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t. Interest in inverse dynami
al, spe
tral and s
atteringproblems for di�erential equations on graphs is motivated by pos-sible appli
ations to nano-ele
troni
s and quantum waveguides andby a variety of other 
lassi
al and quantum appli
ations. Re
entlya new e�e
tive leaf peeling method has been proposed by S. Av-donin and P. Kurasov for solving inverse problems on trees (graphswithout 
y
les). It allows re
al
ulating eÆ
iently the inverse datafrom the original tree to the smaller trees, `removing' leaves step bystep up to the rooted edge. In this paper we des
ribe the main stepof the spe
tral and dynami
al versions of the peeling algorithm |re
al
ulating the inverse data for the `peeled tree'.Dedi
ated to Professor V. M. Babi
hon the o

asion of his jubilee
§1. Introdu
tion.Metri
 graphs with de�ned on them di�erential operators or di�erentialequations are 
alled quantum graphs (or di�erential equation networks).There are two groups of uniqueness results 
on
erning boundary inverseproblems for quantum trees. Brown and Weikard [10℄, Yurko [12℄, andFreiling and Yurko [11℄ proved uniqueness results for trees with a prioriknown topology (
onne
tivity) and lengths of edges using the Tit
hmarsh{Weyl matrix fun
tion (TW-fun
tion) as the inverse data.The se
ond group 
on
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8 S. A. AVDONIN, V. S. MIKHAYLOV, K. B. NURTAZINAused the spe
tral data, i.e. eigenvalues and the tra
es of the derivatives ofeigenfun
tions at the boundary verti
es (that is equivalent to the knowl-edge of the TW-fun
tion).The paper by Avdonin and Kurasov [3℄ 
ontains the most 
omplete re-sults in this dire
tion. It proves that a quantum tree is uniquely determinedby the redu
ed TW-fun
tion asso
iated to all ex
ept one boundary ver-ti
es. Moreover, the redu
ed response operator (the dynami
al Diri
hlet-to-Neumann map) known on suÆ
iently large time interval also determines atree uniquely. The expression \suÆ
iently large" means pre
isely the timeinterval of exa
t 
ontrollability of the tree.The most signi�
ant result of [3℄ is developing a 
onstru
tive and robustpro
edure for the re
overy tree's parameters, whi
h be
ame known as theleaf peeling (LP) method. This method was extended to boundary inverseproblems with nonstandard vertex 
onditions in [4℄, to the two-velo
itywave equation in [5,6℄ and to the paraboli
 type equations on trees in [2℄.Our pro
edure is re
ursive | it allows re
al
ulating eÆ
iently the TW-fun
tion (and response operator) from the original tree to the smallertrees, `removing' leaves step by step up to the rooted edge. Be
ause ofits re
ursive nature, this pro
edure 
ontains only Volterra type equations,and hen
e may be a base for developing e�e
tive numeri
al algorithms. Thefa
t that the proposed pro
edure is re
ursive is 
ru
ial for its numeri
alrealization sin
e the number of edges of graphs arising in appli
ations istypi
ally very big.The development of e�e
tive numeri
al algorithms for solving inverseproblems on quantum graphs is one of the goals of our resear
h of quan-tum graphs. The �rst results in this dire
tion for a star graph were obtainedin [1℄. The LP method 
ombines both spe
tral and dynami
al approa
hesto inverse problems. However, the main step of the LP algorithm | re
al-
ulating the inverse data for the `peeled tree' | was des
ribed in detailonly in a spe
tral version. In this paper we des
ribe its dynami
al version,very important from theoreti
al and numeri
al viewpoints.Let 
 be a �nite 
onne
ted 
ompa
t graph without 
y
les (a tree).The graph 
onsists of edges E = {e1; : : : ; eN} 
onne
ted at the verti
esV = {v1 : : : ; vN+1}. Every edge ej ∈ E is identi�ed with an interval(a2j−1; a2j) of the real line. The edges are 
onne
ted at the verti
es vjwhi
h 
an be 
onsidered as equivalen
e 
lasses of the edge end points {aj}.The boundary � = {
1; : : : ; 
m} of 
 is a set of verti
es having multipli
ityone (the exterior nodes). Sin
e the graph under 
onsideration is a tree, for



