
úÁ�ÉÓËÉ ÎÁÕÞÎÙÈÓÅÍÉÎÁÒÏ× ðïíé�ÏÍ 440, 2015 Ç.S. Kalmykov, B. NagyON ESTIMATE OF THE NORM OF THEHOLOMORPHIC COMPONENT OF A MEROMORPHICFUNCTION IN FINITELY CONNECTED DOMAINSAbstrat. In this paper we extend Gonhar-Grigorjan type esti-mate of the norm of holomorphi part of meromorphi funtions in�nitely onneted Jordan domains with C2 smooth boundary whenthe poles are in a ompat set. A uniform estimate for Cauhy typeintegral is also given.
§1. IntrodutionLandau investigated holomorphi funtions in the unit disk D with

‖f‖�D
6 1 where ‖:‖�D

denotes the sup norm over the boundary �D of
D. He showed that the absolute value of the sum of �rst n oeÆientsof Malaurin series for suh funtions has order of growth logn (see [11℄,pp. 26-28). L.D. Grigorjan generalized this in the following sense, see [7℄.Consider meromorphi funtions in the unit disk with poles in some �xedompat subset of the unit disk and with total order n. Then the growthof the norm on the unit irle of sum of the prinipal parts is logn. It iseasy to see that the ase when the origin is the only pole yields Landau'sresult. More generally, on simply onneted domains with smooth bound-ary, when there is no restrition on the loation of the poles, then we getlinear growth for the norm (instead of logn; see [6℄).Let us introdue the sup norm of meromorphi funtions f on a domainD as follows:

‖f‖�D := sup{lim sup�→z |f (�)| : z ∈ �D} :In [5℄ A.A. Gonhar and L.D. Grigorjan proved the following theorem.Theorem. Let D ⊂ C be a simply onneted domain and its boundary beC1 smooth. Let f : D → C∞ be a meromorphi funtion on D suh thatit has m di�erent poles. Denote by fr the sum of prinipal parts of f (withKey words and phrases: meromorphi funtions, Green's funtion, onformalmappings. 123



124 S. KALMYKOV, B. NAGYfr (∞) = 0) and let fh be the holomorphi part of f in D. Denote the totalorder of the poles of f by n. Then f = fr+ fh and there exists C1 (D) > 0depending on D only suh that
‖fh‖�D 6 C1 (D)m (1 + logn) ‖f‖�D :Later, it was proved in [8℄ that on �nitely onneted domains if thepoles an be anywhere, then the growth of the norm is linear again.The results mentioned above have several appliations in e.g. Pad�eapproximation (see e.g. [1, 12℄), estimating Faber polynomials (see [17℄and [10℄) or polynomial inequalities (see, e.g. [9℄).We are going to extend this Theorem on �nitely onneted domainswhen the poles are in a ompat set (see also [8℄ and [7℄).

§2. Auxiliary toolsWe put D (z; r) := {w ∈ C : |z − w| < r}. We denote Green's funtionof domain G ⊂ C∞ with pole at a by gG (:; a), for potential theory werefer to [15℄ and [16℄. If v = (v1; v2) ∈ R2, then we use ‖v‖ :=√v21 + v22 =
|v1 + iv2|. If � is a Jordan urve or union of �nitely many Jordan urves,then Ext� denotes the unbounded omponent of C \ �. If H ⊂ C is aompat set, then the exterior boundary of H is the boundary of theunbounded omponent of C \H . If w is a omplex number, then argw :=w= |w| (if w 6= 0) and arg 0 := 0.Lemma 1. Let G ⊂ C∞ be a �nitely onneted domain and its boundary� := �G be �nite union of C2 smooth Jordan urves. Let Z ⊂ G be alosed set.Then there exist �1 > 0, C2 > 0 suh that for all a ∈ Z and � ∈ (0; �1)the set {gG (z; a) = �} is �nite union of smooth Jordan urves and if z issuh that gG (z; a) = �, then gradgG (z; a) 6= 0 and1C2 dist (z;�) 6 gG (z; a) 6 C2dist (z;�) : (1)Furthermore, there exists C3 > 0 suh that for all a; b ∈ Z and z ∈ G withgG (z; a) ; gG (z; b) < �1, we have1C3 gG (z; b) 6 gG (z; a) 6 C3gG (z; b) : (2)Proof. Let r0 > 0 be so small that for all 0 < r 6 r0 we have thatD(z; r) ∩ � is a single Jordan ar and D (z; r) ∩ G is a simply onneteddomain for all z ∈ �, and r0 < 12dist(Z;�) and r0 is less than 1=4 times



