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NONLINEAR FOKKER-PLANCK-KOLMOGOROV
EQUATIONS IN HILBERT SPACES

ABSTRACT. We study the Cauchy problem for nonlinear Fokker—
Planck-Kolmogorov equations for probability measures on a Hilbert
space, corresponding to stochastic partial differential equations. Suf-
ficient conditions for the uniqueness of probability solutions for a
cylindrical diffusion operator and for a possibly degenerate diffusion
operator are given. A new general existence result is established
without explicit growth restrictions on the coefficients.

§1. INTRODUCTION AND MAIN DEFINITIONS

We study the following Cauchy problem for a nonlinear Fokker—Planck—
Kolmogorov equation with respect to probability measures on a separable
Hilbert space H:

at,ut = 63iej (aij(,uﬂxut);ut) - 86i (bi(:uaxat).u't)a Mo =V, (1)
where v is a Borel probability measure on H. The definition of a solution
will be given below (see (5)). Throughout, summation over all repeated
indices is assumed. In typical applications, the drift coeflicients have the
following structure:

Vi(p,,t) = —Niwi + ®i(p,2,t),  a(p,2,t) = pI6,
where §% is the Kronecker delta symbol. This structure corresponds to the

Kolmogorov equation for a nonlinear stochastic partial differential equa-
tion (SPDE)

dXt = \/idwt + (AXt + Q(uaXht))dta

where A is a self-adjoint negative unbounded operator with domain D(A) C
H with eigenvalues A; and the corresponding orthonormal basis e;; w; is

o0 .
a Wiener process in H. Assume that it has the form w, = Y \/B;{]e;,
i=1
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where cg' , 7 € N, are one-dimensional independent, standard Wiener pro-
cesses. We assume that the Wiener process and A have the same orthog-
onal basis only for simplicity. Then Eq. (1) is written in this basis. A
standard example is given by the stochastic heat equation: A = A and
H = D(A) = Hy*. Similarly to the finite-dimensional case, the transition
probabilities of the solution to such an equation satisfy an appropriate
Fokker—Planck—Kolmogorov (FPK) equation.

Equations (1) are usually called nonlinear FPK equations, see [5, 14.2.2].
The term “nonlinear” indicates that the coefficients of the equation depend
on the solution. Such equations arise in many problems of mechanics, sta-
tistical physics, probability theory, and control of diffusion processes. Lin-
ear equations of this type appeared in the first half of the XX century
in the works of Fokker [6], Planck [12], and Kolmogorov [7]. Even linear
FPK equations remain a very popular area of research, and nonlinear FPK
equations belong to the mainstream in PDEs (see, for instance, [4] and
references therein). Infinite-dimensional equations have been studied less,
but they are also of great importance, especially due to intensive studies
of SPDEs. However, not much is known about the well-posedness of the
Cauchy problem (1) for such equations in the general setting (for the linear
case, see [2] and references therein). We can mention the work [3], where
the existence of solutions was established for equations with the identi-
cally zero diffusion matrix A and under certain growth restrictions on the
drift term b. The work [1] is concerned with the gradient flow structure of
particular equations.

The goal of this paper is two-fold. First, we provide sufficient condi-
tions for the existence and uniqueness of solutions to the nonlinear prob-
lem (1) in the space of probability measures on a Hilbert space H in a
rather general setting. Our existence results are stronger than the ones
mentioned above. Moreover, no uniqueness results for general nonlinear
Fokker—Planck—Kolmogorov equations in infinite dimensions have been
known so far. Our second goal is to apply some methods developed for the
study of uniqueness in finite dimensions to the infinite-dimensional case,
namely, a modification of Holmgren’s principle, used earlier in [2,8,9,11].
The main idea is very simple and can be illustrated by the following (finite-
dimensional) toy example: suppose that all coefficients are smooth enough
for the following computation to make sense. Assume that the diffusion
coefficients a*/ do not depend on measures. Suppose that there are two
solutions u = ¢ dt and ¢ = oy dt to the Cauchy problem (1) with initial
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conditions ug and g, respectively. Let us solve the adjoint problems

0,1 + (0 (2,9)02,,, + V(110,900 ) F(2,5) = 0, floe =,

where ¢ € C§°(R?). Formally testing the Eq. (1) with f and integrating
by parts, we obtain

t
[vd—o0= [vdtun—o0)+ [ [4) - b0, 91) do, s
Rd Rd 0 Rd

Recall that the Kantorovich 1-metric is defined by

Wi (e, 1) = sup{/wd(ut —o)iv e CERY, Vel <1} (@
Rd

on the subset of probability measures having finite first moments. Suppose
that |b(p, z,t) — b(o, z,t)| < CoWi (g, 0+) and |V f] is bounded (this holds
if the coefficients are regular enough). Passing to the supremum over ¢ as
in (2), we arrive at

t

Wi (pe, o) < Wi(po, 00) + C/Wl(,u‘sao—s)dsa
0

and Gronwall’s inequality yields Wy (u¢, 0¢) < e“tWi (o, 00). In particular,
if Mo = 0o, then Wl(,ut,at) =0 and Mt = O¢.

