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8 S. A. AVDONIN, V. S. MIKHAYLOV, K. B. NURTAZINAused the spetral data, i.e. eigenvalues and the traes of the derivatives ofeigenfuntions at the boundary verties (that is equivalent to the knowl-edge of the TW-funtion).The paper by Avdonin and Kurasov [3℄ ontains the most omplete re-sults in this diretion. It proves that a quantum tree is uniquely determinedby the redued TW-funtion assoiated to all exept one boundary ver-ties. Moreover, the redued response operator (the dynamial Dirihlet-to-Neumann map) known on suÆiently large time interval also determines atree uniquely. The expression \suÆiently large" means preisely the timeinterval of exat ontrollability of the tree.The most signi�ant result of [3℄ is developing a onstrutive and robustproedure for the reovery tree's parameters, whih beame known as theleaf peeling (LP) method. This method was extended to boundary inverseproblems with nonstandard vertex onditions in [4℄, to the two-veloitywave equation in [5,6℄ and to the paraboli type equations on trees in [2℄.Our proedure is reursive | it allows realulating eÆiently the TW-funtion (and response operator) from the original tree to the smallertrees, `removing' leaves step by step up to the rooted edge. Beause ofits reursive nature, this proedure ontains only Volterra type equations,and hene may be a base for developing e�etive numerial algorithms. Thefat that the proposed proedure is reursive is ruial for its numerialrealization sine the number of edges of graphs arising in appliations istypially very big.The development of e�etive numerial algorithms for solving inverseproblems on quantum graphs is one of the goals of our researh of quan-tum graphs. The �rst results in this diretion for a star graph were obtainedin [1℄. The LP method ombines both spetral and dynamial approahesto inverse problems. However, the main step of the LP algorithm | real-ulating the inverse data for the `peeled tree' | was desribed in detailonly in a spetral version. In this paper we desribe its dynamial version,very important from theoretial and numerial viewpoints.Let 
 be a �nite onneted ompat graph without yles (a tree).The graph onsists of edges E = {e1; : : : ; eN} onneted at the vertiesV = {v1 : : : ; vN+1}. Every edge ej ∈ E is identi�ed with an interval(a2j−1; a2j) of the real line. The edges are onneted at the verties vjwhih an be onsidered as equivalene lasses of the edge end points {aj}.The boundary � = {1; : : : ; m} of 
 is a set of verties having multipliityone (the exterior nodes). Sine the graph under onsideration is a tree, for



ON INVERSE DYNAMICAL AND SPECTRAL PROBLEMS 9every a; b ∈ 
; a 6= b; there exists the unique path �[a; b℄ onneting thesepoints.
§2. Spetral and dynamial problems, inverse data.Let �w(aj) denotes the derivative of w at the vertex aj taken along theorresponding edge in the diretion outward the vertex. We assoiate thefollowing spetral problem on the graph 
 with the potential q ∈ L1(
) :

−
d2wdx2 + qw = �w; (2.1)w ∈ C(
); (2.2)

∑ej∼v �jw(v) = 0 for v ∈ V \�; (2.3)w = 0 on �: (2.4)In (2.3) �jw(v) denotes the derivative of w at the vertex v taken alongthe edge ej in the diretion outwards the vertex. Also, ej ∼ v means edgeej is inident to vertex v, and the sum is taken over all edges inident tov. It is well-known fat that the problem (2.1){(2.4) has a disrete spe-trum of eigenvalues �1 6 �2 6 : : :, �k → +∞; and orresponding eigen-funtions �1; �2; : : : an be hosen so that {�k}∞k=1 forms an orthonormalbasis in H := L2(
):(�i; �j)H = ∫
 �i(x)�j(x) dx = Æij :Set κk() = ��k(),  ∈ �. Let �k be the m-dimensional olumn vetorde�ned as �k = ol(κk()√�k )∈� :De�nition 1. The set of pairs
{�k; �k}∞k=1 (2.5)is alled the Dirihlet spetral data of the graph 
.The inverse spetral problem with the data given by (2.5) was onsideredin [8℄. We will be dealing with the Tithmarsh{Weyl funtion whih isde�ned as follows. We onsider the di�erential equation on 
 for � =∈ R :