ON ESTIMATE OF THE NORM OF THE HOLOMORPHIC COMPONENT125the distane between the di�erent omponents of � and we also requirethat the normal vetors n(z′) to � at z′ ∈ D (z; r) ∩ � pointing inwardwith unit length satisfy
|n (z′)− n (z)| < �16 : (3)Sine G is �nitely onneted, any gG(z; a) has �nitely many ritialpoints (see [2℄, p. 76 and [3℄, p. 410). Moreover, sine �G is also C2 smooth,the union of these ritial points for a ∈ Z stays away from �G at posi-tive distane. Indeed, suppose indiretly that: zn → z∞ (�G is ompat),an → a∞ (a∞ ∈ Z sine Z is losed on C∞) and gradgG(zn; an) = 0.Then, hoosing a suitable subsequene, gG(z; an) onverges loally uni-formly to gG(z; a∞) in a neighborhood of z∞, say D (z∞; r) ∩ G. We alsoknow that gradgG(z; an) onverges loally uniformly to gradgG(z; a∞) onD (z∞; r) ∩ G, they extend ontinuously to D (z∞; r) ∩ � and they areuniformly bounded (for all n and z ∈ D (z∞; r) ∩G).It follows using standard steps that gradgG (z; a) is ontinuous whenz ∈ G ∪ � \ Z, a ∈ Z. Indeed, ontinuity is obvious if z ∈ G \ Z, a ∈ Z. Ifz ∈ � and an ∈ Z arbitrary, an → a∞, we do the following. Let �0 be theomponent of � ontaining z and �1 be a C2 smooth Jordan urve inG suhthat �1 ⊂ {� ∈ G : dist (�;�0) < r0}. LetG2 be the domain determined by�0 and �1, i.e. if �1 ⊂ Int�0, then G2 = Int�0∩Ext�1 and let G+2 := Int�0,otherwise G2 = Int�1 ∩ Ext�0 and let G+2 := Ext�0 ∪ {∞}. Now apply-ing Riemann mapping theorem and the Kellogg-Warshawski theorem (seee.g. [14℄, Theorem 3.6, p. 49), we obtain a onformal map ' from G+2 onto

D suh that ' (�0) = �D, ' (�1) ⊂ D is a Jordan urve, and ' is a on-formal map from G2 onto ' (G2) and ' is C2 smooth on the losure ofG2. Consider  n (w) := gG ('−1 [w℄ ; an) and  ∞ (w) := gG ('−1 [w℄ ; a∞).They are harmoni on w ∈ ' (G2) and have zero value on the unit irle,so we an extend all these funtions by reetion priniple, to some �xeddomain G3 where �D ⊂ G3. We know that  n (w) −  ∞ (w) → 0 uni-formly when w ∈ ' (�1) ⊂ �G2 and by reetion priniple. this holds on�G3 \ ' (�1) too, hene on the whole �G3. Sine �D is ompat subset ofG3, grad ( n (w) −  ∞ (w)) → 0 uniformly in w ∈ �D and the C2 smooth-ness of ' (and '−1) shows gradgG (z; an) → gradgG (z; a∞) as n → ∞,uniformly in z ∈ �0, hene for all z ∈ �.These imply that gradgG(z∞; a∞) = 0, whih ontradits that �G is C2smooth.



