
úÁ�ÉÓËÉ ÎÁÕÞÎÙÈÓÅÍÉÎÁÒÏ× ðïíé�ÏÍ 437, 2015 Ç.A. Bondal, I. ZhdanovskiyORTHOGONAL PAIRS AND MUTUALLY UNBIASEDBASESAbstra
t. The goal of our arti
le is a study of related mathemat-i
al and physi
al obje
ts: orthogonal pairs in sl(n) and mutuallyunbiased bases in Cn. An orthogonal pair in a simple Lie algebrais a pair of Cartan subalgebras that are orthogonal with respe
t tothe Killing form. The des
ription of orthogonal pairs in a given Liealgebra is an important step in the 
lassi�
ation of orthogonal de-
ompositions, i.e., de
ompositions of the Lie algebra into a dire
tsum of Cartan subalgebras pairwise orthogonal with respe
t to theKilling form. One of the important notions of quantum me
han-i
s, quantum information theory, and quantum teleportation is thenotion of mutually unbiased bases in the Hilbert spa
e Cn. Two or-thonormal bases {ei}ni=1; {fj}nj=1 are mutually unbiased if and onlyif |〈ei|fj〉|2 = 1n for any i; j = 1; : : : ; n. The notions of mutually un-biased bases in Cn and orthogonal pairs in sl(n) are 
losely related.The problem of 
lassi�
ation of orthogonal pairs in sl(n) and the
losely related problem of 
lassi�
ation of mutually unbiased basesin Cn are still open even for the 
ase n = 6. In this arti
le, we give asket
h of our proof that there is a 
omplex four-dimensional familyof orthogonal pairs in sl(6). This proof requires a lot of algebrai
geometry and representation theory. Further, we give an appli
a-tion of the result on the algebrai
 geometri
 family to the studyof mutually unbiased bases. We show the existen
e of a real four-dimensional family of mutually unbiased bases in C6, thus solving along-standing problem.
§1. Introdu
tionAn orthogonal pair in a semisimple Lie algebra is a pair of Cartan sub-algebras that are orthogonal with respe
t to the Killing form. The des
rip-tion of orthogonal pairs in a given Lie algebra is an important step in the
lassi�
ation of orthogonal de
ompositions, i.e., de
ompositions of the Liealgebra into a sum of Cartan subalgebras pairwise orthogonal with respe
tto the Killing form.Key words and phrases: orthogonal pairs, mutually unbiased bases (MUB), 
omplexHadamard matri
es, generalized Hadamard matri
es.35



36 A. BONDAL, I. ZHDANOVSKIYOrthogonal de
ompositions �rst 
ame up in the theory of integer latti
esin the paper by Thompson [23℄. Then the theory of su
h de
ompositionswas substantially developed [16℄. The 
lassi�
ation problem of orthogonalpairs in sl(n;C) is 
losely related to the 
lassi�
ation of 
omplex Hadamardn× n matri
es [16, 4℄.Independently, the study in quantum theory brought into light the no-tion of mutually unbiased bases, obje
ts of 
onstant use in quantum in-formation theory, quantum tomography, et
. [8, 21℄. It was revealed thatmutually unbiased bases are a unitary version of orthogonal pairs [4℄. Thislinks the subje
t to various vibrant problems in mathemati
al physi
s.One of the reasons why mutually unbiased bases are important in pra
-ti
e is that they provide a 
ru
ial mathemati
al tool that allows one totransfer quantum information with minimal loss in the 
hannel. Reliableproto
ols in quantum 
hannels are based on a 
hoi
e of the maximumnumber of mutually unbiased bases in a relevant ve
tor spa
e of quantumstates of transmitted parti
les. For instan
e, the proto
ol BB84, whi
hutilizes three su
h bases in a two-dimensional ve
tor spa
e, enables oneto signi�
antly extend the distan
e between the sour
e and the re
eiverof quantum information. Constru
ting the maximum number of mutuallyunbiased bases in ve
tor spa
es of higher dimension is important for pro-du
ing reliable proto
ols in quantum 
hannels.Also, one of the important problems of quantum teleportation is to 
he
kthe purity of the result of teleportation by means of quantum tomography.This is used in real experiments on the teleportation of entangled parti
les(
f. [17℄). The quantum tomography with minimal error bar is again basedon mutually unbiased bases [5, 9℄.Despite a simple de�nition, the 
lassi�
ation of orthogonal pairs is a veryhard problem of algebrai
 geometri
 
avor. We will 
onsider pairs in theLie algebra sl(n;C). A

ording to the famous Winnie-the-Pooh 
onje
ture[14℄, orthogonal de
ompositions are possible in this algebra when n is apower of a prime number only. This suggests the idea that the behavior ofthe obje
ts under study strongly depends on the arithmeti
 properties ofthe number n. For n = 1; 2; 3, there is a unique, up to natural symmetries,orthogonal pair. For n = 5, there are three of them [15, 19℄, while forn = 4 (the �rst nonprime integer), there is a one-dimensional family ofpairs parameterized by a rational 
urve.The �rst positive integer that is not a power of a prime is n = 6.The Winnie-the-Pooh 
onje
ture is open even for this 
ase. Resear
hers



ORTHOGONAL PAIRS AND MUTUALLY UNBIASED BASES 37in quantum information theory have independently 
ome to the unitaryversion of the Winnie-the-Pooh 
onje
ture, whi
h 
laims the nonexisten
eof n+1 mutually unbiased bases in the n-dimensional 
omplex spa
e [14℄when n is not a power of a prime. The 
ase n = 6 is the subje
t of problemnumber 13 in the popular list of problems in quantum information theory[20℄.In this paper, we outline the proof of the existen
e of a four-dimensionalfamily of orthogonal pairs in the Lie algebra sl(6;C). The existen
e of su
ha family was 
onje
tured by the authors (unpublished). Independently,mathemati
al physi
ists 
ame to the 
onje
ture on the existen
e of a four-dimensional family of pairs of mutually unbiased bases in C6, see [22, 18℄.Despite many e�orts, the proof of the existen
e of the family was notavailable until re
ently [3℄. Our proof is quite involved and requires a lotof algebrai
 geometry. In this paper, we give a relatively short survey ofthe main steps of the proof and des
ribe expli
it 
onstru
tions that leadto the existen
e of the family.Then, we give an appli
ation of the result on the algebrai
 geometri
family of pairs to the study of mutually unbiased bases. We show theexisten
e of a real four-dimensional manifold parameterizing the pairs ofsu
h bases in C6, thus 
on�rming the 
onje
ture of physi
ists. The proof isbased on a 
onstru
tion of a prin
ipal homogeneous bundle over the lo
us
MR parameterizing the pairs of mutually unbiased bases.In [1℄, we interpreted orthogonal pairs and de
ompositions as represen-tations of the algebra B(�) for a suitable 
hoi
e of a graph � (see Se
. 2.2).This algebra is a so-
alled homotope over the path algebra of the graph �regarded as a topologi
al spa
e. In its turn, the path algebra of a graphis Morita equivalent to the group algebra of the fundamental group of thegraph. This is useful for 
al
ulating the moduli spa
e of representationsof B(�). Orthogonal pairs in sl(n) 
orrespond to representations of thealgebra B(�) where � is the 
omplete bipartite graph �n;n.One of the key points of our proof is a hidden geometry of an ellip-ti
 �bration of the moduli spa
e X of six-dimensional representations ofB(�3;3), where �3;3 is the full bipartite graph of length (3; 3). We de�nethree fun
tions on X whi
h determine a map X → U , where U is a three-dimensional aÆne spa
e. After the fa
torization of X by the permutationgroup S3 × S3, the �bre is a
tually isomorphi
 to (an open aÆne subsetin) two disjoint 
opies of an ellipti
 
urve. The advantage of this map isthat the original problem of des
ribing orthogonal pairs in sl(6;C) 
an be