ON INVERSE DYNAMICAL AND SPECTRAL PROBLEMS 9every a; b ∈ 
; a 6= b; there exists the unique path �[a; b℄ 
onne
ting thesepoints.
§2. Spe
tral and dynami
al problems, inverse data.Let �w(aj) denotes the derivative of w at the vertex aj taken along the
orresponding edge in the dire
tion outward the vertex. We asso
iate thefollowing spe
tral problem on the graph 
 with the potential q ∈ L1(
) :

−
d2wdx2 + qw = �w; (2.1)w ∈ C(
); (2.2)

∑ej∼v �jw(v) = 0 for v ∈ V \�; (2.3)w = 0 on �: (2.4)In (2.3) �jw(v) denotes the derivative of w at the vertex v taken alongthe edge ej in the dire
tion outwards the vertex. Also, ej ∼ v means edgeej is in
ident to vertex v, and the sum is taken over all edges in
ident tov. It is well-known fa
t that the problem (2.1){(2.4) has a dis
rete spe
-trum of eigenvalues �1 6 �2 6 : : :, �k → +∞; and 
orresponding eigen-fun
tions �1; �2; : : : 
an be 
hosen so that {�k}∞k=1 forms an orthonormalbasis in H := L2(
):(�i; �j)H = ∫
 �i(x)�j(x) dx = Æij :Set κk(
) = ��k(
), 
 ∈ �. Let �k be the m-dimensional 
olumn ve
torde�ned as �k = 
ol(κk(
)√�k )
∈� :De�nition 1. The set of pairs
{�k; �k}∞k=1 (2.5)is 
alled the Diri
hlet spe
tral data of the graph 
.The inverse spe
tral problem with the data given by (2.5) was 
onsideredin [8℄. We will be dealing with the Tit
hmarsh{Weyl fun
tion whi
h isde�ned as follows. We 
onsider the di�erential equation on 
 for � =∈ R :

−�′′(x) + q(x)�(x) = ��(x): (2.6)



10 S. A. AVDONIN, V. S. MIKHAYLOV, K. B. NURTAZINALet the fun
tion  i(x; �) be the solution to (2.6) with standard 
onditions(2.2), (2.3) at internal verti
es and the following boundary 
onditions i(
i; �) = 1;  i(
j ; �) = 0; j 6= i:Then the entries of the Tit
hmarsh{Weyl matrix M(�) are de�ned asMij(�) = � i(
j):Let t  be the solution to (2.1), (2.2) and (2.3) with the nonhomoge-neous Diri
hlet boundary 
onditions: = � on �; (2.7)where � ∈ R
m: The Tit
hmarsh{Weyl M−matrix 
onne
ts the values of on the boundary and the values of its derivative on the boundary:� =M(�)� on �: (2.8)Along with the spe
tral we 
onsider the dynami
al problem:utt − uxx + qu = 0 in 
\V × [0; T ℄; (2.9)u|t=0 = ut|t=0 = 0; (2.10)u(·; t) satis�es (2:2) and (2:3) for all t ∈ [0; T ℄; (2.11)u = f on �× [0; T ℄: (2.12)Here T > 0, f = f(
; t), 
 ∈ �, is the Diri
hlet boundary 
ontrol whi
hbelongs to FT� := L2([0; T ℄;Rm). Let uf be the solution to the problem(2.9){(2.12) with the boundary 
ontrol f . We introdu
e the dynami
alresponse operator (the dynami
al Diri
hlet-to-Neumann map) by the rule

