
úÁ�ÉÓËÉ ÎÁÕÞÎÙÈÓÅÍÉÎÁÒÏ× ðïíé�ÏÍ 440, 2015 Ç.S. Kalmykov, B. NagyON ESTIMATE OF THE NORM OF THEHOLOMORPHIC COMPONENT OF A MEROMORPHICFUNCTION IN FINITELY CONNECTED DOMAINSAbstra
t. In this paper we extend Gon
har-Grigorjan type esti-mate of the norm of holomorphi
 part of meromorphi
 fun
tions in�nitely 
onne
ted Jordan domains with C2 smooth boundary whenthe poles are in a 
ompa
t set. A uniform estimate for Cau
hy typeintegral is also given.
§1. Introdu
tionLandau investigated holomorphi
 fun
tions in the unit disk D with

‖f‖�D
6 1 where ‖:‖�D

denotes the sup norm over the boundary �D of
D. He showed that the absolute value of the sum of �rst n 
oeÆ
ientsof Ma
laurin series for su
h fun
tions has order of growth logn (see [11℄,pp. 26-28). L.D. Grigorjan generalized this in the following sense, see [7℄.Consider meromorphi
 fun
tions in the unit disk with poles in some �xed
ompa
t subset of the unit disk and with total order n. Then the growthof the norm on the unit 
ir
le of sum of the prin
ipal parts is logn. It iseasy to see that the 
ase when the origin is the only pole yields Landau'sresult. More generally, on simply 
onne
ted domains with smooth bound-ary, when there is no restri
tion on the lo
ation of the poles, then we getlinear growth for the norm (instead of logn; see [6℄).Let us introdu
e the sup norm of meromorphi
 fun
tions f on a domainD as follows:

‖f‖�D := sup{lim sup�→z |f (�)| : z ∈ �D} :In [5℄ A.A. Gon
har and L.D. Grigorjan proved the following theorem.Theorem. Let D ⊂ C be a simply 
onne
ted domain and its boundary beC1 smooth. Let f : D → C∞ be a meromorphi
 fun
tion on D su
h thatit has m di�erent poles. Denote by fr the sum of prin
ipal parts of f (withKey words and phrases: meromorphi
 fun
tions, Green's fun
tion, 
onformalmappings. 123



124 S. KALMYKOV, B. NAGYfr (∞) = 0) and let fh be the holomorphi
 part of f in D. Denote the totalorder of the poles of f by n. Then f = fr+ fh and there exists C1 (D) > 0depending on D only su
h that
‖fh‖�D 6 C1 (D)m (1 + logn) ‖f‖�D :Later, it was proved in [8℄ that on �nitely 
onne
ted domains if thepoles 
an be anywhere, then the growth of the norm is linear again.The results mentioned above have several appli
ations in e.g. Pad�eapproximation (see e.g. [1, 12℄), estimating Faber polynomials (see [17℄and [10℄) or polynomial inequalities (see, e.g. [9℄).We are going to extend this Theorem on �nitely 
onne
ted domainswhen the poles are in a 
ompa
t set (see also [8℄ and [7℄).

