
úÁ�ÉÓËÉ ÎÁÕÞÎÙÈÓÅÍÉÎÁÒÏ× ðïíé�ÏÍ 437, 2015 Ç.O. A. ManitaNONLINEAR FOKKER{PLANCK{KOLMOGOROVEQUATIONS IN HILBERT SPACESAbstrat. We study the Cauhy problem for nonlinear Fokker{Plank{Kolmogorov equations for probability measures on a Hilbertspae, orresponding to stohasti partial di�erential equations. Suf-�ient onditions for the uniqueness of probability solutions for aylindrial di�usion operator and for a possibly degenerate di�usionoperator are given. A new general existene result is establishedwithout expliit growth restritions on the oeÆients.
§1. Introdution and main definitionsWe study the following Cauhy problem for a nonlinear Fokker{Plank{Kolmogorov equation with respet to probability measures on a separableHilbert spae H :�t�t = �2eiej (aij(�; x; t)�t)− �ei(bi(�; x; t)�t); �0 = �; (1)where � is a Borel probability measure on H . The de�nition of a solutionwill be given below (see (5)). Throughout, summation over all repeatedindies is assumed. In typial appliations, the drift oeÆients have thefollowing struture:bi(�; x; t) = −�ixi +�i(�; x; t); aij(�; x; t) = �jÆij ;where Æij is the Kroneker delta symbol. This struture orresponds to theKolmogorov equation for a nonlinear stohasti partial di�erential equa-tion (SPDE) dXt = √2dwt + (�Xt + �(�;Xt; t))dt;where � is a self-adjoint negative unbounded operator with domainD(�) ⊂H with eigenvalues �j and the orresponding orthonormal basis ej ; wt isa Wiener proess in H . Assume that it has the form wt = ∞∑j=1√�j�jt ej ,Key words and phrases: nonlinear Fokker{Plank{Kolmogorov equation, Cauhyproblem, SPDE, uniqueness of solutions, transition probability.Partially supported by the RFBR grants 14-01-00237 and 15-31-20082.184



NONLINEAR FOKKER{PLANCK{KOLMOGOROV EQUATIONS 185where �jt , j ∈ N, are one-dimensional independent standard Wiener pro-esses. We assume that the Wiener proess and � have the same orthog-onal basis only for simpliity. Then Eq. (1) is written in this basis. Astandard example is given by the stohasti heat equation: � = � andH = D(�) = H1;20 . Similarly to the �nite-dimensional ase, the transitionprobabilities of the solution to suh an equation satisfy an appropriateFokker{Plank{Kolmogorov (FPK) equation.Equations (1) are usually alled nonlinear FPK equations, see [5, 14.2.2℄.The term \nonlinear" indiates that the oeÆients of the equation dependon the solution. Suh equations arise in many problems of mehanis, sta-tistial physis, probability theory, and ontrol of di�usion proesses. Lin-ear equations of this type appeared in the �rst half of the XX enturyin the works of Fokker [6℄, Plank [12℄, and Kolmogorov [7℄. Even linearFPK equations remain a very popular area of researh, and nonlinear FPKequations belong to the mainstream in PDEs (see, for instane, [4℄ andreferenes therein). In�nite-dimensional equations have been studied less,but they are also of great importane, espeially due to intensive studiesof SPDEs. However, not muh is known about the well-posedness of theCauhy problem (1) for suh equations in the general setting (for the linearase, see [2℄ and referenes therein). We an mention the work [3℄, wherethe existene of solutions was established for equations with the identi-ally zero di�usion matrix A and under ertain growth restritions on thedrift term b. The work [1℄ is onerned with the gradient ow struture ofpartiular equations.The goal of this paper is two-fold. First, we provide suÆient ondi-tions for the existene and uniqueness of solutions to the nonlinear prob-lem (1) in the spae of probability measures on a Hilbert spae H in arather general setting. Our existene results are stronger than the onesmentioned above. Moreover, no uniqueness results for general nonlinearFokker{Plank{Kolmogorov equations in in�nite dimensions have beenknown so far. Our seond goal is to apply some methods developed for thestudy of uniqueness in �nite dimensions to the in�nite-dimensional ase,namely, a modi�ation of Holmgren's priniple, used earlier in [2, 8, 9, 11℄.The main idea is very simple and an be illustrated by the following (�nite-dimensional) toy example: suppose that all oeÆients are smooth enoughfor the following omputation to make sense. Assume that the di�usionoeÆients aij do not depend on measures. Suppose that there are twosolutions � = �t dt and � = �t dt to the Cauhy problem (1) with initial



186 O. A. MANITAonditions �0 and �0, respetively. Let us solve the adjoint problems�sf + (aij(x; s)�2xixj + bi(�s; x; s)�xi)f(x; s) = 0; f |s=t =  ;where  ∈ C∞0 (Rd). Formally testing the Eq. (1) with f and integratingby parts, we obtain�
Rd  d(�t − �t) = �

Rd  d(�0 − �0) + t�0 �
Rd 〈b(�t)− b(�t);∇f〉 d�s ds:Reall that the Kantorovih 1-metri is de�ned byW1(�t; �t) = sup{�

