А. М. Будылин, С. Б. Левин

К ВОПРОСУ О ПОСТРОЕНИИ АСИМПТОТИКИ ЯДРА РЕЗОЛЬВЕНТЫ ОПЕРАТОРА ШРЕДИНГЕРА В ЗАДАЧЕ РАССЕЯНИЯ ТРЁХ ОДНОМЕРНЫХ КВАНТОВЫХ ЧАСТИЦ, ВЗАИМОДЕЙСТВУЮЩИХ ПОСРЕДСТВОМ ФИНИТНЫХ ПАРНЫХ ОТТАЛКИВАТЕЛЬНЫХ ПОТЕНЦИАЛОВ

Введение

В работе [4] были впервые предложены равномерные по угловым переменным асимптотические на бесконечности в конфигурационном пространстве формулы для собственных функций абсолютно непрерывного спектра оператора Шредингера в случае системы трёх одномерных квантовых частиц с парными короткодействующими отталкивательными потенциалами. Упомянутые асимптотические формулы были получены в терминах формальных асимптотических разложение в рамках достаточно тонкого эвристического анализа. Настоящая работа имеет своей целью анонсировать новый подход к построению асимптотики (на бесконечности в конфигурационном пространстве) ядра резольвенты оператора Шредингера соответствующей квантовой задачи рассеяния трех тел, в рамках которого упомянутые выше асимптотики собственных функций могут быть получены строго. Следует подчеркнуть, что ограничение рассмотрений на случай финитных потенциалов не приводит к упрощению задачи по-существу, поскольку потенциал взаимодействия всех трёх частиц остаётся не убывающим на бесконечности, но позволяет отвлечься от некоторого числа технических деталей.

В связи с тематикой данной задачи мы должны упомянуть результаты работ [6] и [7], в которых получены оценки, доказывающие отсутствие сингулярного непрерывного спектра оператора Шрёдингера для широкого класса потенциалов парных взаимодействий в рамках

95

Ключевые слова: асимптотики ядра резольвенты, квантовая задача рассеяния трех тел, асимптотики собственных функций.

Работа выполнена при поддержке гранта СПбГУ 11.38.263.2014, РФФИ 14-01-0076015 А.

абстрактной теории. Наш подход, по-существу, близок к основополагающей работе [2] и в отличие от [6, 7], позволяет получить явные представления ядра резольвенты на непрерывном спектре на бесконечности в конфигурационном пространстве.

§1. ПРЕДВАРИТЕЛЬНЫЕ СВЕДЕНИЯ

Исходная постановка и редукция задачи. В исходной постановке рассматривается нерелятивистский гамильтониан *H*

$$H\psi = -\Delta\psi + \frac{1}{2}\sum_{1 \leq i \neq j \leq 3} v(z_i - z_j)\psi,$$
$$z_i \in \mathbb{R}, \quad \boldsymbol{z} = (z_1, z_2, z_3) \in \mathbb{R}^3, \quad \psi = \psi(\boldsymbol{z}) \in \mathbb{C},$$

 Δ – оператор Лапласа в \mathbb{R}^3 , v – чётная финитная интегрируемая функция $\mathbb{R}^3 \rightarrow [0, +\infty)$, определяющая двухчастичное взаимодействие. В этом случае существенная самосопряжённость оператора H в пространстве квадратично интегрируемых функций хорошо известна.

Для отделения движения центра масс мы ограничиваем гамильтониан на поверхность П, определяемую соотношением $\sum z_i = 0$. Допуская некоторую небрежность мы в дальнейшем через Δ будем обозначать оператор Лапласа–Бельтрами на плоскости П $\subset \mathbb{R}^3$. При этом на П удобно использовать любую пару $(x_i, y_i), i = 1, 2, 3$, так называемых якобиевых координат, однозначно определяемых соотношениями $x_i = \frac{1}{\sqrt{2}}(z_k - z_j), y_i = \sqrt{\frac{3}{2}}z_i$, индексы (i, j, k) здесь образуют чётные перестановки. Ввиду ортонормальности якобиевых координат и инвариантности оператора Лапласа–Бельтрами имеем $\Delta = \frac{\partial^2}{\partial x_i^2} + \frac{\partial^2}{\partial y_i^2}$, и наш оператор принимает вид

$$H = -\Delta + V, \quad V = \sum_{i=1}^{3} v_i, \quad v_i(x_i, y_i) = v(x_i).$$
(1.1)

Заметим, что носитель потенциала V лежит в бесконечной крестовой области.