§2. Auxiliary toolsWe put D (z; r) := {w ∈ C : |z − w| < r}. We denote Green's fun
tionof domain G ⊂ C∞ with pole at a by gG (:; a), for potential theory werefer to [15℄ and [16℄. If v = (v1; v2) ∈ R2, then we use ‖v‖ :=√v21 + v22 =
|v1 + iv2|. If � is a Jordan 
urve or union of �nitely many Jordan 
urves,then Ext� denotes the unbounded 
omponent of C \ �. If H ⊂ C is a
ompa
t set, then the exterior boundary of H is the boundary of theunbounded 
omponent of C \H . If w is a 
omplex number, then argw :=w= |w| (if w 6= 0) and arg 0 := 0.Lemma 1. Let G ⊂ C∞ be a �nitely 
onne
ted domain and its boundary� := �G be �nite union of C2 smooth Jordan 
urves. Let Z ⊂ G be a
losed set.Then there exist �1 > 0, C2 > 0 su
h that for all a ∈ Z and � ∈ (0; �1)the set {gG (z; a) = �} is �nite union of smooth Jordan 
urves and if z issu
h that gG (z; a) = �, then gradgG (z; a) 6= 0 and1C2 dist (z;�) 6 gG (z; a) 6 C2dist (z;�) : (1)Furthermore, there exists C3 > 0 su
h that for all a; b ∈ Z and z ∈ G withgG (z; a) ; gG (z; b) < �1, we have1C3 gG (z; b) 6 gG (z; a) 6 C3gG (z; b) : (2)Proof. Let r0 > 0 be so small that for all 0 < r 6 r0 we have thatD(z; r) ∩ � is a single Jordan ar
 and D (z; r) ∩ G is a simply 
onne
teddomain for all z ∈ �, and r0 < 12dist(Z;�) and r0 is less than 1=4 times



ON ESTIMATE OF THE NORM OF THE HOLOMORPHIC COMPONENT125the distan
e between the di�erent 
omponents of � and we also requirethat the normal ve
tors n(z′) to � at z′ ∈ D (z; r) ∩ � pointing inwardwith unit length satisfy
|n (z′)− n (z)| < �16 : (3)Sin
e G is �nitely 
onne
ted, any gG(z; a) has �nitely many 
riti
alpoints (see [2℄, p. 76 and [3℄, p. 410). Moreover, sin
e �G is also C2 smooth,the union of these 
riti
al points for a ∈ Z stays away from �G at posi-tive distan
e. Indeed, suppose indire
tly that: zn → z∞ (�G is 
ompa
t),an → a∞ (a∞ ∈ Z sin
e Z is 
losed on C∞) and gradgG(zn; an) = 0.Then, 
hoosing a suitable subsequen
e, gG(z; an) 
onverges lo
ally uni-formly to gG(z; a∞) in a neighborhood of z∞, say D (z∞; r) ∩ G. We alsoknow that gradgG(z; an) 
onverges lo
ally uniformly to gradgG(z; a∞) onD (z∞; r) ∩ G, they extend 
ontinuously to D (z∞; r) ∩ � and they areuniformly bounded (for all n and z ∈ D (z∞; r) ∩G).It follows using standard steps that gradgG (z; a) is 
ontinuous whenz ∈ G ∪ � \ Z, a ∈ Z. Indeed, 
ontinuity is obvious if z ∈ G \ Z, a ∈ Z. Ifz ∈ � and an ∈ Z arbitrary, an → a∞, we do the following. Let �0 be the
omponent of � 
ontaining z and �1 be a C2 smooth Jordan 
urve inG su
hthat �1 ⊂ {� ∈ G : dist (�;�0) < r0}. LetG2 be the domain determined by�0 and �1, i.e. if �1 ⊂ Int�0, then G2 = Int�0∩Ext�1 and let G+2 := Int�0,otherwise G2 = Int�1 ∩ Ext�0 and let G+2 := Ext�0 ∪ {∞}. Now apply-ing Riemann mapping theorem and the Kellogg-Wars
hawski theorem (seee.g. [14℄, Theorem 3.6, p. 49), we obtain a 
onformal map ' from G+2 onto