Rd  d(�t − �t) :  ∈ C∞0 (Rd); |∇ | 6 1} (2)on the subset of probability measures having �nite �rst moments. Supposethat |b(�; x; t)− b(�; x; t)| 6 C0W1(�t; �t) and |∇f | is bounded (this holdsif the oeÆients are regular enough). Passing to the supremum over  asin (2), we arrive atW1(�t; �t) 6 W1(�0; �0) + C t�0 W1(�s; �s) ds;and Gronwall's inequality yieldsW1(�t; �t) 6 eCtW1(�0; �0). In partiular,if �0 = �0, then W1(�t; �t) = 0 and �t = �t.The paper is divided into three setions. Setion 2 is devoted to theuniqueness of solutions in two essentially di�erent ases: a possibly degen-erate di�usion and a \ylindrial" di�usion operator (the term orrespondsto the notion of ylindrial Wiener proess, whih is a proess with unitovariane operator of in�nite trae lass). Setion 3 is onerned with theexistene of loal and global solutions. Finally, at the end of Se. 3 weprovide an existene and uniqueness theorem for equations of a partiularform.We now proeed to introdue notation and exat de�nitions. Let H bea real separable Hilbert spae with inner produt 〈 · ; · 〉 (generating thenorm | · |), and let {ej}; j ∈ N, be an orthonormal basis in H . Let PNbe the orthogonal projetion of H onto HN = span{e1; : : : ; eN} ≃ R
N .For any vetor  ∈ H , let N denote the orthogonal projetion of  to

R
N ; i.e., N = PN. Sometimes we will think of N as of a vetor from



NONLINEAR FOKKER{PLANCK{KOLMOGOROV EQUATIONS 187H , sine this annot lead to a misunderstanding. Given x ∈ H and � =(�1; : : : ; �j ; : : : ); �j > 0, set ‖x‖2� := ∞∑j=1�j〈x; ej〉2.Let C∞0 (Rd) denote the set of in�nitely smooth ompatly supportedfuntions on R
d. Let C(H) denote the spae of ontinuous funtions onH , and let C+(I) denote the spae of positive ontinuous funtions on aninterval I ⊂ R. Let Lip be the set of -Lipshitz ontinuous funtions,that is, all f ∈ C(H) suh that |f(x)−f(y)| 6 |x−y| whenever x; y ∈ H .The lass FC∞0 (H) of test funtions on H onsists of funtions '(x) ='0(x1; : : : ; xd) where '0 ∈ C∞0 (Rd) and xj = 〈x; ej〉.Let P1(H) and P2(H) denote the sets of probability measures onH with�nite �rst and seond moments, respetively. We shall use the followingmetris on the spae of measures. The total variation of a �nite Radon(possibly signed) measure � on H is de�ned by

‖�‖TV := sup{∣∣∣
� f(x)�(dx)∣∣∣ : f ∈ FC∞0 (H); |f | 6 1}: (3)Similarly to (2), the KantorovihmetriW1 is de�ned on the spaeP1(H) byW1(�; �) := sup{� f(x)(�− �)(dx) : f ∈ FC∞0 (H); |∇f | 6 1}: (4)Note that usually W1 is de�ned as the supremum over Lip1-funtions,but the integral of a Lip1-funtion over a measure from P1(H) an beapproximated by the intergals over the projetions of this funtion, there-fore, we an pass to the supremum over the smaller lass of funtions

FC∞0 (H) ∩ Lip1.We shall say that � is given by a family of probability measures (�t)t∈[0;T ℄on H , and write � = (�t)t∈[0;T ℄, if �(dx dt) = �t(dx)dt, whih means that�H×[0;T ℄ f d� = T�0 �H f d�t dt:In the subsequent onsiderations, we will use the notion of the Lya-punov funtion V for a di�erential operator. The hoie of this funtionis explained in § 3, but now we introdue some related notation. Given aontinuous stritly positive funtion V on H and T > 0, setMT (V ) := {� = (�t)t∈[0;T ℄ : supt∈[0;T ℄� V (x)d�t(x) < +∞
}:



188 O. A. MANITAGiven two ountable sets of mappingsaij(�; x; t) : MT0(V )×H × [0; T0℄ → R;bi(�; x; t) : MT0(V )×H × [0; T0℄ → R; i; j ∈ N;that are Borel measurable in (x; t), and a probability measure � on H , weonsider the Cauhy problem (1). SetL� := ∞∑i;j=1 aij(�; x; t)�2eiej + ∞∑i=1 bi(�; x; t)�ei :We shall say that � = (�t)t∈[0;T0℄ is a probability solution to the Cauhyproblem (1) if �t are probability measures, � ∈ MT0(V ), and for everyt ∈ [0; T0℄ and ' ∈ FC∞0 (H) one has� 'd�t − � 'd� = t�0 � L�'d�sds: (5)Here we assume by de�nition that aij ; bi ∈ L1(H × [0; T0℄; d�) for i; j ∈ N,i.e., the integrand on the right-hand side is well de�ned.Sometimes it is more onvenient to use an equivalent de�nition: let atest funtion v depend on a �nite set of variables x1; : : : ; xk, vanish outsidesome ball in Hk ∼= R
k, and lie in C2;1(Rk×(0; T0))⋂C(Rk× [0; T0)). Thenfor all t ∈ [0; T0℄ the following identity holds:� v(x; t) d�t = � v(x; 0) d� + t�0 � [�sv + L�v] d�s ds: (6)We shall say that � = (�t)t∈[0;� ℄ is a loal solution to (1) if (5) and ourregularity assumptions hold with � in plae of T0.