(RT {f}) (t) = �uf (·; t)∣∣∣�; t ∈ [0; T ℄:The response operator has a form of 
onvolution:
(RT {f}) (t) = (R ∗ f) (t) ; t ∈ [0; T ℄:Here the matrix-valued response fun
tion R(t) is de�ned by the followingpro
edure. Let the fun
tion ui(x; t) be the solution to (2.9){(2.11) and theboundary 
onditionsui(
i; t) = Æ(t); ui(
j ; t) = 0; j = 1; : : :m; j 6= i:The entries of response matrix R are de�ned byRij(t) = �ui(
j ; t):
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tion between the spe
tral and dynami
al data are known andwere used for studying inverse spe
tral and dynami
al problems, see forexample [3, 7℄. Let f ∈ FT� ∩ (C∞0 (0;+∞))m andf̂(k) := ∞∫0 f(t)eikt dtbe its Fourier transform. The equations (2.9), and (2.1) are 
onne
ted bythe Fourier transformation: going formally in (2.9) over to the Fouriertransform, we obtain (2.1) with � = k2. It is not diÆ
ult to 
he
k (see,e.g. [3,7℄) that the response matrix-fun
tion and Tit
hmarsh{Weyl matrixare 
onne
ted by the same transform:M(k2) = ∞∫0 R(t)eikt dt;where this equality is understood in a weak sense.
§3. Inverse spe
tral problem. Re
overing theTit
hmarsh{Weyl fun
tion for the peeled tree.Any boundary vertex of the tree 
an be taken as a root; therefore with-out loss of generality, we 
an assume that the boundary vertex 
m is aroot of the tree. We put �m = � \ {
m} and 
onsider the spe
tral problem(2.1){(2.4) on 
. The redu
ed TW matrix M(�) = {Mij(�)}m−1i;j=1 asso-
iated with boundary points from �m is 
onstru
ted as in Se
tion 1 andserve as data for our inverse problem.Using the pro
edure des
ribed in [3℄ we 
an re
over the potential on allthe boundary edges (it suÆ
es to know only the diagonal elements of theM−matrix to do it). Moreover, using the non-diagonal elements we 
anidentify the sets of boundary edges in
ident to the same internal vertex.We 
all these sets pre-sheaves. More pre
isely, we introdu
e the followingDe�nition 2. We 
onsider a subgraph of 
 whi
h is a star graph 
onsist-ing of all edges in
ident to an internal vertex v: This star graph is 
alleda pre-sheaf if it 
ontains at least one boundary edge of 
: A pre-sheaf is
alled a sheaf if all but one its edges are the boundary edges of 
:Following [6℄ one 
an extra
t a sheaf from all pre-sheaves found onthe previous step and pro
eed with the leaf-peeling method pro
eduredes
ribed below.



12 S. A. AVDONIN, V. S. MIKHAYLOV, K. B. NURTAZINALet the found sheaf 
onsist of the boundary verti
es 
1; : : : ; 
m0 from�m; the 
orresponding boundary edges e1; : : : ; em0 and an internal edgeem′0 : We identify ea
h edge ei; i = 1; : : : ;m0, with the interval [0; li℄ andthe vertex 
m′0 ; the internal vertex of the sheaf, | with the set of 
ommonendpoints x = 0: At this point it is 
onvenient to renumerate the edgeem′0 as e0 and the vertex 
m′0 as 
0. Applying the te
hniques from [3,6℄ were
over the potential q and lengths li of edges ei, i = 1; : : : ;m0.We 
all M̃(�) the redu
ed M−matrix asso
iated with the new graph
̃ = 
\⋃m0i=1{ei; 
i} with boundary points �\⋃m0i=1 
i.First we re
al
ulate entries M̃0i(�), i = 0;m0 + 1; : : : ;m− 1. Let us �x
1, the boundary point of the star-subgraph. Let u be the solution to theproblem (2.6) with the boundary 
onditionsu(
1) = 1; u(
j) = 0; j = 2; : : : ;m:We point out that on the boundary edge e1 the fun
tion u solves theCau
hy problem
{

−u′′(x) + q(x)u(x) = �u(x); x ∈ e1;u(l1) = 1; u′(l1) =M11(�): (3.1)On other boundary edges of the sheaf it solves the problems
{