38 A. BONDAL, I. ZHDANOVSKIYinterpreted in terms of \gluing" four 
opies of X in su
h a way that all
onstru
tions are basi
ally implemented relatively over U . The geometry ofthe ellipti
 �bration is a powerful tool whi
h eventually allowed us to showthe existen
e of the four-dimensional family. In parti
ular, we study the in-terplay between relevant involutions a
ting on the ellipti
 �bers. This partis based on the heavy use of algebrai
 geometry. Let us mention importantformula (12), whi
h probably needs a more 
on
eptual explanation thanjust a veri�
ation.If we think about the main steps of the proof in terms of the 6 × 6matrix A that 
onjugates one Cartan subalgebra in the orthogonal pairto the other one (suitable, or generalized Hadamard matrix), then we �rstpresent this matrix in two blo
ks of 3 × 6 matri
es and then de
omposeea
h of these 3× 6 blo
ks into two 3× 3 blo
ks.Equivalently, the �rst de
omposition is about de
omposing the set ofverti
es in one of the rows of the full bipartite graph �6;6 into two dis-joint subsets with 3 elements in ea
h. This has a geometri
 interpretationpresented in the statement of Theorem 12 that the higher dimensional 
om-ponents of the moduli spa
e X(6; 6) of six-dimensional representations ofthe algebra B6;6, a quotient of the algebra B(�6;6), are birationally identi-�ed with a �ber produ
t of two 
opies of the representation moduli spa
esX(3; 6) for the algebra B3;6, whi
h is a quotient of B(�3;6).Further, the verti
es in the row of length 6 in the full bipartite graph�3;6 are de
omposed into two disjoint subsets with 3 elements in ea
h. Thisboils down to the de
omposition of the unique four-dimensional 
omponentof the moduli spa
e X(3; 6) of representations for B3;6 into a �ber produ
tof two 
opies of the moduli spa
e X = X3;3 for representations of thealgebra B(�3;3), as in Theorem 9. In the text, we do this in the reverseorder: �rst de
ompose X = X3;6 and then X = X6;6.The �ber produ
ts are taken over the moduli spa
es of representationsfor the algebras A(n), n = 3; 6 (see Se
. 2.5). We 
onstru
t the Moritaequivalen
e of the algebra A(n) with the deformed preproje
tive algebra,for arbitrary n. Deformed preproje
tive algebras are intensively studiedby many authors (
f. [10, 6℄). For our purposes, this Morita equivalen
eis important be
ause we 
an use a result of Crawley-Boewey [7℄ to inferthe irredu
ibility of the representation moduli spa
e Y (n) for A(n). Thesymple
ti
 geometry of Y (n) is a part of the symple
ti
 approa
h to thestudy of pairs of mutually unbiased bases dis
ussed in [2℄, where its relation



ORTHOGONAL PAIRS AND MUTUALLY UNBIASED BASES 39via mirror symmetry to the Birkho�{von Neumann polytope of doublysto
hasti
 matri
es was dis
overed.We 
onstru
t an involution on the quotient spa
e X(3; 6)=S3. The 
ru-
ial step in our argument is to show that this involution agrees with amap X(3; 6)=S3 → Y (6) and an involution �′ on Y (6). The proof of thisfa
t (Proposition 16) uses the property of automorphisms on varieties ofgeneral type to be of �nite order. We use the point x0 ∈ X(6; 6) 
orre-sponding to the standard pair of Cartan subalgebras, whi
h has a regularbehavior with respe
t to our 
onstru
tions, to prove the existen
e of afour-dimensional 
omponent that 
ontains this point.Then, we shift our attention to mutually unbiased bases. We 
omparethe spa
e MR parameterizing the pairs of mutually unbiased bases withthe spa
e M� parameterizing the stable points of an antiholomorphi
 in-volution � a
ting on the moduli spa
e of orthogonal pairs. We show that
MR is open in M�. The proof is based on 
onsidering a prin
ipal homoge-neous bundle over M� and 
hara
terizing its restri
tion to MR by meansof the Sylvester theorem 
hara
terizing positive Hermitian matri
es. Thisdes
ribes, in prin
iple, the stri
t polynomial inequalities that de�ne MRinside M�. Sin
e the point x0 is in MR and the real dimension of MRequals the 
omplex dimension of the 
orresponding 
omponent in X(6; 6),we infer the existen
e of a real four-dimensional family of pairs of mutuallyunbiased bases.A
knowledgments. This work was done during the authors' visit to theKavli IPMU and was supported by the World Premier International Re-sear
h Center Initiative (WPI Initiative), MEXT, Japan. The reportedstudy was partially supported by the RFBR, resear
h proje
ts 13-01-00234,14-01-00416, and 15-51-50045. The arti
le was prepared within the frame-work of a subsidy granted to the HSE by the Government of the RussianFederation for the implementation of the Global Competitiveness Program.

§2. Algebrai
 preliminaries2.1. Orthogonal Cartan subalgebras. Consider a simple Lie algebraL over an algebrai
ally 
losed �eld of 
hara
teristi
 zero. Let K be theKilling form on L. In 1960, J. G. Thompson, in the 
ourse of 
onstru
tionof integer quadrati
 latti
es with interesting properties, introdu
ed thefollowing de�nitions.



40 A. BONDAL, I. ZHDANOVSKIYDe�nition. Two Cartan subalgebras H1 and H2 in L are said to be or-thogonal if K(h1; h2) = 0 for all h1 ∈ H1; h2 ∈ H2.De�nition. A de
omposition of L into a dire
t sum of Cartan subalgebrasL = ⊕h+1i=1Hi is said to be orthogonal if Hi is orthogonal to Hj for alli 6= j.An intensive study of orthogonal de
ompositions has been undertakensin
e then (see the book [16℄ and referen
es therein). For the Lie algebrasl(n), A. I. Kostrikin et al. arrived at the following 
onje
ture, 
alled theWinnie-the-Pooh 
onje
ture (
f. ibid., where, in parti
ular, the name of the
onje
ture is explained by a wordplay in the Russian translation of Milne'sbook).Conje
ture 1. The Lie algebra sl(n) has an orthogonal de
omposition ifand only if n = pm for a prime number p.The 
onje
ture has proved to be notoriously diÆ
ult. Even the nonex-isten
e of an orthogonal de
omposition for sl(6), when n is 6, i.e., the �rstnumber that is not a prime power, is still open. Also, it is important to�nd the maximum number of pairwise orthogonal Cartan subalgebras insl(n) for any given n, as well as to 
lassify them up to obvious symmetries.We re
all an interpretation of the problem in terms of systems of mini-mal proje
tors and its relation to the representation theory of the Tempe-rley{Lieb algebras.Let sl(V ) be the Lie algebra of tra
eless operators in V . The Killing formis given by the tra
e of the produ
t of operators. A Cartan subalgebra Hin V de�nes a unique maximal set of minimal orthogonal proje
tors in V .Indeed, H 
an be extended to the Cartan subalgebra H ′ in gl(V ) spannedbyH and the identity operator E. The rank 1 proje
tors in H ′ are pairwiseorthogonal and 
omprise the required set. We say that these proje
tors areasso
iated to H .If p is a minimal proje
tor in H ′, then the tra
e of p is 1, hen
e, p− 1nE isinH . If proje
tors p and q are asso
iated to orthogonal Cartan subalgebras,then Tr(p− 1nE)(q − 1nE) = 0;whi
h is equivalent to Tr pq = 1n: (1)We say that a pair of minimal proje
tors is algebrai
ally unbiased if itsatis�es this equation.