§2. Uniqueness of probability solutionsWe start with onditions for uniqueness of probability solutions to theCauhy problem�t�t = �j�jj�t − �j(bj(x; t; �)�t); �t|t=0 = �0 (7)with a onstant diagonal di�usion operator A = diag(�j)∞j=1 with �j > 0.For eah N ∈ N, set AN = diag(�j)Nj=1. Throughout this setion, weassume that the drift term has the following struture:bi(�; x; t) = −�ixi +�i(�; x; t); �i > 0: (8)



NONLINEAR FOKKER{PLANCK{KOLMOGOROV EQUATIONS 189In this setion we provide suÆient onditions for the uniqueness of proba-bility solutions to (7) in two essentially di�erent ases: that of a degenerateoperator A and the ylindrial ase with �j > �0 > 0. This latter ase or-responds to the ylindrial Wiener proess wt.We start with the �rst ase. Fix a positive funtion V ∈ C2(H). Assumethat(F0) A(x; t) = diag{�j}∞j=1; �j > 0.In partiular, one an onsider fully or partially degenerate matries(with �j = 0).We onsider only solutions to (7) from the lass K1 = P1(H) ∩MT (V )suh that(F1) For every " > 0, every d ∈ N, and every � ∈ K1, there is N > dand a funtion ��;N ∈ C∞(RN × [0; T0℄) suh that ��;N ∈ L1(H;� + �)for every � ∈ K1,T�0 �H |�N (x; t; �) − ��;N (PNx; t)|(�t + �t)(dx)dt < "; (9)and, in addition,supx∈H |��;N (�; x; t)| · (1 + |x|)−1 6 CN (�) <∞: (10)(F2) For every solution � ∈ K1 there exists a onstant � = �(�) suhthat
〈��;N (�; x; t)− ��;N (�; y; t); x− y〉 6 �|x− y|2 + ‖x− y‖2�N (11)for all x; y ∈ H and t ∈ [0; T0℄.(F3) There exists a ontinuous inreasing funtion G on [0;+∞) suhthat G(0) = 0 and

|�(�; x; t)− �(�; x; t)| 6 V (x)G(W1(�t; �t)) (12)for all (x; t) ∈ H × [0; T0℄ and �; � ∈ K1.Theorem 2.1. Assume that onditions (F0); (F1); (F2); (F3) hold. If �0
∈ P1(H), V ∈ L1(�0), and G is an Osgood funtion, i.e.,�0+ duG(u) = +∞;then a solution to the Cauhy problem (7) in the lass K1 is unique, pro-vided it exists. Moreover, for every two solutions (�t)t∈[0;T0℄ and (�t)t∈[0;T0℄



190 O. A. MANITAfrom K1 one hasW1(�t; �t) 6 F−1(F (2e2�T0W1(�0; �0))− Ct);where F−1 is the inverse funtion to F (v) := 1�v G(u)−1du. In partiular,if G(u) = u, we obtainW1(�t; �t) 6 2e2�T0W1(�0; �0)eCt:Example 2.1. Considerbi = −�ixi + f i(x) � '(y)d�t(y):Assume that there exist a sequene of bounded smooth funtions fn(x; t)suh that limn→∞
fn(x; t) = f(x; t) for any x; t and onstants C1; C2 > 0,independent of n, suh that

|fn(x; t)| 6 C1(1 + |x|); 〈fn(x; t) − fn(y; t); x− y〉 6 C2|x− y|2:Assume also that |'(x)| 6 C2(1+ |x|) and �0 ∈ P1(H). Then the Lebesguedominated onvergene theorem implies that all assumptions of Theo-rem 2.1 are ful�lled with V (x) = 1 + |x|. Hene the problem (7) has atmost one solution in MT0(|x|).Proof. Consider solutions �=(�t)t∈[0;T0℄ and �=(�t)t∈[0;T0℄ to (7) fromthe lass K1 with initial onditions �0 ∈ P1(H) and �0 ∈ P1(H), respe-tively. Assume that V ∈ L1(�0 + �0). Fix a funtion  ∈ FC∞0 (H) suhthat |∇ (x)| 6 1. Fix d suh that  (x) =  0(Pdx) (whih exists by thede�nition of FC∞0 (H)).Fix " > 0. Aording to assumption (F1), there exists a smooth �nite-dimensional approximating sequene ��;N , n > d, suh that (9) and (10)hold. Set b�;N(x; t) := (−�1x1; : : : ;−�NxN ) + ��;N (�; x; t);ClN (�) = max16i6N �i + CN (�):Fix a ut-o� funtion ' ∈ C∞0 (R1) suh that 0 6 ' 6 1, '(x) = 1 for
|x| < 1, and '(x) = 0 for |x| > 2; moreover, assume that for some C > 0and all x ∈ R one has |'′′(x)|2 + |'′(x)|2 6 C'(x). For eah K > 1 set'K(t; x) := '(t=K) · '(|x=K|).We split the proof into several steps.