126 S. KALMYKOV, B. NAGYTherefore, there exists r1 > 0 (we may assume that r1 < r0) suh thatfor any z ∈ �; the losure of D (z; r1) does not ontain any ritial pointsof gG(·; a), a ∈ Z:Consider the in�mum and supremum of
{‖gradgG(�; a)‖ : a ∈ Z; � ∈ G; dist(�;�) < r1} ;and it is easy to see that they are �nite and positive. Hene there existC2 > 0, r2 > 0 suh that for all z ∈ G, dist(z;�) < r2, a ∈ Z, we have (1).If we apply this step twie and take C3 = C22 , then we obtain (2). �In the following Lemma, for de�niteness, we assume that imaginary partof logarithm (of a nonzero omplex number) is in [0; 2�).Lemma 2. Let now G be a bounded, simply onneted domain with C2smooth boundary, and ' be a onformal mapping from G onto D:We de�nethe following onformal projetion: if � ∈ G, '(�) 6= 0; then let�∗ = �∗('; �) := '−1 [exp i Im log'(�)℄ :This mapping is uniformly ontinuous away from '−1[0℄: Furthermore,there exists C4 = C4(G) > 0 suh that for any � ∈ G with '(�) 6= 0 and� ∈ �G we have the following \reverse triangle" inequality:

|� − �∗|+ |�∗ − �| 6 C4 |� − �| : (4)Proof. The Kellogg-Warshawski theorem implies that ' and '′ extendontinuously to G. Denote byM1 := inf {|'′(�)| : |�| < 1} ; M2 := sup {|'′(�)| : |�| < 1} ;hene 0 < M1 6 M2 < ∞. The mapping � 7→ �∗ is well de�ned (if'(�) 6= 0), and exp i Im log' (�) is ontinuous (when � ∈ G \ '−1 (0)).Therefore the uniform ontinuity follows. As for the \reverse triangle"inequality, let � ∈ D, � 6= 0, �∗ := arg � = �= |�| and |�1| = 1 be arbitrary.It is easy to see that |�∗ − �1| 6 2 |� − �1| and |� − �∗| 6 |� − �1|. Let usnote that if � = 0 and |�∗| = 1, |�1| = 1, then |�∗ − �1| 6 2 |� − �1| and
|� − �∗| = |� − �1|. In any ase, we have |� − �∗| + |�∗ − �1| 6 3 |� − �1|.Now we use the onformal mapping ' and the substitutions � = '(�),�∗ = '(�∗) and �1 = '(�). Obviously, |� − �∗| 6 M2 |� − �∗|, |�∗ − �| 6M2 |�∗ − �1| and M1 |� − �1| 6 |� − �|. Therefore, |� − �∗| + |�∗ − �| 6M2 (|� − �∗|+ |�∗ − �1|) 6 3M2 |� − �1| 6 3M2M1 |� − �| : We established the\reverse triangle" inequality. �
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Fig. 1. G and some of the attahed, simply onneted sets E (�; r3).Furthermore, it follows from the proof that (4) holds when ' (�) = 0,�∗ is any point from �G and � ∈ �G.

§3. Main resultsMain tool is an estimate for a Cauhy type integral. Its importane ismentioned in [5℄ and similar estimates were also established by K}ov�ari andPommerenke in [10℄ (see also [17℄, p. 185).Proposition 1. Let G ⊂ C∞ be a �nitely onneted domain and its bound-ary � := �G be �nite union of C2 smooth Jordan urves. Let Z ⊂ G be alosed set. Then there exists �2 > 0 suh that for all 0 < � < �2, �(a) =
{w ∈ G : gG (w; a) = �} is �nite union of C2 smooth Jordan urves (forany a ∈ Z) andC5 := sup





|log (�)|−1 ��(a) |dw|
|w − z| : a ∈ Z; z ∈ �; �2 > � > 0





<∞:Proof. We use r0; r1; r2 introdued in the proof of Lemma 1.There exists r3 > 0 suh that r3 < r0 and for every � ∈ � and r > 0,r < r3 there exists a simply onneted domain E (�; r) suh that E (�; r) ⊂D (�; r) ∩ G, �E (�; r) is a C2 smooth Jordan urve, D (�; 0:99r) ∩ G ⊂E (�; r) and the boundaries oinide in the sense: �E (�; r)∩� = �E (�; r)∩D (�; 0:99r) where D (�; 0:99r) means the losed disk here. We may assumethat r3 < r1; r2. Sometimes we all E (�; r)'s attahed domains.Fix � ∈ � arbitrarily. Let ' = ' (�; z) = ' (�; r3; z) be a onformal mapfrom E (�; r0) onto D. Note that ', '′ extend ontinuously to �E (�; r),



