b(x) is �rstdereasing and then inreasing. In view of the boundary values at x = 0and x = 1 this means that Va;b(x) hanges sign exatly one from minus toplus. Finally, it follows that U ′a;b(x) is negative on (0; x1) and positive on(x1; 1) for some x1 ∈ (0; 1), yielding Ua;b(x) < 0 on (0; 1) as laimed. �De�nition of Ix(a; b) immediately leads to the reetion formulaIx(a; b) = 1− I1−x(b; a):This implies�2�a2 log(Ix(a; b))= [Ix(a; b)℄−2{I1−x(b; a) �2�a2 I1−x(b; a)− [ ��aI1−x(b; a)]2}
− [Ix(a; b)℄−2 �2�a2 I1−x(b; a):The �rst term is negative aording to Theorem 1. The seond term, how-ever, may hange sign depending on the values of b and x as demonstratedby numerial evidene. Hene, we annot draw any de�nitive onlusionabout log-onavity of a → Ix(a; b) from the reetion formula. Indeed,it turns out that the result depends on the value of b. Nevertheless, amethod similar to that used in the proof of Theorem 1 also works herewhen ombined with the following lemma.Lemma 1. For �xed � > 0 de�ne f�(x) : (0;∞) → (−∞;∞) byf�(x) = ( (x+ �)−  (x))2 +  ′(x+ �)−  ′(x):Then f�(x) < 0 if 0 < � < 1 and f�(x) > 0 if � > 1.Proof. Using reurrene relations  (x+1) =  (x) + 1=x and  (x+1) = (x)− 1=x2, we alulate



NORMALIZED INCOMPLETE BETA FUNCTION 145f(x+ 1)− f(x) = ( (x + �+ 1)−  (x+ 1))2 − ( (x+ �)−  (x))2+  ′(x+ �+ 1)−  ′(x+ �) +  ′(x)−  ′(x+ 1)= ( (x + �+ 1)−  (x+ 1) +  (x+ �)−  (x))( (x + �+ 1)
−  (x+ 1)−  (x+ �) +  (x)) + 1x2 −

1(x+ �)2= (2 (x+ �) + 1x+ � − 2 (x)− 1x)( 1x+ � −
1x)+ 1x2 −

1(x+ �)2= �x(x+ �) (2 (x)− 2 (x+ �) + �x(x+ �))+ �(2x+ �)x2(x + �)2= 2�x(x + �) ( (x) −  (x+ �) + 1x) :Writing g�(x) for the funtion in parentheses and utilizing the integralrepresentations (x) = − + ∞∫0 e−t − e−xt1− e−t dt and 1x = ∞∫0 e−xt dt;where  stands for Euler-Masheroni onstant, we get:g�(x) = ∞∫0 e−xt(e−�t − e−t)1− e−t dt:The last formula makes it obvious that g�(x) > 0 for 0 < � < 1 andg�(x) < 0 for � > 1. Further, from the asymptoti formulas (x) = log(x)− 12x +O(x−2);  ′(x) = 1x + 12x2 +O(x−3); x→ ∞;we onlude that limx→∞

f(x) = 0. Altogether this implies that for 0 < � < 1:f(x) < f(x+ 1) < f(x+ 2) < · · · < limm→∞

f(x+m) = 0;and for � > 1:f(x) > f(x+ 1) > f(x+ 2) > · · · > limm→∞

f(x+m) = 0;whih proves the lemma. �



146 D. B. KARPStronger results for a funtion similar to f�(x) but still slightly di�erentfrom it an be found in [16, Theorem 1.2℄.Theorem 2. Suppose x ∈ (0; 1) is �xed. Then:(a) if 0 < b < 1 the funtion a → Ix(a; b) is stritly log-onvex on(0;∞).(b) if b = 1, the funtion a→ Ix(a; b) = xa and so is log-neutral.() if b > 1 the funtion a→ Ix(a; b) is stritly log-onave on (0;∞).Proof. The ase b = 1 an be veri�ed diretly. It remains to show that�2�a2 log(Ix(a; b)) > 0 if 0 < b < 1 and �2�a2 log(Ix(a; b)) < 0 if b > 1:For ompleteness, however, we will inlude b = 1 into the forgoing onsid-erations. By symmetry we have from (2)�2�a2 log(B(a; b)) =  ′(a)−  ′(a+ b) > 0:Further,Bx(a; b)2 �2�a2 log(Ix(a; b)) = Bx(a; b) x∫0 ta−1(1− t)b−1[log(t)℄2 dt
−





