
úÁ�ÉÓËÉ ÎÁÕÞÎÙÈÓÅÍÉÎÁÒÏ× ðïíé�ÏÍ 437, 2015 Ç.A. Bondal, I. ZhdanovskiyORTHOGONAL PAIRS AND MUTUALLY UNBIASEDBASESAbstrat. The goal of our artile is a study of related mathemat-ial and physial objets: orthogonal pairs in sl(n) and mutuallyunbiased bases in Cn. An orthogonal pair in a simple Lie algebrais a pair of Cartan subalgebras that are orthogonal with respet tothe Killing form. The desription of orthogonal pairs in a given Liealgebra is an important step in the lassi�ation of orthogonal de-ompositions, i.e., deompositions of the Lie algebra into a diretsum of Cartan subalgebras pairwise orthogonal with respet to theKilling form. One of the important notions of quantum mehan-is, quantum information theory, and quantum teleportation is thenotion of mutually unbiased bases in the Hilbert spae Cn. Two or-thonormal bases {ei}ni=1; {fj}nj=1 are mutually unbiased if and onlyif |〈ei|fj〉|2 = 1n for any i; j = 1; : : : ; n. The notions of mutually un-biased bases in Cn and orthogonal pairs in sl(n) are losely related.The problem of lassi�ation of orthogonal pairs in sl(n) and thelosely related problem of lassi�ation of mutually unbiased basesin Cn are still open even for the ase n = 6. In this artile, we give asketh of our proof that there is a omplex four-dimensional familyof orthogonal pairs in sl(6). This proof requires a lot of algebraigeometry and representation theory. Further, we give an applia-tion of the result on the algebrai geometri family to the studyof mutually unbiased bases. We show the existene of a real four-dimensional family of mutually unbiased bases in C6, thus solving along-standing problem.
§1. IntrodutionAn orthogonal pair in a semisimple Lie algebra is a pair of Cartan sub-algebras that are orthogonal with respet to the Killing form. The desrip-tion of orthogonal pairs in a given Lie algebra is an important step in thelassi�ation of orthogonal deompositions, i.e., deompositions of the Liealgebra into a sum of Cartan subalgebras pairwise orthogonal with respetto the Killing form.Key words and phrases: orthogonal pairs, mutually unbiased bases (MUB), omplexHadamard matries, generalized Hadamard matries.35



36 A. BONDAL, I. ZHDANOVSKIYOrthogonal deompositions �rst ame up in the theory of integer lattiesin the paper by Thompson [23℄. Then the theory of suh deompositionswas substantially developed [16℄. The lassi�ation problem of orthogonalpairs in sl(n;C) is losely related to the lassi�ation of omplex Hadamardn× n matries [16, 4℄.Independently, the study in quantum theory brought into light the no-tion of mutually unbiased bases, objets of onstant use in quantum in-formation theory, quantum tomography, et. [8, 21℄. It was revealed thatmutually unbiased bases are a unitary version of orthogonal pairs [4℄. Thislinks the subjet to various vibrant problems in mathematial physis.One of the reasons why mutually unbiased bases are important in pra-tie is that they provide a ruial mathematial tool that allows one totransfer quantum information with minimal loss in the hannel. Reliableprotools in quantum hannels are based on a hoie of the maximumnumber of mutually unbiased bases in a relevant vetor spae of quantumstates of transmitted partiles. For instane, the protool BB84, whihutilizes three suh bases in a two-dimensional vetor spae, enables oneto signi�antly extend the distane between the soure and the reeiverof quantum information. Construting the maximum number of mutuallyunbiased bases in vetor spaes of higher dimension is important for pro-duing reliable protools in quantum hannels.Also, one of the important problems of quantum teleportation is to hekthe purity of the result of teleportation by means of quantum tomography.This is used in real experiments on the teleportation of entangled partiles(f. [17℄). The quantum tomography with minimal error bar is again basedon mutually unbiased bases [5, 9℄.Despite a simple de�nition, the lassi�ation of orthogonal pairs is a veryhard problem of algebrai geometri avor. We will onsider pairs in theLie algebra sl(n;C). Aording to the famous Winnie-the-Pooh onjeture[14℄, orthogonal deompositions are possible in this algebra when n is apower of a prime number only. This suggests the idea that the behavior ofthe objets under study strongly depends on the arithmeti properties ofthe number n. For n = 1; 2; 3, there is a unique, up to natural symmetries,orthogonal pair. For n = 5, there are three of them [15, 19℄, while forn = 4 (the �rst nonprime integer), there is a one-dimensional family ofpairs parameterized by a rational urve.The �rst positive integer that is not a power of a prime is n = 6.The Winnie-the-Pooh onjeture is open even for this ase. Researhers