NONLINEAR FOKKER{PLANCK{KOLMOGOROV EQUATIONS 191Step 1. \The adjoint problem."We extend bi�;N to the whole spae
R
N+1 as follows: bi�;N (x; t) = bi�;N(x; T0) for t > T0 and bi�;N (x; t) =bi�;N(x; 0) for t < 0. Consider the problem�sf + L̃f = 0; f |s=t =  ; L̃f := N∑j=1 �j�2xjxjf + bj�;N�xjf (13)in R

N . This problem has a solution f = fN of lass C2;1(RN × [0; t℄).Indeed, aording to [13℄, the stohasti di�erential equation in R
NdXNt = √2�jdW jt + b�;N (XNt )dt; XN0 = xhas a solution XNt ; t > 0, and the funtion f(x; s) = E

( (XNt )∣∣∣XNs = x)solves (13). The smoothness follows from [14, Theorems 3.2.4, 3.2.6℄. Clear-ly, sup |f | 6 max | | =: C( ).Step 2. Plugging v = 'Kf into identities (6) for solutions �=(�t)t∈[0;T0℄and � = (�t)t∈[0;T0℄, we obtain� 'K(t; x) (x) d�t(x) = � 'K(0; x)f(0; x) d�0+ t�0 � ['K〈B(�) − b�;N ;∇f〉+ 2〈A∇'K ;∇f〉N + fL'K] d�s ds;� 'K(t; x) (x) d�t(x) = � 'K(0; x)f(0; x) d�0+ t�0 � ['K〈B(�) − b�;N ;∇f〉+ 2〈A∇'K ;∇f〉N + fL'K] d�s ds:



192 O. A. MANITASubtrating the seond identity from the �rst one, we have� 'K(t) d(�t−�t)6 t�0 � 'K |B(�)−b�;N ||∇f | d(�s+�s) ds+2 t�0 � |A∇'K ||∇f |+|f ||L'K|d(�s + �s)ds+ t�0 � 'K |B(�)−B(�)||∇f | d�s ds+(� 'Kf d�0−� 'Kf d�0): (14)
Step 3. A bound on ∇f . Let us obtain a bound on |∇f |. We observethat (11) an be rewritten as

〈b�;N (�; x; t) − b�;N(�; y; t); x− y〉 6 �|x− y|2;hene
〈H(x; t)y; y〉 6 �(�)|y|2; where H = (�xj bi�;N )i;j6N :Set u = 2−1 N∑k=1 |�xkf |2. Di�erentiating Eq. (13) with respet to xk andmultiplying by �xkf , we obtain�tu+ L̃u+ 〈H∇f;∇f〉 − N∑k=1 �j(�2xjxkf)2 = 0:Sine 〈H∇f;∇f〉 6 2�u and the last summand is nonnegative,�tu+ L̃u+ (2�)u > 0:Then the maximum priniple (see [14, Theorem 3.1.1℄) yields that |u(x; s)|

6 e2�(t−s)|u(x; t)|, i.e.,
|∇f | = 2|u(x; s)| 6 2e2�(t−s)|∇�S(x)| 6 2e2�T0 =: C1: (15)Step 4. Limits as K → ∞, N → ∞, " → 0. Now observe thatB(�)−B(�) = �(�)− �(�), BN − b�;N = �N − ��;N , and

|L'K | = |L̃'K |+ |〈�N − ��;N ;∇'K〉| 6 |L̃'K |+ C ·K−1|�N − ��;N |:



NONLINEAR FOKKER{PLANCK{KOLMOGOROV EQUATIONS 193Hene, (14) and (15) imply that�  d(�t − �t)
6C1 · t�0 �

|�(�)−�(�)| d�s ds+Ro+Rop+Rappr + J0(K;N); (16)where Rop := C2( ) t�0 �
|L̃'K | d(�s + �s) ds;Rappr := (C1 + C ·K−1) · t�0 �

|�N (�)− ��;N | d(�s + �s) ds;Ro := 2C1 t�0 �
|A∇'K |d(�s + �s)ds;J0(K;N) = � 'KfN d�0 − � 'KfN d�0:Let us show that the R·-terms are small. By (F1) we have

|Rappr| 6 (C1 + C)( t�0 �
|�N (�)− ��;N | d(�s + �s) ds) 6 C3":Let us estimate Rop. Note thatL̃'K = K−1'′(|x|=K)〈b�;N ; x|x|〉 +K−2'′′(|x|=K)|trAN :This expression is nonzero only on the set K := {x : K 6 |x| 6 2K}.Hene, for a �xed N we have

|̃L'K | 6 C2IK( |b�;N |1 + |x| + trAN(1 + |x|)2 ) (F2)
6 (C2 · ClN (�) + C2 · trAN )IK ;where IK is the indiator funtion of K . Thus, we have Rop 6 C4( ;N) ·(�+�){K×[0; t℄}. Similarly, Ro 6 C5(N)·(�+�){K×[0; t℄}. Obviously,(�+ �){K × [0; t℄} tends to zero as K → ∞. By (15) we have fN (x; 0) ∈