x∫0 ta−1(1− t)b−1 log(t) dt2 −Bx(a; b)2( ′(a)−  ′(a+ b))=: Ua;b(x):Diret veri�ation yields Ua;b(0) = Ua;b(1) = 0. Next, we haveVa;b(x) := U ′a;b(x)xa−1(1− x)b−1= x∫0 ta−1(1− t)b−1[log(t)℄2dt+Bx(a; b)[log(x)℄2
− 2 log(x) x∫0 ta−1(1− t)b−1 log(t)dt− 2Bx(a; b)( ′(a)−  ′(a+ b)):



NORMALIZED INCOMPLETE BETA FUNCTION 147Repeatedly using Hopital's rule we ompute the limits:limx→0 Bx(a; b)[log(x)℄−2 = limx→0 xa(1− x)b−12(log(1=x))−3 = 12 limx→0 (log(1=x))3x−a= 12 limx→0 3(log(1=x))2ax−a = 32 limx→0 2 log(1=x)a2x−a = 3 limx→0 1a3x−a = 0:Similarly, limx→0 log(x) x∫0 ta−1(1− t)b−1 log(t) dt = 0;so that Va;b(0) = 0. Further,1∫0 ta−1(1− t)b−1[log(t)℄2dt = B(a; b)[( (a)− (a+b))2+ ′(a)− ′(a+b)℄;so that Va;b(1) = B(a; b)[( (a)−  (a+ b))2 − ( ′(a)−  ′(a+ b))℄:It follows from Lemma 1 that (a) Va;b(1) < 0 for 0 < b < 1; (b) Va;b(1) = 0for b = 1; () Va;b(1) > 0 for b > 1. We aim to demonstrate that Va;b(x)has preisely one hange of sign in ases (a) and () and is identially zeroin ase (b). Taking the next derivative we obtain after anelations:Wa;b(x) := x2V ′a;b(x) = Bx(a; b) log(x)
−

x∫0 ta−1(1− t)b−1 log(t)dt− xa(1− x)b−1( ′(a)−  ′(a+ b)):The boundary values are: Wa;b(0) = 0 andWa;b(1) = 


−∞; 0 < b < 10; b = 1;B(a; b)( (a+ b)−  (a)) > 0; b > 1:These values follow from the evaluationx∫0 ta−1(1− t)b−1 log(t) dt = B(a; b)( (a)−  (a+ b))



148 D. B. KARPand the reurrene relations  (a + 1) −  (a) = 1=a,  ′(a + 1) −  ′(a) =
−1=a2. Taking the next derivative we getZa;b(x) := xW ′a;b(x)= Bx(a; b) + ( ′(a)−  ′(a+ b))xa(1− x)b−2((b− 1)x− a(1− x)):Clearly, Za;b(0) = 0. At x = 1 �ve ases reveal themselves:Case I: if 0 < b < 1 then Za;b(1) = −∞;Case II: if b = 1 then Za;b(1) = 0; we will show below that Z ′a;b(x) = 0on (0; 1) so that Za;b(x) = 0 for all x ∈ (0; 1);Case III: if 1 < b < 2 then Za;b(1) = +∞;Case IV: if b = 2 then Za;b(1) = B(a; b) +  ′(a)−  ′(a+ b) > 0;Case V: if b > 2 then Za;b(1) = B(a; b) > 0.Finally, omputing one more derivative and making some rearrange-ments we arrive atQa;b(x) = Z ′a;b(x)xa−1(1− x)b−3= (1−x)2−( ′(a)− ′(a+b))((a+b−1)2x2−((2a+1)(b−1)+2a2)x+a2):The boundary values areQa;b(0) = 1− a2( ′(a)−  ′(a+ b));Qa;b(1) = −( ′(a)−  ′(a+ b))(b− 1)(b− 2):We see that Qa;0(0) = 1 and Qa;1(0) = 0, beause  ′(1+a) =  ′(a)−1=a2.Sine b → Qa;b(0) is dereasing on (0;∞), these formulas lead to thefollowing onlusions.Case I: if 0 < b < 1 then Qa;b(0) > 0 and Qa;b(1) < 0 for all a > 0.Sine Qa;b(x) is a quadrati this implies that it has exatly one hange ofsign on (0; 1).Case II: if b = 1 then Qa;b(x) = 0 on [0; 1℄ for all a > 0 sine  ′(1+a) = ′(a)− 1=a2.Case III: if 1 < b < 2 then Qa;b(0) < 0 and Qa;b(1) > 0 for all b > 0.Sine Qa;b(x) is a quadrati this implies that it has exatly one hange ofsign on (0; 1).Case IV: if b = 2 then Qa;b(0) < 0 and Qa;b(1) = 0 for all a > 0.It follows that Qa;b(x) < 0 on (0; �) and Qa;b(x) > 0 on (�; 1) for some� ∈ (0; 1). An apparent alternative Qa;b(x) < 0 on (0; 1) annot hold