128 S. KALMYKOV, B. NAGYthis follows from the Kellogg-Warshawski theorem. Sine � is ompat,
{z ∈ G ∪ � : dist (z;�) 6 r3=4}is also ompat therefore disks with enters from this set and with radiir3=2 over this set. Beause of ompatness, there is a �nite set E , E ⊂ �suh that

⋃

{D (�; r3=2) : � ∈ E} ⊃ {z ∈ G ∪ � : dist (z;�) 6 r3=4}and sine the length of � is �nite, we may require that eah (open) arfrom � \ E has length r3=2 at most. Then
⋃

{E (�; r3) : � ∈ E} ⊃ {z ∈ G ∪ � : dist (z;�) 6 r3=4}and for all z ∈ � there exists E1 ⊂ E onsisting of at most two pointssuh that D (z; r3=4) an be overed with disks with radii r3=2 with thoseenters, D (z; r3=4) ⊂
⋃

{D (�; r3=2) : � ∈ E1}, and the disk an be alsoovered with the orresponding simply onneted domains: D (z; r3=4) ⊂
⋃

{E (�; r3) : � ∈ E1}.Let C6 := inf {|'′ (�; z)| : � ∈ E ; z ∈ E (�; r3)} ;C7 := sup {|'′ (�; z)| : � ∈ E ; z ∈ E (�; r3)} :It is easy to see that 0 < C6 6 C7 <∞.We use the onformal maps ' (�; z), where � ∈ E , to ompare any pointon the Green level lines with the boundary � of G as follows.Consider the \setors"
{w ∈ D : 0 6 |w| < 1; argw = arg' (�; z) ; z ∈ �E (�; r3) ∩ �}where � ∈ E .These are losed sets in D and we take inverse images of the \semi-opensetors": H := ∪�∈EH� ;H� := {'−1 [�;w℄ : 0 < |w| 6 1; argw = arg'(�; z);z ∈ Int� (�E(�; r3) ∩ �)};where Int� (:) means the relative interior to �. By onstrution, H� ∩G isan open set, H overs � (� ⊂ H) and H ∩G is an open set too. Thereforethere exists r4 > 0 suh that dist (�; G \H) > r4 where r4 depends on G



ON ESTIMATE OF THE NORM OF THE HOLOMORPHIC COMPONENT129

Fig. 2. Two \setors" in the onformal projetion.
Fig. 3. Conformal projetion.only. We may assume that r4 < r3=4. We obtain the following onformalprojetion property:if z ∈ G; dist (z;�) < r4; then ∃� ∈ E : z∗ = '−1 [�; arg' (�; z)℄ ∈ �: (5)Note that the hoie of � is loal: if z an be projeted onformally using'−1 [�; arg' (�; :)℄, then the same mapping is de�ned and an be appliedin a neighborhood of z. Obviously, this projetion z 7→ z∗ is ontinuous(with �xed �). This onformal projetion is depited on Figure 3.We show that there exists r5 > 0 suh that for all z ∈ � there exists� ∈ E suh that D (z; r5) ∩ G ⊂ H� , in other words, the same projetionan be applied in a uniformly large neighborhood of arbitrary boundarypoint. Let h� (z) := dist (z; (G ∪ �) \H�) (z ∈ C, � ∈ E), this h� (:) isontinuous, hene D (z; h� (z)) ⊂ H� . Put h (z) := max (h� (z) : � ∈ E)whih is ontinuous too. Sine H� 's over �, for all z ∈ � there exists� ∈ E suh that h� (z) > 0. Hene h (z) > 0, and is ontinuous on the