Определим резольвенту оператора H: $R(\lambda) = (H - \lambda I)^{-1}$, $\lambda \notin [0, +\infty)$, здесь и далее I – тождественный оператор. Резольвенту $(H_0 - \lambda I)^{-1}$ невозмущённого оператора $H_0 = -\Delta$ будем обозначать через $R_0(\lambda)$.

Принцип предельного поглощения. Мы интересуемся задачей рассеяния в рамках так называемого стационарного подхода. В этом случае изучение волновых операторов заменяется на изучение предельных значений $R(E \pm i0)$ резольвенты рассматриваемого оператора, когда спектральный параметр λ садится на вещественную ось ($\lambda \rightsquigarrow E \pm i0, E \in (0, +\infty)$). Доказательство существования таких предельных значений в подходящей топологии как раз и составляет суть принципа предельного поглощения. Коль скоро существование предельных значений резольвенты установлено, исследование собственно волновых операторов проходит по известной стандартной схеме, см., например, [8, 11].

Существование предельных значений резольвенты $R(E \pm i0)$, как правило рассматривается в следующем слабом смысле (так называемый метод оснащённого гильбертова пространства, см. [9]). В этом случае в основное гильбертово пространство \mathcal{H} непрерывно вкладывается некоторое банахово пространство \mathcal{B} , что, в свою очередь, позволяет вложить \mathcal{H} в сопряженное к \mathcal{B} пространство \mathcal{B}^* с дальнейшим доказательством того, что $R(E \pm i\varepsilon) : \mathcal{B} \to \mathcal{B}^*$ имеет непрерывное продолжение при $\varepsilon \downarrow 0$. Таким образом, обобщённые собственные функции в этом случае трактуются как элементы пространства \mathcal{B}^* , а основным объектом изучения становится скалярное произведение $(R(E \pm i\varepsilon)\varphi,\varphi), \varphi \in \mathcal{B}$, при $\varepsilon \downarrow 0$. В дальнейшем для определённости мы ограничимся рассмотрением липь случая Im $\lambda \downarrow 0$.

Модель Фридрихса–Фаддеева. В модели Фридрихса–Фаддеева, см. [2, 8], в рамках принципа предельного поглощения невозмущённый оператор трактуется как оператор умножения на независимую переменную, в то время как возмущение представляяет собой интегральный оператор с гладким ядром. В приложениях по-существу это означает переход в двойственное импульсное представление. На эту точку зрения становимся и мы, хотя некоторый существенный анализ представляется естественным провести в исходном координатном представлении.

Для модели Фридрихса-Фаддеева характерен выбор в качестве вспомогательного пространства \mathcal{B} пространства гёльдеровых функций. Этим обстоятельством будет определяться и наш выбор вспомогательного пространства, в топологии которого будут рассматриваться предельные в слабом смысле значения резольвенты. Таким пространством в импульсном представлении будет пространство $H^{\mu,\theta}(\mathbb{R}^2)$ $(0 < \theta, \mu < 1)$ гёльдеровых функций с нормой

$$||f||_{\mu,\theta} = \sup_{\xi,\eta} (1+|\xi|^{1+\theta}) \Big(|f(\xi)| + \frac{|f(\xi+\eta) - f(\xi)|}{|\eta|^{\mu}} \Big).$$
(1.2)

Пространство функций в координатном представлении, образы Фурье которых лежат в $H^{\mu,\theta}(\mathbb{R}^2)$ мы будем обозначать через $\widehat{H}^{\mu,\theta}$.

Анализ особенностей резольвенты в импульсном представлении удобно провести в рамках так называемого альтернирующего метода Шварца, см. [1, 5, 10]. Отметим, что известные уравнения Фаддеева, см. [2], также можно интерпретировать как вариант альтернирующего метода.

Альтернирующий метод Шварца. В рассматриваемой задаче прежде всего обращает на себя внимание возможность деления переменных для частичного гамильтониана $H_i = -\Delta + v_i$. Тем самым, существование предельных значений резольвенты $R_i(\lambda) = (H_i - \lambda I)^{-1}$ легко контролируется. Как следствие, встаёт вопрос об учёте таких вкладов в резольвенту $R(\lambda)$ полного гамильтониана H с сумарным потенциалом $V = \sum v_i$.

Схема такого учёта известна в литературе под названием альтернирующего метода Шварца.

Обозначим через $\{G_i\}_{i=1}^n$ некоторый набор линейных операторов в комплексном векторном пространстве \mathcal{X} . Определим оператор $G = \sum_{i=1}^n G_i$. Предполагая, что все операторы $I - G_i$ биективны, положим $I - \Gamma_i = (I - G_i)^{-1}$. Оператор Γ_i называется оператором отражения относительно оператора G_i .