−�′′(x) + q(x)�(x) = ��(x): (2.6)



10 S. A. AVDONIN, V. S. MIKHAYLOV, K. B. NURTAZINALet the funtion  i(x; �) be the solution to (2.6) with standard onditions(2.2), (2.3) at internal verties and the following boundary onditions i(i; �) = 1;  i(j ; �) = 0; j 6= i:Then the entries of the Tithmarsh{Weyl matrix M(�) are de�ned asMij(�) = � i(j):Let t  be the solution to (2.1), (2.2) and (2.3) with the nonhomoge-neous Dirihlet boundary onditions: = � on �; (2.7)where � ∈ R
m: The Tithmarsh{Weyl M−matrix onnets the values of on the boundary and the values of its derivative on the boundary:� =M(�)� on �: (2.8)Along with the spetral we onsider the dynamial problem:utt − uxx + qu = 0 in 
\V × [0; T ℄; (2.9)u|t=0 = ut|t=0 = 0; (2.10)u(·; t) satis�es (2:2) and (2:3) for all t ∈ [0; T ℄; (2.11)u = f on �× [0; T ℄: (2.12)Here T > 0, f = f(; t),  ∈ �, is the Dirihlet boundary ontrol whihbelongs to FT� := L2([0; T ℄;Rm). Let uf be the solution to the problem(2.9){(2.12) with the boundary ontrol f . We introdue the dynamialresponse operator (the dynamial Dirihlet-to-Neumann map) by the rule

(RT {f}) (t) = �uf (·; t)∣∣∣�; t ∈ [0; T ℄:The response operator has a form of onvolution:
(RT {f}) (t) = (R ∗ f) (t) ; t ∈ [0; T ℄:Here the matrix-valued response funtion R(t) is de�ned by the followingproedure. Let the funtion ui(x; t) be the solution to (2.9){(2.11) and theboundary onditionsui(i; t) = Æ(t); ui(j ; t) = 0; j = 1; : : :m; j 6= i:The entries of response matrix R are de�ned byRij(t) = �ui(j ; t):



ON INVERSE DYNAMICAL AND SPECTRAL PROBLEMS 11Connetion between the spetral and dynamial data are known andwere used for studying inverse spetral and dynamial problems, see forexample [3, 7℄. Let f ∈ FT� ∩ (C∞0 (0;+∞))m andf̂(k) := ∞∫0 f(t)eikt dtbe its Fourier transform. The equations (2.9), and (2.1) are onneted bythe Fourier transformation: going formally in (2.9) over to the Fouriertransform, we obtain (2.1) with � = k2. It is not diÆult to hek (see,e.g. [3,7℄) that the response matrix-funtion and Tithmarsh{Weyl matrixare onneted by the same transform:M(k2) = ∞∫0 R(t)eikt dt;where this equality is understood in a weak sense.
§3. Inverse spetral problem. Reovering theTithmarsh{Weyl funtion for the peeled tree.Any boundary vertex of the tree an be taken as a root; therefore with-out loss of generality, we an assume that the boundary vertex m is aroot of the tree. We put �m = � \ {m} and onsider the spetral problem(2.1){(2.4) on 
. The redued TW matrix M(�) = {Mij(�)}m−1i;j=1 asso-iated with boundary points from �m is onstruted as in Setion 1 andserve as data for our inverse problem.Using the proedure desribed in [3℄ we an reover the potential on allthe boundary edges (it suÆes to know only the diagonal elements of theM−matrix to do it). Moreover, using the non-diagonal elements we anidentify the sets of boundary edges inident to the same internal vertex.We all these sets pre-sheaves. More preisely, we introdue the followingDe�nition 2. We onsider a subgraph of 
 whih is a star graph onsist-ing of all edges inident to an internal vertex v: This star graph is alleda pre-sheaf if it ontains at least one boundary edge of 
: A pre-sheaf isalled a sheaf if all but one its edges are the boundary edges of 
:Following [6℄ one an extrat a sheaf from all pre-sheaves found onthe previous step and proeed with the leaf-peeling method proeduredesribed below.