The paper is divided into three sections. Section 2 is devoted to the
uniqueness of solutions in two essentially different cases: a possibly degen-
erate diffusion and a “cylindrical” diffusion operator (the term corresponds
to the notion of cylindrical Wiener process, which is a process with unit
covariance operator of infinite trace class). Section 3 is concerned with the
existence of local and global solutions. Finally, at the end of Sec. 3 we
provide an existence and uniqueness theorem for equations of a particular
form.

We now proceed to introduce notation and exact definitions. Let H be
a real separable Hilbert space with inner product (-, -) (generating the
norm |-|), and let {e;}, j € N, be an orthonormal basis in H. Let Py
be the orthogonal projection of H onto Hy = span{ey,...,ex} ~ RV,
For any vector ¢ € H, let ¢y denote the orthogonal projection of ¢ to
RY, ie., cy = Pyc. Sometimes we will think of cx as of a vector from
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H, since this cannot lead to a misunderstanding. Given z € H and a =

[ee]
(@1, a5,...), a; >0, set ||z|% := 21 aj(z,e)?.
=
Let C§°(RY) denote the set of infinitely smooth compactly supported
functions on R?. Let C'(H) denote the space of continuous functions on
H, and let CT(I) denote the space of positive continuous functions on an
interval I C R. Let Lip, be the set of y-Lipschitz continuous functions,
that is, all f € C(H) such that |f(z)— f(y)| < 7|z —y| whenever z,y € H.
The class FCy°(H) of test functions on H consists of functions ¢(z) =
©o(T1,...,2q4) where oo € C°(RY) and z; = (z,e;).
Let P1(H) and P2 (H) denote the sets of probability measures on H with
finite first and second moments, respectively. We shall use the following
metrics on the space of measures. The total variation of a finite Radon

(possibly signed) measure p on H is defined by

lollry i=sup{| [ f@ptan)|: 1 e Feza i<} @)

Similarly to (2), the Kantorovich metric W is defined on the space P1(H) by

Wi (p, o) := Sup{/f(w)(u —o)(dz): f e FCG(H), |[Vf] < 1}- (4)

Note that usually Wi is defined as the supremum over Lip,-functions,
but the integral of a Lip,-function over a measure from P;(H) can be
approximated by the intergals over the projections of this function, there-
fore, we can pass to the supremum over the smaller class of functions
FCP(H) N Lip,.

We shall say that p is given by a family of probability measures (u¢):efo, 77
on H, and write i = (p¢)iecjo, 1), if p(dr dt) = py(de)dt, which means that

T

/ fduz/!fdutdt.

Hx[0,T] 0

In the subsequent considerations, we will use the notion of the Lya-
punov function V for a differential operator. The choice of this function
is explained in § 3, but now we introduce some related notation. Given a
continuous strictly positive function V on H and T > 0, set

Mr(V) = {n = (et sup [ V@) < oo}
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Given two countable sets of mappings
a' (u,x,t): Mg, (V) x H x [0,Ty] — R,
bi(p,m,t): My, (V) x Hx[0,Ty] =R, i,j€N,

that are Borel measurable in (z,t), and a probability measure v on H, we
consider the Cauchy problem (1). Set

L= Z aij(u,x,t)aiejw + Z b, x, )0, 1.
ij=1 i=1

We shall say that p = (it )sefo,7,] is a probability solution to the Cauchy
problem (1) if p; are probability measures, p € My, (V), and for every
t € [0,Tp] and ¢ € FC°(H) one has

¢
/cpdut f/gody = //L”god,usds. (5)
0

Here we assume by definition that a®,b* € L*(H x [0,To],du) for i,j € N,
i.e., the integrand on the right-hand side is well defined.

Sometimes it is more convenient to use an equivalent definition: let a
test function v depend on a finite set of variables 1, ..., z, vanish outside
some ball in Hy, = R¥ and lie in C%'(R* x (0, 7)) N C(R* x [0, Tp)). Then
for all ¢t € [0, To] the following identity holds:

/v(x,t) dpy = /v(x,O) dl/—l—/t/[asv%-L”v] dps ds. (6)
0

We shall say that p = (4t)¢e[o,r] is a local solution to (1) if (5) and our
regularity assumptions hold with 7 in place of Tj.