ORTHOGONAL PAIRS AND MUTUALLY UNBIASED BASES 41Therefore, an orthogonal pair of Cartan subalgebras is in a one-to-one
orresponden
e with two maximal sets of minimal orthogonal proje
torssu
h that every pair of proje
tors from di�erent sets is algebrai
ally un-biased. Similarly, orthogonal de
ompositions of sl(n) 
orrespond to n+ 1pairwise algebrai
ally unbiased sets of minimal orthogonal proje
tors. Inthe analysis of the problem, it is worthwhile not only to 
onsider maxi-mal sets of orthogonal proje
tors, but also to study pairwise unbiasednessfor various subsets of maximal sets. This suggests to 
onsider the repre-sentation theory of redu
ed Temperley{Lieb algebras of arbitrary graphswithout loops, whi
h we des
ribe in the next se
tion.2.2. Redu
ed Temperley{Lieb algebras. Let � be a 
onne
ted sim-ply la
ed graph without loops (i.e., without edges with 
oin
iding ends).Denote by V (�) and E(�) the sets of verti
es and edges of the graph. LetF be a �eld of 
hara
teristi
 zero.Fix r ∈ F ∗. We de�ne the redu
ed Temperley{Lieb algebra Br(�) asthe unital algebra over F with generators xi numbered by the verti
esi ∈ V (�) subje
t to the following relations:
• x2i = xi for every i in V (�),
• xixjxi = rxi, xjxixj = rxj if there is an edge (i; j) in �,
• xixj = xjxi = 0 if there is no edge (i; j) in �.If we repla
e the last relation by xixj = xjxi (under the same 
onditionon (i; j)), we get the standard Temperley{Lieb algebra TLr(�). It followsthat Br(�) is a quotient of the Temperley{Lieb algebra TLr(�) of thegraph �. In its turn, the Temperley{Lieb algebra is a quotient of the He
kealgebra of the graph, hen
e the algebra Br(�) is a spe
ial quotient of theHe
ke algebra (see [1℄). Thus the representation theory of Br(�) is a partof the representation theory of He
ke algebras of graphs. Note that therepresentation theory of Br(�) is diÆ
ult, and the measure of diÆ
ulty isthe rank of the �rst homology of the graph as a topologi
al spa
e. Clearly,any automorphism of the graph � indu
es an automorphism of the algebraBr(�).The 
ondition (1) on two minimal proje
tors to be algebrai
ally unbi-ased 
an be reformulated as algebrai
 relations:pqp = 1np; qpq = 1nq:It follows from Se
. 2.1 that a pair of orthogonal Cartan subalgebras in theLie algebra sl(n) de�nes a representation of B 1n (�n;n), where �n;n is the



42 A. BONDAL, I. ZHDANOVSKIYfull bipartite graph with n verti
es in both rows, and every generator xi isrepresented by a rank 1 proje
tor. The generators in one row 
orrespondto the system of orthogonal proje
tors related to one Cartan subalgebra.Sin
e the sum of all minimal proje
tors in one system is the identity matrix,the representation des
ends to a representation of the algebraBn;n = B 1n (�n;n)=(∑ pi − 1;∑ qj − 1);where pi's are the idempotents 
orresponding to one row, and qj 's, to theother row. The representations of Bn;n where every generating idempotentis presented by a minimal proje
tor are in a one-to-one 
orresponden
ewith the orthogonal pairs of Cartan subalgebras in sl(n). The moduli spa
eof six-dimensional representations for B6;6 is the 
entral obje
t of thispaper.It is instru
tive to think about Br(�) as a homotope of the path algebraof a quiver (see below).2.3. The path algebra of a graph. Let again � be a simply la
ed graphwithout loops. Consider it as a topologi
al spa
e. Let P(�) be the Poin
ar�egroupoid of the graph �, i.e., the 
ategory whose obje
ts are verti
es of thegraph and morphisms are homotopi
 
lasses of paths. The 
omposition ofmorphisms is given by the 
on
atenation of paths.Denote by F� the algebra over F with the free F -basis numbered bythe morphisms in P(�) and multipli
ation indu
ed by the 
on
atenationof paths (when it makes sense; when it does not, the produ
t is zero).Let ei be the element of F� that is the 
onstant path at the vertex i. Anyoriented edge (ij) 
an be interpreted as a morphism in P(�), hen
e it givesan element lij in F�. These are the generators. The de�ning relations are
• eiej = Æijei; eiljk = Æij lik; ljkei = Ækiljk;
• lij lji = ei; ljilij = ej ; lij lkm = 0 if j 6= k.We regard F� as an algebra with unit:1 = ∑i∈V (�) ei:Let � be, in addition, a 
onne
ted graph. Then the 
ategories of repre-sentations for F� and for the fundamental group of the graph are equiva-lent. To see this, �x t ∈ V (�). Denote by F [�(�; t)℄ the group algebra of thefundamental group �(�; t). Consider the proje
tive F�-module Pt = F�et.Clearly, Pt is a F�-F [�(�; t)℄-bimodule. Note that Pt are isomorphi
 as left



ORTHOGONAL PAIRS AND MUTUALLY UNBIASED BASES 43F�-modules for all 
hoi
es of t. Indeed, the right multipli
ation by an el-ement 
orresponding to a path starting at t1 and ending at t2 gives anisomorphism Pt1 ≃ Pt2 .The bimodule Pt indu
es a Morita equivalen
e of F� with F [�(�; t)℄.Thus, the 
ategories F�-mod and F [�(�; t)℄-mod are equivalent. Moreover,the algebra F� is isomorphi
 to the matrix algebra over F [�(�; t)℄, withthe size of (square) matri
es equal to |V (�)|.Mutually inverse fun
tors that indu
e an equivalen
e between the 
at-egories F�-mod and F [�(�; t)℄-mod areV 7→ Pt ⊗F [�(�;t)℄ V; W 7→ HomF�(Pt;W ): (2)In order to de�ne an isomorphism F� → Matn(F [�(�; t)℄), �x a systemof paths {
i} 
onne
ting the vertex t with every vertex i. For any element� ∈ F [�(�; t)℄ 
onsider the element 
−1i �
j in F�. The homomorphism isde�ned by the assignment 
−1i �
j 7→ � ·Eij ;where Eij stands for the elementary matrix with the only nontrivial entry1 at the (ij)th position. This is 
learly a well-de�ned ring isomorphism.The fundamental group �(�; t) is free, with the number of generatorsequal to the rank of the �rst homology of the graph regarded as a topo-logi
al spa
e.2.4. Homotopes and redu
ed Temperley{Lieb algebras. Re
all thede�nition of a homotope. Given a unital algebra A and an element � ∈ A,one 
an de�ne a new algebra stru
ture on A by the multipli
ationa ◦ b = a�b:The new algebra might not have a unit. For this reason, we adjoin a unitto it and denote the new algebra by B:B = F · 1B ⊕B+;where B+ is the two-sided ideal in B that 
oin
ides with A as a ve
torspa
e with the new multipli
aion. We say that B is the homotope over Awith respe
t to �.Algebrai
 properties of homotopes and their general representation the-ory is available in [1℄.Consider again a simply la
ed graph � without loops. Fix r ∈ F ∗.The (generalized) Lapla
e operator of the graph � is the element � in the