D su
h that ' (�0) = �D, ' (�1) ⊂ D is a Jordan 
urve, and ' is a 
on-formal map from G2 onto ' (G2) and ' is C2 smooth on the 
losure ofG2. Consider  n (w) := gG ('−1 [w℄ ; an) and  ∞ (w) := gG ('−1 [w℄ ; a∞).They are harmoni
 on w ∈ ' (G2) and have zero value on the unit 
ir
le,so we 
an extend all these fun
tions by re
e
tion prin
iple, to some �xeddomain G3 where �D ⊂ G3. We know that  n (w) −  ∞ (w) → 0 uni-formly when w ∈ ' (�1) ⊂ �G2 and by re
e
tion prin
iple. this holds on�G3 \ ' (�1) too, hen
e on the whole �G3. Sin
e �D is 
ompa
t subset ofG3, grad ( n (w) −  ∞ (w)) → 0 uniformly in w ∈ �D and the C2 smooth-ness of ' (and '−1) shows gradgG (z; an) → gradgG (z; a∞) as n → ∞,uniformly in z ∈ �0, hen
e for all z ∈ �.These imply that gradgG(z∞; a∞) = 0, whi
h 
ontradi
ts that �G is C2smooth.



126 S. KALMYKOV, B. NAGYTherefore, there exists r1 > 0 (we may assume that r1 < r0) su
h thatfor any z ∈ �; the 
losure of D (z; r1) does not 
ontain any 
riti
al pointsof gG(·; a), a ∈ Z:Consider the in�mum and supremum of
{‖gradgG(�; a)‖ : a ∈ Z; � ∈ G; dist(�;�) < r1} ;and it is easy to see that they are �nite and positive. Hen
e there existC2 > 0, r2 > 0 su
h that for all z ∈ G, dist(z;�) < r2, a ∈ Z, we have (1).If we apply this step twi
e and take C3 = C22 , then we obtain (2). �In the following Lemma, for de�niteness, we assume that imaginary partof logarithm (of a nonzero 
omplex number) is in [0; 2�).Lemma 2. Let now G be a bounded, simply 
onne
ted domain with C2smooth boundary, and ' be a 
onformal mapping from G onto D:We de�nethe following 
onformal proje
tion: if � ∈ G, '(�) 6= 0; then let�∗ = �∗('; �) := '−1 [exp i Im log'(�)℄ :This mapping is uniformly 
ontinuous away from '−1[0℄: Furthermore,there exists C4 = C4(G) > 0 su
h that for any � ∈ G with '(�) 6= 0 and� ∈ �G we have the following \reverse triangle" inequality:

|� − �∗|+ |�∗ − �| 6 C4 |� − �| : (4)Proof. The Kellogg-Wars
hawski theorem implies that ' and '′ extend
ontinuously to G. Denote byM1 := inf {|'′(�)| : |�| < 1} ; M2 := sup {|'′(�)| : |�| < 1} ;hen
e 0 < M1 6 M2 < ∞. The mapping � 7→ �∗ is well de�ned (if'(�) 6= 0), and exp i Im log' (�) is 
ontinuous (when � ∈ G \ '−1 (0)).Therefore the uniform 
ontinuity follows. As for the \reverse triangle"inequality, let � ∈ D, � 6= 0, �∗ := arg � = �= |�| and |�1| = 1 be arbitrary.It is easy to see that |�∗ − �1| 6 2 |� − �1| and |� − �∗| 6 |� − �1|. Let usnote that if � = 0 and |�∗| = 1, |�1| = 1, then |�∗ − �1| 6 2 |� − �1| and
|� − �∗| = |� − �1|. In any 
ase, we have |� − �∗| + |�∗ − �1| 6 3 |� − �1|.Now we use the 
onformal mapping ' and the substitutions � = '(�),�∗ = '(�∗) and �1 = '(�). Obviously, |� − �∗| 6 M2 |� − �∗|, |�∗ − �| 6M2 |�∗ − �1| and M1 |� − �1| 6 |� − �|. Therefore, |� − �∗| + |�∗ − �| 6M2 (|� − �∗|+ |�∗ − �1|) 6 3M2 |� − �1| 6 3M2M1 |� − �| : We established the\reverse triangle" inequality. �
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Fig. 1. G and some of the atta
hed, simply 
onne
ted sets E (�; r3).Furthermore, it follows from the proof that (4) holds when ' (�) = 0,�∗ is any point from �G and � ∈ �G.