194 O. A. MANITALipC1 ; hene the Lebesgue dominated onvergene theorem yields thatJ0(K;N) → J0;N = � fN d�0 − � fN d�0 as K → ∞:Using this and (12), for any �xed ",  , and N , we pass to the limit in (16)as K → ∞ and �nd that�  d(�t − �t) 6 C1 t�0 � V (x) ·G(W1(�s; �s))d�s ds+ C3"+ J0;N :Now we pass to the limit as N → ∞. The maximum priniple and theArzel�a{Asoli theorem (whih is appliable due to the fat that fN ∈LipC1) imply that the sequene {fN(x; 0)} ontains a subsequene onverg-ing on all ompat sets. In partiular, fN (x; 0) → f̃(x) ∈ LipC1 pointwiseas N → ∞. Therefore,�  d(�t−�t)6C1 t�0 � V (x) ·G(W1(�s; �s))d�s ds+C3"+ � f̃ d(�0−�0):(17)Step 5. The �nal estimate. Observe that� f̃(x)d(�0 − �0) 6 C1W1(�0; �0);and, sine " is an arbitrary positive number, (17) gives the inequality�  d(�t − �t) 6 C1 t�0 G(W1(�s; �s))(� V (x)d�s) ds+ C1W1(�0; �0):(18)Passing to the supremum over  ∈ FC∞0 (H) with |∇ (x)| 6 1, we �ndthatW1(�t; �t) 6 C1W1(�0; �0) + C1 t�0 G(W1(�s; �s))(� V (x)d�s) ds:Sine � ∈MT (V ), this yields thatW1(�t; �t) 6 C1W1(�0; �0) + C t�0 G(W1(�s; �s))ds:



NONLINEAR FOKKER{PLANCK{KOLMOGOROV EQUATIONS 195IfW1(�0; �0) = 0, then the integration givesW1(�t; �t) ≡ 0. In the generalase we obtainW1(�t; �t) 6 F−1(F (C1W1(�0; �0))− Ct);where F (v) = 1�v G(u)−1du and F−1 is the inverse funtion to F . Finally,we reall that C1 = 2e2�T0 . �We now proeed to the ylindrial ase. Assume that(T0) �j > �0 > 0.We onsider only solutions to (7) from the lass K2 := P2(H)∩MT0(V ).Let us list our assumptions on the drift term:(T1) For every solution � ∈ K2, we have �(�; x; t) ∈ l2 for �×[0; T0℄-a.e.(x; t) and ‖�‖l2 ∈ L2(�).(T2) There exists a ontinuous inreasing funtion G on [0;+∞) suhthat G(0) = 0 and
|�(�; x; t) − �(�; x; t)| 6

√V (x) ·G(‖�t − �t‖TV ) (19)for all (x; t) ∈ H × [0; T ℄ and all solutions �; � ∈ K2.Theorem 2.2. Assume that onditions (T0); (T1); (T2) hold. If the initialdata is suh that �0 ∈ P2(H), √V ∈ L1(�0), and�0+ duG2(√u) = +∞;then a solution to the Cauhy problem (7) in K2 is unique, provided it ex-ists. Moreover, for every two solutions � = (�t)t∈[0;T0℄ and � = (�t)t∈[0;T0℄from K2 one has
‖�t − �t‖TV 6 F−1(F (‖�0 − �0‖TV − Ct);where F−1 is the inverse funtion to F (v) = 1�v G(√u)−2du. In partiular,if G(u) = u, then we have

‖�t − �t‖TV 6 ‖�0 − �0‖TV eCt:Example 2.2. Considerbi = −�ixi + f i(x) � '(y)d�t(y); �j > �0 > 0:



196 O. A. MANITAAssume that f has at most linear growth and ' is globally bounded. More-over, assume that �0 ∈ P2(H). Then there is at most one solution to (7)in MT0(|x|2).Indeed,
‖�‖2l2 6

∞∑j=1 |f i|2 = ‖f‖2L2(�t+�t) 6 C(1 + |x|2) < +∞;i.e., (T1) holds, and
∣∣∣
� '(y)d�t(y)− � '(y)d�t(y)∣∣∣ 6 C1‖�t − �t‖TV ;so assumption (T2) is also ful�lled.Proof. Consider solutions � = (�t)t∈[0;T0℄ and � = (�t)t∈[0;T0℄ to (7) fromthe lass K2 with initial onditions �0 and �0 from P2(H), respetively.Assume that √V ∈ L1(�0 + �0). Fix a funtion  ∈ FC∞0 (H) suh that

| | 6 1. Fix d suh that  (x) =  0(Pdx) (whih exists by the de�nition of
FC∞0 (H)).Fix a ut-o� funtion ' ∈ C∞0 (R1) suh that 0 6 ' 6 1, '(x) = 1 if
|x| < 1, and '(x) = 0 if |x| > 2. Moreover, assume that for some C > 0and all x ∈ R, one has |'′′(x)|2 + |'′(x)|2 6 C'(x). For eah K > 1 set'K(t; x) := '(t=K) · '(|x|=K).We split the proof again into several steps.Step 1. Finite-dimensional smooth approximation of the drift.Given � satisfying (T1), for every " > 0 we an �nd b�;N ∈ C∞(RN ),N > d, suh thatT0�0 �H |BN (x; t; �) − b�;N(PNx; t)|2(�t + �t)(dx)dt < "2for all solutions �; � ∈ K2. To prove this, we observe that for eah N thereis a smooth bounded funtion ��;N ∈ C∞b (RN × [0; T0℄); N > d, suh thatT0�0 �H |�N (x; t; �) − �N;�(PNx; t)|2(�t + �t)(dx)dt < "2