−u′′(x) + q(x)u(x) = �u(x)u(li) = 0; u′(li) =M1i(�) ; x ∈ ei; i = 2; : : : ;m0 (3.2)Sin
e we know the potential on the edges e1; : : : ; em0 , we 
an solve theCau
hy problems (3.1) and (3.2), and use the 
onditions (2.2), (2.3) at theinternal vertex v0 to re
over u(0; �), u′(0; �) { the values of the solutionand its derivative at the \new" boundary edge with the \new" boundarypoint v0. Thus we obtain:M̃00(�) = u′(0; �)u(0; �) ;M̃0i(�) = M1i(�)u(0; �) ; i = m0 + 1; : : :m− 1:To �nd M̃i0(�), i = m0+1; : : : ;m− 1 we �x 
i, i =∈ {1; : : : ;m0;m} and
onsider the solution u to (2.6) with the boundary 
onditionsu(
i) = 1; u(
j) = 0; j 6= i:
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tion u solves the Cau
hy problems on the edges e1; : : : ; em0 :
{

−u′′(x) + q(x)u(x) = �u(x)u(
j) = 0; u′(
j) =Mij(�) ; x ∈ ej ; j = 1; : : : ;m0: (3.3)Sin
e we know the potential on the edges of the subgraph, we 
an solvethe Cau
hy problems (3.3) and use the 
onditions at the internal vertex v0to re
over u(0; �), u′(0; �) { the values of solution and its derivative at the\new" boundary edge with the \new" boundary point v0. On the subgraph
̃ the fun
tion u solves equation (2.6) with the boundary 
onditionsu(
i)=1; u(
0)=u(0; �); u(
j)=0; j = m0 + 1; : : : ;m;
j 6=
i; 
j 6=
0:Thus we obtain the equalitiesM̃i0(�) = ux(0; �)− u(0; �)M̃00(�); (3.4)M̃ij(�) =Mij(�)− u(0; �)M̃0j(�): (3.5)To re
over all elements of the redu
ed matrix we need to use this pro
edurefor all i; j = m0 + 1; : : : ;m− 1.Thus using the des
ribed pro
edure we 
an identify a sheaf and re
al
u-late the trun
ated TW-matrix for the new `peeled' tree, i.e. a tree withoutthis sheaf. Repeating the pro
edure suÆ
ient number of times, we re
overthe topology of a tree and a potential.
§4. Inverse dynami
al problem. Re
overing the responseoperator for the peeled tree.We assume that the boundary vertex 
m is a root of the tree. We put�m = � \ {
m} and 
onsider the dynami
al problem (2.9){(2.12) on 
.The redu
ed response matrix fun
tion R(t) = {Rij(t)}m−1i;j=1 asso
iatedwith boundary points from �m is 
onstru
ted as in Se
tion 1 and servesas inverse data.We use the pro
edure des
ribed in [3, 5, 6℄ to re
over the potential andlengths on all boundary edges and determine all sheaves.Take the sheaf 
onsisting of the boundary verti
es 
1; : : : ; 
m0 from �m;the 
orresponding boundary edges e1; : : : ; em0 and an internal edge em′0 :We identify ea
h edge ei; i = 1; : : : ;m0, with the interval [0; li℄ and thevertex 
m′0 ; the internal vertex of the sheaf, | with the set of 
ommon



14 S. A. AVDONIN, V. S. MIKHAYLOV, K. B. NURTAZINAendpoints x = 0: At this point it is 
onvenient to renumerate the edge em′0as e0 and the vertex 
m′0 as 
0.We 
all R̃(t) the redu
ed response fun
tion asso
iated with the newgraph 
̃ = 
\⋃m0i=1{ei; 
i} and with boundary points �\⋃m0i=1 
i.To re
over the entries R̃0i(t), i = m0 + 1; : : : ;m − 1, we 
onsider thefun
tion uÆ to be the solution to the problem (2.9), (2.10), (2.11) with theboundary 
onditionsuÆ(
1; t) = Æ(t); uÆ(
j ; t) = 0; j = 2; : : : ;m:Sin
e we know the potential on the edges e1; : : : ; em0 , we 
an evaluate uÆon these edges by solving the wave equations on the 
orresponding edgeswith the known boundary data. Let us introdu
e the fun
tions:F1(t) = Æ(t); Fi(t) = 0; i = 2; : : : ;m0; t ∈ R;R1(t) = R11(t); t > 0; Ri(t) = {0; t < l1 + liR1i(t); t > l1 + li; i = 2 : : : ;m0:Then the fun
tion uÆ solves the following Cau
hy problems on e1; : : : ; em0 :