NORMALIZED INCOMPLETE BETA FUNCTION 149sine Za;b(x) would then be dereasing on (0; 1) while Za;b(0) = 0 andZa;b(1) > 0 rules out suh possibility.Case V: if b > 2 then Qa;b(0) < 0 and Qa;b(1) < 0 for all a > 0.This implies that Qa;b(x) follows the sign pattern (−;+;−) on (0; 1). Anapparent alternative Qa;b(x) < 0 on (0; 1) annot hold sine Za;b(x) wouldthen be dereasing on (0; 1) while Za;b(0) = 0 and Za;b(1) > 0 rules outsuh possibility.Traing bak the primitives Qa;b → Za;b → Wa;b → Va;b → Ua;b we seethat for all a > 0 the funtion Za;b(x) hanges sign from plus to minus on(0; 1) if 0 < b < 1, is identially zero if b = 1, and hanges sign from minusto plus if b > 1. This implies that Wa;b(x) and Va;b(x) behave in the sameway, so that Ua;b(x) is �rst inreasing and then dereasing for 0 < b < 1,is identially zero if b = 1 and is �rst dereasing and then inreasing ifb > 1. In view of the boundary values at x = 0 and x = 1 this meansthat Ua;b(x) > 0 on (0; 1) for 0 < b < 1 and Ua;b(x) < 0 for b > 1 aslaimed. �3. CoeÆient-wise log-onavity of Ix(a; b). As mentioned in the in-trodution, logarithmi onavity of b → Ix(a; b) demonstrated in Theo-rem 1 is equivalent to the inequality�a;b;�;�(x) := Ix(a; b+ �)Ix(a; b+ �)− Ix(a; b)Ix(a; b+ �+ �) > 0 (3)valid for all positive values of a, b, � and � and eah x ∈ (0; 1). Thisinequality expresses the strit Wright log-onavity of b → Ix(a; b) - aproperty equivalent to log-onavity for all ontinuous funtions [13, Chap-ter I.4℄, [14, Setion 1.1℄. On the other hand, formula (1) implies that thefuntion of �a;b;�;�(x) de�ned in (3) has the power series expansion�a;b;�;�(x) = x2a(1− x)2b+�+� ∞∑k=0 �kxk: (4)It is then natural to ask whether and when the oeÆients �k are positive.In general, for a given formal power seriesf(�;x) = ∞∑k=0 fk(�)xk (5)with nonnegative oeÆients fk(�) whih depend ontinuously on a param-eter � from a real interval I , we will say that �→ f(�;x) is oeÆient-wiseWright log-onave on I for � ∈ A ⊆ [0;∞), � ∈ B ⊆ [0;∞) if the formal