§3. Main resultsMain tool is an estimate for a Cau
hy type integral. Its importan
e ismentioned in [5℄ and similar estimates were also established by K}ov�ari andPommerenke in [10℄ (see also [17℄, p. 185).Proposition 1. Let G ⊂ C∞ be a �nitely 
onne
ted domain and its bound-ary � := �G be �nite union of C2 smooth Jordan 
urves. Let Z ⊂ G be a
losed set. Then there exists �2 > 0 su
h that for all 0 < � < �2, 
�(a) =
{w ∈ G : gG (w; a) = �} is �nite union of C2 smooth Jordan 
urves (forany a ∈ Z) andC5 := sup





|log (�)|−1 �
�(a) |dw|
|w − z| : a ∈ Z; z ∈ �; �2 > � > 0





<∞:Proof. We use r0; r1; r2 introdu
ed in the proof of Lemma 1.There exists r3 > 0 su
h that r3 < r0 and for every � ∈ � and r > 0,r < r3 there exists a simply 
onne
ted domain E (�; r) su
h that E (�; r) ⊂D (�; r) ∩ G, �E (�; r) is a C2 smooth Jordan 
urve, D (�; 0:99r) ∩ G ⊂E (�; r) and the boundaries 
oin
ide in the sense: �E (�; r)∩� = �E (�; r)∩D (�; 0:99r) where D (�; 0:99r) means the 
losed disk here. We may assumethat r3 < r1; r2. Sometimes we 
all E (�; r)'s atta
hed domains.Fix � ∈ � arbitrarily. Let ' = ' (�; z) = ' (�; r3; z) be a 
onformal mapfrom E (�; r0) onto D. Note that ', '′ extend 
ontinuously to �E (�; r),



128 S. KALMYKOV, B. NAGYthis follows from the Kellogg-Wars
hawski theorem. Sin
e � is 
ompa
t,
{z ∈ G ∪ � : dist (z;�) 6 r3=4}is also 
ompa
t therefore disks with 
enters from this set and with radiir3=2 
over this set. Be
ause of 
ompa
tness, there is a �nite set E , E ⊂ �su
h that

⋃

{D (�; r3=2) : � ∈ E} ⊃ {z ∈ G ∪ � : dist (z;�) 6 r3=4}and sin
e the length of � is �nite, we may require that ea
h (open) ar
from � \ E has length r3=2 at most. Then
⋃

{E (�; r3) : � ∈ E} ⊃ {z ∈ G ∪ � : dist (z;�) 6 r3=4}and for all z ∈ � there exists E1 ⊂ E 
onsisting of at most two pointssu
h that D (z; r3=4) 
an be 
overed with disks with radii r3=2 with those
enters, D (z; r3=4) ⊂
⋃

{D (�; r3=2) : � ∈ E1}, and the disk 
an be also
overed with the 
orresponding simply 
onne
ted domains: D (z; r3=4) ⊂
⋃