ORTHOGONAL PAIRS AND MUTUALLY UNBIASED BASES 37in quantum information theory have independently ome to the unitaryversion of the Winnie-the-Pooh onjeture, whih laims the nonexisteneof n+1 mutually unbiased bases in the n-dimensional omplex spae [14℄when n is not a power of a prime. The ase n = 6 is the subjet of problemnumber 13 in the popular list of problems in quantum information theory[20℄.In this paper, we outline the proof of the existene of a four-dimensionalfamily of orthogonal pairs in the Lie algebra sl(6;C). The existene of suha family was onjetured by the authors (unpublished). Independently,mathematial physiists ame to the onjeture on the existene of a four-dimensional family of pairs of mutually unbiased bases in C6, see [22, 18℄.Despite many e�orts, the proof of the existene of the family was notavailable until reently [3℄. Our proof is quite involved and requires a lotof algebrai geometry. In this paper, we give a relatively short survey ofthe main steps of the proof and desribe expliit onstrutions that leadto the existene of the family.Then, we give an appliation of the result on the algebrai geometrifamily of pairs to the study of mutually unbiased bases. We show theexistene of a real four-dimensional manifold parameterizing the pairs ofsuh bases in C6, thus on�rming the onjeture of physiists. The proof isbased on a onstrution of a prinipal homogeneous bundle over the lous
MR parameterizing the pairs of mutually unbiased bases.In [1℄, we interpreted orthogonal pairs and deompositions as represen-tations of the algebra B(�) for a suitable hoie of a graph � (see Se. 2.2).This algebra is a so-alled homotope over the path algebra of the graph �regarded as a topologial spae. In its turn, the path algebra of a graphis Morita equivalent to the group algebra of the fundamental group of thegraph. This is useful for alulating the moduli spae of representationsof B(�). Orthogonal pairs in sl(n) orrespond to representations of thealgebra B(�) where � is the omplete bipartite graph �n;n.One of the key points of our proof is a hidden geometry of an ellip-ti �bration of the moduli spae X of six-dimensional representations ofB(�3;3), where �3;3 is the full bipartite graph of length (3; 3). We de�nethree funtions on X whih determine a map X → U , where U is a three-dimensional aÆne spae. After the fatorization of X by the permutationgroup S3 × S3, the �bre is atually isomorphi to (an open aÆne subsetin) two disjoint opies of an ellipti urve. The advantage of this map isthat the original problem of desribing orthogonal pairs in sl(6;C) an be



38 A. BONDAL, I. ZHDANOVSKIYinterpreted in terms of \gluing" four opies of X in suh a way that allonstrutions are basially implemented relatively over U . The geometry ofthe ellipti �bration is a powerful tool whih eventually allowed us to showthe existene of the four-dimensional family. In partiular, we study the in-terplay between relevant involutions ating on the ellipti �bers. This partis based on the heavy use of algebrai geometry. Let us mention importantformula (12), whih probably needs a more oneptual explanation thanjust a veri�ation.If we think about the main steps of the proof in terms of the 6 × 6matrix A that onjugates one Cartan subalgebra in the orthogonal pairto the other one (suitable, or generalized Hadamard matrix), then we �rstpresent this matrix in two bloks of 3 × 6 matries and then deomposeeah of these 3× 6 bloks into two 3× 3 bloks.Equivalently, the �rst deomposition is about deomposing the set ofverties in one of the rows of the full bipartite graph �6;6 into two dis-joint subsets with 3 elements in eah. This has a geometri interpretationpresented in the statement of Theorem 12 that the higher dimensional om-ponents of the moduli spae X(6; 6) of six-dimensional representations ofthe algebra B6;6, a quotient of the algebra B(�6;6), are birationally identi-�ed with a �ber produt of two opies of the representation moduli spaesX(3; 6) for the algebra B3;6, whih is a quotient of B(�3;6).Further, the verties in the row of length 6 in the full bipartite graph�3;6 are deomposed into two disjoint subsets with 3 elements in eah. Thisboils down to the deomposition of the unique four-dimensional omponentof the moduli spae X(3; 6) of representations for B3;6 into a �ber produtof two opies of the moduli spae X = X3;3 for representations of thealgebra B(�3;3), as in Theorem 9. In the text, we do this in the reverseorder: �rst deompose X = X3;6 and then X = X6;6.The �ber produts are taken over the moduli spaes of representationsfor the algebras A(n), n = 3; 6 (see Se. 2.5). We onstrut the Moritaequivalene of the algebra A(n) with the deformed preprojetive algebra,for arbitrary n. Deformed preprojetive algebras are intensively studiedby many authors (f. [10, 6℄). For our purposes, this Morita equivaleneis important beause we an use a result of Crawley-Boewey [7℄ to inferthe irreduibility of the representation moduli spae Y (n) for A(n). Thesympleti geometry of Y (n) is a part of the sympleti approah to thestudy of pairs of mutually unbiased bases disussed in [2℄, where its relation



ORTHOGONAL PAIRS AND MUTUALLY UNBIASED BASES 39via mirror symmetry to the Birkho�{von Neumann polytope of doublystohasti matries was disovered.We onstrut an involution on the quotient spae X(3; 6)=S3. The ru-ial step in our argument is to show that this involution agrees with amap X(3; 6)=S3 → Y (6) and an involution �′ on Y (6). The proof of thisfat (Proposition 16) uses the property of automorphisms on varieties ofgeneral type to be of �nite order. We use the point x0 ∈ X(6; 6) orre-sponding to the standard pair of Cartan subalgebras, whih has a regularbehavior with respet to our onstrutions, to prove the existene of afour-dimensional omponent that ontains this point.Then, we shift our attention to mutually unbiased bases. We omparethe spae MR parameterizing the pairs of mutually unbiased bases withthe spae M� parameterizing the stable points of an antiholomorphi in-volution � ating on the moduli spae of orthogonal pairs. We show that
MR is open in M�. The proof is based on onsidering a prinipal homoge-neous bundle over M� and haraterizing its restrition to MR by meansof the Sylvester theorem haraterizing positive Hermitian matries. Thisdesribes, in priniple, the strit polynomial inequalities that de�ne MRinside M�. Sine the point x0 is in MR and the real dimension of MRequals the omplex dimension of the orresponding omponent in X(6; 6),we infer the existene of a real four-dimensional family of pairs of mutuallyunbiased bases.Aknowledgments. This work was done during the authors' visit to theKavli IPMU and was supported by the World Premier International Re-searh Center Initiative (WPI Initiative), MEXT, Japan. The reportedstudy was partially supported by the RFBR, researh projets 13-01-00234,14-01-00416, and 15-51-50045. The artile was prepared within the frame-work of a subsidy granted to the HSE by the Government of the RussianFederation for the implementation of the Global Competitiveness Program.