44 A. BONDAL, I. ZHDANOVSKIYalgebra F� of the Poin
ar�e groupoid of the graph given by the formula� = 1 +√r∑ lij ; (3)where the sum is taken over all oriented edges.Consider the algebra F�� = F · 1 ⊕ F�+�, the unital homotope overF� with respe
t to the element �. Note that the algebra is independentof the 
hoi
e of a square root of r. Denote by xi's the elements in F�+�that 
orrespond to ei's in F�. The following theorem realizes Br(�) as aunital homotope over the Poin
ar�e groupoid F�.Theorem 2 ([1℄). There is a unique isomorphism of algebras and maximalideals in them Br(�) ∼= F��; B+r (�) ∼= F�+� (4)that takes xi to ei.This theorem allows us to relate the moduli spa
es of representations ofBr(�) with the moduli spa
es of the path algebra of the graph. Sin
e thelatter algebra is Morita equivalent to the fundamental group of the graph,a link to the representation theory of the free group is implied.2.5. The algebra A(n) and Morita equivalen
e. Let us de�ne thedeformed preproje
tive algebra �~�(Q) of a loop-free quiver Q. Denoteby Q0 and Q1 the sets of verti
es and arrows of Q, respe
tively. Let us
onstru
t the double quiverQd by adding to ea
h arrow a ∈ Q1 the oppositearrow a∗ ∈ Qd1. De�ne the 
ommutator 
 as the element ∑a∈Q1 [a; a∗℄ ∈FQd. For a ve
tor ~� = (�1; : : : ; �m) ∈ Fm, m = |Q0|, we de�ne thedeformed preproje
tive algebra as follows:�~�(Q) = FQd=〈
− k∑i=1 �iei〉: (5)Fix ri ∈ F ∗, i = 1; : : : ; n. Consider the star quiver Q with one 
en-tral vertex and n verti
es at the boundary. The 
entral vertex is 
on-ne
ted with every vertex on the boundary by one outbound arrow. Let~� = (−r1; : : : ;−rn; 1), ∑ni=1 ri = k, where k ∈ N and −ri, i = 1; : : : ; n,
orrespond to the verti
es on the boundary, while 1 
orresponds to the
entral vertex.Consider the algebra A(n) with generators P; q1; : : : ; qn and relationsP 2 = P; q2i = qi; qiPqi = riqi; n∑i=1 qi = 1: (6)



ORTHOGONAL PAIRS AND MUTUALLY UNBIASED BASES 45Proposition 3. The algebra A(n) is Morita equivalent to the deformedpreproje
tive algebra �~�(Q).Denote by Y (n) the GIT moduli spa
e of n-dimensional A(n)-represen-tations where P is represented by a proje
tor of rank k and the idempotentsqj are represented by proje
tors of rank 1. The above proposition allows usto apply the results of Crawley{Boewey [6, 7℄. By 
he
king his assumptionsfor the star quiver, we get that the variety Y (n) is irredu
ible and hasdimension 2(n− k − 1)(k − 1).2.6. Coprodu
ts of algebras and moduli of representations. Con-sider the quotient algebraBk;n = B 1n (�k;n)=(∑ qj − 1);where qj 's are the idempotents 
orresponding to the verti
es of the row oflength n in the bipartite graph �k;n. A de
omposition of the set of verti
esin one row of the graph �n;n into two disjoint subsets with k and n − kelements de�nes two subalgebras Bk;n and Bn−k;n in the algebra Bn;n.The interse
tion of these two subalgebras in Bn;n is identi�ed with thealgebra A(n). The importan
e of the algebra A(n) for us is explained bythe following proposition.Proposition 4. The algebra Bn;n is a �ber 
oprodu
t of Bk;n and Bn−k;nover A(n).For an algebra A, denote by RepnA the aÆne variety parameterizingthe n-dimensional representations of A. The above proposition implies thefollowing 
orollary.Corollary 5. For every positive l, we have the �ber produ
t de
ompositionReplBn;n = ReplBk;n ×ReplA(n) ReplBn−k;n:Denote by MnA = RepnA=GL(n) the GIT moduli spa
e of A-repre-sentations. Unfortunately, �ber 
oprodu
t de
ompositions for algebras donot imply �ber produ
t de
ompositions for the moduli spa
es of repre-sentations, primarily due to the presen
e of nontrivial automorphisms ofrepresentations.Denote X(k; n) = MnBk;n and Y (n) = MnA(n). Consider the opensubset Y (n)o in Y (n) of points 
orresponding to irredu
ible representa-tions. Let X(k; n)o be the open subset in X(k; n) of points 
orrespondingto Bk;n-representations that restri
t to irredu
ible A(n)-representations.



46 A. BONDAL, I. ZHDANOVSKIYProposition 6. We haveX(n; n)o = X(k; n)o ×Y (n)o X(n− k; n)o
§3. Moduli spa
es of representations for subgraphs ofthe graph �6;63.1. The representation moduli spa
es X, Y , and S. Let us 
on-sider the full bipartite graph �3;3 with 3 verti
es in both rows. Denoteby pi; i = 1; 2; 3 (respe
tively, qj ; j = 1; 2; 3), the idempotents in B 16 (�3;3)
orresponding to the verti
es in the �rst (respe
tively, se
ond) row of thegraph. Let X = X3;3 be the GIT moduli spa
e of six-dimensional repre-sentations for the algebra B 16 (�3;3) where all idempotents pi and qj arerepresented by proje
tors of rank 1.One 
an 
he
k that X ≃ (F ∗)4. To this end, one 
an interpret thealgebra B 16 (�3;3) as a homotope of the path algebra of the graph (seeSe
. 2 and [1℄). A homotope B over an algebra A has a 
anoni
al maximaltwo-sided ideal B+, whi
h is endowed with the left module stru
ture of Athat 
ommutes with the right a
tion of B (see Se
. 2.4). This allows us to
onsider the fun
tor HomB(B+;−) : modB → modA.Applying this general theory to B 16 (�3;3) as a homotope of the pathalgebra F�3;3 of the graph, and taking into a

ount the fa
t that F�3;3is Morita equivalent to the group algebra of the fundamental group of thegraph, whi
h is the free group with four generators, imply that the abovefun
tor has an interpretation as a fun
tor that takes B 16 (�3;3)-modules torepresentations of the fundamental group. Moreover, the representationsthat are parameterized by X are taken to representations of dimension 1.The moduli spa
e of the latter is (F ∗)4, hen
e we have a map X → (F ∗)4.One 
an see that the map is one-to-one on 
losed points, due to the inter-pretation of 
losed points as equivalen
e 
lasses of representations. Thusthe map is a birational morphism. Sin
e (F ∗)4 is smooth, in parti
ular,normal, it follows that the map is an isomorphism.The algebra A3 has generators P and qj , j = 1; 2; 3, satisfying therelations P 2 = P , q2j = qj , and qjPqj = 12qj . This algebra is endowedwith an involution �, whi
h is of parti
ular importan
e for us. It is givenby � : P 7→ 1 − P . Let Y be the GIT moduli spa
e of six-dimensionalrepresentations of A3 in whi
h P is represented by a proje
tor of rank 3and qj 's, by proje
tors of rank 1. This is a four-dimensional variety.