{E (�; r3) : � ∈ E1}.Let C6 := inf {|'′ (�; z)| : � ∈ E ; z ∈ E (�; r3)} ;C7 := sup {|'′ (�; z)| : � ∈ E ; z ∈ E (�; r3)} :It is easy to see that 0 < C6 6 C7 <∞.We use the 
onformal maps ' (�; z), where � ∈ E , to 
ompare any pointon the Green level lines with the boundary � of G as follows.Consider the \se
tors"
{w ∈ D : 0 6 |w| < 1; argw = arg' (�; z) ; z ∈ �E (�; r3) ∩ �}where � ∈ E .These are 
losed sets in D and we take inverse images of the \semi-opense
tors": H := ∪�∈EH� ;H� := {'−1 [�;w℄ : 0 < |w| 6 1; argw = arg'(�; z);z ∈ Int� (�E(�; r3) ∩ �)};where Int� (:) means the relative interior to �. By 
onstru
tion, H� ∩G isan open set, H 
overs � (� ⊂ H) and H ∩G is an open set too. Thereforethere exists r4 > 0 su
h that dist (�; G \H) > r4 where r4 depends on G
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Fig. 2. Two \se
tors" in the 
onformal proje
tion.
Fig. 3. Conformal proje
tion.only. We may assume that r4 < r3=4. We obtain the following 
onformalproje
tion property:if z ∈ G; dist (z;�) < r4; then ∃� ∈ E : z∗ = '−1 [�; arg' (�; z)℄ ∈ �: (5)Note that the 
hoi
e of � is lo
al: if z 
an be proje
ted 
onformally using'−1 [�; arg' (�; :)℄, then the same mapping is de�ned and 
an be appliedin a neighborhood of z. Obviously, this proje
tion z 7→ z∗ is 
ontinuous(with �xed �). This 
onformal proje
tion is depi
ted on Figure 3.We show that there exists r5 > 0 su
h that for all z ∈ � there exists� ∈ E su
h that D (z; r5) ∩ G ⊂ H� , in other words, the same proje
tion
an be applied in a uniformly large neighborhood of arbitrary boundarypoint. Let h� (z) := dist (z; (G ∪ �) \H�) (z ∈ C, � ∈ E), this h� (:) is
ontinuous, hen
e D (z; h� (z)) ⊂ H� . Put h (z) := max (h� (z) : � ∈ E)whi
h is 
ontinuous too. Sin
e H� 's 
over �, for all z ∈ � there exists� ∈ E su
h that h� (z) > 0. Hen
e h (z) > 0, and is 
ontinuous on the
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ompa
t �, therefore inf {h (z) : z ∈ �} > 0. Let r5 be the minimum ofthis inf and r4, obviously r5 depends only on G and is independent of �.Now we show that the level lines of Re log' (�; ·) and gG(·; a), a ∈ Zare \almost parallel" if we are 
lose to �. We need to estimate the anglesmade by the level lines of Re log' (�; ·) and gG(·; a). It is well known thatif f and g are holomorphi
 fun
tions, then the level lines of Re f and Re gmake angle ar

os 〈gradRe f; gradRe g〉
‖gradRe f‖ ‖gradRe g‖ = ar

os Re(f ′g′)

|f ′||g′| : (6)We need the following two assertions: the �-level lines of gG 
onvergeuniformly to � as � → 0, and similar uniform 
onvergen
e holds for thetangents of those. More pre
isely,sup {dist (z;�) : gG(z; a) = �} → 0uniformly in a ∈ Z, and if n(z0) denotes the normal ve
tor to � at z0 ∈ �pointing inward with unit length, then ∀" ∃�3 > 0 ∀a ∈ Z, ∀ z ∈ G,
∃ z1 ∈ �, gG (z; a) < �3, |z − z1| < �3 we have

∣

∣

∣

∣

gradgG(z; a)
‖gradgG(z; a)‖ − n (z1)∣∣∣

∣

< ":This �rst assertion follows from (1).For the se
ond assertion, 
onsider gradgG(z;a)
‖gradgG(z;a)‖ 
lose to � (dist (z;�)<r4). It is a 
ontinuous fun
tion in z (for any �xed a ∈ Z) and 
an beextended 
ontinuously to �, be
ause � is C2-smooth. As z → z1 wherez1 ∈ � is �xed, this fun
tion will tend to n (z1), be
ause the gradient ofGreen's fun
tion on the boundary is pointing inward. The uniformity ina ∈ Z follows using the 
ontinuity in a and the 
ompa
tness of Z:This se
ond assertion, with the 
onformal proje
tion z∗ gives that forall " > 0 and � ∈ E there exists �4 = �4 (�) > 0 su
h that for all a ∈ Z,z ∈ G with gG(z; a) < �4, z ∈ E (�; r0) and z∗ (z) = '−1 [�; arg' (�; z)℄ wehave