150 D. B. KARPpower series for the produt di�erenef(�+ �;x)f(� + �;x)− f(�;x)f(�+ �+ �;x)has nonnegative oeÆients at all powers of x for � ∈ A, � ∈ B and all � ∈I . If oeÆients are stritly positive we say that the orresponding propertyholds stritly. If oeÆients are non-positive we talk about oeÆient-wiseWright log-onvexity. These onepts using slightly di�erent terminologywere introdued by the author (jointly with S.I. Kalmykov) in [10℄.Conlusions of Theorem 2 an be restated in terms of the funtion a;b;�;�(x) := Ix(a+ �; b)Ix(a+ �; b)− Ix(a; b)Ix(a+ �+ �; b)= x2a+�+�(1− x)2b ∞∑k=0 kxk (6)as follows: if a > 0 and 0 < x < 1 then  a;b;�;�(x) < 0 for 0 < b < 1and  a;b;�;�(x) > 0 for b > 1. Just like with �a;b;�;�(x) it is then naturalto onsider the oeÆient-wise log-onvexity and log-onavity of a →x−a(1− x)−bIx(a; b), i.e. study the sign of the oeÆients  k.The main purpose of this setion is to give partial solution to the fol-lowing onjetures representing substantial strengthenings of Theorems 1and 2, respetively.Conjeture 1. The oeÆients �k are positive for all a; b; �; � > 0 andx ∈ (0; 1), so that b → x−a(1 − x)−bIx(a; b) is stritly oeÆient-wiseWright log-onave on (0;∞) for these values of parameters.Conjeture 2. The oeÆients  k are negative for all a; �; � > 0 and x ∈(0; 1) if 0 < b < 1 and positive if b > 1, so that a→ x−a(1−x)−bIx(a; b) isstritly oeÆient-wise Wright log-onvex on (0;∞) for �; � > 0, x ∈ (0; 1)and 0 < b < 1; and a → x−a(1 − x)−bIx(a; b) is stritly oeÆient-wiseWright log-onave on (0;∞) for �; � > 0, x ∈ (0; 1) and b > 1.Our approah also leads to a number of related results whih may beof independent interest. These inlude alternative formulas for the oeÆ-ients �k and  k, linearization identities for the produt di�erenes of hy-pergeometri funtions, two-sided inequalities for the Tur�an determinantsformed by normalized inomplete beta funtions and two presumably newombinatorial identities.We will need the following lemma (see [10, Lemma 3℄).



NORMALIZED INCOMPLETE BETA FUNCTION 151Lemma 2. Suppose �→ f(�;x) is oeÆient-wise Wright log-onave on[0;∞) for � = 1, � > 0, i.e.f(�+ 1;x)f(�+ �;x)− f(�;x)f(�+ � + 1;x)has nonnegative oeÆients at all powers of x for all �; � > 0. Then � →f(�;x) is oeÆient-wise Wright log-onave on [0;∞) for � ∈ N, � >�− 1.Theorem 3. Suppose � ∈ N. Then the following identity holds true: a;b;�;�(x)x2a+�+�(1− x)2b = �−1∑j=0 �(a+ b+ j)�(a+ b+ � + �− j − 1)[�(b)℄2�(a+ j + 1)�(a+ � + �− j)
×

{a+ b+ ja+ j + 1 2F1( 1; a+ b+ j + 1a+ j + 2 ;x)
−
a+ b+ � + �− 1− ja+ � + �− j 2F1( 1; a+ b+ � + �− ja+ � + �− j + 1 ;x)}: (7)Proof. First we investigate the funtion  a;b;1;�(x) de�ned in (6). Using(1) we ompute a;b;1;�(x)[�(b)℄2x2a+�+1(1− x)2b = =Aa;b;1;�

︷ ︸︸ ︷�(a+ b)�(a+ b+ �)�(a+ 1)�(a+ �+ 1)
×

{a+ ba+ 1 2F1( 1; a+ b+ 1a+ 2 ;x)2F1( 1; a+ b+ �a+ �+ 1 ;x)
−
a+ b+ �a+ �+ 1 2F1( 1; a+ ba+ 1 ;x)2F1( 1; a+ b+ �+ 1a+ �+ 2 ;x)}= Aa;b;1;� ∞∑m=0xm m∑k=0{ (a+ b)(a+ b+ 1)k(a+ b+ �)m−k(a+ 1)(a+ 2)k(a+ �+ 1)m−k

−
(a+ b+ �)(a+ b)k(a+ b+ �+ 1)m−k(a+ �+ 1)(a+ 1)k(a+ �+ 2)m−k }= Aa;b;1;�(b− 1)(a+ 1)(a+ �+ 1) ∞∑m=0xm m∑k=0 (a+ b)k(a+ b+ �)m−k(a+ 2)k(a+ �+ 2)m−k (m− 2k + �)