Суть альтернирующего метода Шварца сводится к следующему.

Биективность операторной матрицы
$$\boldsymbol{L} = \begin{pmatrix} I & \Gamma_1 & \dots & \Gamma_1 \\ \Gamma_2 & I & \dots & \Gamma_2 \\ \vdots & \vdots & \ddots & \vdots \\ \Gamma_n & \Gamma_n & \dots & I \end{pmatrix}$$
 в

пространстве \mathcal{X}^n эквивалентна биективности оператора I - G в пространстве \mathcal{X} . Более того, если операторная матрица γ является решением уравнения $\mathbf{L} \cdot \boldsymbol{\gamma} = \operatorname{diag}(\Gamma_1, \ldots \Gamma_n)$, где через $\operatorname{diag}(\Gamma_1, \ldots \Gamma_n)$ обозначена диагональная матрица, то оператор $\Gamma = \sum \gamma_{ij}$, где суммирование распространяется на все матричные элементы операторной матрицы $\boldsymbol{\gamma} = (\gamma_{ij})$, определяет обратный к I - G оператор равенством $(I - G)^{-1} = I - \Gamma$. Отметим, что если операторная матрица $\Gamma = L - I$ в подходящем банаховом пространстве ограничена и норма её меньше единицы, то

$$\Gamma = \sum \Gamma_i - \sum_{i \neq j} \Gamma_i \Gamma_j + \sum_{i \neq j \neq k} \Gamma_i \Gamma_j \Gamma_k - \dots$$

где ряд сумм понимается как сходящийся по норме. Эта формула как раз объясняет название метода.

Наконец, отметим, что равенство $(I + \Gamma)^{-1} = (I - \Gamma^2)^{-1}(I - \Gamma)$, сводит обращение операторной матрицы L к обращению операторной матрицы $I - \Gamma^2$. Но матрица Γ^2 в качестве компонент имеет суммы операторов вида $\Gamma_i \Gamma_j$ при $i \neq j$. В приложении к рассматриваемой задаче как раз результат анализа таких произведений привёл к искомому результату.

Для вложения нашей задачи в данную схему всё что нам нужно – это отделить свободную резольвенту $R_0(\lambda)$. При этом

$$R(\lambda) = R_0(\lambda)(I - G(\lambda))^{-1}, \quad G(\lambda) = \sum G_i(\lambda), \quad G_i(\lambda) = v_i R_0(\lambda).$$

Операторы отражения по отношению к $G(\lambda)$ или $G_i(\lambda)$ будут обозначаться, соответственно, через $\Gamma(\lambda)$ и $\Gamma_i(\lambda)$. Итак,

$$R(\lambda) = R_0(\lambda)(I - \Gamma(\lambda)). \tag{1.3}$$

§2. Краткое описание результатов

Далее мы предполагаем, что образ Фурье финитной функции v, определяющей двухчастичное взаимодействие, принадлежит $H^{\mu_0,\theta_0}(\mathbb{R})$ при некоторых $\mu_0 > 0$ и $\theta_0 > 0$.

Интегральное ядро оператора $\Gamma_j(\lambda)$ имеет вид

$$\Gamma_j(\boldsymbol{z}, \boldsymbol{z}'|\lambda) = v(x_j) \iint_{\mathbb{R}^2} d\boldsymbol{q} \, \frac{\psi_j(\boldsymbol{z}, \boldsymbol{q}) \overline{\psi_j(\boldsymbol{z}', \boldsymbol{q})}}{\boldsymbol{q}^2 - \lambda}$$

здесь dq – лебегова мера на плоскости импульсной переменной q = (k, p), двойственной к $z = (x_j, y_j)$ и $z' = (x'_j, y'_j)$, а ψ_j – обобщённая собственная функция непрерывного спектра оператора H_j , имеющая вид

$$\psi_i(\boldsymbol{z}, \boldsymbol{q}) = \varphi_i(x_i, k) e^{i y_j p},$$

где $\varphi_j(x,k)$ является решением одномерного уравнения Шредингера

$$\left(-\frac{d^2}{dx^2} + v(x)\right)\varphi(x,k) = k^2\varphi(x,k)$$

и определяется данными рассеяния соответствующей одномерной задачи рассеяния.