ORTHOGONAL PAIRS AND MUTUALLY UNBIASED BASES 47The algebra homomorphism A3 → B 16 (�3;3) de�ned on the generatorsby P 7→ ∑ pi and qj 7→ qj de�nes a map f : X3;3 → Y , whi
h is in fa
t aquasi-�nite map of degree 12.We will also 
onsider the algebra C with generators P and Q and re-lations P 2 = P , Q2 = Q. The moduli spa
e of six-dimensional represen-tations of this algebra where both P and Q are represented by proje
torsof rank 3 and TrPQ = 32 is denoted by S. It has dimension 2. We have amorphism g : Y → S de�ned by the algebra homomorphism C → A3 thattakes P 7→ P and Q 7→
∑ qj .We will 
onsider another 
opy of A3 with generators denoted by Q andpi, i = 1; 2; 3, whi
h play the roles of P and qj ; j = 1; 2; 3, respe
tively, inthe �rst 
opy. Then we have the following 
ommutative square of algebras,where we write algebras together with their generators:B 16 (�3;3)(p1;p2;p3;q1;q2;q3)A3(Q;p1;p2;p3) 44jjjjjjjjjjjjjjj A3(P ;q1;q2;q3):jjTTTTTTTTTTTTTTTC(P ;Q) 44jjjjjjjjjjjjjjjj

jjTTTTTTTTTTTTTTTT (7)In the north-west pointed arrows of this diagram, P is taken to ∑ pi, andin the north-east pointed arrows,Q goes to ∑ qj . We also have the indu
ed
ommutative square of moduli spa
es:X f
  @

@@
@@

@@f◦�
��~~

~~
~~

~~Y
��@

@@
@@

@@
@ Y;

~~~~
~~

~~
~~S

(8)
where � is the involution on X that 
omes from the involution on thealgebra B 16 (�3;3) de�ned by ex
hanging pi with qi, for i = 1; 2; 3.Let us introdu
e fun
tions u1, u2 on Y :u1 = 62(TrPq1Pq2 +TrPq1Pq3 +TrPq2Pq3); (9)



48 A. BONDAL, I. ZHDANOVSKIYu2 = 63(TrPq1Pq2Pq3 +TrPq1Pq3Pq2): (10)One 
an easily 
he
k that u1 is TrPQPQ up to a 
onstant multi-plier, while u2 
an be expressed as a linear 
ombination of TrPQPQPQ,TrPQPQ, and the unit. It follows that u1 and u2 are well-de�ned regularfun
tions on S; moreover, they generate the algebra of fun
tions F [S℄.3.2. The spa
e U. Now we 
onsider a new fun
tion on Y :u3 = (62TrPq1Pq2 − 1)(62TrPq2Pq3 − 1)(62TrPq3Pq1 − 1): (11)We have the three-dimensional aÆne spa
e U = Spe
F [u1; u2; u3℄. It isendowed with natural surje
tive maps U → S and � : Y → U . The variety
U is important for us be
ause many 
al
ulations that we perform are donerelatively over U . It would be interesting to �nd a representation-theoreti
meaning for U .Proposition 7. Consider two systems (p1; p2; p3) and (q1; q2; q3) of or-thogonal proje
tors of rank 1 in a ve
tor spa
e satisfying the 
onditionTr piqj = 16 . Let P = p1+p2+p3 and Q = q1+ q2+ q3. Then the followingidentity holds:

∏(i;j)∈{1;2;3}(62Tr(PqiPqj)− 1) = ∏(i;j)∈{1;2;3}(62Tr(QpiQpj)− 1): (12)This proposition, together with the above remarks on u1 and u2, allowsus to extend the diagram (8) to the following 
ommutative diagram:X f
  A

AA
AA

AAf◦�
~~~~

~~
~~

~Y �
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@@
@@

@@
@
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00

00
00

00
00

00
00
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��
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U

��S
(13)

The indu
ed map X → Y ×U Y is an embedding. The variety Y ×U Yis a divisor in Y ×S Y , dimY ×U Y = 5, dimY ×S Y = 6.Let S3 be the group of permutations of three elements. We 
onsider thevariety X ′ = X=(S3 × S3) where the a
tion of S3 × S3 on X is indu
edby the a
tion on B 16 (�3;3) by independent permutations of pi's and qj 's.



ORTHOGONAL PAIRS AND MUTUALLY UNBIASED BASES 49Similarly, Y ′ = Y=S3 where S3 a
ts on A3 by permuting qj 's, whi
h givesan a
tion on Y . We have the indu
ed maps X ′ → Y ′ → U .Proposition 8 ([3℄). The �ber of the 
omposite map X ′ → U over ageneri
 
losed point u ∈ U is a disjoint union of two isomorphi
 ellipti

urves, while the �ber of Y ′ → U is just one ellipti
 
urve. The mapX ′ → Y ′ maps two 
omponents of the �ber of X ′ over u isomorphi
ally tothe �ber of Y ′ over u.3.3. The representation moduli spa
e X(3; 6). Let us 
onsider thefull bipartite graph �3;6 with 3 verti
es in the �rst row and 6 verti
es inthe se
ond row. Denote by pi, i = 1; 2; 3 (respe
tively, qj , j = 1; : : : ; 6), theidempotents in B 16 (�3;6) 
orresponding to the verti
es in the �rst (respe
-tively, se
ond) row of the graph. Consider the algebra B3;6, the quotient ofB 16 (�3;6) by the two-sided ideal generated by ∑ qj − 1. Let X(3; 6) be theGIT moduli spa
e of six-dimensional representations of the algebra B3;6where all idempotents pi and qj are represented by proje
tors of rank 1.Consider the map X(3; 6) → X indu
ed by the algebra homomorphismB 16 (�3;3) → B3;6 de�ned by pi 7→ pi and qj 7→ qj . We will also 
onsider ase
ond 
opy of B 16 (�3;3), with generators pi, i = 1; 2; 3, and qj , j = 4; 5; 6,and a se
ond map X3;6 → X , indu
ed by the similar algebra homomor-phism B 16 (�3;3) → B3;6 de�ned by pi 7→ pi and qj 7→ qj . Combining itwith two maps f; � ◦ f : X → Y , we obtain the 
ommutative diagramX(3; 6) p1
##G

GG
GG

GG
GGp2

{{xx
xx

xx
xx

xX �◦f
##H

HHHHHHHH X:f
zzvvvvvvvvvY

(14)
Theorem 9. The variety X(3; 6) is irredu
ible of dimension 4. The varietyX ×Y X has only one irredu
ible 
omponent of dimension 4, all the other
omponents being of lower dimension. The map h : X(3; 6) → X×Y X in-du
ed by the above diagram establishes a birational isomorphism of X(3; 6)with the four-dimensional irredu
ible 
omponent of X ×Y X.Note that it is quite plausible that X ×Y X is in fa
t also irredu
ible,whi
h would mean that the map h is birational.