152 D. B. KARP= Aa;b;1;�{a+ ba+ 1 2F1( 1; a+ b+ 1a+ 2 ;x)
−
a+ b+ �a+ �+ 1 2F1( 1; a+ b+ �+ 1a+ �+ 2 ;x)};where we have used the summation formulam∑k=0 (a+ b)k(a+ b+ �)m−k(a+ 2)k(a+ �+ 2)m−k (m− 2k + �)= (a+ 1)(a+ �+ 1)(b− 1) [ (a+ b)m+1(a+ 1)m+1 −

(a+ b+ �)m+1(a+ �+ 1)m+1 ]demonstrated in [11, p.72℄. Next, we set g(a) = Ix(a; b)=xa(1 − x)b andalulate a;b;�;�x2a+�+�(1− x)2b = g(a+ �)g(a+ �)− g(a)g(a+ �+ �)=[g(a+ �)g(a+ �)− g(a+ �− 1)g(a+ � + 1)℄+ [g(a+ �− 1)g(a+ � + 1)− g(a+ �− 2)g(a+ � + 2)℄ + · · ·+ [g(a+ 2)g(a+ � + �− 2)− g(a+ 1)g(a+ � + �− 1)℄+ [g(a+ 1)g(a+ � + �− 1)− g(a)g(a+ � + �)℄= 1[�(b)℄2 �−1∑j=0 Aa+j;b;1;�+�−2j−1 {a+ b+ ja+ j + 12F1( 1; a+ b+ j + 1a+ j + 2 ;x)
−
a+ b+ � + �− 1− ja+ � + �− j 2F1( 1; a+ b+ � + �− ja+ � + �− j + 1 ;x)} :Substituting the value of Aa+j;b;1;�+�−2j−1 into this formula yields (7). �The next orollary re�nes Theorem 2 and gives partial solution to Con-jeture 2.



NORMALIZED INCOMPLETE BETA FUNCTION 153Corollary 1. Suppose � ∈ N. Then the oeÆients  k de�ned in (6) anbe omputed by k = �−1∑j=0 �(a+ b+ j)�(a+ b+ � + �− j − 1)[�(b)℄2�(a+ j + 1)�(a+ � + �− j)
×

{ (a+ b+ j)k+1(a+ j + 1)k+1 −
(a+ b+ � + �− 1− j)k+1(a+ � + �− j)k+1 } : (8)Furthermore, if 0 < b < 1 then  k < 0 for all �; � > 0 and if b > 1 then k > 0 for � > �− 1, � > 0 and � ∈ N.Proof. Formula (8) follows immediately from (7). The ase 0 < b < 1falls under onditions of [10, Theorem 3℄ and the laim follows from thistheorem. Further, aording to Lemma 2 for � > � − 1 the sign of  k = k(�; �) is determined by the sign of  k(1; �). In view of (a)k = �(a +k)=�(a) for � = 1 we have k−1(1; �) = �(a+ b)�(a+ b+ �)�(a+ 1)�(a+ �+ 1)[�(a+ k + b)�(a+ 1)�(a+ b)�(a+ k + 1)

−
�(a+ �+ k + b)�(a+ �+ 1)�(a+ �+ b)�(a+ �+ k + 1)]:De�ne the funtion f(x) = �(a+ �+ k + x)�(a+ x)�(a+ k + x)�(a+ �+ x) :This funtion is dereasing aording to [5, Theorem 6℄. It is straightfor-ward that  k−1(1; �) < 0 is equivalent to f(1) < f(b) while  k−1(1; �) > 0is equivalent to f(1) > f(b), so that the laim follows from derease off(x). �This orollary an also be derived from our previous results in [10,Theorem 3℄ and [11, Theorem 2℄, however, the above derivation has theadvantage of presenting the expliit formulas for the oeÆients  k whihdo not follow from these referenes.Remark. Substituting (1) for Ix into the de�nition of  a;b;�;� given in(6) and hanging notation we an rewrite (7) as the following linearization