NONLINEAR FOKKER{PLANCK{KOLMOGOROV EQUATIONS 197for all solutions �; � ∈ K2. Indeed, one an pik M ∈ N suh that
∞∑k=M+1 T0�0 �

|�k|2(�t + �t)(dx)dt 6 "2=2:Next, for eah �k there exists a smooth bounded funtion ��k dependingonly on the �rst nk spae variables and t suh thatT0�0 �
|�k − ��k|2(�t + �t)(dx)dt < "2(2M)−1:For k > M , set ��k ≡ 0. Set N = max{M;n1; : : : ; nM} and �N;� =(��1; : : : ��N ; 0; : : : ). ThenT0�0 �

|�N (x; t; �)− �N;�(PNx; t)|2(�t + �t)(dx)dt
6

M∑k=1 T0�0 �
|�k − �N;�|2(�t + �t)(dx)dt+ ∞∑k=M+1 T0�0 �
|�k|2(�t + �t)(dx)dt < "2:Hene b�;N (�; x; t) := (−�1x1; : : : ;−�NxN ) + �N;�(�; x; t) is the desiredapproximating sequene.Step 2. \The adjoint problem." Similarly to Step 1 of the proofof Theorem 2.1, we extend bi�;N to the whole spae R

N+1 as follows:bi�;N(x; t) = bi�;N(x; T0) if t > T0 and bi�;N (x; t) = bi�;N (x; 0) if t < 0.Let f = fN be the C2;1(RN × [0; t℄)-solution to the �nite-dimensionalCauhy problem in R
N (see [14, Theorems 3.2.4, 3.2.6℄)�sf + L̃f = 0; f |s=t =  ; L̃f := N∑j=1 �j�2xjxjf + bj�;N�xjf:The maximum priniple implies that sup |f | 6 max | | 6 1.



198 O. A. MANITAStep 3. Similarly to the proof of Theorem 2.1, we plug the test funtions'K · f into (6) for the solutions � and � and subtrat one from another:� 'K(t; x) (x) (�t − �t)(dx)
6

t�0 � 'K |B(�)− b�;N | · |∇f | d(�s + �s) ds+ ‖�0 − �0‖TV+ 2 t�0 � [
|A∇'K | · |∇f |+ |f | · |L'K |

]d(�s + �s)ds+ t�0 � 'K |B(�) −B(�)||∇f | d�s ds:Set If := ( t�0 � '|∇f |2d�sds)1=2. By the Cauhy inequality,� 'K d(�t − �t)
6

t�0 � '·|B(�)−B(�)|·|∇f | d�s ds+‖�0−�0‖TV+Ro+Rop+Rappr; (20)whereRop := t�0 �
|L̃'K | d(�s + �s) ds;Ro := 2If( t�0 �

|A∇'K |2d(�s + �s)ds)1=2;Rappr := (C ·K−1 + If)( t�0 �
|B(�)− b�;N |2 d(�s + �s) ds)1=2:



NONLINEAR FOKKER{PLANCK{KOLMOGOROV EQUATIONS 199Step 4. A bound for If . In order to �nd a bound for t�0� '|∇f |2d�sds,we plug the test funtion f2 · 'K into (6) for �:�  2'd�t−� f2(x; 0)'d�0= t�0 �
Rd (�s + L�)(f2')d�sds= t�0 �

Rd[2'|√A∇f |2+2'f〈b�;N−B(�);∇f〉+f2L�'+ 2f(A∇f;∇')]d�sds:Due to the maximum priniple,2�0 t�0 �
Rd '|∇f |2d�sds 6 2 t�0 �

Rd '|√A∇f |2d�sds
6 2 + 2 t�0 �

Rd |b�;N −B(�)| · |∇f |d�sds+ 2R;where R := t�0 �
Rd |L�'|=2 + C1( )|A∇'|d�sds:Using the inequality ab 6 2−1a2 + (2)−1b2 with  = �−10 , we obtain2�0 t�0 �

Rd |∇f |2d�sds 6 2 + 1�0 t�0 �
Rd |b�;N −B(�)|2d�sds+ �0 t�0 �

|∇f |2d�sds+ 2R;i.e., �0 t�0 �
Rd |∇f |2d�sds 6 2 + 1�0 t�0 �

Rd |b�;N −B(�)|2d�sds+ 2R:



200 O. A. MANITAPlugging this bound into (20) and using the Cauhy inequality, we obtain� 'K d(�t − �t) 6

√√√√√
t�0 �

|B(�)−B(�)|2d�s ds
×

√√√√√2�−10 + �−20 t�0 �
Rd |b�;N −B(�)|2d�sds+ 2R+Ro +Rop +Rappr:Step 5. The limits. The �nal estimate. Arguing similarly to Step4 of the proof of Theorem 2.1 and taking into aount (19), we pass to thelimits as K → ∞, N → ∞, and "→ 0 and �nd that�  d(�t − �t) 6 ‖�0 − �0‖TV+√√√√√C t�0 G2(‖�s − �s‖TV )ds · √√√√√2�−10 + �−20 C t�0 G2(‖�s − �s‖TV )ds:Passing to the supremum over  ∈ FC∞0 (H) with | | 6 1 and observingthat ‖�s − �s‖TV 6 2 and t 6 T0, we obtain