§2. UNIQUENESS OF PROBABILITY SOLUTIONS

We start with conditions for uniqueness of probability solutions to the
Cauchy problem
O = B0 — 0;(V (o t, ), 1aeli—o = po (7)
with a constant diagonal diffusion operator A = diag(ﬂj);";l with 87 > 0.
For each N € N, set Ay = diag(ﬂj)é\f:l. Throughout this section, we
assume that the drift term has the following structure:

bi(.u'vxv t) =—Aizi + (I)i(:uaxat)u Ai 2 0. (8)
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In this section we provide sufficient conditions for the uniqueness of proba-
bility solutions to (7) in two essentially different cases: that of a degenerate
operator A and the cylindrical case with 37 > B, > 0. This latter case cor-
responds to the cylindrical Wiener process wy.

We start with the first case. Fix a positive function V € C?(H). Assume
that

(FO) A, t) = diag{#7}32,, B >0,

In particular, one can consider fully or partially degenerate matrices
(with 87 = 0).

We consider only solutions to (7) from the class K, = P1(H) N M (V)
such that

(F1) For every € > 0, every d € N, and every u € Ky, there is N > d
and a function ®, x € C®°(RY x [0,Tp]) such that &, y € L'(H,p + o)
for every o € Ky,

T

/ / By (.1, 1) — @y (P, B)| (e + o) (d)dt <2, (9)
0 H

and, in addition,

sup [, (s, )] - (14 Jal) ™" < v (1) < oo, (10)
re

(F2) For every solution p € Ky there exists a constant § = 6(u) such
that
<¢M,N(:u7x7t) - (bu,N(:u7y7t)7x - y) < 9|JI - y|2 + H'T - ny\N (11)
for all z,y € H and ¢ € [0, Tp].
(F3) There exists a continuous increasing function G on [0, +00) such
that G(0) = 0 and
|(§(:u7xat) 7@(0’,%,L‘)| < V(x)G(Wl(;utao—t)) (12)
for all (z,t) € H x [0,Tp] and p,0 € K.
Theorem 2.1. Assume that conditions (F0), (F1), (F2), (F3) hold. If uo
€ Pi(H), V € L*(uo), and G is an Osgood function, i.e.,
du
G (u)

0+

= +o0,

then a solution to the Cauchy problem (7) in the class Ky is unique, pro-
vided it exists. Moreover, for every two solutions (pu:)icjo, 1] and (0¢)re(0,10)
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from K1 one has

Wil 01) < F (P ™Wi (10, 00)) — Ct),

1
where F~' is the inverse function to F(v) := /G(u)_ldu. In particular,

if G(u) = u, we obtain
Wi (e, 00) < 22 T°W1 (po, 09)e".

Example 2.1. Consider
b= —\im; + fi(w)/cp(y)dut(y)-

Assume that there exist a sequence of bounded smooth functions f,(z,t)
such that lim f,(z,t) = f(z,t) for any z,t and constants Cy,Cy > 0,
n—oo

independent of n, such that
|fn(.1',t)| < Cl(l + |JI|), <fn(.1',t) - fn(y,t),a: - y> < CQ"T - y|2

Assume also that |p(z)| < C2(1+|x|) and o € P1(H). Then the Lebesgue
dominated convergence theorem implies that all assumptions of Theo-
rem 2.1 are fulfilled with V(z) = 1 + |z|. Hence the problem (7) has at
most one solution in M, (|z|).

Proof. Consider solutions = (ut)sejo,1,] and o = (0¢)seqo, 1] to (7) from
the class Ky with initial conditions g € Py (H) and oo € Py (H), respec-
tively. Assume that V € L'(uo + 09). Fix a function ¢ € FC°(H) such
that |V (z)| < 1. Fix d such that ¢ (z) = o(Paz) (which exists by the
definition of FC3°(H)).

Fix € > 0. According to assumption (F1), there exists a smooth finite-
dimensional approximating sequence ®,, n, n > d, such that (9) and (10)
hold. Set

bun(z,t) ;== (=Mz1,...,—Iven) + . Ny, z,t),
Cly(p) = [max A+ COn ().

Fix a cut-off function ¢ € C§°(R!) such that 0 < ¢ < 1, p(z) = 1 for
|z| < 1, and ¢(z) = 0 for || > 2; moreover, assume that for some C > 0
and all x € R one has |¢"(2)|? + |¢'(z)|? < Cyp(z). For each K > 1 set
pic(t,2) = p(t/K) - p(|2/K]).