154 D. B. KARPidentity for the quadrati form in Gauss hypergeometri funtions(a)n+1()n+1 2F1( a+ n+ 1; 1+ n+ 1 ;x) 2F1( a+ �; 1+ � ;x)
−

(a+ �)n+1(+ �)n+1 2F1( a; 1 ;x) 2F1( a+ � + n+ 1; 1+ � + n+ 1 ;x)= n∑j=0 (a)j(a+ �)n−j()j(+ �)n−j {a+ j+ j 2F1( a+ j + 1; 1+ j + 1 ;x)
−
a+ � + n− j+ � + n− j 2F1( a+ � + n+ 1− j; 1+ � + n+ 1− j ;x)} : (9)Here n = � − 1 is any nonnegative integer, while other parameters aswell as x an be arbitrary omplex by analyti ontinuation. In partiular,when n = 0 the above identity redues to (after some rearrangement):a 2F1( 1; a+ 1+ 1 ;x)[2F1( 1; a+ �+ � ;x)− 1]= a+ �+ � 2F1( 1; a+ � + 1+ � + 1 ;x)[2F1( 1; a ;x)− 1]:Formula (9) leads to a urious ombinatorial identity whih is presum-ably new.Corollary 2. For arbitrary nonnegative integers m, n the following iden-tity holdsm∑k=0 (a)k(a+ �)m−k(b)k(b+ �)m−k { (a+ k)n+1(b+ k)n+1 −

(a+ � +m− k)n+1(b+ � +m− k)n+1 }= n∑j=0 (a)j(a+ �)n−j(b)j(b+ �)n−j { (a+ j)m+1(b+ j)m+1 −
(a+ � + n− j)m+1(b+ � + n− j)m+1 } :Proof. The laimed identity follows on equating oeÆients at xm onboth sides of the (9) and using the formula (�)n+1(�+n+1)k = (�)k(�+k)n+1. �The next orollary presents two-sided bounds for the Tur�an determinantformed by shifts of Ix(a; b) in the �rst parameter.



NORMALIZED INCOMPLETE BETA FUNCTION 155Corollary 3. Suppose b > 1, � ∈ N and a > � − 1. Thenmxa(1− x)b 6 Ix(a; b)2 − Ix(a− �; b)Ix(a+ �; b) 6 MIx(a; b)2 (10)for all x ∈ (0; 1). Herem = [�(a+ b)℄2[�(b)℄2[�(a+ 1)℄2 −
�(a+ b− �)�(a+ b+ �)[�(b)℄2�(a− � + 1)�(a+ � + 1) ;M = (a+ 1)�(a+ b− �)� − (a+ 1− �)�(a+ b)�(a+ 1)�(a+ b− �)� :Proof. Inequality from below is just a rewriting of the inequality a−�;b;�;� > x2a(1− x)2b 0whih follows from nonnegativity of the oeÆients  k for all k = 0; 1; : : :To prove the upper bound onsider the funtiona→ G(a) = Ix(a; b)�(a+ 1)xa(1− x)b�(a+ b) = 1�(b) ∞∑n=0 (a+ b)n(a+ 1)nxn:Aording to [12, Theorem 2℄ the above funtion is log-onvex for b > 1,so that for a > � − 1 we have G(a− �)G(a+ �) > [G(a)℄2. This inequalityan be rewritten asIx(a; b− �)Ix(a; b+ �) >

[�(a+ 1)℄2�(a+ b+ �)�(a+ b− �)[�(a+ b)℄2�(a+ � + 1)�(a− � + 1) [Ix(a; b)℄2:Simple rearrangement of the above inequality gives the upper bound in(10). �To investigate the power series oeÆients of the funtion �a;b;�;�(x)de�ned in (3) we need the following lemma.Lemma 3. The following identity holds:m∑k=0 (a+ b)k(a+ b+ �)m−k(a+ 1)k(a+ 1)m−k (b(2k −m) + �(a+ k))= a((a+ b+ �)m+1 − (a+ b)m+1)(a+ 1)m :Proof. Denoteuk = (a+ b)k(a+ b+ �)m−k(a+ 1)k(a+ 1)m−k (b(2k −m) + �(a+ k)); k = 0; 1; : : : ;m:



156 D. B. KARPAn appliation of Gosper's algorithm yields anti-di�erenes:uk = vk+1− vk; vk = −
a2(a+ b)k(a+ b+ �)m−k+1(a)k(a)m−k+1 ; k = 0; 1; : : : ;m+1:Straightforward substitution provides veri�ation of this formula. Hene,we get m∑k=0 uk = vm+1 − v0 = a((a+ b+ �)m+1 − (a+ b)m+1)(a+ 1)m : �Theorem 4. Suppose � ∈ N. Then the following identity holds true�a;b;�;�(x)x2a(1− x)2b+�+� = �−1∑j=0 a�(a+ b+ j)�(a+ b+ � + �− j − 1)[�(a+ 1)℄2�(b+ j + 1)�(b+ � + �− j)

×

{(a+ b+ � + �− j − 1)2F1( 1; a+ b+ � + �− ja+ 1 ;x)
− (a+ b+ j)2F1( 1; a+ b+ j + 1a+ 1 ;x)}: (11)Proof. First we investigate the funtion �a;b;1;�(x) de�ned in (3). We have�a;b;1;�(x)x2a(1− x)2b+1+�= ∞∑m=0xm m∑k=0{ �(a+ b+ 1 + k)�(a+ b+ � +m− k)�(b+ 1)�(a+ 1 + k)�(b+ �)�(a+ 1 +m− k)

−
�(a+ b+ k)�(a+ b+ � + 1 +m− k)�(b)�(a+ 1 + k)�(b+ 1 + �)�(a+ 1 +m− k)}= ∞∑m=0xm m∑k=0 �(a+ b+ k)�(a+ b+ � +m− k)�(b)�(b+ �)�(a+ 1 + k)�(a+ 1 +m− k)
×

{a+ b+ kb −
a+ b+ � +m− kb+ � }= �(a+ b)�(a+ b+ �)�(b+ 1)�(b+ � + 1)�(a+ 1)2

×

∞∑m=0xm m∑k=0 (a+ b)k(a+ b+ �)m−k(a+ 1)k(a+ 1)m−k (b(2k −m) + �(a+ k)):



NORMALIZED INCOMPLETE BETA FUNCTION 157Appliation of Lemma 3 then gives�a;b;1;�x2a(1− x)2b+1+� = a�(a+ b)�(a+ b+ �)�(b+ 1)�(b+ � + 1)�(a+ 1)2
×

∞∑m=0 (a+ b+ �)m+1 − (a+ b)m+1(a+ 1)m xm= a�(a+ b)�(a+ b+ �)�(b+ 1)�(b+ � + 1)�(a+ 1)2 {(a+ b+ �)2F1( 1; a+ b+ � + 1a+ 1 ;x)
−(a+ b)2F1( 1; a+ b+ 1a+ 1 ;x)} : (12)Next, denote f(b) = Ix(a; b)=xa(1− x)b. For � ∈ N we have�a;b;�;�x2a(1− x)2b+�+� = f(b+�)f(b+�)−f(b)f(b+�+�) = [f(b+�)f(b+�)

−f(b+�−1)f(b+�+1)℄+[f(b+�−1)f(b+�+1)−f(b+�−2)f(b+�+2)℄+· · ·+ [f(b+ 2)f(b+ � + �− 2)− f(b+ 1)f(b+ � + �− 1)℄+ [f(b+ 1)f(b+ � + �− 1)− f(b)f(b+ � + �)℄:Eah expression in brakets has the formx−2a(1− x)−2b−�−��a;b+�−j;1;�−�+2j−1; j = 1; 2; : : : ; �:Hene, we an apply formula (12) to eah suh braket whih yields (11).
�The next orollary re�nes Theorem 1 and gives partial solution to Con-jeture 1.Corollary 4. Suppose � ∈ N. Then the oeÆients �k de�ned in (4) anbe omputed by�k = �−1∑j=0 a�(a+ b+ j)�(a+ b+ � + �− j − 1)[�(a+ 1)℄2�(b+ j + 1)�(b+ � + �− j)(a+ 1)k

× {(a+ b+ � + �− j − 1)k+1 − (a+ b+ j)k+1} : (13)If, furthermore, � > �− 1 and � > 0 then �k > 0.