50 A. BONDAL, I. ZHDANOVSKIY3.4. The representation moduli spa
es Y (6) and X(6; 6). Considerthe algebra A(6) with generators P and qj , j = 1; : : : ; 6, and relationsP 2 = P; q2j = qj ; qjPqj = 12qj ; ∑ qj = 1:The algebra A(6) is endowed with the involution given by P 7→ 1 − Pand qj 7→ qj . Denote by Y (6) the GIT moduli spa
e of six-dimensionalrepresentations of the algebra A(6) where P is represented by a proje
torof rank 3 and the idempotents qj are represented by proje
tors of rank 1.The involution on A(6) indu
es an involution �′ : Y (6) → Y (6).The algebra A(n) is Morita equivalent to the deformed preproje
tivealgebra of the star graph Q with one 
entral vertex and n verti
es on theboundary, the 
entral vertex being 
onne
ted with every boundary vertexby one edge (see Se
. 2.5). A

ording to a result of Crawley{Boewey [6, 7℄,this implies that the variety Y (6) is irredu
ible and has dimension 8.There is an algebra homomorphism A(6) → B3;6 that takes P to ∑ pi.It de�nes a map g : X(3; 6) → Y (6). Consider the a
tion of the groupS3 on the algebra B3;6 that permutes the generators p1; p2; p3. Clearly, gis an S3-invariant map. Re
all that, a

ording to Theorem 9, the varietyX(3; 6)=S3 is irredu
ible.Theorem 10. The morphism g : X(3; 6)=S3 → Y (6) maps X(3; 6)=S3birationally onto its image in Y (6).The proof of this theorem heavily uses the fa
t established in Proposi-tion 8 that the �ber of X=S3×S3 over a generi
 point U is a disjoint unionof two 
opies of an ellipti
 
urve. This allows us to use the geometry ofellipti
 
urves and ellipti
 �brations.Consider a se
ond 
opy of the algebra B3;6, whose generators we denoteby (p4; p5; p6) and (qj , j = 1; : : : ; 6). The 
orresponding moduli spa
e ofrepresentations of this algebra is again identi�ed with X(3; 6).Now 
onsider the algebraB6;6 that is the quotient of the algebraB 16(�6;6)with generators pi, i = 1; : : : ; 6, and qj , j = 1; : : : ; 6, by the two-sided idealgenerated by the elements ∑ pi − 1 and ∑ qj − 1. Let X6;6 be the GITmoduli spa
e of six-dimensional representations of the algebra B6;6 whereall idempotents pi and qj are represented by proje
tors of rank 1.Note that the above two 
opies of the algebra B3;6 are mapped intothe algebra B6;6 by sending the generators pi to pi and qj to qj . We have
hosen the indi
es of the generators in the two 
opies in su
h a way thatthey agree with the indi
es of the generators in the algebra B6;6. These
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e two maps X(6; 6) → X(3; 6). All the above maps 
an be
ombined into a 
ommutative diagram:X(6; 6) pr2
%%K

KKKKKKKKpr1
yytttttttttX(3; 6) �′◦g

%%J
JJJJJJJJ

X(3; 6):g
yysssssssssY (6)

(15)
Lemma 11. There exists a point x0 in X(6; 6) su
h that the tangent spa
eTx0 at x0 has dimension 4, the di�erentials at x0 of the maps pr1 and pr2are isomorphisms of Tx0 with the tangent spa
es at the images of x0, andthe di�erential of the map s : X(6; 6)→ Y (6) indu
es an embedding of Tx0into the tangent spa
e to Y (6) at s(x0). The point s(x0) ∈ Y (6) 
orrespondsto an irredu
ible representation of A(6).Proof. Re
all that the standard pair (see [14℄) of Cartan subalgebras insl(n;C) 
onsists of the diagonal Cartan subalgebra H0 in a �xed basis {ei}and the subalgebraH1 that is linearly spanned by (P; : : : ; Pn−1) where P isthe operator of the 
y
li
 permutation of the basis ve
tors ei 7→ ei+1=modn.The transition matrix A from the basis {ei} to the basis {fj} relatedto the se
ond Cartan subalgebra has the following 
oeÆ
ients:A = {aij = 1√n�(i−1)(j−1)}; i; j = 1; : : : ; n; (16)where � is a primitive root, �n = 1.One 
an 
al
ulate the tangent spa
e to X6;6 at the point 
orrespondingto the standard pair and 
he
k that it has dimension 4 (
f. [24℄).Let us ex
hange the 3rd and the 4th 
olumns of the matrix A. This
orresponds to reordering the proje
tors pi, thus 
hanging the proje
tionsX(6; 6)→ X(3; 6). It is a dire
t 
he
k to show that all 
laims of the lemmaare satis�ed for this 
hoi
e of x0 and the proje
tions. �Theorem 12. The indu
ed morphism X(6; 6) → X(3; 6) ×Y (6) X(3; 6)establishes a one-to-one 
orresponden
e between the set of irredu
ible 
om-ponents of X(6; 6) and X(3; 6) ×Y (6) X(3; 6) of dimension greater thanor equal to 4 and the birational isomorphisms between the 
orresponding
omponents.



52 A. BONDAL, I. ZHDANOVSKIYThe proof in [3℄ is based on the 
al
ulation of the lo
us of points inX(3; 6)×Y (6)X(3; 6) for whi
h the �ber in X(6; 6) → X(3; 6)×Y (6)X(3; 6)is di�erent from just one point and showing that it has dimension lessthan 4.
§4. A four-dimensional 
omponent in X(6; 6)4.1. The invarian
e of the image under an involution. The mainte
hni
al result that implies the existen
e of a four-dimensional 
omponentin X(6; 6) is the following statement of independent interest.Theorem 13. The image of X(3; 6) under the map g : X(3; 6) → Y (6)has a nonempty Zariski open subset that is invariant under the involution�′.We des
ribe the main steps of the proof of Theorem 13.A

ording to Theorem 9, the variety X(3; 6) is irredu
ible, and it ismapped birationally onto the unique four-dimensional irredu
ible 
ompo-nent of X ×Y X . Consider the map h : X ×Y X → Y ×S Y .Proposition 14. The image under h of the four-dimensional irredu
ible
omponent of X×Y X has a nonempty Zariski open subset that is invariantunder the involution (�; �).The mapX(3; 6) → Y ×SY fa
tors through the quotient mapX(3; 6) →X(3; 6)=S3, where the a
tion of S3 on X(3; 6) is indu
ed by the permuta-tions of pi, i = 1; 2; 3.Proposition 15. The indu
ed morphism X(3; 6)=S3 → Y ×S Y isomor-phi
ally maps a Zariski open subset in X(3; 6)=S3 into Y ×S Y .Propositions 14 and 15 imply that the involution (�; �) indu
es an in-volution � on a Zariski open subset of X(3; 6)=S3.The map g allows for the fa
torization through the quotient X(3; 6) →X(3; 6)=S3, thus indu
ing a map g : X(3; 6)=S3 → Y (6).Proposition 16. We have g� = �′g.Proof. First, we prove that the involution � 
ommutes with the a
tion ofS6 on X(3; 6)=S3 that is indu
ed by the permutations of qj , j = 1; : : : ; 6,in the algebra B(3; 6). Consider the produ
t Y ×S Y that is de�ned by thetwo maps Y → S indu
ed by the maps C → A3 given by Q 7→ q1+ q2+ q3and Q 7→ 1− q1 − q2 − q3.
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onstru
t a morphism Y (6) → Y ×S Y . It 
orresponds to ade
omposition of the set (1; 2; 3; 4; 5; 6) into a disjoint union of two three-element subsets and a 
hoi
e of an ordering of elements in ea
h subset.We 
an assign two algebra homomorphisms A3 → A(6) to this 
ombina-torial data. The �rst map takes the idempotents qj 's of A3 to qj 's withindi
es in the �rst subset, ordered in the pres
ribed way, and similarlyfor the se
ond homomorphism. Together, these homomorphisms de�ne amorphism Y (6) → Y × Y , whi
h is easily seen to des
end to a morphismY (6) → Y ×S Y . When 
omposed with g, this morphism gives us a mor-phism X(3; 6)=S3 → Y ×S Y .We 
hoose two parti
ular de
ompositions of the set (1; 2; 3; 4; 5; 6) intoa disjoint union of two subsets. One is ((1; 2; 3); (4; 5; 6)), and the other oneis ((1; 2; 4); (3; 5; 6)). As above, they de�ne two morphisms X(3; 6)=S3 →Y ×S Y . Let us 
onsider two fun
tions on the variety X(3; 6)=S3:z1 = TrPq1Pq2; z2 = TrPq5Pq6:Let Z = Spe
F [z1; z2℄. The natural morphism X(3; 6)=S3 → Z fa
torsthrough both morphisms X(3; 6)=S3 → Y ×S Y . Hen
e we get a 
ommu-tative diagram: X(3; 6)=S3
&&MMMMMMMMMM