We split the proof into several steps.
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Step 1. “The adjoint problem.” We extend b, y to the whole space
RNH as follows: 0! n(z,t) = b, n(x,To) for t > Ty and b], y(z,t) =
by, n(,0) for t < 0. Consider the problem

N
Duf +Lf =0, flomi=v, Lf:=) B2, f+b,x0nf (13)

Jj=1

in RN, This problem has a solution f = fx of class C** (RN x [0,1]).
Indeed, according to [13], the stochastic differential equation in RY

dXN = \/28idW] + b, y(XN)dt, XY =z

has a solution X}V, ¢ > 0, and the function f(z,s) = ]E(w(XtN)‘Xév = a:)
solves (13). The smoothness follows from [14, Theorems 3.2.4, 3.2.6]. Clear-

Iy, sup| | < max ] = C()).
Step 2. Plugging v = ¢ f into identities (6) for solutions pu=(11)¢cj0, 7]
and o = (0¢)¢efo,1,], We obtain

/ orc (6,2 ) dpuy () = / o1 (0,2)£(0, ) dpo
+ / / [on (B — buns V) + 2(AV5, V) + FLioic] dyas ds,

0
/ prc(t,2)(z) doy (z) = / o (0,2) (0, ) dory

+ //[(,0[(<B(O’) — bu’N,V‘ﬂ + 2<AV§DK,Vf>N + ngDK} dosds.
0
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Subtracting the second identity from the first one, we have

/cpK(t)w d(py—oy) <// oK |B(p) —bu ||V fld(os+ps) ds
0

2 / AV i [V I+ f] Do |d(ie + 00)ds (14)

/ [ orc1Bto) BVl dods+( [ it o~ [ orcs o).

Step 3. A bound on Vf. Let us obtain a bound on |V f|. We observe
that (11) can be rewritten as

<bM,N(.U'7$7 t) - me(u,y,t),x - y> < (9|£L’ - y|27
hence

(H(z,t)y,y) < O(w)|y|*, where H = (0, b}, n)ij<n-

N
Set u = 271 3 |8,, f|*- Differentiating Eq. (13) with respect to z;, and

k=1
multiplying by 0., f, we obtain
dyu+ Lu+ (HVf,Vf) — Zﬁf 2 e f) =

Since (HV f,Vf) < 26u and the last summand is nonnegative,
dyu+ Lu + (20)u > 0

Then the maximum principle (see [14, Theorem 3.1.1]) yields that |u(z, s)|
< 2=y (z, 1)), ie.,

IVF| = 2lu(z, s)| < 2e20079|V¢% (z)| < 26270 =: (). (15)

Step 4. Limits as K — oo, N — o0, ¢ — 0. Now observe that
B(lu’) - B(U) = ¢(H) - Q(U)a BN - bu,N = @N - ¢u,Nu and

\Lox| = |Lok| + (8 — ®un, Vor)| < |Lox| +C - K@y — 3, n].
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Hence, (14) and (15) imply that

/ﬂ’dut*Ut

(16)
<Cr- //I‘I’ 0)|dos ds+ Reo+ Rop+ Rappr + Jo(K, N),

where

t
Rop = Co(w) [ [ 1Eik|dlpa +02) ds,
0
t
R = (C1+ € K1) [ [ o) = vl s + ) s,
0

¢
Reo := 201//|AV<,0K|d(us + 05)ds,
0

Jo(K,N) = /@KfN dpo — /SDKfN doy.
Let us show that the R.-terms are small. By (F1) we have
| Rappr| < (Cy +C) //|<I>N — &, ~n|d(ps +05) ds) < Cse.

Let us estimate R,,. Note that

~ _ x _
Lipw = K=/l ) b, 1) + K72 (Jal /Kt

This expression is nonzero only on the set vx = {z: K < |z| < 2K}.
Hence, for a fixed N we have
b trA (F2)
Lox| < Ol (L] M) < (Cy - Cly(p) + Oy - trAn) I,

Ltz (14 [z])?

where Ik is the indicator function of yx. Thus, we have Rop < Cy(9), N) -
(n+0){vr x[0,%]}. Similarly, Reo < C5(N)-(u+0){vx x[0,t]}. Obviously,
(1 + o){vrx x[0,t]} tends to zero as ' — oco. By (15) we have fy(x,0) €
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Lipg, ; hence the Lebesgue dominated convergence theorem yields that

Jo(K,N) — J07N = /de,uo - /deO'O as K — oo.
Using this and (12), for any fixed ¢, ¢, and N, we pass to the limit in (16)
as K — oo and find that

/wd Mt —O't Cl// W1 us,Us))d05d8+Cg€+J07N.