∣

∣

∣

∣

gradgG1(z; a)
‖gradgG1(z; a)‖ − n (z∗(z))∣∣∣

∣

< ": (7)Similar argument 
an also be applied for the 
onformal map ' (�; z), be-
ause Re log' (�; z) is a Green's fun
tion of E (�; r3). This yields that forall " > 0 and � ∈ E there exists �5 = �5 (�) > 0 su
h that for all z ∈ G
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∣

∣

∣

∣

gradRe log' (�; z)
‖gradRe log' (�; z)‖ − n (z∗(z))∣∣∣

∣

< ": (8)Now we 
ombine (1), (7) and (8) with " = 1=16. When
e there exists�6 > 0 (a
tually, �6 = min (�5 (�) ; C2�4 (�) : � ∈ E)) su
h that for alla ∈ Z, � ∈ E , z ∈ G with dist (z;�) < �6, z ∈ E (�; r3) we have
∣

∣

∣

∣

gradRe log' (�; z)
‖gradRe log' (�; z)‖ −

gradgG(z; a)
‖gradgG(z; a)‖ ∣∣∣∣ < 18 : (9)Now we are going to estimate the integral in the Proposition. Fix z ∈ �arbitrarily. There exists � ∈ E su
h that D (z; r5) ∩ G ⊂ H� . If � is small(� < �6), then 
�(a) ∩D (z; r5) is a single Jordan ar
 (if not empty) and
�(a)\D (z; r5) is union of �nitely many Jordan ar
s and 
urves. Moreover,sin
e the length |
�(a)| of 
�(a) tends to the length |�| of � as � → 0uniformly in a ∈ Z (see (7)), the gradients of Green's fun
tions 
lose to� are bounded. In parti
ular, there exists C8 > 0 su
h that for all a ∈ Z,0 < � 6 �6, we have |
�(a)| 6 C8 |�|.We split the integral in the Proposition into two integrals as follows:denote by 
(1) the Jordan ar
 
�(a) ∩D (z; r5) and by 
(2) the remainingpart of 
�(a), 
(2) = 
�(a)\D (z; r5). On 
(2), the estimate is easy: � ∈ 
(2),so |z − w| > r5 and �
(2) |dw|

|z − w| 6 C8|�| 1r5whi
h is bounded from above for all small � (0 < � 6 �6).On 
(1), we use the \
onformal proje
tion" (on H�) to 
hange the inte-gration from w ∈ 
(1) to w∗ ∈ � and the 
omparison of the angles betweengradients (see (9)) to transfer the ar
 length measure on 
(1) onto � andwe estimate it there as follows. First,�
(1) |dw|
|w−z| 6

�
(1) C4 |dw|
|w−w∗|+ |w∗−z| 6 C4 �
(1) |dw|C−12 �+ |w∗−z| ; (10)where we used the \reverse triangle" inequality (4), and by (1), |w − w∗| >dist(w;�) > 1C2 �. We will 
ontinue this estimate later by applying thesubstitution w = w (w∗).



132 S. KALMYKOV, B. NAGYWe may assume that 
(1) is parametrized by t with respe
t to the ar
length, w = w(t), |dw| = dt, and we may assume that the dire
tion ofiw′(t) and the dire
tion of the gradient of gG(·; a) at w(t) 
oin
ide, i.e.(Re(iw′(t)); Im(iw′(t))= 1
‖gradgG (w (t) ; a)‖ ( ��xgG (w (t) ; a) ; ��y gG (w (t) ; a)) : (11)We need an upper estimate of the modulus of the derivative of w as afun
tion of w∗, that is, a lower estimate on the modulus of the derivativeof w∗ (w (t)).ddtw∗(w (t))= ddw'−1 [�; exp i Im log' (�;w)℄= 1'′ (�;w∗) · exp (i Im log' (�;w)) i · ddt Im log' (�;w(t)) :(12)Here, the modulus of the �rst fa
tor is bounded from below by 1=C7, these
ond fa
tor has modulus one. To estimate the third fa
tor from below,we write ddt Im log' (�;w (t)) = Im ddt log' (�;w (t))= −Re(i'′ (�;w (t))' (�;w (t)) · w′(t)) : (13)Here we 
ompare iw′(t) with gradgG1(·; a) and ('′' ) with gradRe log' asfollows. If ' = u+ iv, then'′' = ux + ivxu+ iv = uxu+ vxvu2 + v2 + iuvx − vuxu2 + v2 = uxu+ vxvu2 + v2 − iuyu+ vyvu2 + v2 ;and gradRe log' = grad12 log(' �') = (uxu+ vxvu2 + v2 ; uyu+ vyvu2 + v2 ) :
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an 
ontinue (13)= −Re((iw′ (t))(uxu+ vxvu2 + v2 + iuyu+ vyvu2 + v2 )