§2. Algebrai preliminaries2.1. Orthogonal Cartan subalgebras. Consider a simple Lie algebraL over an algebraially losed �eld of harateristi zero. Let K be theKilling form on L. In 1960, J. G. Thompson, in the ourse of onstrutionof integer quadrati latties with interesting properties, introdued thefollowing de�nitions.



40 A. BONDAL, I. ZHDANOVSKIYDe�nition. Two Cartan subalgebras H1 and H2 in L are said to be or-thogonal if K(h1; h2) = 0 for all h1 ∈ H1; h2 ∈ H2.De�nition. A deomposition of L into a diret sum of Cartan subalgebrasL = ⊕h+1i=1Hi is said to be orthogonal if Hi is orthogonal to Hj for alli 6= j.An intensive study of orthogonal deompositions has been undertakensine then (see the book [16℄ and referenes therein). For the Lie algebrasl(n), A. I. Kostrikin et al. arrived at the following onjeture, alled theWinnie-the-Pooh onjeture (f. ibid., where, in partiular, the name of theonjeture is explained by a wordplay in the Russian translation of Milne'sbook).Conjeture 1. The Lie algebra sl(n) has an orthogonal deomposition ifand only if n = pm for a prime number p.The onjeture has proved to be notoriously diÆult. Even the nonex-istene of an orthogonal deomposition for sl(6), when n is 6, i.e., the �rstnumber that is not a prime power, is still open. Also, it is important to�nd the maximum number of pairwise orthogonal Cartan subalgebras insl(n) for any given n, as well as to lassify them up to obvious symmetries.We reall an interpretation of the problem in terms of systems of mini-mal projetors and its relation to the representation theory of the Tempe-rley{Lieb algebras.Let sl(V ) be the Lie algebra of traeless operators in V . The Killing formis given by the trae of the produt of operators. A Cartan subalgebra Hin V de�nes a unique maximal set of minimal orthogonal projetors in V .Indeed, H an be extended to the Cartan subalgebra H ′ in gl(V ) spannedbyH and the identity operator E. The rank 1 projetors in H ′ are pairwiseorthogonal and omprise the required set. We say that these projetors areassoiated to H .If p is a minimal projetor in H ′, then the trae of p is 1, hene, p− 1nE isinH . If projetors p and q are assoiated to orthogonal Cartan subalgebras,then Tr(p− 1nE)(q − 1nE) = 0;whih is equivalent to Tr pq = 1n: (1)We say that a pair of minimal projetors is algebraially unbiased if itsatis�es this equation.



ORTHOGONAL PAIRS AND MUTUALLY UNBIASED BASES 41Therefore, an orthogonal pair of Cartan subalgebras is in a one-to-oneorrespondene with two maximal sets of minimal orthogonal projetorssuh that every pair of projetors from di�erent sets is algebraially un-biased. Similarly, orthogonal deompositions of sl(n) orrespond to n+ 1pairwise algebraially unbiased sets of minimal orthogonal projetors. Inthe analysis of the problem, it is worthwhile not only to onsider maxi-mal sets of orthogonal projetors, but also to study pairwise unbiasednessfor various subsets of maximal sets. This suggests to onsider the repre-sentation theory of redued Temperley{Lieb algebras of arbitrary graphswithout loops, whih we desribe in the next setion.2.2. Redued Temperley{Lieb algebras. Let � be a onneted sim-ply laed graph without loops (i.e., without edges with oiniding ends).Denote by V (�) and E(�) the sets of verties and edges of the graph. LetF be a �eld of harateristi zero.Fix r ∈ F ∗. We de�ne the redued Temperley{Lieb algebra Br(�) asthe unital algebra over F with generators xi numbered by the vertiesi ∈ V (�) subjet to the following relations:
• x2i = xi for every i in V (�),
• xixjxi = rxi, xjxixj = rxj if there is an edge (i; j) in �,
• xixj = xjxi = 0 if there is no edge (i; j) in �.If we replae the last relation by xixj = xjxi (under the same onditionon (i; j)), we get the standard Temperley{Lieb algebra TLr(�). It followsthat Br(�) is a quotient of the Temperley{Lieb algebra TLr(�) of thegraph �. In its turn, the Temperley{Lieb algebra is a quotient of the Hekealgebra of the graph, hene the algebra Br(�) is a speial quotient of theHeke algebra (see [1℄). Thus the representation theory of Br(�) is a partof the representation theory of Heke algebras of graphs. Note that therepresentation theory of Br(�) is diÆult, and the measure of diÆulty isthe rank of the �rst homology of the graph as a topologial spae. Clearly,any automorphism of the graph � indues an automorphism of the algebraBr(�).The ondition (1) on two minimal projetors to be algebraially unbi-ased an be reformulated as algebrai relations:pqp = 1np; qpq = 1nq:It follows from Se. 2.1 that a pair of orthogonal Cartan subalgebras in theLie algebra sl(n) de�nes a representation of B 1n (�n;n), where �n;n is the