Now we pass to the limit as N — oo. The maximum principle and the
Arzela—Ascoli theorem (which is applicable due to the fact that fy €
Lipc, ) imply that the sequence { fx(z,0)} contains a subsequence converg-

ing on all compact sets. In particular, fy(z,0) — f(w) € Lip¢, pointwise
as N — oo. Therefore,

/1/Jd w—oy) <Cq // GWi(us,05))dos ds+C'3€+/fd Ho—00)-

(17)
Step 5. The final estimate. Observe that

/f(fl?)d(uo — o) < C1Wi(po, 00),

and, since ¢ is an arbitrary positive number, (17) gives the inequality

/1/Jd (e — o) /tG(Wl(Mst))(/V(fE)dUs) ds + C1Wi(po, 00)-

(18)
Passing to the supremum over ¢ € FC°(H) with |Vi(x)| < 1, we find
that

Wi (e, 00) < CaWh (0, 00) + Ci /G(W1 (us,as))(/ V(a)da,) ds.

Since 0 € Mr(V), this yields that
¢

Wi(pe, o) < C1Wi(po,00) +C/G(W1(usa0s))d5-
0
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If Wi (po,00) = 0, then the integration gives Wy (g, o) = 0. In the general
case we obtain

Wi, 00) < F (F(C1Wa (0, 00)) = Ct),

1
where F(v) = [G(u)"'du and F~' is the inverse function to F. Finally,
v

we recall that ¢ = 22070, O

We now proceed to the cylindrical case. Assume that

(T0) B9 > fo > 0.

We consider only solutions to (7) from the class Ko := P2(H)N Mz, (V).
Let us list our assumptions on the drift term:

(T1) For every solution p € K2, we have ®(u, z,t) € 12 for ux [0, Tpl-a.e.
(z,t) and || @2 € L?().

(T2) There exists a continuous increasing function G on [0, 4+00) such
that G(0) = 0 and

(s, 2, 1) = ®(o,2,0)| < VV(2) G|t — otl7v) (19)
for all (z,t) € H x [0,T] and all solutions u,o € Ks.

Theorem 2.2. Assume that conditions (T0), (T1), (T2) hold. If the initial
data is such that o € P2(H), VV € L' (o), and

OZ% o

then a solution to the Cauchy problem (7) in Ko is unique, provided it ex-
ists. Moreover, for every two solutions p = (ut)icjo,r,] 9nd 0 = (0¢)1e(0,10]
from Ko one has

e = otllry < F7 (E(lluo = oollry = Ct),

1
where F~1 is the inverse function to F(v) = /G(\/ﬂ)_2du. In particular,
v

if G(u) = u, then we have
e = oellrv < llpo — oollrve.

Example 2.2. Consider

b = A+ £0) [, P >0
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Assume that f has at most linear growth and ¢ is globally bounded. More-
over, assume that pg € P2(H). Then there is at most one solution to (7)
in Mr, (|a?).

Indeed,

11172 < Y 1F1P = 1 £l Z2gu 1) < O+ [af) < +o0,
j=1
i.e., (T1) holds, and

|[ Wit - [ etwdon)| < Callus - ol
so assumption (T2) is also fulfilled.

Proof. Consider solutions p1 = (ut)¢ejo, 1] and o = (0¢)¢ejo, 1] t0 (7) from
the class Ko with initial conditions po and o¢ from Po(H), respectively.
Assume that V' € L'(uo + 09). Fix a function 1) € FC(H) such that
|| < 1. Fix d such that ¢ (z) = 1o (Pyz) (which exists by the definition of
FCE(H)).

Fix a cut-off function ¢ € C§°(R!) such that 0 < ¢ < 1, p(z) = 1 if
|z| < 1, and ¢(z) = 0 if || > 2. Moreover, assume that for some C > 0
and all z € R, one has [¢"(x)]* + |¢/(z)|* < Cyp(x). For each K > 1 set
prc(t,2) = p(t/K) - (|2l K).

We split the proof again into several steps.