12 S. A. AVDONIN, V. S. MIKHAYLOV, K. B. NURTAZINALet the found sheaf onsist of the boundary verties 1; : : : ; m0 from�m; the orresponding boundary edges e1; : : : ; em0 and an internal edgeem′0 : We identify eah edge ei; i = 1; : : : ;m0, with the interval [0; li℄ andthe vertex m′0 ; the internal vertex of the sheaf, | with the set of ommonendpoints x = 0: At this point it is onvenient to renumerate the edgeem′0 as e0 and the vertex m′0 as 0. Applying the tehniques from [3,6℄ wereover the potential q and lengths li of edges ei, i = 1; : : : ;m0.We all M̃(�) the redued M−matrix assoiated with the new graph
̃ = 
\⋃m0i=1{ei; i} with boundary points �\⋃m0i=1 i.First we realulate entries M̃0i(�), i = 0;m0 + 1; : : : ;m− 1. Let us �x1, the boundary point of the star-subgraph. Let u be the solution to theproblem (2.6) with the boundary onditionsu(1) = 1; u(j) = 0; j = 2; : : : ;m:We point out that on the boundary edge e1 the funtion u solves theCauhy problem
{

−u′′(x) + q(x)u(x) = �u(x); x ∈ e1;u(l1) = 1; u′(l1) =M11(�): (3.1)On other boundary edges of the sheaf it solves the problems
{

−u′′(x) + q(x)u(x) = �u(x)u(li) = 0; u′(li) =M1i(�) ; x ∈ ei; i = 2; : : : ;m0 (3.2)Sine we know the potential on the edges e1; : : : ; em0 , we an solve theCauhy problems (3.1) and (3.2), and use the onditions (2.2), (2.3) at theinternal vertex v0 to reover u(0; �), u′(0; �) { the values of the solutionand its derivative at the \new" boundary edge with the \new" boundarypoint v0. Thus we obtain:M̃00(�) = u′(0; �)u(0; �) ;M̃0i(�) = M1i(�)u(0; �) ; i = m0 + 1; : : :m− 1:To �nd M̃i0(�), i = m0+1; : : : ;m− 1 we �x i, i =∈ {1; : : : ;m0;m} andonsider the solution u to (2.6) with the boundary onditionsu(i) = 1; u(j) = 0; j 6= i:



ON INVERSE DYNAMICAL AND SPECTRAL PROBLEMS 13The funtion u solves the Cauhy problems on the edges e1; : : : ; em0 :
{

−u′′(x) + q(x)u(x) = �u(x)u(j) = 0; u′(j) =Mij(�) ; x ∈ ej ; j = 1; : : : ;m0: (3.3)Sine we know the potential on the edges of the subgraph, we an solvethe Cauhy problems (3.3) and use the onditions at the internal vertex v0to reover u(0; �), u′(0; �) { the values of solution and its derivative at the\new" boundary edge with the \new" boundary point v0. On the subgraph
̃ the funtion u solves equation (2.6) with the boundary onditionsu(i)=1; u(0)=u(0; �); u(j)=0; j = m0 + 1; : : : ;m;j 6=i; j 6=0:Thus we obtain the equalitiesM̃i0(�) = ux(0; �)− u(0; �)M̃00(�); (3.4)M̃ij(�) =Mij(�)− u(0; �)M̃0j(�): (3.5)To reover all elements of the redued matrix we need to use this proedurefor all i; j = m0 + 1; : : : ;m− 1.Thus using the desribed proedure we an identify a sheaf and realu-late the trunated TW-matrix for the new `peeled' tree, i.e. a tree withoutthis sheaf. Repeating the proedure suÆient number of times, we reoverthe topology of a tree and a potential.
§4. Inverse dynamial problem. Reovering the responseoperator for the peeled tree.We assume that the boundary vertex m is a root of the tree. We put�m = � \ {m} and onsider the dynamial problem (2.9){(2.12) on 
.The redued response matrix funtion R(t) = {Rij(t)}m−1i;j=1 assoiatedwith boundary points from �m is onstruted as in Setion 1 and servesas inverse data.We use the proedure desribed in [3, 5, 6℄ to reover the potential andlengths on all boundary edges and determine all sheaves.Take the sheaf onsisting of the boundary verties 1; : : : ; m0 from �m;the orresponding boundary edges e1; : : : ; em0 and an internal edge em′0 :We identify eah edge ei; i = 1; : : : ;m0, with the interval [0; li℄ and thevertex m′0 ; the internal vertex of the sheaf, | with the set of ommon