42 A. BONDAL, I. ZHDANOVSKIYfull bipartite graph with n verties in both rows, and every generator xi isrepresented by a rank 1 projetor. The generators in one row orrespondto the system of orthogonal projetors related to one Cartan subalgebra.Sine the sum of all minimal projetors in one system is the identity matrix,the representation desends to a representation of the algebraBn;n = B 1n (�n;n)=(∑ pi − 1;∑ qj − 1);where pi's are the idempotents orresponding to one row, and qj 's, to theother row. The representations of Bn;n where every generating idempotentis presented by a minimal projetor are in a one-to-one orrespondenewith the orthogonal pairs of Cartan subalgebras in sl(n). The moduli spaeof six-dimensional representations for B6;6 is the entral objet of thispaper.It is instrutive to think about Br(�) as a homotope of the path algebraof a quiver (see below).2.3. The path algebra of a graph. Let again � be a simply laed graphwithout loops. Consider it as a topologial spae. Let P(�) be the Poinar�egroupoid of the graph �, i.e., the ategory whose objets are verties of thegraph and morphisms are homotopi lasses of paths. The omposition ofmorphisms is given by the onatenation of paths.Denote by F� the algebra over F with the free F -basis numbered bythe morphisms in P(�) and multipliation indued by the onatenationof paths (when it makes sense; when it does not, the produt is zero).Let ei be the element of F� that is the onstant path at the vertex i. Anyoriented edge (ij) an be interpreted as a morphism in P(�), hene it givesan element lij in F�. These are the generators. The de�ning relations are
• eiej = Æijei; eiljk = Æij lik; ljkei = Ækiljk;
• lij lji = ei; ljilij = ej ; lij lkm = 0 if j 6= k.We regard F� as an algebra with unit:1 = ∑i∈V (�) ei:Let � be, in addition, a onneted graph. Then the ategories of repre-sentations for F� and for the fundamental group of the graph are equiva-lent. To see this, �x t ∈ V (�). Denote by F [�(�; t)℄ the group algebra of thefundamental group �(�; t). Consider the projetive F�-module Pt = F�et.Clearly, Pt is a F�-F [�(�; t)℄-bimodule. Note that Pt are isomorphi as left



ORTHOGONAL PAIRS AND MUTUALLY UNBIASED BASES 43F�-modules for all hoies of t. Indeed, the right multipliation by an el-ement orresponding to a path starting at t1 and ending at t2 gives anisomorphism Pt1 ≃ Pt2 .The bimodule Pt indues a Morita equivalene of F� with F [�(�; t)℄.Thus, the ategories F�-mod and F [�(�; t)℄-mod are equivalent. Moreover,the algebra F� is isomorphi to the matrix algebra over F [�(�; t)℄, withthe size of (square) matries equal to |V (�)|.Mutually inverse funtors that indue an equivalene between the at-egories F�-mod and F [�(�; t)℄-mod areV 7→ Pt ⊗F [�(�;t)℄ V; W 7→ HomF�(Pt;W ): (2)In order to de�ne an isomorphism F� → Matn(F [�(�; t)℄), �x a systemof paths {i} onneting the vertex t with every vertex i. For any element� ∈ F [�(�; t)℄ onsider the element −1i �j in F�. The homomorphism isde�ned by the assignment −1i �j 7→ � ·Eij ;where Eij stands for the elementary matrix with the only nontrivial entry1 at the (ij)th position. This is learly a well-de�ned ring isomorphism.The fundamental group �(�; t) is free, with the number of generatorsequal to the rank of the �rst homology of the graph regarded as a topo-logial spae.2.4. Homotopes and redued Temperley{Lieb algebras. Reall thede�nition of a homotope. Given a unital algebra A and an element � ∈ A,one an de�ne a new algebra struture on A by the multipliationa ◦ b = a�b:The new algebra might not have a unit. For this reason, we adjoin a unitto it and denote the new algebra by B:B = F · 1B ⊕B+;where B+ is the two-sided ideal in B that oinides with A as a vetorspae with the new multipliaion. We say that B is the homotope over Awith respet to �.Algebrai properties of homotopes and their general representation the-ory is available in [1℄.Consider again a simply laed graph � without loops. Fix r ∈ F ∗.The (generalized) Laplae operator of the graph � is the element � in the



44 A. BONDAL, I. ZHDANOVSKIYalgebra F� of the Poinar�e groupoid of the graph given by the formula� = 1 +√r∑ lij ; (3)where the sum is taken over all oriented edges.Consider the algebra F�� = F · 1 ⊕ F�+�, the unital homotope overF� with respet to the element �. Note that the algebra is independentof the hoie of a square root of r. Denote by xi's the elements in F�+�that orrespond to ei's in F�. The following theorem realizes Br(�) as aunital homotope over the Poinar�e groupoid F�.Theorem 2 ([1℄). There is a unique isomorphism of algebras and maximalideals in them Br(�) ∼= F��; B+r (�) ∼= F�+� (4)that takes xi to ei.This theorem allows us to relate the moduli spaes of representations ofBr(�) with the moduli spaes of the path algebra of the graph. Sine thelatter algebra is Morita equivalent to the fundamental group of the graph,a link to the representation theory of the free group is implied.2.5. The algebra A(n) and Morita equivalene. Let us de�ne thedeformed preprojetive algebra �~�(Q) of a loop-free quiver Q. Denoteby Q0 and Q1 the sets of verties and arrows of Q, respetively. Let usonstrut the double quiverQd by adding to eah arrow a ∈ Q1 the oppositearrow a∗ ∈ Qd1. De�ne the ommutator  as the element ∑a∈Q1 [a; a∗℄ ∈FQd. For a vetor ~� = (�1; : : : ; �m) ∈ Fm, m = |Q0|, we de�ne thedeformed preprojetive algebra as follows:�~�(Q) = FQd=〈− k∑i=1 �iei〉: (5)Fix ri ∈ F ∗, i = 1; : : : ; n. Consider the star quiver Q with one en-tral vertex and n verties at the boundary. The entral vertex is on-neted with every vertex on the boundary by one outbound arrow. Let~� = (−r1; : : : ;−rn; 1), ∑ni=1 ri = k, where k ∈ N and −ri, i = 1; : : : ; n,orrespond to the verties on the boundary, while 1 orresponds to theentral vertex.Consider the algebra A(n) with generators P; q1; : : : ; qn and relationsP 2 = P; q2i = qi; qiPqi = riqi; n∑i=1 qi = 1: (6)