)= −〈(Re (iw′(t)) ; Im (iw′(t))) ; (gradRe log')(w(t))〉= −‖(gradRe log')(w(t))‖
×

〈(Re (iw′(t)) ; Im (iw′(t))) ; (gradRe log') (w (t))
‖(gradRe log') (w (t))‖〉 :Here, the fa
tor in front of the s
alar produ
t is bounded from below:

‖(gradRe log') (w (t))‖ = ∣∣∣
∣

∣

'′ (w (t))' (w (t)) ∣∣∣∣∣ = ∣∣∣∣'′ (w (t))' (w (t)) ∣∣∣∣ > C6and C6 is positive.In the s
alar produ
t there are two unit ve
tors and by (9), their distan
eis at most 1=8 (small). Therefore the s
alar produ
t is at least 1 − 1128 :Summarizing these lower estimates for the fa
tors appearing in (12), we
an write
∣

∣

∣

∣

ddtw∗ (w (t))∣∣∣
∣

>
1C7C6(1− 1128) :Therefore we 
an use this estimate in (10) and 
ontinue it with

6 C4C7C6 (1− 1128)−1 �
(1)∗

|dw∗|C−12 �+ |w∗ − z| ;where w∗ runs through 
(1)∗ = {w∗ = w∗ (�;w) : w ∈ 
(1)} ⊂ �. For sakeof 
onvenien
e, we 
hange notation � = w∗ (and |d�| = |dw∗|), this waywe have to estimate = C4C7C6 128127 �
(1)∗

|d�|C−12 �+ |� − z| :Now we use that 
(1)∗ ⊂ D (z; r5) ∩ � ⊂ �E (�; r3) ∩ � and (3) so thetangents of � at z′ ∈ �E (�; r3) ∩ � and at z1 di�er at most �16 , and if weuse ar
 length parametrization of 
(1)∗ , � = �(s), with z = �(0); then
os( �16) |s| 6 |�(s) − z| 6 |s|:



134 S. KALMYKOV, B. NAGYWe also have an upper estimate for the length of 
(1)∗ : ∣∣
∣

(1)∗

∣

∣

∣
6 2r5
os(�=16) :Therefore we 
an 
ontinue the estimate again (with C9 = C4 C7C6 128127 )

6 2C9 2r5= 
os(�=16)�0 dsC−12 �+ 
os (�=16) s = 2C9
os �16 log(1 + C2 2r5� )
6 |log �| 2C9
os �16 + 2C9
os �16 log ((1 + C2) 2r5) :So summing up the estimates on 
(2) and on 
(1), the proposition is proved.