В некотором смысле ключём к доказательству анонсируемого результата явилось вычисление асимптотики ядра оператора $\Gamma_j(\lambda)\Gamma_k(\lambda)$ при $|\boldsymbol{z}| \to \infty$. Оно позволило получить разбиение оператора $\Gamma_j(\lambda)\Gamma_k(\lambda)$ в сумму

$$\Gamma_{j}(\lambda)\Gamma_{k}(\lambda) = A_{jk}(\lambda) + B_{jk}(\lambda),$$

где $A_{jk}(\lambda)$ – оператор ранга 2, включающий в себя всю «плохую» часть данного произведения, т.е. ту, которая выводит за рамки пространства $L_2(\mathbb{R}^2)$ при $\mathrm{Im}\lambda \downarrow 0$, а оператор $B_{jk}(\lambda)$ – компактный оператор в $\widehat{H}^{\mu,\theta}$, сильно непрерывный по λ при $\mathrm{Im}\lambda \ge 0$ и $0 < c_1 \leq \mathrm{Re}\lambda \leq c_2 < \infty$, если μ и θ достаточно малы (в частности, меньше μ_0 и θ_0 , соответственно). Предельный оператор $A_{jk}(E+i0)$ на функциях из $\widehat{H}^{\mu,\theta}$ действует в двумерное пространство функций вида

$$v(x_j)\varphi_j(x_j,0)|y_j|^{-1/2}e^{i|y_j|\sqrt{E}}(C_1\chi(y_j)+C_2\chi(-y_j)), \qquad (2.1)$$

где χ можно определить как сглаженную характеристическую функцию полуоси $(T, +\infty)$ при $T \gg 1$. Пространство таких функций имеет корневые аналитические особенности на оси в импульсном представлении, именно особенности вида $(p \pm \sqrt{E})^{-1/2}$. Мы назовём так описанный образ оператора $A_{jk}(\lambda)$ пространством функций типа A_j . Алгебраическую сумму пространств типа A_j по всем значениям j обозначим через D.

Следует подчеркнуть, что именно необходимость выделения такого оператора как A_{jk} является существенной отличительной чертой данной задачи – задачи рассеяния трёх одномерных частиц – в сравнении со случаем задачи рассеяния трёх трёхмерных частиц, рассмотренной в работе [2].

Следствием разбиения $\Gamma_i(\lambda)\Gamma_k(\lambda)$ оказывается представление

$$I - \Gamma^2(\lambda) = I - \boldsymbol{A}(\lambda) - \boldsymbol{B}(\lambda),$$

где операторные матрицы $A(\lambda)$ и $B(\lambda)$ наследуют свойства соответствующих скалярных операторов $A_{jk}(\lambda)$ и $B_{jk}(\lambda)$. Имеет силу следующее утверждение.

Лемма 2.1. При $\text{Im}\lambda > 0$ onepamop $(I - \Gamma^2(\lambda))^{-1}$ имеет представление

$$(I - \Gamma^{2}(\lambda))^{-1} = I - \widetilde{A}(\lambda) - \widetilde{B}(\lambda),$$

где матричные компоненты $\widetilde{A}(\lambda)$ являются операторами конечного ранга, действующими в пространство D, а матричные компоненты \widetilde{B} являются компактными операторами в $\widehat{H}^{\mu,\theta}$, непрерывными в сильном смысле по λ при Im $\lambda \ge 0$ и $0 < c_1 \le \text{Re}\lambda \le c_2 < \infty$, если μ и θ достаточно малы.

Как нетрудно видеть, если φ_{λ} является функцией из пространства D, а $\psi \in \hat{H}^{\mu,\theta}$, то $(R_0(\lambda)\varphi_{\lambda},\psi)$ имеет предел при Im $\lambda \downarrow 0$. Как следствие, для искомого скалярного оператора $\Gamma(\lambda)$ конструкции описанного выше альтернирующего метода Шварца ведут к представлению:

$$\Gamma(\lambda) = \sum \Gamma_i(\lambda) + \mathcal{N}(\lambda),$$

 $\mathcal{N}(\lambda) = \mathcal{A}(\lambda) + \mathcal{B}(\lambda),$

где $\mathcal{A}(\lambda)$ – оператор конечного ранга, действующий в пространство D, а $\mathcal{B}(\lambda)$ – компактный оператор в $\widehat{H}^{\mu,\theta}$, если μ, θ достаточно малы, сильно непрерывный по $\mathrm{Im}\lambda \downarrow 0$. Отметим, что оператор $\mathcal{N}(\lambda)$ обладает тем свойством, что произведение $R_0(\lambda)\mathcal{N}(\lambda)$ имеет слабый предел в $\widehat{H}^{\mu,\theta}$ при $\mathrm{Im}\lambda \downarrow 0$ и $\mu, \theta > 0$. Конечно, само существование такого предела вытекает из результатов работ [6,7].