ORTHOGONAL PAIRS AND MUTUALLY UNBIASED BASES 45Proposition 3. The algebra A(n) is Morita equivalent to the deformedpreprojetive algebra �~�(Q).Denote by Y (n) the GIT moduli spae of n-dimensional A(n)-represen-tations where P is represented by a projetor of rank k and the idempotentsqj are represented by projetors of rank 1. The above proposition allows usto apply the results of Crawley{Boewey [6, 7℄. By heking his assumptionsfor the star quiver, we get that the variety Y (n) is irreduible and hasdimension 2(n− k − 1)(k − 1).2.6. Coproduts of algebras and moduli of representations. Con-sider the quotient algebraBk;n = B 1n (�k;n)=(∑ qj − 1);where qj 's are the idempotents orresponding to the verties of the row oflength n in the bipartite graph �k;n. A deomposition of the set of vertiesin one row of the graph �n;n into two disjoint subsets with k and n − kelements de�nes two subalgebras Bk;n and Bn−k;n in the algebra Bn;n.The intersetion of these two subalgebras in Bn;n is identi�ed with thealgebra A(n). The importane of the algebra A(n) for us is explained bythe following proposition.Proposition 4. The algebra Bn;n is a �ber oprodut of Bk;n and Bn−k;nover A(n).For an algebra A, denote by RepnA the aÆne variety parameterizingthe n-dimensional representations of A. The above proposition implies thefollowing orollary.Corollary 5. For every positive l, we have the �ber produt deompositionReplBn;n = ReplBk;n ×ReplA(n) ReplBn−k;n:Denote by MnA = RepnA=GL(n) the GIT moduli spae of A-repre-sentations. Unfortunately, �ber oprodut deompositions for algebras donot imply �ber produt deompositions for the moduli spaes of repre-sentations, primarily due to the presene of nontrivial automorphisms ofrepresentations.Denote X(k; n) = MnBk;n and Y (n) = MnA(n). Consider the opensubset Y (n)o in Y (n) of points orresponding to irreduible representa-tions. Let X(k; n)o be the open subset in X(k; n) of points orrespondingto Bk;n-representations that restrit to irreduible A(n)-representations.



46 A. BONDAL, I. ZHDANOVSKIYProposition 6. We haveX(n; n)o = X(k; n)o ×Y (n)o X(n− k; n)o
§3. Moduli spaes of representations for subgraphs ofthe graph �6;63.1. The representation moduli spaes X, Y , and S. Let us on-sider the full bipartite graph �3;3 with 3 verties in both rows. Denoteby pi; i = 1; 2; 3 (respetively, qj ; j = 1; 2; 3), the idempotents in B 16 (�3;3)orresponding to the verties in the �rst (respetively, seond) row of thegraph. Let X = X3;3 be the GIT moduli spae of six-dimensional repre-sentations for the algebra B 16 (�3;3) where all idempotents pi and qj arerepresented by projetors of rank 1.One an hek that X ≃ (F ∗)4. To this end, one an interpret thealgebra B 16 (�3;3) as a homotope of the path algebra of the graph (seeSe. 2 and [1℄). A homotope B over an algebra A has a anonial maximaltwo-sided ideal B+, whih is endowed with the left module struture of Athat ommutes with the right ation of B (see Se. 2.4). This allows us toonsider the funtor HomB(B+;−) : modB → modA.Applying this general theory to B 16 (�3;3) as a homotope of the pathalgebra F�3;3 of the graph, and taking into aount the fat that F�3;3is Morita equivalent to the group algebra of the fundamental group of thegraph, whih is the free group with four generators, imply that the abovefuntor has an interpretation as a funtor that takes B 16 (�3;3)-modules torepresentations of the fundamental group. Moreover, the representationsthat are parameterized by X are taken to representations of dimension 1.The moduli spae of the latter is (F ∗)4, hene we have a map X → (F ∗)4.One an see that the map is one-to-one on losed points, due to the inter-pretation of losed points as equivalene lasses of representations. Thusthe map is a birational morphism. Sine (F ∗)4 is smooth, in partiular,normal, it follows that the map is an isomorphism.The algebra A3 has generators P and qj , j = 1; 2; 3, satisfying therelations P 2 = P , q2j = qj , and qjPqj = 12qj . This algebra is endowedwith an involution �, whih is of partiular importane for us. It is givenby � : P 7→ 1 − P . Let Y be the GIT moduli spae of six-dimensionalrepresentations of A3 in whih P is represented by a projetor of rank 3and qj 's, by projetors of rank 1. This is a four-dimensional variety.