14 S. A. AVDONIN, V. S. MIKHAYLOV, K. B. NURTAZINAendpoints x = 0: At this point it is onvenient to renumerate the edge em′0as e0 and the vertex m′0 as 0.We all R̃(t) the redued response funtion assoiated with the newgraph 
̃ = 
\⋃m0i=1{ei; i} and with boundary points �\⋃m0i=1 i.To reover the entries R̃0i(t), i = m0 + 1; : : : ;m − 1, we onsider thefuntion uÆ to be the solution to the problem (2.9), (2.10), (2.11) with theboundary onditionsuÆ(1; t) = Æ(t); uÆ(j ; t) = 0; j = 2; : : : ;m:Sine we know the potential on the edges e1; : : : ; em0 , we an evaluate uÆon these edges by solving the wave equations on the orresponding edgeswith the known boundary data. Let us introdue the funtions:F1(t) = Æ(t); Fi(t) = 0; i = 2; : : : ;m0; t ∈ R;R1(t) = R11(t); t > 0; Ri(t) = {0; t < l1 + liR1i(t); t > l1 + li; i = 2 : : : ;m0:Then the funtion uÆ solves the following Cauhy problems on e1; : : : ; em0 :




luÆtt − uÆxx + q(x)uÆ = 0; x ∈ (0; li)uÆ(li; t) = Fi(t); uÆx(li; t) = Ri(t)uÆ(x; 0) = 0; x ∈ (0; li); i = 1 : : : ;m0Using the ompatibility onditions (2.10), (2.11) at the vertex v0 we an�nd the values of uÆ(0; t) and uÆx(0; t) for t > 0 at the \new" boundaryedge e0. We introdue the notationsa(t) := uÆ(0; t); A(t) := uÆx(0; t);where a(t) = A(t) = 0 for t < l1.Let us now onsider uf to be the solution to the problem (2.9), (2.10),(2.11) with the boundary onditionsuf (1; t) = f(t); uf (j ; t) = 0; j = 2; : : : ;m:Due to Duhamel's priniple, uf (·; t) = (uÆ ∗ f) (·; t), and at the \new"boundary vertex we have:uf (0; t) = a(t) ∗ f(t):