Step 1. Finite-dimensional smooth approximation of the drift.
Given @ satisfying (T1), for every & > 0 we can find b, y € C®(RY),
N > d, such that

To

[ [ 1Bxtetn) b (P O -+ o) ot <
0 H

for all solutions u, o € Ko. To prove this, we observe that for each NV there
is a smooth bounded function ®, x € C2°(RY x [0,Ty]), N > d, such that

Ty
[ [ 1ente b = s (Pr O (o + o0 < =
0 H
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for all solutions u, o € KCy. Indeed, one can pick M € N such that

To
) //|'I>k|2(llt + 0y)(dz)dt < €/2.

k=M+1 0
Next, for each ®F there exists a smooth bounded function ®; depending
only on the first nj space variables and ¢ such that

To

//|<1>’“ — &2 (e + o) (da)dt < *(2M) L.
0

For k > M, set &, = 0. Set N = max{M,ny,...,ny} and ®y, =
(®1,...35,0,...). Then

To
[ [ 1#nGetn) = @ (P O G+ o))

M
<

/|<1>k B2 + o) (da)dt
k=1

O\Dﬂ

To
+ Z //|‘I’k|2(,ut+0t)(dx)dt<52_

k=M+1 0

Hence b, n(p, 2,t) := (—Aiz1,...,—Anven) + Snu(p, 2, t) is the desired
approximating sequence.

Step 2. “The adjoint problem.” Similarly to Step 1 of the proof
of Theorem 2.1, we extend b}, y to the whole space R¥*! as follows:
bZ’N(a:,t) = bZ7N(x,T0) if ¢+ > Tp and bZ’N(x,t) = bL7N(m,O) if t < 0.
Let f = fny be the C»'(RN x [0,#])-solution to the finite-dimensional
Cauchy problem in RV (see [14, Theorems 3.2.4, 3.2.6])

N
Of +Lf =0, fleme=1v, Lf:=)» B0, f+V, y0af.

=1

The maximum principle implies that sup | f| < max || < 1.
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Step 3. Similarly to the proof of Theorem 2.1, we plug the test functions
K - f into (6) for the solutions p and ¢ and subtract one from another:

/ prc(t, D)(@) (1 — 00)(dr)

< / / x| B1) — b | - [V d(0s + pie) ds + |10 — o0ll7v
0
t
w2 [ [[1aVer] (9414171 owldu, + 0.)ds
0

T / / ox|B(o) — B(w)||V | do, ds.
0

¢ 1/2
Set Iy := (//¢|Vf|2dasds) . By the Cauchy inequality,
0

/¢K¢ d(pe — ot)

(20)
//90 |B | |Vf|d0'5 ds+HNOfUOHTV"‘RCO'i‘Rop'i‘Rappr,

where

t
//L¢K|dus+as)d
0
1/2
Reo = QIf(//|AV<pK|2d(us+as)ds) ,
0

¢ 1/2
Rappr 1= (C Kt +If) (//|B(N) — bu,le d(ps + 0s) ds) .
0
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t
Step 4. A bound for I;. In order to find a bound for //¢|Vf|2dasds,
0

we plug the test function f2 -k into (6) for o:

t
[ oo [ 12,0000 = O/R / (0 + Lo)(f2¢)doyds

t
= [ [ [2eIVAV I+ 205 Bix— BT 1) + Lo + 2 (AT} V)] dovds.

0 R4

Due to the maximum principle,

t t
250//<plvf|2dasds < 2//cp|\/ZVf|2dasds

0 R4 0 R4
t

< 2+2//|b”,NfB(o)| |V f|dosds + 2R,

0 R4

where

t
Roi= [ [ ILogl/2 + G0 AVdo.ds.

0 R4
Using the inequality ab < 2~ 'va® + (27)~'b? with v = 5;*, we obtain

t t

1
250//|Vf|2d03d8 <2+ 6_//|bu7N—B(U)|2d0'st
0
R4

0 R4 0

t
+60//|Vf|2dasds+2Rc,

0

ie.,

t t
50// IV f2doyds < 2+ Bi// b — B(0)[2dosds + 2R..
0
0 Rd

0 R4
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Plugging this bound into (20) and using the Cauchy inequality, we obtain

/@Kd)d (e —or) < //IB o)|?2dos ds

t
x 2857 + 65 / / b — B(0)[2doyds + 2R,

0 R4

+ Reo + Rop + Rapper-

Step 5. The limits. The final estimate. Arguing similarly to Step
4 of the proof of Theorem 2.1 and taking into account (19), we pass to the
limits as K — 0o, N — o0, and ¢ — 0 and find that

/ (s — 0r) < o — oollzv

t
+ C/Gz(HNs*UsHTV)dS' 2561+6620/G2(||us*UsllTv)dS

Passing to the supremum over ¢ € FCy°(H) with || < 1 and observing
that ||ps — os|l7v < 2 and ¢ < T, we obtain

e — oellrv < [lpo — oollry

+ C/GQ(Hus ~ ayllrv)ds 2851 + B2C - Ty - G2 (2)ds

= [l0 — o0llzv + Conm / G2(llts — oy )ds

If ||to — oollTv = 0, then the integration yields that ||u: — o¢l/7v = 0. In
the general case we obtain

e = otllry < F7H(E(lluo = oollry = Ct),
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1
where F(v) = /G(\/ﬂ)_2 and F~! is the inverse function to F. O
v