ORTHOGONAL PAIRS AND MUTUALLY UNBIASED BASES 47The algebra homomorphism A3 → B 16 (�3;3) de�ned on the generatorsby P 7→ ∑ pi and qj 7→ qj de�nes a map f : X3;3 → Y , whih is in fat aquasi-�nite map of degree 12.We will also onsider the algebra C with generators P and Q and re-lations P 2 = P , Q2 = Q. The moduli spae of six-dimensional represen-tations of this algebra where both P and Q are represented by projetorsof rank 3 and TrPQ = 32 is denoted by S. It has dimension 2. We have amorphism g : Y → S de�ned by the algebra homomorphism C → A3 thattakes P 7→ P and Q 7→
∑ qj .We will onsider another opy of A3 with generators denoted by Q andpi, i = 1; 2; 3, whih play the roles of P and qj ; j = 1; 2; 3, respetively, inthe �rst opy. Then we have the following ommutative square of algebras,where we write algebras together with their generators:B 16 (�3;3)(p1;p2;p3;q1;q2;q3)A3(Q;p1;p2;p3) 44jjjjjjjjjjjjjjj A3(P ;q1;q2;q3):jjTTTTTTTTTTTTTTTC(P ;Q) 44jjjjjjjjjjjjjjjj

jjTTTTTTTTTTTTTTTT (7)In the north-west pointed arrows of this diagram, P is taken to ∑ pi, andin the north-east pointed arrows,Q goes to ∑ qj . We also have the induedommutative square of moduli spaes:X f
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where � is the involution on X that omes from the involution on thealgebra B 16 (�3;3) de�ned by exhanging pi with qi, for i = 1; 2; 3.Let us introdue funtions u1, u2 on Y :u1 = 62(TrPq1Pq2 +TrPq1Pq3 +TrPq2Pq3); (9)



48 A. BONDAL, I. ZHDANOVSKIYu2 = 63(TrPq1Pq2Pq3 +TrPq1Pq3Pq2): (10)One an easily hek that u1 is TrPQPQ up to a onstant multi-plier, while u2 an be expressed as a linear ombination of TrPQPQPQ,TrPQPQ, and the unit. It follows that u1 and u2 are well-de�ned regularfuntions on S; moreover, they generate the algebra of funtions F [S℄.3.2. The spae U. Now we onsider a new funtion on Y :u3 = (62TrPq1Pq2 − 1)(62TrPq2Pq3 − 1)(62TrPq3Pq1 − 1): (11)We have the three-dimensional aÆne spae U = SpeF [u1; u2; u3℄. It isendowed with natural surjetive maps U → S and � : Y → U . The variety
U is important for us beause many alulations that we perform are donerelatively over U . It would be interesting to �nd a representation-theoretimeaning for U .Proposition 7. Consider two systems (p1; p2; p3) and (q1; q2; q3) of or-thogonal projetors of rank 1 in a vetor spae satisfying the onditionTr piqj = 16 . Let P = p1+p2+p3 and Q = q1+ q2+ q3. Then the followingidentity holds:

∏(i;j)∈{1;2;3}(62Tr(PqiPqj)− 1) = ∏(i;j)∈{1;2;3}(62Tr(QpiQpj)− 1): (12)This proposition, together with the above remarks on u1 and u2, allowsus to extend the diagram (8) to the following ommutative diagram:X f
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The indued map X → Y ×U Y is an embedding. The variety Y ×U Yis a divisor in Y ×S Y , dimY ×U Y = 5, dimY ×S Y = 6.Let S3 be the group of permutations of three elements. We onsider thevariety X ′ = X=(S3 × S3) where the ation of S3 × S3 on X is induedby the ation on B 16 (�3;3) by independent permutations of pi's and qj 's.



ORTHOGONAL PAIRS AND MUTUALLY UNBIASED BASES 49Similarly, Y ′ = Y=S3 where S3 ats on A3 by permuting qj 's, whih givesan ation on Y . We have the indued maps X ′ → Y ′ → U .Proposition 8 ([3℄). The �ber of the omposite map X ′ → U over ageneri losed point u ∈ U is a disjoint union of two isomorphi elliptiurves, while the �ber of Y ′ → U is just one ellipti urve. The mapX ′ → Y ′ maps two omponents of the �ber of X ′ over u isomorphially tothe �ber of Y ′ over u.3.3. The representation moduli spae X(3; 6). Let us onsider thefull bipartite graph �3;6 with 3 verties in the �rst row and 6 verties inthe seond row. Denote by pi, i = 1; 2; 3 (respetively, qj , j = 1; : : : ; 6), theidempotents in B 16 (�3;6) orresponding to the verties in the �rst (respe-tively, seond) row of the graph. Consider the algebra B3;6, the quotient ofB 16 (�3;6) by the two-sided ideal generated by ∑ qj − 1. Let X(3; 6) be theGIT moduli spae of six-dimensional representations of the algebra B3;6where all idempotents pi and qj are represented by projetors of rank 1.Consider the map X(3; 6) → X indued by the algebra homomorphismB 16 (�3;3) → B3;6 de�ned by pi 7→ pi and qj 7→ qj . We will also onsider aseond opy of B 16 (�3;3), with generators pi, i = 1; 2; 3, and qj , j = 4; 5; 6,and a seond map X3;6 → X , indued by the similar algebra homomor-phism B 16 (�3;3) → B3;6 de�ned by pi 7→ pi and qj 7→ qj . Combining itwith two maps f; � ◦ f : X → Y , we obtain the ommutative diagramX(3; 6) p1
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GG
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(14)
Theorem 9. The variety X(3; 6) is irreduible of dimension 4. The varietyX ×Y X has only one irreduible omponent of dimension 4, all the otheromponents being of lower dimension. The map h : X(3; 6) → X×Y X in-dued by the above diagram establishes a birational isomorphism of X(3; 6)with the four-dimensional irreduible omponent of X ×Y X.Note that it is quite plausible that X ×Y X is in fat also irreduible,whih would mean that the map h is birational.