ON INVERSE DYNAMICAL AND SPECTRAL PROBLEMS 15By the de�nitions of the response matries R, R̃; the following equalitiesare valid: t∫0 R1i(s)f(t− s) ds = t∫0 R̃0i(s)[a ∗ f ℄(t− s) ds;i = m0 + 1; : : : ;m− 1: (4.1)It was proved in [2℄ that the response operatorRT ; known for suÆientlylarge T; uniquely determines the spetral data and the Tithmarsh{Weylmatrix funtion. `SuÆiently large' means preisely that T is not less thanthe time of exat ontrollability: T > 2 dist {m; �m}: In [2℄ the inverseproblem for the heat equation with the Neumann-to-Dirihlet data wasstudied, but the proof extends to our problem. Therefore, we assume belowthat all sums are �nite, sine we may onsider the orresponding funtionson �nite time intervals.We know (see, e.g. [3℄) that R1i(s), R̃0i(s), i = m0 + 1; : : : ;m− 1; anda admit the following representations (we separate regular and singularparts): R1i(s) = r1i(s) + ∑n>1�nÆ′(s− �n); r1i|s∈(0;�1) = 0a(s) = ã(s) + ∑k>1 kÆ(s− κk); ; ã|s∈(0;κ1) = 0; κ1 = l1;R̃0i(s) = r̃0i(s) +∑l>1 �lÆ′(s− �l); r̃0i|s∈(0;�1) = 0:In the above representations the funtion r̃bi(s), and numbers  l and �l areunknown and sequenes �n;κn; �n are stritly inreasing. Plugging theserepresentations to (4.1), we obtain the following expression for the lefthand side of (4.1):t∫0 R1i(s)f(t− s) ds = t∫0 r1i(s)f(t− s) ds− ∑n>1�nf ′(t− �n): (4.2)



16 S. A. AVDONIN, V. S. MIKHAYLOV, K. B. NURTAZINAFor the right hand side of (4.1) we have:t∫0 R̃0i(s)[a ∗ f ℄(t− s) ds = t∫0 r̃0i(s) t−s∫0 ã(�)f(t− s− �) d�+∑k>1 k t∫0 r̃0i(s)f(t− s− κk) ds− ∑l>1 �l t−�l∫0 ã′(�)f(t− �l − �) d�
−

∑l>1 ∑k>1 �l kf ′(t− �l − κk): (4.3)Equating singular parts of the integral kernels of (4.2) and (4.3), we obtain:
∑n>1�nÆ′(t− �n) = ∑l>1 ∑k>1�l kÆ′(t− �l − κk): (4.4)The equation (4.4) allows one to reover the unknown oeÆients �l and�l. Equating the �rst terms in (4.4), we neessarily have that�1 = �1 + κ1; �1 =  1�1;and so, �1 = �1 − κ1; �1 = �1 1 ;The fat that the set {�1; �1}; { 1;κ1} determines {�1; �1} we representin the following form:

{�k; �k}N1k=1; { k;κk}N1k=1 =⇒ {�1; �1}; m1 = 1; N1 = m1:Considering the seond term in the left hand side in (4.4), we ompare �2and �1 + κ2. We get the options:1) In the ase �2 6= �1 + κ2 we onlude that �2 = �2 + κ1 and thus�2 = �2 − κ1; �2 = �2 1 ; m2 = 1:2) In the ase �1 + κ2 = �2, but �2 6= �1 2 we have that �2 + κ1 =�1 + κ2 = �2 and �2 = �1 2 + �2 1, so�2 = �2 − κ1; �2 = �2 − �1 2 1 ; m2 = 1:3) In the ase �1 + κ2 = �2 and �2 = �1 2 we need to onsiderthe third term in the left hand side of (4.4) and ompare �3 with�1 + κ3, using the same proedure.



ON INVERSE DYNAMICAL AND SPECTRAL PROBLEMS 17Repeating this proedure suÆient number of times (say, m2), we re-over {�2; �2}. Suppose that to reover {�2; �2} we used the oeÆients
{�k; �k}N2k=1, { k;κk}N2k=1; we express this fat in the form