luÆtt − uÆxx + q(x)uÆ = 0; x ∈ (0; li)uÆ(li; t) = Fi(t); uÆx(li; t) = Ri(t)uÆ(x; 0) = 0; x ∈ (0; li); i = 1 : : : ;m0Using the 
ompatibility 
onditions (2.10), (2.11) at the vertex v0 we 
an�nd the values of uÆ(0; t) and uÆx(0; t) for t > 0 at the \new" boundaryedge e0. We introdu
e the notationsa(t) := uÆ(0; t); A(t) := uÆx(0; t);where a(t) = A(t) = 0 for t < l1.Let us now 
onsider uf to be the solution to the problem (2.9), (2.10),(2.11) with the boundary 
onditionsuf (
1; t) = f(t); uf (
j ; t) = 0; j = 2; : : : ;m:Due to Duhamel's prin
iple, uf (·; t) = (uÆ ∗ f) (·; t), and at the \new"boundary vertex we have:uf (
0; t) = a(t) ∗ f(t):



ON INVERSE DYNAMICAL AND SPECTRAL PROBLEMS 15By the de�nitions of the response matri
es R, R̃; the following equalitiesare valid: t∫0 R1i(s)f(t− s) ds = t∫0 R̃0i(s)[a ∗ f ℄(t− s) ds;i = m0 + 1; : : : ;m− 1: (4.1)It was proved in [2℄ that the response operatorRT ; known for suÆ
ientlylarge T; uniquely determines the spe
tral data and the Tit
hmarsh{Weylmatrix fun
tion. `SuÆ
iently large' means pre
isely that T is not less thanthe time of exa
t 
ontrollability: T > 2 dist {
m; �m}: In [2℄ the inverseproblem for the heat equation with the Neumann-to-Diri
hlet data wasstudied, but the proof extends to our problem. Therefore, we assume belowthat all sums are �nite, sin
e we may 
onsider the 
orresponding fun
tionson �nite time intervals.We know (see, e.g. [3℄) that R1i(s), R̃0i(s), i = m0 + 1; : : : ;m− 1; anda admit the following representations (we separate regular and singularparts): R1i(s) = r1i(s) + ∑n>1�nÆ′(s− �n); r1i|s∈(0;�1) = 0a(s) = ã(s) + ∑k>1 kÆ(s− κk); ; ã|s∈(0;κ1) = 0; κ1 = l1;R̃0i(s) = r̃0i(s) +∑l>1 �lÆ′(s− �l); r̃0i|s∈(0;�1) = 0:In the above representations the fun
tion r̃bi(s), and numbers  l and �l areunknown and sequen
es �n;κn; �n are stri
tly in
reasing. Plugging theserepresentations to (4.1), we obtain the following expression for the lefthand side of (4.1):t∫0 R1i(s)f(t− s) ds = t∫0 r1i(s)f(t− s) ds− ∑n>1�nf ′(t− �n): (4.2)



16 S. A. AVDONIN, V. S. MIKHAYLOV, K. B. NURTAZINAFor the right hand side of (4.1) we have:t∫0 R̃0i(s)[a ∗ f ℄(t− s) ds = t∫0 r̃0i(s) t−s∫0 ã(�)f(t− s− �) d�+∑k>1 k t∫0 r̃0i(s)f(t− s− κk) ds− ∑l>1 �l t−�l∫0 ã′(�)f(t− �l − �) d�
−

∑l>1 ∑k>1 �l kf ′(t− �l − κk): (4.3)Equating singular parts of the integral kernels of (4.2) and (4.3), we obtain:
∑n>1�nÆ′(t− �n) = ∑l>1 ∑k>1�l kÆ′(t− �l − κk): (4.4)The equation (4.4) allows one to re
over the unknown 
oeÆ
ients �l and�l. Equating the �rst terms in (4.4), we ne
essarily have that�1 = �1 + κ1; �1 =  1�1;and so, �1 = �1 − κ1; �1 = �1 1 ;The fa
t that the set {�1; �1}; { 1;κ1} determines {�1; �1} we representin the following form:

{�k; �k}N1k=1; { k;κk}N1k=1 =⇒ {�1; �1}; m1 = 1; N1 = m1:Considering the se
ond term in the left hand side in (4.4), we 
ompare �2and �1 + κ2. We get the options:1) In the 
ase �2 6= �1 + κ2 we 
on
lude that �2 = �2 + κ1 and thus�2 = �2 − κ1; �2 = �2 1 ; m2 = 1:2) In the 
ase �1 + κ2 = �2, but �2 6= �1 2 we have that �2 + κ1 =�1 + κ2 = �2 and �2 = �1 2 + �2 1, so�2 = �2 − κ1; �2 = �2 − �1 2 1 ; m2 = 1:3) In the 
ase �1 + κ2 = �2 and �2 = �1 2 we need to 
onsiderthe third term in the left hand side of (4.4) and 
ompare �3 with�1 + κ3, using the same pro
edure.



ON INVERSE DYNAMICAL AND SPECTRAL PROBLEMS 17Repeating this pro
edure suÆ
ient number of times (say, m2), we re-
over {�2; �2}. Suppose that to re
over {�2; �2} we used the 
oeÆ
ients
{�k; �k}N2k=1, { k;κk}N2k=1; we express this fa
t in the form

{�k; �k}N2k=1; { k;κk}N2k=1 =⇒ {�k; �k}2k=1; N2 = N1 +m2:Assume that we have already re
overed p pairs:
{�k; �k}Npk=1; { k;κk}Npk=1 =⇒ {�k; �k}pk=1:To re
over {�p+1; �p+1} we need to apply the pro
edure des
ribed above:
onsider Np+1−th term in the left hand side of (4.4) and 
ompare �Np+1with �p + κNp+1 to get the options:1) If �p + κNp+1 6= �Np+1, then �Np+1 = �p+1 + κNp , thus�p+1 = �Np+1 − κNp ; �p+1 = �Np+1 Np ; mp+1 = 1:2) In the 
ase �Np+1 = �p + κNp+1, but �Np+1 6= �p Np+1, we 
on-
lude that �Np+1 = �p+1 + κNp = �p + κNp+1 and �Np+1 =�p Np+1 + �p+1 Np . Thus we get�p+1 = �Np+1 − κNp ; �p+1 = �Np+1 − �p Np+1 Np ; mp+1 = 1:3) If �p+κNp+1 = �Np+1 and �Np+1 = �p Np+1 we need to 
ompare�p + κNp+2 with �Np+2 using the same pro
edure.Repeating this pro
edure suÆ
ient number of times (say,mp+1), we re
over

{�p+1; �p+1}. We write this in the form
{�k; �k}Np+1k=1 ; { k;κk}Np+1k=1 =⇒ {�k; �k}p+1k=1; Np+1 = Np +mp+1:The more quadruplets {�;κ; �; �} we know, the more pairs {�; �} we 
anevaluate. Certainly the number of quadruplets at our disposal depends onthe time interval at whi
h we know the inverse data. In the 
ase whenwe know the response fun
tion on (0;+∞), using the pro
edure des
ribedabove, we 
an re
over {�k; �k} for arbitrary k.



18 S. A. AVDONIN, V. S. MIKHAYLOV, K. B. NURTAZINATaking in (4.2), (4.3) f(t) = �(t) the Heaviside fun
tion, and equatingthe regular parts, we arrive att∫0 r1i(s) ds = t∫l1 r̃0i(s) t−s∫0 ã(�) d� ds+ ∑k>1 k t−κk∫0 r̃0i(s) ds− ∑l>1 �l t−�l∫0 ã′(�) d�Everywhere below we assume that all fun
tions are extended to the interval(−∞; 0) by zero. Di�erentiating the last equality we getr1i(t) = t∫0 r̃0i(s)ã(t− s) ds+ ∑k>1 k r̃0i(t− κk)− ∑l>1 �lã′(t− �l); (4.5)We set s := t− κ1 and rewrite (4.5) asr1i(s+ κ1) = s+κ1∫0 r̃0i(�)ã(s+ κ1 − �) d� +  1r̃0i(s) (4.6)+∑k>2 k r̃0i(s+ κ1 − κk)− ∑l �lã′(s+ κ1 − �l):Let us introdu
e the number� := mini>1 (κi+1 − κi):Noti
e that � is a positive number, sin
e we are dealing with the problemon a �nite time interval.The integral equation (4.6) for the unknown fun
tion r̃m′0i 
an be solvedby steps:1) On the interval (0; �1) we have: r̃0i(s) = 0.2) On the interval (�1; �1 + �) equation (4.6) has the forms+κ1∫0 r̃0i(�)ã(s+ κ1 − �) d� +  1r̃0i(s) = B(s); (4.7)B(s) = r1i(s+ κ1) +∑l �lã′(s+ κ1 − �l);