§3. THE EXISTENCE OF PROBABILITY SOLUTIONS

The question of existence of a probability solution to the Cauchy prob-
lem for a nonlinear equation is in a sense easier. One can establish the
existence of solutions for equations of a more general form:

Bppue = 02, (@ (@, t, ) — B, (W' (2, ), o =v,  (21)
where pi;, v are Borel probability measures on H. A solution is constructed
as the limit of solutions for finite-dimensional equations. The essential
part of the proof is justifying this limit. The finite-dimensional existence
is ensured by [10].

Suppose that some positive continuous function V on H is fixed. Given a
positive function o € C([0,Tp]) and 7 € (0, Tp], consider the class M, o(V)
of all nonnegative finite Borel measures p = (ut)¢ejo,-] such that for all
t € [0, 7] we have

/ V(@) due < alt).

We shall say that a sequence p™ = (uf)icjo,-] from M; , is V-convergent
to p = (pt)ecjo,r] € Mr o if for all ¢ € [0, 7]
lim [ F(x)du = /F(m)d,ut (22)

n—oo
for every continuous function F on H such that

lim sup F(z) -V '(z) =0.
R—00 ;e H\Br
Let us introduce our assumptions on the coefficients.
(H1) There exists a function V on H such that
V(z) >0, | Hlim V(z) = +o0,
z||—-+o0
and two mappings A; and As of the space C* ([0, Tp]) into C* ([0, Tp]) such
that for all 7 € (0,Tp] and all a € C([0,Tp]) the functions a”/ and b are
defined on M; , = M; (V) and for all p € M, , and (x,t) € H x [0, 7]
one has
LV (x,t) < Mifa](t) + Az[a]())V ().
We shall call such a function V' a Lyapunov function for the operator L,,.
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(H2) For all 7 € (0,Tp], « € CT([0,Tp]), 0 € M, 4, and z € H, the
mappings
t—a’(z,t,0) and t— bi(z,t,0)
are Borel measurable on [0, 7], and for every cylinder K C H with a
compact finite-dimensional base, the mappings

z— b(z,t,0) and x> a¥(z,t,0)

are bounded on K uniformly in o € M, , and ¢ € [0, 7] and continuous on
K uniformly in ¢ € M, 4 and ¢ € [0, 7]. Moreover, if a sequence p™ € M, ,
is V-convergent to u € M, o, then for all (z,t) € H x [0,7]

lim a¥(x,t, u") = a¥(x,t,p), lim b'(x,t, u") = b'(x,t, ).
n—oo n—oo

(H3) For every d € N, 7 € (0,Tp], « € C([0,T0]) and o € M, 4,
the matrix Aq4(z,t,0) = (a(z,t,0))1<i,j<a is symmetric and nonnegative
definite.

Theorem 3.1. Assume that conditions (H1)-(H3) hold and V € L'(v).
Then
(i) there is T € (0,Tp] such that the Cauchy problem (21) has a prob-
ability solution p = (t)efo,r] on [0,7]; moreover, a choice of T depends
only on Ay and As;
(ii) #f Ay and Ao are constant, then the Cauchy problem (21) has a
solution on the whole interval [0, Tp].
In both cases
sup /V(x)d,ut < 0.
te[0,7]
Proof. Let us introduce an auxiliary class of measures: for any «(t) €
C*([0,Tp]) and T > 0, let N, , denote the class of nonnegative measures
u= () € M, o such that

‘ / pdpy — / pds

for all functions ¢ € FCi°(H), where

AT, a, ) = sup{|Lu4p(a:)|: reX, e Mna}

does not depend on p € M, . Due to (H2), this supremum is finite. Ob-
serve that the weak convergence of pj* for each fixed ¢t obviously follows
from the V-convergence of 1. The set N, , is a convex compact set in the
space of finite Borel measures. Moreover, the V-convergence of measures

< A(Ta Q, (p)|t - S|



NONLINEAR FOKKER-PLANCK-KOLMOGOROV EQUATIONS 203

from N, , is equivalent to the weak convergence in the following sense:
every sequence {u"} = {up(dz)dt} € N, , contains a subsequence {u™}
such that it converges weakly to p on H x [0, 7] and u’ converges weakly
to uy on H for each fixed ¢t € [0, 7]. Next, if a sequence {u'} € N; 4 is
weakly convergent, then it is V-convergent. These assertions are easy gen-
eralizations of analogous finite-dimensional results (see [10, Lemmas 1, 2]).