xxqqqqqqqqqqY ×S Y
&&NNNNNNNNNNNN Y ×S Y:

wwpppppppppppp

Z

(17)
The involution (�; �) a
ts along the �bers of both morphisms Y ×SY →

Z. Denote by � and �′ the involutions on X(3; 6)=S3 where � was de�nedabove and is atta
hed to one of the morphismsX(3; 6)=S3 → Y ×SY , while�′ is similarly atta
hed to the other morphism X(3; 6)=S3 → Y ×SY . Both� and �′ a
t along the �bers of the map X(3; 6)=S3 → Z. Therefore, theprodu
t ��′ also a
ts along the �bers of the same map. The �bers of themap over a generi
 point are 
ompa
ti�ed to a surfa
e of general type.Thus ��′ is a birational automorphism of a surfa
e of general type. Thegroup of birational automorphisms of a variety of general type is �nite (
f.[12℄). Therefore, the element ��′ is of �nite order. One 
an �nd a smooth�xed point of ��′ on X(3; 6)=S3 su
h that ��′ a
ts by the identity on the



54 A. BONDAL, I. ZHDANOVSKIYtangent spa
e at this point. The point is the proje
tion to X(3; 6)=S3 ofthe point in X(6; 6) 
orresponding to the \standard orthogonal pair" ofCartan subalgebras in sl(6; �F ). Sin
e ��′ is of �nite order, it follows thatit is the identity on the whole X(3; 6)=S3. Therefore, � = �′.This implies that � 
ommutes with the transposition (34) ∈ S6. Clearly,� 
ommutes with all elements in S6 that permute elements inside thesubsets (1; 2; 3) and (4; 5; 6). Together with the transposition (34), theygenerate the whole group S6. Thus � 
ommutes with this group.Now we 
onsider the produ
t of as many 
opies of Y ×S Y as thereexist de
ompositions of the set (1; 2; 3; 4; 5; 6) into a disjoint union of twothree-element subsets and 
hoi
es of an ordering of elements in ea
h subset.Taking the produ
t of the above maps for ea
h individual 
opy of Y ×S Yde�nes a morphism  : Y (6) → ∏(Y ×S Y ). One 
an 
he
k that this mapis birationally an embedding.The variety ∏(Y ×S Y ) has the involution �′′ de�ned by the a
tion of(�; �) on every 
omponent Y ×S Y . It is obvious from the de�nition that�′′ =  �′. Denote � =  g : X(3; 6)=S3 → ∏(Y ×S Y ). Sin
e � 
ommuteswith the a
tion of S6, it follows that �′′� = ��.Sin
e g and � are both birationally embeddings, it follows that g� =�′g. �It would be ni
e to have a more 
on
eptual proof for this result.Clearly, Proposition 16 implies a proof of Theorem 13.4.2. The main algebrai
 geometri
 result.Theorem 17. There exists a four-dimensional irredu
ible 
omponentof X(6; 6) that 
ontains the point x0 
onstru
ted in Lemma 11.Proof. Proposition 16 implies that the variety �T whi
h is the lo
us of thepoints (�x; ��x), where �x runs over the set of points X(3; 6)=S3 su
h that��x is well de�ned, is a subvariety in X(3; 6)=S3 ×Y (6) X(3; 6)=S3. Let Tbe its preimage in X(3; 6)×Y (6)X(3; 6). Consider the open subset To ⊂ Tof points that lie over the lo
us Yo of irredu
ible representations for thealgebra A(6). A

ording to Proposition 6, the open subset X(6; 6)o is iso-morphi
 to X(3; 6)o ×Y (6)o X(3; 6)o. Thus To is a subvariety in X(6; 6)o.Note that �T is irredu
ible by 
onstru
tion, and T might have several 
om-ponents. By 
onstru
tion, �T and all 
omponents of T have dimension 4.Now 
onsider the point x0 ∈ X(6; 6) 
onstru
ted in Lemma 11. Bythe lemma, x0 lies over Yo, i.e., it 
orresponds to a point in To under the



ORTHOGONAL PAIRS AND MUTUALLY UNBIASED BASES 55isomorphism from Proposition 6. Sin
e the dimension of the tangent spa
eto X(6; 6) at this point is 4 and To is of dimension 4, it follows that x0 is asmooth point on To. Hen
e the irredu
ible 
omponent of To that 
ontainsx0 is an irredu
ible 
omponent of X(6; 6). �Sin
e X(6; 6) 
an be interpreted as the moduli spa
e of orthogonal pairsin sl(6), as it was explained in Se
. 2.2, we have the following result.Corollary 18. There exists a four-dimensional family of orthogonal pairsin sl(6), whi
h 
ontains the standard pair.It might be instru
tive to reformulate Proposition 16 in terms of ele-mentary linear algebra.Proposition 19. Let W be the irredu
ible variety parameterizing the 6×6matri
es P of rank 3 with 12 on the diagonal that satisfy P 2 = P and admita de
omposition into three matri
es pi of rank 1 with 16 on the diagonal(whi
h implies p2i = pi): P = p1 + p2 + p3:Then for almost all P ∈ W, the matrix 1− P is also in W.Chan
es are that this statement is true for all P ∈ W .
§5. Mutually unbiased bases5.1. Mutually unbiased bases and a system of proje
tors. Theterminology of unbiased bases �rst appeared in physi
s.Let V be an n-dimensional 
omplex ve
tor spa
e with a �xed Hermitianmetri
 〈 ; 〉. Two orthonormal Hermitian bases {ei} and {fj} in V aremutually unbiased if for all (i; j)

|〈ei; fj〉|2 = 1n: (18)There are two types of obvious transformations a
ting on the set ofmutually unbiased bases. First, one 
an independently 
hange the phaseof all ve
tors in both bases:ej 7→ exp(√−1�j)ej ;fj 7→ exp(√−1�j)fj :Se
ond, one 
an transform all bases by a simultaneous linear transforma-tion from GL(n;C).