‖�t − �t‖TV 6 ‖�0 − �0‖TV+√√√√√C t�0 G2(‖�s − �s‖TV )ds · √2�−10 + �−20 C · T0 ·G2(2)ds
≡ ‖�0 − �0‖TV + Csum√√√√√

t�0 G2(‖�s − �s‖TV )ds:If ‖�0 − �0‖TV = 0, then the integration yields that ‖�t − �t‖TV ≡ 0. Inthe general ase we obtain
‖�t − �t‖TV 6 F−1(F (‖�0 − �0‖TV − Ct);



NONLINEAR FOKKER{PLANCK{KOLMOGOROV EQUATIONS 201where F (v) = 1�v G(√u)−2 and F−1 is the inverse funtion to F . �

§3. The existene of probability solutionsThe question of existene of a probability solution to the Cauhy prob-lem for a nonlinear equation is in a sense easier. One an establish theexistene of solutions for equations of a more general form:�t�t = �2eiej (aij(x; t; �)�t)− �ei(bi(x; t; �)�t); �0 = �; (21)where �t, � are Borel probability measures on H . A solution is onstrutedas the limit of solutions for �nite-dimensional equations. The essentialpart of the proof is justifying this limit. The �nite-dimensional existeneis ensured by [10℄.Suppose that some positive ontinuous funtion V onH is �xed. Given apositive funtion � ∈ C([0; T0℄) and � ∈ (0; T0℄, onsider the lassM�;�(V )of all nonnegative �nite Borel measures � = (�t)t∈[0;� ℄ suh that for allt ∈ [0; � ℄ we have � V (x) d�t 6 �(t):We shall say that a sequene �n = (�nt )t∈[0;� ℄ from M�;� is V -onvergentto � = (�t)t∈[0;� ℄ ∈M�;� if for all t ∈ [0; � ℄limn→∞

� F (x)d�nt = � F (x)d�t (22)for every ontinuous funtion F on H suh thatlimR→∞
supx∈H\BR F (x) · V −1(x) = 0:Let us introdue our assumptions on the oeÆients.(H1) There exists a funtion V on H suh thatV (x) > 0; lim

‖x‖→+∞
V (x) = +∞;and two mappings �1 and �2 of the spae C+([0; T0℄) into C+([0; T0℄) suhthat for all � ∈ (0; T0℄ and all � ∈ C+([0; T0℄) the funtions aij and bi arede�ned on M�;� = M�;�(V ) and for all � ∈ M�;� and (x; t) ∈ H × [0; � ℄one has L�V (x; t) 6 �1[�℄(t) + �2[�℄(t)V (x):We shall all suh a funtion V a Lyapunov funtion for the operator L�.



202 O. A. MANITA(H2) For all � ∈ (0; T0℄, � ∈ C+([0; T0℄), � ∈ M�;�, and x ∈ H , themappings t 7→ aij(x; t; �) and t 7→ bi(x; t; �)are Borel measurable on [0; � ℄, and for every ylinder K ⊂ H with aompat �nite-dimensional base, the mappingsx 7→ bi(x; t; �) and x 7→ aij(x; t; �)are bounded on K uniformly in � ∈M�;� and t ∈ [0; � ℄ and ontinuous onK uniformly in � ∈M�;� and t ∈ [0; � ℄. Moreover, if a sequene �n ∈M�;�is V -onvergent to � ∈M�;�, then for all (x; t) ∈ H × [0; � ℄limn→∞
aij(x; t; �n) = aij(x; t; �); limn→∞

bi(x; t; �n) = bi(x; t; �):(H3) For every d ∈ N, � ∈ (0; T0℄, � ∈ C+([0; T0℄) and � ∈ M�;�,the matrix Ad(x; t; �) = (aij(x; t; �))16i;j6d is symmetri and nonnegativede�nite.Theorem 3.1. Assume that onditions (H1){(H3) hold and V ∈ L1(�).Then(i) there is � ∈ (0; T0℄ suh that the Cauhy problem (21) has a prob-ability solution � = (�t)t∈[0;� ℄ on [0; � ℄; moreover, a hoie of � dependsonly on �1 and �2;(ii) if �1 and �2 are onstant, then the Cauhy problem (21) has asolution on the whole interval [0; T0℄.In both ases supt∈[0;� ℄� V (x)d�t <∞:Proof. Let us introdue an auxiliary lass of measures: for any �(t) ∈C+([0; T0℄) and � > 0, let N�;� denote the lass of nonnegative measures� = (�t) ∈M�;� suh that
∣∣∣
� 'd�t − � 'd�s∣∣∣ 6 �(�; �; ')|t− s|for all funtions ' ∈ FC∞0 (H), where�(�; �; ') := sup{|L�'(x)| : x ∈ X; � ∈M�;�}does not depend on � ∈ M�;�. Due to (H2), this supremum is �nite. Ob-serve that the weak onvergene of �nt for eah �xed t obviously followsfrom the V -onvergene of �n. The set N�;� is a onvex ompat set in thespae of �nite Borel measures. Moreover, the V -onvergene of measures