130 S. KALMYKOV, B. NAGYompat �, therefore inf {h (z) : z ∈ �} > 0. Let r5 be the minimum ofthis inf and r4, obviously r5 depends only on G and is independent of �.Now we show that the level lines of Re log' (�; ·) and gG(·; a), a ∈ Zare \almost parallel" if we are lose to �. We need to estimate the anglesmade by the level lines of Re log' (�; ·) and gG(·; a). It is well known thatif f and g are holomorphi funtions, then the level lines of Re f and Re gmake angle aros 〈gradRe f; gradRe g〉
‖gradRe f‖ ‖gradRe g‖ = aros Re(f ′g′)

|f ′||g′| : (6)We need the following two assertions: the �-level lines of gG onvergeuniformly to � as � → 0, and similar uniform onvergene holds for thetangents of those. More preisely,sup {dist (z;�) : gG(z; a) = �} → 0uniformly in a ∈ Z, and if n(z0) denotes the normal vetor to � at z0 ∈ �pointing inward with unit length, then ∀" ∃�3 > 0 ∀a ∈ Z, ∀ z ∈ G,
∃ z1 ∈ �, gG (z; a) < �3, |z − z1| < �3 we have

∣

∣

∣

∣

gradgG(z; a)
‖gradgG(z; a)‖ − n (z1)∣∣∣

∣

< ":This �rst assertion follows from (1).For the seond assertion, onsider gradgG(z;a)
‖gradgG(z;a)‖ lose to � (dist (z;�)<r4). It is a ontinuous funtion in z (for any �xed a ∈ Z) and an beextended ontinuously to �, beause � is C2-smooth. As z → z1 wherez1 ∈ � is �xed, this funtion will tend to n (z1), beause the gradient ofGreen's funtion on the boundary is pointing inward. The uniformity ina ∈ Z follows using the ontinuity in a and the ompatness of Z:This seond assertion, with the onformal projetion z∗ gives that forall " > 0 and � ∈ E there exists �4 = �4 (�) > 0 suh that for all a ∈ Z,z ∈ G with gG(z; a) < �4, z ∈ E (�; r0) and z∗ (z) = '−1 [�; arg' (�; z)℄ wehave

∣

∣

∣

∣

gradgG1(z; a)
‖gradgG1(z; a)‖ − n (z∗(z))∣∣∣

∣

< ": (7)Similar argument an also be applied for the onformal map ' (�; z), be-ause Re log' (�; z) is a Green's funtion of E (�; r3). This yields that forall " > 0 and � ∈ E there exists �5 = �5 (�) > 0 suh that for all z ∈ G



ON ESTIMATE OF THE NORM OF THE HOLOMORPHIC COMPONENT131with z ∈ E (�; r3), dist(z;�) < �5 we have
∣

∣

∣

∣

gradRe log' (�; z)
‖gradRe log' (�; z)‖ − n (z∗(z))∣∣∣

∣

< ": (8)Now we ombine (1), (7) and (8) with " = 1=16. Whene there exists�6 > 0 (atually, �6 = min (�5 (�) ; C2�4 (�) : � ∈ E)) suh that for alla ∈ Z, � ∈ E , z ∈ G with dist (z;�) < �6, z ∈ E (�; r3) we have
∣

∣

∣

∣

gradRe log' (�; z)
‖gradRe log' (�; z)‖ −

gradgG(z; a)
‖gradgG(z; a)‖ ∣∣∣∣ < 18 : (9)Now we are going to estimate the integral in the Proposition. Fix z ∈ �arbitrarily. There exists � ∈ E suh that D (z; r5) ∩ G ⊂ H� . If � is small(� < �6), then �(a) ∩D (z; r5) is a single Jordan ar (if not empty) and�(a)\D (z; r5) is union of �nitely many Jordan ars and urves. Moreover,sine the length |�(a)| of �(a) tends to the length |�| of � as � → 0uniformly in a ∈ Z (see (7)), the gradients of Green's funtions lose to� are bounded. In partiular, there exists C8 > 0 suh that for all a ∈ Z,0 < � 6 �6, we have |�(a)| 6 C8 |�|.We split the integral in the Proposition into two integrals as follows:denote by (1) the Jordan ar �(a) ∩D (z; r5) and by (2) the remainingpart of �(a), (2) = �(a)\D (z; r5). On (2), the estimate is easy: � ∈ (2),so |z − w| > r5 and �(2) |dw|

|z − w| 6 C8|�| 1r5whih is bounded from above for all small � (0 < � 6 �6).On (1), we use the \onformal projetion" (on H�) to hange the inte-gration from w ∈ (1) to w∗ ∈ � and the omparison of the angles betweengradients (see (9)) to transfer the ar length measure on (1) onto � andwe estimate it there as follows. First,�(1) |dw|
|w−z| 6

�(1) C4 |dw|
|w−w∗|+ |w∗−z| 6 C4 �(1) |dw|C−12 �+ |w∗−z| ; (10)where we used the \reverse triangle" inequality (4), and by (1), |w − w∗| >dist(w;�) > 1C2 �. We will ontinue this estimate later by applying thesubstitution w = w (w∗).