50 A. BONDAL, I. ZHDANOVSKIY3.4. The representation moduli spaes Y (6) and X(6; 6). Considerthe algebra A(6) with generators P and qj , j = 1; : : : ; 6, and relationsP 2 = P; q2j = qj ; qjPqj = 12qj ; ∑ qj = 1:The algebra A(6) is endowed with the involution given by P 7→ 1 − Pand qj 7→ qj . Denote by Y (6) the GIT moduli spae of six-dimensionalrepresentations of the algebra A(6) where P is represented by a projetorof rank 3 and the idempotents qj are represented by projetors of rank 1.The involution on A(6) indues an involution �′ : Y (6) → Y (6).The algebra A(n) is Morita equivalent to the deformed preprojetivealgebra of the star graph Q with one entral vertex and n verties on theboundary, the entral vertex being onneted with every boundary vertexby one edge (see Se. 2.5). Aording to a result of Crawley{Boewey [6, 7℄,this implies that the variety Y (6) is irreduible and has dimension 8.There is an algebra homomorphism A(6) → B3;6 that takes P to ∑ pi.It de�nes a map g : X(3; 6) → Y (6). Consider the ation of the groupS3 on the algebra B3;6 that permutes the generators p1; p2; p3. Clearly, gis an S3-invariant map. Reall that, aording to Theorem 9, the varietyX(3; 6)=S3 is irreduible.Theorem 10. The morphism g : X(3; 6)=S3 → Y (6) maps X(3; 6)=S3birationally onto its image in Y (6).The proof of this theorem heavily uses the fat established in Proposi-tion 8 that the �ber of X=S3×S3 over a generi point U is a disjoint unionof two opies of an ellipti urve. This allows us to use the geometry ofellipti urves and ellipti �brations.Consider a seond opy of the algebra B3;6, whose generators we denoteby (p4; p5; p6) and (qj , j = 1; : : : ; 6). The orresponding moduli spae ofrepresentations of this algebra is again identi�ed with X(3; 6).Now onsider the algebraB6;6 that is the quotient of the algebraB 16(�6;6)with generators pi, i = 1; : : : ; 6, and qj , j = 1; : : : ; 6, by the two-sided idealgenerated by the elements ∑ pi − 1 and ∑ qj − 1. Let X6;6 be the GITmoduli spae of six-dimensional representations of the algebra B6;6 whereall idempotents pi and qj are represented by projetors of rank 1.Note that the above two opies of the algebra B3;6 are mapped intothe algebra B6;6 by sending the generators pi to pi and qj to qj . We havehosen the indies of the generators in the two opies in suh a way thatthey agree with the indies of the generators in the algebra B6;6. These



ORTHOGONAL PAIRS AND MUTUALLY UNBIASED BASES 51two maps indue two maps X(6; 6) → X(3; 6). All the above maps an beombined into a ommutative diagram:X(6; 6) pr2
%%K

KKKKKKKKpr1
yytttttttttX(3; 6) �′◦g

%%J
JJJJJJJJ

X(3; 6):g
yysssssssssY (6)

(15)
Lemma 11. There exists a point x0 in X(6; 6) suh that the tangent spaeTx0 at x0 has dimension 4, the di�erentials at x0 of the maps pr1 and pr2are isomorphisms of Tx0 with the tangent spaes at the images of x0, andthe di�erential of the map s : X(6; 6)→ Y (6) indues an embedding of Tx0into the tangent spae to Y (6) at s(x0). The point s(x0) ∈ Y (6) orrespondsto an irreduible representation of A(6).Proof. Reall that the standard pair (see [14℄) of Cartan subalgebras insl(n;C) onsists of the diagonal Cartan subalgebra H0 in a �xed basis {ei}and the subalgebraH1 that is linearly spanned by (P; : : : ; Pn−1) where P isthe operator of the yli permutation of the basis vetors ei 7→ ei+1=modn.The transition matrix A from the basis {ei} to the basis {fj} relatedto the seond Cartan subalgebra has the following oeÆients:A = {aij = 1√n�(i−1)(j−1)}; i; j = 1; : : : ; n; (16)where � is a primitive root, �n = 1.One an alulate the tangent spae to X6;6 at the point orrespondingto the standard pair and hek that it has dimension 4 (f. [24℄).Let us exhange the 3rd and the 4th olumns of the matrix A. Thisorresponds to reordering the projetors pi, thus hanging the projetionsX(6; 6)→ X(3; 6). It is a diret hek to show that all laims of the lemmaare satis�ed for this hoie of x0 and the projetions. �Theorem 12. The indued morphism X(6; 6) → X(3; 6) ×Y (6) X(3; 6)establishes a one-to-one orrespondene between the set of irreduible om-ponents of X(6; 6) and X(3; 6) ×Y (6) X(3; 6) of dimension greater thanor equal to 4 and the birational isomorphisms between the orrespondingomponents.