�Using this proposition we 
an prove the main result of this paper.Theorem 1. Let D ⊂ C∞ be a �nitely 
onne
ted domain and its boundary� := �D be �nite union of C2 smooth Jordan 
urves. Let Z ⊂ D be a 
losedset. Let f : D → C∞ be a meromorphi
 fun
tion on D su
h that all its polesare in Z. Denote by fr the sum of prin
ipal part of f (with fr (∞) = 0)and let fh be the holomorphi
 part of f in D. Denote the total order ofthe poles of f by n. Then f = fr + fh and there exists C = C (D;Z) > 0depending on D and Z only su
h that if n > 2 we have
‖fr‖�D ; ‖fh‖�D 6 C log (n) ‖f‖�D : (14)Proof. We may assume that D is bounded domain. We 
onsider the levellines of gD (:; a): {w ∈ D : gD (w; a) = �} (where a ∈ Z) and by Proposi-tion 1, if � is small enough, or, with � = 1=n, and n > 1=�2 then these are�nite union of smooth Jordan 
urves. It is easy to see that there is an outer
urve and all the other 
urves are lying inside. Fix the orientation of theJordan 
urves su
h way that the outer 
urve is dire
ted 
ounter
lo
kwiseand the other 
urves lying inside it are dire
ted 
lo
kwise. Therefore theinterior of this 
ontour is 
ontained in D.Moreover, there is �7 > 0 su
h that if dist (z;�) < �7, z ∈ G, then forall a ∈ Z, gG (z; a) < �1. This follows from the upper (right) estimate in(1), and �7 depends only on D and Z.Fix a ∈ Z and 
onsider 
 := {w ∈ D : gD (w; a) = 1=n}.



ON ESTIMATE OF THE NORM OF THE HOLOMORPHIC COMPONENT135We use the Bernstein{Walsh estimate for meromorphi
 fun
tions (forthe polynomial 
ase, see e.g. [15℄ p. 156, or on p. 624 of the english trans-lation of [4℄), so we write for w ∈ 

|f (w)| 6 ‖f‖� exp(∑b gD (w; b))where the sum is taken for all poles b of f 
ounting order of the poles.We assume that 1n < C2�7, therefore gG (z; b) < �1 (for all b ∈ Z), hen
ewe 
an apply (2) to estimate gD (w; b) with gD (w; a) and 
ontinue theestimate

6 ‖f‖� exp (nC3gD (w; a)) = ‖f‖� eC3 :Now we apply Cau
hy integral formula for f as follows: we use f = fh+frde
omposition and if z is on the outer boundary of �, then we apply Cau
hyintegral formula on unbounded domain for fr (see e.g. [3℄, p. 223 or [13℄,volume I, p. 318) and in other 
ases, we apply Cau
hy integral formula forholomorphi
 fun
tions. This way we 
an write for z ∈ �fr (z) = 12�i �
 f (w)w − z dw:This fr is a rational fun
tion with fr (∞) = 0 and it is easy to see that fr
oin
ide with the sum of prin
ipal parts. We 
an estimate fr as follows atz using Proposition 1
|fr (z)| 6

12� ‖f‖
 �
 1
|w − z| |dw| 6

eC32� ‖f‖� · C5 logn:Using fh = f − fr and the assumption n > 2, there exists C10 > 0independent of n su
h thateC32� C5 (logn) + 1 6 C10 logn:Setting n1 := max(2; �−12 ; (C2�7)−1), estimate (14) is proved for fr andfh when n > n1.If 2 6 n < n1, then �x any a0 ∈ Z. Denote the order of the pole of f ata0 by n0 (if f is holomorphi
 at a0, then we let n0 = 0). Considerf∗ ("; z) := f (z) + "(z − a0)n0+n1−n :



136 S. KALMYKOV, B. NAGYThen f∗ ("; z) is a meromorphi
 fun
tion su
h that sum of prin
ipal parts isf∗r ("; z) = fr (z)+ "(z−a0)n0+n1−n , holomorphi
 part is the same (f∗h ("; z) =fh (z)) and as "→ 0, then ‖f∗ ("; :)‖�D → ‖f‖�D, ‖f∗r ("; :)‖�D → ‖fr‖�D.Applying the previous 
ase for f∗ ("; :) and then letting " → 0, we obtainthe theorem (with C = C10 log (n1) = log 2). �A
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