Как следствие, имеет силу

Теорема 2.2. Слабый предел $R(\lambda)$, т.е.

$$\lim_{\mathrm{Im}\lambda\downarrow 0} (R(\lambda)\varphi,\varphi), \qquad \varphi\in H^{\mu,\theta},$$

имеет вид:

$$\sum_{j} \lim_{\mathrm{Im}\lambda\downarrow 0} (R_{j}(\lambda)\varphi,\varphi) + \lim_{\mathrm{Im}\lambda\downarrow 0} (R_{0}(\lambda)\mathcal{A}(\lambda)\varphi,\varphi) + \lim_{\mathrm{Im}\lambda\downarrow 0} (R_{0}(\lambda)\mathcal{B}(\lambda)\varphi,\varphi), \quad (2.2)$$

где операторы $\mathcal{A}(\lambda)$ и $\mathcal{B}(\lambda)$ описаны выше и $R_j(\lambda)$ – резольвенты двухчастичных (парных) операторов Шредингера.

Подчеркнем, что старшие члены асимптотики ядра резольвенты определяются лишь первыми двумя слагаемыми в выражении (2.2).

Отметим, что данная теорема обеспечивает законность асимптотических построений работ [3, 4].

ЛИТЕРАТУРА

- A. M. Budylin, V. S. Buslaev, Reflection operator and their applications to asymptotic investigations of semiclassical integral equations. — Advances in Soviet Math., AMS, Providence, RI 7, No. 6 (1991), 79-103.
- 2. L. D. Faddeev, Mathematical aspects of the three-body problem of the quantum scattering theory. — Daniel Davey and Co., Inc. (1965).
- 3. V. S Buslaev, S. B. Levin, P. Neittaanmäki, T. Ojala, New approach to numerical computatio of the eigenfunctions of the continuous spectrum of three-particle Schrödinger operator: I. One-dimensional particles, short-range pair potentials. — JPhysA, 2010.
- V. S. Buslaev, S. B. Levin, Asymptotic Behavior of the Eigenfunctions of the Manyparticle Shrödinger Operator. I. One-dimensional Particles. — Amer. Math. Soc. Transl. 2 (2008), 225.
- 5. А. М. Будылин, В. С. Буслаев, Квазиклассическая асимптотика резольвенты интегрального оператора свёртки с синус-ядром на конечном интервале. — Adv. Sov. Math., Amer. Math. Soc. 7 (1995), 107–157.
- E. Mourre, Absence of singular continuous spectrum for certain self-adjoint operators. — Commun. MathPhys 78 (1981), 391-408.
- P. Perry, I. M. Sigal, B. Simon, Spectral analysis of N-body Schrodinger operators. — Annals of Mathematics 114 (1981), 519-567.
- 8. Д. Р. Яфаев, Математическая теория тассеяния. СПбГУ, 1994.
- И. М. Гельфанд, Н. Я. Виленкин, Некоторые применения гармонического анализа. Оснащённые гильбертовы пространства. — (Обобщённые функции, вып. 4, ФМ, 1961.
- 10. К. Морен, Методы гильбертова пространства. Мир, 1965.
- 11. М. Рид, Б. Саймон, Методы современной математической физики, т. 3. Теория Рассеяния. Мир, 1982.

Budylin A. M., Levin S. B. To the question of Schroedinger operator kernel resolvent asymptotics construction in the three one-dimensional quantum particles scattering problem interacting by finite repulsive pair potentials.

The present work aims at announcing a new approach to a construction of the asymptotics (at infinity in configuration space) of the Schr[']odinger operator resolvent kernel asymptotics in the scattering problem of three one-dimensional quantum particles interacting by the finite pair repulsive potentials. Within the framework of this approach the asymptotics of Schr[']odinger operator absolutely continuum spectrum eigenfunctions can be constructed explicitly. We should emphasize that the restriction of the consideration for the case of finite pair potentials does not lead to a simplification of the problem in its essence as the potential of the interaction of all three particles remains non-decreasing at infinity but allows to put aside a certain number of technical details.

Поступило 4 июля 2015 г.

Санкт-Петербургский государственный университет, Университетская наб. 7/9, 199034 Санкт-Петербург, Россия *E-mail*: a.budylin@spbu.ru, budylin@mph.phys.spbu.ru *E-mail*: s.levin@spbu.ru