NONLINEAR FOKKER{PLANCK{KOLMOGOROV EQUATIONS 203from N�;� is equivalent to the weak onvergene in the following sense:every sequene {�n} = {�nt (dx)dt} ∈ N�;� ontains a subsequene {�nl}suh that it onverges weakly to � on H × [0; � ℄ and �nlt onverges weaklyto �t on H for eah �xed t ∈ [0; � ℄. Next, if a sequene {�nt } ∈ N�;� isweakly onvergent, then it is V -onvergent. These assertions are easy gen-eralizations of analogous �nite-dimensional results (see [10, Lemmas 1, 2℄).We onstrut a solution to (21) as a ertain limit of solutions to �nite-dimensional problems. For eah d ∈ N onsiderAd : (x; t; �) 7→(aij(Pdx; t; �))16i;j6d; bd : (x; t; �) 7→(bi(Pdx; t; �))16i6d:Set Ld� = aijd �2xixj + bid�xi , 1 6 i; j 6 d. Then the problem�t�t = �2xixj (aijd (x; t; �)�t)− �xi(bid(x; t; �)�t); �0 = �d (23)with �d = � ◦ P−1d has a probability solution �d = (�dt )t∈[0;�d℄ with some�d > 0 (see [10, Theorem 1℄). This follows from the fat that Vd = Pd ◦ Vis a Lyapunov funtion for this �nite-dimensional problem andLd�Vd 6 �1[�℄ + �2[�℄Vdwith the same oeÆients �1 and �2. Furthermore, a hoie of �d is de-termined only by �1 and �2 ([10, Remark 3℄); hene �d ≡ � an be takenindependent of d. If �j ≡ onst, then � = T0 ([10, Corollary 4℄). We on-sider solutions (�dt )t∈[0;� ℄ as measures on H , setting �dt (B × U) = 0 forevery B ⊂ R
d and nonempty U ⊂ H \ R

d.Fix a funtion '(x) = '0(x1; : : : ; xm) ∈ FC∞0 (H), and let S ⊂ R
mdenote its ompat support. For every d > m we have�S 'd�dt − �S 'd�d = t�0 �S Ld�'d�dsds: (24)Obviously, �d ∈ N�;�. Hene there exists a subsequene of indies nk suhthat �nk is V -onverging to � on the strip H × [0; � ℄ as k → ∞. More-over, the sequene �nkt onverges weakly to �t for all t ∈ [0; � ℄. Next, �donverges weakly to � as d → ∞. Assumption (H2) ensures the point-wise onvergene of the sequenes aij(x; t; �nk ) and bi(x; t; �nk ) and theirequiontinuity. By the Arzel�a{Asoli theorem (after relabeling indies), thesequenes aij(x; t; �nk ) and bi(x; t; �nk ) uniformly onverge to aij(x; t; �)



204 O. A. MANITAand bi(x; t; �) on ompat sets in H × [0; � ℄, respetively. Clearly,
∣∣∣
t�0 � L�nk'd�nks ds− t�0 � L�'d�sds∣∣∣

6

∣∣∣
t�0 �S L�nk'd�nks ds− t�0 �S L�'d�nks ds∣∣∣+ ∣∣∣

t�0 �S L�'d�nks ds− t�0 �S L�'d�sds∣∣∣:The seond summand on the right-hand side tends to zero as k → ∞ dueto the weak onvergene of the measures �nkt (dx)dt, the �rst summandon the right-hand side tends to zero by the uniform onvergene of theoeÆients. One an pass to the limit in (24) as k → ∞ and obtain� 'd�t − � 'd� = t�0 � L�'d�sds:Here we have used the fat that� 'd�nkt →
� 'd�t and � 'd�nk →

� 'd� as k → ∞:By de�nition, this means that (�t)t∈[0;� ℄ is a solution to the Cauhy prob-lem (21). �Remark. As it was mentioned in the proof, V -onvergene is equivalentto weak onvergene on the set N�;�. It is introdued mainly for tehnialpurposes: assumption (H2) for unbounded drifts is easier to verify in termsof V -onvergene. For instane, if the drift term has the formb(�; x; t) = � K(x; y)d�t(y)for some ontinuous vetor kernel K, and for some funtion V and ontin-uous funtions C1(x); C2(x) we have
|K(x; y)| 6 C1(x) + C2(x)V 1−(y);  ∈ (0; 1);then (H2) is ful�lled.



NONLINEAR FOKKER{PLANCK{KOLMOGOROV EQUATIONS 205Finally, we formulate suÆient onditions for the existene and unique-ness of a probability solution for the Cauhy problem (7) withb(�; x; t) = Rx+ � K(x; y)d�t(y); bj = 〈b; ej〉;where R is a nonpositive self-adjoint operator with eigenbasis {ej}; j ∈ N,and eigenvalues r = {−rj}; j ∈ N. The following theorem is an immediateorollary of Theorem 2.1 and Theorem 3.1 with V (x) = 1 + |x|2.Theorem 3.2. Let K(·; ·) : H ×H → H be a ontinuous kernel, and let
∞∑j=1�j < +∞. Assume that for some C0 > 0

|K(x; y)−K(x; z)| 6 C0 · (1 + |x|2) · |y − z|:Assume also that there exists a sequene of smooth bounded mappings Knsuh that for all (x; y) ∈ H ×H we have Kn(x; y) → K(x; y) as n→ ∞,
〈Kn(x; y)−Kn(z; y); x− z〉 6 �|x − z|2 + ‖x− z‖2r;and |Kn(x; y)| 6 C4(1 + |x|)(1 + |y|2−Æ) for some Æ > 0. Then for any�0 ∈ P2(H), the Cauhy problem (7) has a unique probability solution in
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