56 A. BONDAL, I. ZHDANOVSKIYLet {pi} be the orthogonal (i.e., pipj = 0 for i 6= j) system of minimalproje
tors in V related to the base {ei}, and {qj} be the system of minimalproje
tors related to the base {fj}. Sin
e both bases are orthonormal, allproje
tors are Hermitian, i.e., satisfy p†j = pj and q†j = qj . Moreover,the 
ondition that the bases are mutually unbiased is equivalent to the
ondition Tr piqj = 1nfor all (i; j). The 
onverse is also true: two orthogonal systems of Hermit-ian proje
tors satisfying the above equation uniquely de�ne a mutuallyunbiased pair of bases up to the �rst type of transformations, i.e., up to
hanging the phases of basi
 ve
tors.It follows from Se
. 2.1 that a pair of mutually unbiased bases de�nesa pair of orthogonal Cartan subalgebras in the Lie algebra sl(n;C). Therequirement that the proje
tors are Hermitian means that the pair of Car-tan subalgebras is spe
ial. We will see in the next subse
tion that theyparameterize a real submanifold in the moduli spa
e of all pairs of Cartansubalgebras.5.2. The moduli of mutually unbiased bases as a \positive" realform of the moduli of orthogonal pairs. Let �X be the (singular)algebrai
 variety over C that parameterizes all pairs of orthogonal Cartansubalgebras in the Lie algebra sl(V ) where V ≃ Cn. Sin
e it is identi�edwith the variety RepnBn;n, it is an aÆne variety. The group GL(V ) a
ts on�X , and the GIT quotient �M = �X=GL(V ) is the moduli spa
e of orthogonalpairs in V . Sin
e it is a GIT fa
tor of an aÆne variety, it is aÆne too.As we know, an orthogonal pair is uniquely de�ned by a pair of or-thogonal systems of minimal proje
tors, where any pair of proje
tors fromdi�erent systems are algebrai
ally unbiased. For brevity, we will 
all su
ha pair of systems of proje
tors a 
on�guration. A 
on�guration is de�nedby an n-dimensional representation of the algebra Bn;n, whi
h is knownto be always irredu
ible (
f. [13℄).We redu
e �X to its open subvariety X of smooth points, and we denote
M = X=GL(V ). Let us 
onsider the real subvariety XR in X that is the lo-
us of points that 
orrespond to algebrai
ally unbiased pairs of orthogonalsystems of Hermitian proje
tors. The unitary group U(n) a
ts on XR, andthe quotient MR = XR=U(n) is the moduli of mutually unbiased bases.
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ts on X by Hermitian 
onjugation of allproje
tors: p 7→ p†:Clearly, the involution is antiholomorphi
, and XR is the lo
us of stablepoints of the involution. It is easy to 
he
k that the involution des
ends toan involution � on M and that MR is embedded into the stable lo
us M�of the involution on M. We will show that MR is an open subset in M�.Let H be the set of Hermitian operators in V , and H× be the opensubset of invertible Hermitian operators. De�ne a subset Y ⊂ H× ×X by
Y = {(g; {pi; qj}) ∈ H

× ×X| p†i = g−1pig; q†i = g−1qig}:Let H
×
± ⊂ H× be the open subset of invertible Hermitian matri
es thatare either positive or negative. De�ne Y± ⊂ Y as the open subset of those(g; {pi; qj}) for whi
h g ∈ H

×
±.We 
onsider the map � : Y → X given by the proje
tion to the se
ond
omponent of H

× ×X and the similar map �± : Y± → X .Denote by R× the group of nonzero real numbers. Consider the groupG = R× × PGL(n;C) and its a
tion on H× ×X by(�; h)(g; {pi; qj}) = (�hgh†; {hpih−1; hqjh−1}):It is easy to 
he
k that Y and Y± are preserved by this a
tion.Proposition 20. The set Y is a prin
ipal homogeneous G-bundle over
M�. Similarly, Y± is a prin
ipal homogeneous G-bundle over MR.Proof. Let us 
he
k that the orbits of the a
tion by R× are �bers of themap Y → X . If (g1; {pi; qj}) and (g2; {pi; qj}) are in the �ber of Y → X ,then (g1)−1g2 lies in the stabilizers of all proje
tors in the 
on�guration.Sin
e we 
onsider irredu
ible representations of Bn;n, by S
hur's lemmawe have (g1)−1g2 = � · 1. Therefore,g2 = �g1;where � 6= 0 be
ause g2 is invertible. Sin
e g1 and g2 are Hermitian, ap-plying the Hermitian 
onjugation givesg2 = ��g1:Hen
e, � = ��, i.e., � ∈ R×.As it was already mentioned, any 
on�guration is given by an irredu
iblerepresentation of Bn;n. Therefore, the a
tion of PGL(n;C) on X is free,
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ause the stabilizer of any 
on�guration is a s
alar matrix by S
hur'slemma. It follows that the a
tion of G on Y is free.Take a point m ∈ M�. A point in X over it is presented by a 
on�gu-ration of proje
tors {pi; qj}. Sin
e m is stable under the involution � onthe quotient spa
e M, there exists g ∈ GL(n;C) su
h thatp† = g−1pgfor every proje
tor p from the 
on�guration. If we 
onjugate this equation,we get p = g†p†(g†)−1:Together, these equations imply that g†g−1 stabilizes all proje
tors p in-volved. It follows from S
hur's lemma that g†g−1 = � ·1, for some nonzeromultiplier � ∈ C. Hen
e g† = �g:By taking the Hermitian dual, we have��g† = g;whi
h, when 
ombined with the previous relation, implies
|�|2 = 1:It is easy to see that we 
an repla
e g by �g, for some � ∈ C, and getg† = g. The inverse in
lusion �(Y) ⊂ �−1(M�) is obvious. This provesthat Y=G = M�.Now let us 
he
k that �(Y±) ⊂ �−1(MR). Take a point (g; {pi; qj}) ∈

Y±. We may assume that g > 0, be
ause 
hanging the sign of G does not
hange the 
onjugation by it. For positive nondegenerate g, it is knownthat there exists a de
ompositiong = v†v;for some invertible operator v. Sin
e for all proje
tors p in the 
on�gurationwe have p† = g−1pg = v−1(v†)−1pv†v;it follows that (v†)−1pv† is self-adjoint. Hen
e, we 
an 
onjugate our 
on-�guration to a self-adjoint one.Conversely, take a point m ∈ MR. By de�nition, there exists a pointin the �-�ber of m su
h that all proje
tors from its 
on�guration are Her-mitian. Let us take another point in the same �ber. Then every proje
tor
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on�guration is 
onjugate to the 
orresponding Hermitian pro-je
tor r: p = h−1rh;where h ∈ GL(n;C) is the same for all proje
tors p of the 
on�guration.Sin
e r† = r, we havep† = h†r†(h†)−1 = h†r(h†)−1 = h†hph−1(h†)−1:Sin
e h†h is positive, we have �−1(MR) ⊂ �(Y±). �Corollary 21. The subset MR ⊂ M� is open and is de�ned by a systemof stri
t real polynomial inequalities.Proof. A

ording to Sylvester's theorem, the positive Hermitian matri
esare given by a system of n stri
t polynomial inequalities with real (eveninteger!) 
oeÆ
ients. Hen
e the open subset Y± ⊂ Y is de�ned by stri
tpolynomial inequalities too. Sin
e Y± is invariant with respe
t to the freeG-a
tion, the inequalities des
end to stri
t polynomial inequalities on M�.
�5.3. A four-dimensional family of mutually unbiased bases. Theo-rem 17 together with Corollary 21 imply the existen
e of a four-dimensionalfamily of mutually unbiased bases in the six-dimensional 
omplex spa
e.Theorem 22. There exists a family of real dimension 4 of mutually un-biased bases in C6.Proof. We have an antiholomorphi
 involution � on the moduli spa
eX(6; 6) of six-dimensional representations of Bn;n. Let us restri
t to thelo
us M of smooth points in all irredu
ible 
omponents of X(6; 6), asabove. The lo
us of stable points of the involution on ea
h 
omponent is asmooth real submanifold of real dimension equal to the 
omplex dimensionof the 
omponent. By Theorem 17, we have a four-dimensional irredu
ible
omponent in X(6; 6). Hen
e, we need simply to 
he
k that the stable lo
usof � is not empty on the smooth part of the 
omponent.Consider the point x0 
onstru
ted in Lemma 11. A

ording to Theo-rem 17, it is a smooth point on a four-dimensional 
omponent of X(6; 6).Sin
e formula (16) for the transition matrix A from the basis {pi} to thebasis {qi} is a unitary matrix, the point x0 is an element of MR. �Remark. Sin
e the transformation matrix from one mutually unbiasedbase to another one is known to be a 
omplex Hadamard matrix, the
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