{�k; �k}N2k=1; { k;κk}N2k=1 =⇒ {�k; �k}2k=1; N2 = N1 +m2:Assume that we have already reovered p pairs:
{�k; �k}Npk=1; { k;κk}Npk=1 =⇒ {�k; �k}pk=1:To reover {�p+1; �p+1} we need to apply the proedure desribed above:onsider Np+1−th term in the left hand side of (4.4) and ompare �Np+1with �p + κNp+1 to get the options:1) If �p + κNp+1 6= �Np+1, then �Np+1 = �p+1 + κNp , thus�p+1 = �Np+1 − κNp ; �p+1 = �Np+1 Np ; mp+1 = 1:2) In the ase �Np+1 = �p + κNp+1, but �Np+1 6= �p Np+1, we on-lude that �Np+1 = �p+1 + κNp = �p + κNp+1 and �Np+1 =�p Np+1 + �p+1 Np . Thus we get�p+1 = �Np+1 − κNp ; �p+1 = �Np+1 − �p Np+1 Np ; mp+1 = 1:3) If �p+κNp+1 = �Np+1 and �Np+1 = �p Np+1 we need to ompare�p + κNp+2 with �Np+2 using the same proedure.Repeating this proedure suÆient number of times (say,mp+1), we reover

{�p+1; �p+1}. We write this in the form
{�k; �k}Np+1k=1 ; { k;κk}Np+1k=1 =⇒ {�k; �k}p+1k=1; Np+1 = Np +mp+1:The more quadruplets {�;κ; �; �} we know, the more pairs {�; �} we anevaluate. Certainly the number of quadruplets at our disposal depends onthe time interval at whih we know the inverse data. In the ase whenwe know the response funtion on (0;+∞), using the proedure desribedabove, we an reover {�k; �k} for arbitrary k.



18 S. A. AVDONIN, V. S. MIKHAYLOV, K. B. NURTAZINATaking in (4.2), (4.3) f(t) = �(t) the Heaviside funtion, and equatingthe regular parts, we arrive att∫0 r1i(s) ds = t∫l1 r̃0i(s) t−s∫0 ã(�) d� ds+ ∑k>1 k t−κk∫0 r̃0i(s) ds− ∑l>1 �l t−�l∫0 ã′(�) d�Everywhere below we assume that all funtions are extended to the interval(−∞; 0) by zero. Di�erentiating the last equality we getr1i(t) = t∫0 r̃0i(s)ã(t− s) ds+ ∑k>1 k r̃0i(t− κk)− ∑l>1 �lã′(t− �l); (4.5)We set s := t− κ1 and rewrite (4.5) asr1i(s+ κ1) = s+κ1∫0 r̃0i(�)ã(s+ κ1 − �) d� +  1r̃0i(s) (4.6)+∑k>2 k r̃0i(s+ κ1 − κk)− ∑l �lã′(s+ κ1 − �l):Let us introdue the number� := mini>1 (κi+1 − κi):Notie that � is a positive number, sine we are dealing with the problemon a �nite time interval.The integral equation (4.6) for the unknown funtion r̃m′0i an be solvedby steps:1) On the interval (0; �1) we have: r̃0i(s) = 0.2) On the interval (�1; �1 + �) equation (4.6) has the forms+κ1∫0 r̃0i(�)ã(s+ κ1 − �) d� +  1r̃0i(s) = B(s); (4.7)B(s) = r1i(s+ κ1) +∑l �lã′(s+ κ1 − �l);



ON INVERSE DYNAMICAL AND SPECTRAL PROBLEMS 19where B(s) is known for s ∈ (�1; �1 + �).3) On the interval (�1+�; �1+2�) equation (4.6) has form (4.7) whereB(s) = − 2r̃0i(s+ κ1 − κ2) + r1i(s+ κ1) +∑l>1 �lã′(s+ κ1 − �l)is known funtion on (�1 + �; �1 + 2�).4) On the interval (�1 + n�; �1 + (n + 1)�) equation (4.6) has form(4.7) whereB(s) = −