158 D. B. KARPProof. Formula (13) follows immediately from (11). Aording toLemma 2 for � > �−1 the sign of �k = �k(�; �) is determined by the signof �k(1; �). In view of (12) for � = 1 we have�k(1; �)= a�(a+ b)�(a+ b+ �)�(b+ 1)�(b+ � + 1)�(a+ 1)2(a+ 1)k ((a+b+�)k+1−(a+b)k+1);whih is learly positive for � > 0. �Remark. Substituting (1) for Ix into the de�nition of �a;b;�;� given in (3)and hanging notation we an rewrite (11) as the following linearizationidentity for the quadrati form in Gauss hypergeometri funtions(a+ b)n+1(b)n+1 2F1( a+ b+ n+ 1; 1a+ 1 ;x) 2F1( a+ b+ �; 1a+ 1 ;x)
−

(a+ b+ �)n+1(b+ �)n+1 2F1( a+ b; 1a+ 1 ;x) 2F1( a+ b+ � + n+ 1; 1a+ 1 ;x)= ab(b+ �) n∑j=0 (a+ b)j(a+ b+ �)n−j(b+ 1)j(b+ � + 1)n−j
×

{(a+ b+ � + n− j)2F1(a+ b+ � + n+ 1− j; 1a+ 1 ;x)
− (a+ b+ j)2F1(a+ b+ j + 1; 1a+ 1 ;x)}: (14)Here n = � − 1 is any nonnegative integer, while other parameters aswell as x an be arbitrary omplex by analyti ontinuation. In partiular,when n = 0 the above identity after some rearrangement redues toaa− + 1 2F1( 1; a+ 1 ;x)[2F1( 1; b ;x)+ − 1b− + 1]= bb− + 12F1( 1; b+ 1 ;x)[2F1( 1; a ;x)+ − 1a− + 1] :Formula (14) leads to a urious ombinatorial identity whih is presum-ably new.



NORMALIZED INCOMPLETE BETA FUNCTION 159Corollary 5. For arbitrary nonnegative integers m, n the following iden-tity holdsab(b+ �) n∑j=0 (a+ b)j(a+ b+ �)n−j(b+ 1)j(b+ 1 + �)n−j {(a+b+�+n−j)m+1−(a+b+j)m+1}= (a+ 1)m m∑k=0 (a+ b)k(a+ b+ �)m−k(a+ 1)k(a+ 1)m−k
×

{ (a+ b+ k)n+1(b)n+1 −
(a+ b+ � +m− k)n+1(b+ �)n+1 } :Proof. The laimed identity follows on equating oeÆients at xm on bothsides of the (14) and using the formula (� + n + 1)k(�)n+1 = (�)k(� +k)n+1. �The next orollary presents two-sided bounds for the Tur�an determinantformed by shifts of Ix(a; b) in the seond parameter.Corollary 6. Suppose � is a positive integer b > �, a > 0. Thenmx2a(1− x)2b 6 [Ix(a; b)℄2 − Ix(a; b+ �)Ix(a; b− �) 6 M [Ix(a; b)℄2 (15)for all x ∈ (0; 1). Herem = [�(a+ b)℄2[�(a+ 1)℄2[�(b)℄2 −

�(a+ b− �)�(a+ b+ �)[�(a+ 1)℄2�(b− �)�(b+ �) ;M = (b)�(a+ b− �)� − (a+ b)�(b− �)�(b)�(a+ b− �)� :Proof. Inequality from below is just a rewriting of the inequality�a;b−�;�;� > x2a(1− x)2b�0whih follows from nonnegativity of the oeÆients �k for all k = 0; 1; : : :To prove the upper bound onsider the funtionb→ F (b) = Ix(a; b)�(b)xa(1− x)b�(a+ b) = ∞∑n=0 (a+ b)n�(a+ n+ 1)xn= ∞∑n=0 (a+ b)nn!�(a+ n+ 1) xnn! :It is easy to hek that the oeÆients {n!=�(a + n + 1)}∞n=0 form a log-onvex sequene. Then aording to [12, Theorem 1℄ the above funtion is



160 D. B. KARPlog-onvex, so that for b > � we have F (b − �)F (b + �) > [F (b)℄2. Thisinequality an be rewritten asIx(a; b− �)Ix(a; b+ �) >
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