132 S. KALMYKOV, B. NAGYWe may assume that (1) is parametrized by t with respet to the arlength, w = w(t), |dw| = dt, and we may assume that the diretion ofiw′(t) and the diretion of the gradient of gG(·; a) at w(t) oinide, i.e.(Re(iw′(t)); Im(iw′(t))= 1
‖gradgG (w (t) ; a)‖ ( ��xgG (w (t) ; a) ; ��y gG (w (t) ; a)) : (11)We need an upper estimate of the modulus of the derivative of w as afuntion of w∗, that is, a lower estimate on the modulus of the derivativeof w∗ (w (t)).ddtw∗(w (t))= ddw'−1 [�; exp i Im log' (�;w)℄= 1'′ (�;w∗) · exp (i Im log' (�;w)) i · ddt Im log' (�;w(t)) :(12)Here, the modulus of the �rst fator is bounded from below by 1=C7, theseond fator has modulus one. To estimate the third fator from below,we write ddt Im log' (�;w (t)) = Im ddt log' (�;w (t))= −Re(i'′ (�;w (t))' (�;w (t)) · w′(t)) : (13)Here we ompare iw′(t) with gradgG1(·; a) and ('′' ) with gradRe log' asfollows. If ' = u+ iv, then'′' = ux + ivxu+ iv = uxu+ vxvu2 + v2 + iuvx − vuxu2 + v2 = uxu+ vxvu2 + v2 − iuyu+ vyvu2 + v2 ;and gradRe log' = grad12 log(' �') = (uxu+ vxvu2 + v2 ; uyu+ vyvu2 + v2 ) :



ON ESTIMATE OF THE NORM OF THE HOLOMORPHIC COMPONENT133Now using (11) we an ontinue (13)= −Re((iw′ (t))(uxu+ vxvu2 + v2 + iuyu+ vyvu2 + v2 )

)= −〈(Re (iw′(t)) ; Im (iw′(t))) ; (gradRe log')(w(t))〉= −‖(gradRe log')(w(t))‖
×

〈(Re (iw′(t)) ; Im (iw′(t))) ; (gradRe log') (w (t))
‖(gradRe log') (w (t))‖〉 :Here, the fator in front of the salar produt is bounded from below:

‖(gradRe log') (w (t))‖ = ∣∣∣
∣

∣

'′ (w (t))' (w (t)) ∣∣∣∣∣ = ∣∣∣∣'′ (w (t))' (w (t)) ∣∣∣∣ > C6and C6 is positive.In the salar produt there are two unit vetors and by (9), their distaneis at most 1=8 (small). Therefore the salar produt is at least 1 − 1128 :Summarizing these lower estimates for the fators appearing in (12), wean write
∣

∣

∣

∣

ddtw∗ (w (t))∣∣∣
∣

>
1C7C6(1− 1128) :Therefore we an use this estimate in (10) and ontinue it with

6 C4C7C6 (1− 1128)−1 �(1)∗

|dw∗|C−12 �+ |w∗ − z| ;where w∗ runs through (1)∗ = {w∗ = w∗ (�;w) : w ∈ (1)} ⊂ �. For sakeof onveniene, we hange notation � = w∗ (and |d�| = |dw∗|), this waywe have to estimate = C4C7C6 128127 �(1)∗

|d�|C−12 �+ |� − z| :Now we use that (1)∗ ⊂ D (z; r5) ∩ � ⊂ �E (�; r3) ∩ � and (3) so thetangents of � at z′ ∈ �E (�; r3) ∩ � and at z1 di�er at most �16 , and if weuse ar length parametrization of (1)∗ , � = �(s), with z = �(0); thenos( �16) |s| 6 |�(s) − z| 6 |s|:



134 S. KALMYKOV, B. NAGYWe also have an upper estimate for the length of (1)∗ : ∣∣
∣
(1)∗

∣

∣

∣
6 2r5os(�=16) :Therefore we an ontinue the estimate again (with C9 = C4 C7C6 128127 )

6 2C9 2r5= os(�=16)�0 dsC−12 �+ os (�=16) s = 2C9os �16 log(1 + C2 2r5� )
6 |log �| 2C9os �16 + 2C9os �16 log ((1 + C2) 2r5) :So summing up the estimates on (2) and on (1), the proposition is proved.

�Using this proposition we an prove the main result of this paper.Theorem 1. Let D ⊂ C∞ be a �nitely onneted domain and its boundary� := �D be �nite union of C2 smooth Jordan urves. Let Z ⊂ D be a losedset. Let f : D → C∞ be a meromorphi funtion on D suh that all its polesare in Z. Denote by fr the sum of prinipal part of f (with fr (∞) = 0)and let fh be the holomorphi part of f in D. Denote the total order ofthe poles of f by n. Then f = fr + fh and there exists C = C (D;Z) > 0depending on D and Z only suh that if n > 2 we have
‖fr‖�D ; ‖fh‖�D 6 C log (n) ‖f‖�D : (14)Proof. We may assume that D is bounded domain. We onsider the levellines of gD (:; a): {w ∈ D : gD (w; a) = �} (where a ∈ Z) and by Proposi-tion 1, if � is small enough, or, with � = 1=n, and n > 1=�2 then these are�nite union of smooth Jordan urves. It is easy to see that there is an outerurve and all the other urves are lying inside. Fix the orientation of theJordan urves suh way that the outer urve is direted ounterlokwiseand the other urves lying inside it are direted lokwise. Therefore theinterior of this ontour is ontained in D.Moreover, there is �7 > 0 suh that if dist (z;�) < �7, z ∈ G, then forall a ∈ Z, gG (z; a) < �1. This follows from the upper (right) estimate in(1), and �7 depends only on D and Z.Fix a ∈ Z and onsider  := {w ∈ D : gD (w; a) = 1=n}.



ON ESTIMATE OF THE NORM OF THE HOLOMORPHIC COMPONENT135We use the Bernstein{Walsh estimate for meromorphi funtions (forthe polynomial ase, see e.g. [15℄ p. 156, or on p. 624 of the english trans-lation of [4℄), so we write for w ∈ 
|f (w)| 6 ‖f‖� exp(∑b gD (w; b))where the sum is taken for all poles b of f ounting order of the poles.We assume that 1n < C2�7, therefore gG (z; b) < �1 (for all b ∈ Z), henewe an apply (2) to estimate gD (w; b) with gD (w; a) and ontinue theestimate

6 ‖f‖� exp (nC3gD (w; a)) = ‖f‖� eC3 :Now we apply Cauhy integral formula for f as follows: we use f = fh+frdeomposition and if z is on the outer boundary of �, then we apply Cauhyintegral formula on unbounded domain for fr (see e.g. [3℄, p. 223 or [13℄,volume I, p. 318) and in other ases, we apply Cauhy integral formula forholomorphi funtions. This way we an write for z ∈ �fr (z) = 12�i � f (w)w − z dw:This fr is a rational funtion with fr (∞) = 0 and it is easy to see that froinide with the sum of prinipal parts. We an estimate fr as follows atz using Proposition 1
|fr (z)| 6

12� ‖f‖ � 1
|w − z| |dw| 6

eC32� ‖f‖� · C5 logn:Using fh = f − fr and the assumption n > 2, there exists C10 > 0independent of n suh thateC32� C5 (logn) + 1 6 C10 logn:Setting n1 := max(2; �−12 ; (C2�7)−1), estimate (14) is proved for fr andfh when n > n1.If 2 6 n < n1, then �x any a0 ∈ Z. Denote the order of the pole of f ata0 by n0 (if f is holomorphi at a0, then we let n0 = 0). Considerf∗ ("; z) := f (z) + "(z − a0)n0+n1−n :
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