n+1∑k=2  k r̃0i(s+ κ1 − κk) + r1i(s+ κ1) +∑l>1 �lã′(s+ κ1 − �l)is known funtion on (�1 + n�; �1 + (n+ 1)�).To reover R̃00(s) one need to use the following equation:t∫0 R̃00(s)[a ∗ f ℄(t− s) ds = ufx(vm′0 ; t) = [A ∗ f ℄(t):One need to repeat the proedure desribed above: write down the expan-sions for the R00(t), A(t), a(t) with singular and regular parts separated,determine the singular part and afterward, determine the regular part fromorresponding integral equation.To reover R̃i0(t), with i �xed, i = m0 + 1; : : : ;m − 1 we onsider uf ,the solution to the boundary value problem (2.9) with standard onditionsat internal verties (2.10), (2.11) and the following boundary onditions:uf (i; t) = f(t); uf (j ; t) = 0; j = 1; : : : ;m; j 6= i:Using the fat that we know the potential on the edges e1; : : : ; em0 , we anreover the solution to the problem above by solving the Cauhy problemfor the wave equations on the orresponding edges with known boundarydata. Indeed, let us introdue the funtions:Fk(t) = 0; k = 1; : : : ;m0; t > 0;Rk(t) = [Rik ∗ f ℄(t); t > 0:The funtion uf solves the following Cauhy problems on e1; : : : ; em0 :



uftt − ufxx + q(x)uf = 0; x ∈ (0; lk);uf (i; t) = Fk(t); ufx(k; t) = Rk(t)u(x; 0) = 0; x ∈ (0; lk); k = 1; : : : ;m0:



20 S. A. AVDONIN, V. S. MIKHAYLOV, K. B. NURTAZINAUsing the ompatibility onditions (2.10), (2.11) at the vertex v0 we �ndthe values of uf (0; t) and ufx(0; t) for t > 0 at the new boundary vertex:a(t) := uf (0; t); A(t) := ufx(0; t):Then using the de�nition of the response matrix (f. (3.4)), we obtain theequalities t∫0 R̃i0(s)f(t− s) ds = A(t)− [R00 ∗ a℄(t):These equations for Ri0 an be analyzed using the proedure desribedabove: we represent R̃i0(t), A(t) and a(t) as sums of regular and singularparts, determine the singular parts of Ri0 and then determine the regularparts from orresponding integral equations by steps.Conluding this setion, we state that using the desribed proedure onean identify a sheaf and realulate the trunated response funtion for thenew `peeled' tree, i.e. a tree without this sheaf. Repeating the proeduresuÆient number of times, we reover the topology of the tree, potentialand the lengths of the edges. Referenes1. S. Avdonin, B. Belinskiy and M. Matthews, Dynamial inverse problems on a met-ri tree. | Inverse Problems 27, No. 7 (2011), 1{21.2. S. Avdonin, B. Bell, Determining a distributed ondutane parameter for a neu-ronal able model de�ned on a tree graph. | J. Inverse Problems Imaging 9, No. 3(2015), 645{659.3. S. A. Avdonin and P. B. Kurasov, Inverse problems for quantum trees. | InverseProblems Imaging 2, No. 1 (2008), 1{21.4. Avdonin, Kurasov and Nowazyk, On the reonstrution of boundary onditionsfor star graphs. | Inverse Problems Imaging, 4, No. 4 (2010), 579{598.5. S. Avdonin, G. Leugering and V. Mikhaylov, On an inverse problem for tree-likenetworks of elasti strings. | Zeit. Angew. Math. Meh. 90 (2010), 136{150.6. Avdonin S. A., A. Choque Rivero, G. Leugering, V. S. Mikhaylov, On the inverseproblem of the two-veloity tree-like graph. | J. Appl. Math. Meh.(2015) DOI:10.1002/zamm.201400126.7. S. A. Avdonin, V. S. Mikhaylov and A. V. Rybkin, The boundary ontrol approahto the Tithmarsh{Weyl m−funtion. | Comm. Math. Phys. 275, No. 3 (2007),791{803.8. M. I. Belishev, Boundary spetral inverse problem on a lass of graphs (trees) bythe BC method. | Inverse Problems 20 (2004), 647{672.9. M. I. Belishev, A. F. Vakulenko, Inverse problems on graphs: reovering the tree ofstrings by the BC-method. | J. Inv. Ill-Posed Problems 14 (2006), 29{46.
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