We construct a solution to (21) as a certain limit of solutions to finite-
dimensional problems. For each d € N consider

Ag: (m,t, 1) — (0¥ (Paz, t, p))1<ij<d,  ba: (2, 1) — (0 (Paz, t, 1)) 1<i<d

Set Lﬁ = aﬁ{agm + b40y;, 1 <i,j < d. Then the problem

O = 05, (aff (,t, ) pue) — O, (iy(, b, ), o = v (23)

with #? = v o P;" has a probability solution p? = (uf);c(o,-,) with some
T4 > 0 (see [10, Theorem 1]). This follows from the fact that V; = PjoV
is a Lyapunov function for this finite-dimensional problem and

L Vd Al[ ]+A2[a]Vd

with the same coefficients A; and A,. Furthermore, a choice of 74 is de-
termined only by A; and A, ([10, Remark 3]); hence 74 = 7 can be taken
independent of d. If A; = const, then 7 = T ([10, Corollary 4]). We con-
sider solutions (uf);ef0,-] as measures on H, setting puf (B x U) = 0 for
every B C R? and nonempty U C H \ R%.

Fix a function ¢(x) = po(z1,...,2m) € FC; (H), and let S C R™
denote its compact support. For every d > m we have

/ pduf — / /t / fpdugds (24)
0

S

Obviously, u? € N, ,. Hence there exists a subsequence of indices ny such
that p"* is V-converging to p on the strip H x [0,7] as kK — oco. More-
over, the sequence p;"* converges weakly to u; for all t € [0, 7]. Next, v¢
converges weakly to v as d — oo. Assumption (H2) ensures the point-
wise convergence of the sequences a%(z,t, ™) and b(z,t, ™) and their
equicontinuity. By the Arzela—Ascoli theorem (after relabeling indices), the
sequences a’/ (x,t, u™) and b*(x,t, u™ ) uniformly converge to a® (z,t, i)
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and b%(z,t, ) on compact sets in H x [0, 7], respectively. Clearly,

t t
‘ / / Ly pdp™ ds — / / Lﬂgod,usds‘
0 0
t t
< ‘ / / L e pdp™ ds — / / L”cpdug’“ds‘
0 S 0 S
t t
+ ‘//Lugodu?kds—//Luapdusds‘.
0 S 0o S

The second summand on the right-hand side tends to zero as k — oo due
to the weak convergence of the measures u;*(dz)dt, the first summand
on the right-hand side tends to zero by the uniform convergence of the
coefficients. One can pass to the limit in (24) as k — oo and obtain

t
/cpdut f/godyz //Lﬂgod,usds.
0

Here we have used the fact that

/god,u?’“ — /cpd,ut and /gpdynk — /gpdv as k — oo.

By definition, this means that (u¢)c0,7] is a solution to the Cauchy prob-
lem (21). O

Remark. As it was mentioned in the proof, V-convergence is equivalent
to weak convergence on the set N, ,. It is introduced mainly for technical
purposes: assumption (H2) for unbounded drifts is easier to verify in terms
of V-convergence. For instance, if the drift term has the form

by, 1) = / K (2, y)djue(y)

for some continuous vector kernel K, and for some function V' and contin-
uous functions Cq(z), Ca(z) we have

|K(.’L‘,y)| < Cl(a")_'—CQ(x)Vli'y(y)a v e (Oa 1)7
then (H2) is fulfilled.
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Finally, we formulate sufficient conditions for the existence and unique-
ness of a probability solution for the Cauchy problem (7) with

b(u, 1) = R + / K@ p)du(y), ¥ = (be;),

where R is a nonpositive self-adjoint operator with eigenbasis {e;}, j € N,
and eigenvalues r = {—r;}, j € N. The following theorem is an immediate
corollary of Theorem 2.1 and Theorem 3.1 with V(z) =1 + |z|?.

Theorem 3.2. Let K(-,-): H x H — H be a continuous kernel, and let

S} .
> B9 < 4oo. Assume that for some Coy > 0
i=1

K (2,y) — K(2,2)| < Co - (1+]af*) - |y — zl.

Assume also that there exists a sequence of smooth bounded mappings K,
such that for all (z,y) € H x H we have K,,(z,y) — K(z,y) as n — oo,

(Kn(@,y) — Kn(z,y),0 — 2) <Olv — 2" + [lo — 2|,

and |K,(z,y)] < Cy(1 + |2))(1 + |y|>=%) for some § > 0. Then for any
o € Po(H), the Cauchy problem (7) has a unique probability solution in
P2(H).
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