ON INVERSE DYNAMICAL AND SPECTRAL PROBLEMS 19where B(s) is known for s ∈ (�1; �1 + �).3) On the interval (�1+�; �1+2�) equation (4.6) has form (4.7) whereB(s) = − 2r̃0i(s+ κ1 − κ2) + r1i(s+ κ1) +∑l>1 �lã′(s+ κ1 − �l)is known fun
tion on (�1 + �; �1 + 2�).4) On the interval (�1 + n�; �1 + (n + 1)�) equation (4.6) has form(4.7) whereB(s) = −

n+1∑k=2  k r̃0i(s+ κ1 − κk) + r1i(s+ κ1) +∑l>1 �lã′(s+ κ1 − �l)is known fun
tion on (�1 + n�; �1 + (n+ 1)�).To re
over R̃00(s) one need to use the following equation:t∫0 R̃00(s)[a ∗ f ℄(t− s) ds = ufx(vm′0 ; t) = [A ∗ f ℄(t):One need to repeat the pro
edure des
ribed above: write down the expan-sions for the R00(t), A(t), a(t) with singular and regular parts separated,determine the singular part and afterward, determine the regular part from
orresponding integral equation.To re
over R̃i0(t), with i �xed, i = m0 + 1; : : : ;m − 1 we 
onsider uf ,the solution to the boundary value problem (2.9) with standard 
onditionsat internal verti
es (2.10), (2.11) and the following boundary 
onditions:uf (
i; t) = f(t); uf (
j ; t) = 0; j = 1; : : : ;m; j 6= i:Using the fa
t that we know the potential on the edges e1; : : : ; em0 , we 
anre
over the solution to the problem above by solving the Cau
hy problemfor the wave equations on the 
orresponding edges with known boundarydata. Indeed, let us introdu
e the fun
tions:Fk(t) = 0; k = 1; : : : ;m0; t > 0;Rk(t) = [Rik ∗ f ℄(t); t > 0:The fun
tion uf solves the following Cau
hy problems on e1; : : : ; em0 :



uftt − ufxx + q(x)uf = 0; x ∈ (0; lk);uf (
i; t) = Fk(t); ufx(
k; t) = Rk(t)u(x; 0) = 0; x ∈ (0; lk); k = 1; : : : ;m0:



20 S. A. AVDONIN, V. S. MIKHAYLOV, K. B. NURTAZINAUsing the 
ompatibility 
onditions (2.10), (2.11) at the vertex v0 we �ndthe values of uf (0; t) and ufx(0; t) for t > 0 at the new boundary vertex:a(t) := uf (0; t); A(t) := ufx(0; t):Then using the de�nition of the response matrix (
f. (3.4)), we obtain theequalities t∫0 R̃i0(s)f(t− s) ds = A(t)− [R00 ∗ a℄(t):These equations for Ri0 
an be analyzed using the pro
edure des
ribedabove: we represent R̃i0(t), A(t) and a(t) as sums of regular and singularparts, determine the singular parts of Ri0 and then determine the regularparts from 
orresponding integral equations by steps.Con
luding this se
tion, we state that using the des
ribed pro
edure one
an identify a sheaf and re
al
ulate the trun
ated response fun
tion for thenew `peeled' tree, i.e. a tree without this sheaf. Repeating the pro
eduresuÆ
ient number of times, we re
over the topology of the tree, potentialand the lengths of the edges. Referen
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