52 A. BONDAL, I. ZHDANOVSKIYThe proof in [3℄ is based on the alulation of the lous of points inX(3; 6)×Y (6)X(3; 6) for whih the �ber in X(6; 6) → X(3; 6)×Y (6)X(3; 6)is di�erent from just one point and showing that it has dimension lessthan 4.
§4. A four-dimensional omponent in X(6; 6)4.1. The invariane of the image under an involution. The maintehnial result that implies the existene of a four-dimensional omponentin X(6; 6) is the following statement of independent interest.Theorem 13. The image of X(3; 6) under the map g : X(3; 6) → Y (6)has a nonempty Zariski open subset that is invariant under the involution�′.We desribe the main steps of the proof of Theorem 13.Aording to Theorem 9, the variety X(3; 6) is irreduible, and it ismapped birationally onto the unique four-dimensional irreduible ompo-nent of X ×Y X . Consider the map h : X ×Y X → Y ×S Y .Proposition 14. The image under h of the four-dimensional irreduibleomponent of X×Y X has a nonempty Zariski open subset that is invariantunder the involution (�; �).The mapX(3; 6) → Y ×SY fators through the quotient mapX(3; 6) →X(3; 6)=S3, where the ation of S3 on X(3; 6) is indued by the permuta-tions of pi, i = 1; 2; 3.Proposition 15. The indued morphism X(3; 6)=S3 → Y ×S Y isomor-phially maps a Zariski open subset in X(3; 6)=S3 into Y ×S Y .Propositions 14 and 15 imply that the involution (�; �) indues an in-volution � on a Zariski open subset of X(3; 6)=S3.The map g allows for the fatorization through the quotient X(3; 6) →X(3; 6)=S3, thus induing a map g : X(3; 6)=S3 → Y (6).Proposition 16. We have g� = �′g.Proof. First, we prove that the involution � ommutes with the ation ofS6 on X(3; 6)=S3 that is indued by the permutations of qj , j = 1; : : : ; 6,in the algebra B(3; 6). Consider the produt Y ×S Y that is de�ned by thetwo maps Y → S indued by the maps C → A3 given by Q 7→ q1+ q2+ q3and Q 7→ 1− q1 − q2 − q3.



ORTHOGONAL PAIRS AND MUTUALLY UNBIASED BASES 53Let us onstrut a morphism Y (6) → Y ×S Y . It orresponds to adeomposition of the set (1; 2; 3; 4; 5; 6) into a disjoint union of two three-element subsets and a hoie of an ordering of elements in eah subset.We an assign two algebra homomorphisms A3 → A(6) to this ombina-torial data. The �rst map takes the idempotents qj 's of A3 to qj 's withindies in the �rst subset, ordered in the presribed way, and similarlyfor the seond homomorphism. Together, these homomorphisms de�ne amorphism Y (6) → Y × Y , whih is easily seen to desend to a morphismY (6) → Y ×S Y . When omposed with g, this morphism gives us a mor-phism X(3; 6)=S3 → Y ×S Y .We hoose two partiular deompositions of the set (1; 2; 3; 4; 5; 6) intoa disjoint union of two subsets. One is ((1; 2; 3); (4; 5; 6)), and the other oneis ((1; 2; 4); (3; 5; 6)). As above, they de�ne two morphisms X(3; 6)=S3 →Y ×S Y . Let us onsider two funtions on the variety X(3; 6)=S3:z1 = TrPq1Pq2; z2 = TrPq5Pq6:Let Z = SpeF [z1; z2℄. The natural morphism X(3; 6)=S3 → Z fatorsthrough both morphisms X(3; 6)=S3 → Y ×S Y . Hene we get a ommu-tative diagram: X(3; 6)=S3
&&MMMMMMMMMM

xxqqqqqqqqqqY ×S Y
&&NNNNNNNNNNNN Y ×S Y:

wwpppppppppppp

Z

(17)
The involution (�; �) ats along the �bers of both morphisms Y ×SY →

Z. Denote by � and �′ the involutions on X(3; 6)=S3 where � was de�nedabove and is attahed to one of the morphismsX(3; 6)=S3 → Y ×SY , while�′ is similarly attahed to the other morphism X(3; 6)=S3 → Y ×SY . Both� and �′ at along the �bers of the map X(3; 6)=S3 → Z. Therefore, theprodut ��′ also ats along the �bers of the same map. The �bers of themap over a generi point are ompati�ed to a surfae of general type.Thus ��′ is a birational automorphism of a surfae of general type. Thegroup of birational automorphisms of a variety of general type is �nite (f.[12℄). Therefore, the element ��′ is of �nite order. One an �nd a smooth�xed point of ��′ on X(3; 6)=S3 suh that ��′ ats by the identity on the



54 A. BONDAL, I. ZHDANOVSKIYtangent spae at this point. The point is the projetion to X(3; 6)=S3 ofthe point in X(6; 6) orresponding to the \standard orthogonal pair" ofCartan subalgebras in sl(6; �F ). Sine ��′ is of �nite order, it follows thatit is the identity on the whole X(3; 6)=S3. Therefore, � = �′.This implies that � ommutes with the transposition (34) ∈ S6. Clearly,� ommutes with all elements in S6 that permute elements inside thesubsets (1; 2; 3) and (4; 5; 6). Together with the transposition (34), theygenerate the whole group S6. Thus � ommutes with this group.Now we onsider the produt of as many opies of Y ×S Y as thereexist deompositions of the set (1; 2; 3; 4; 5; 6) into a disjoint union of twothree-element subsets and hoies of an ordering of elements in eah subset.Taking the produt of the above maps for eah individual opy of Y ×S Yde�nes a morphism  : Y (6) → ∏(Y ×S Y ). One an hek that this mapis birationally an embedding.The variety ∏(Y ×S Y ) has the involution �′′ de�ned by the ation of(�; �) on every omponent Y ×S Y . It is obvious from the de�nition that�′′ =  �′. Denote � =  g : X(3; 6)=S3 → ∏(Y ×S Y ). Sine � ommuteswith the ation of S6, it follows that �′′� = ��.Sine g and � are both birationally embeddings, it follows that g� =�′g. �It would be nie to have a more oneptual proof for this result.Clearly, Proposition 16 implies a proof of Theorem 13.4.2. The main algebrai geometri result.Theorem 17. There exists a four-dimensional irreduible omponentof X(6; 6) that ontains the point x0 onstruted in Lemma 11.Proof. Proposition 16 implies that the variety �T whih is the lous of thepoints (�x; ��x), where �x runs over the set of points X(3; 6)=S3 suh that��x is well de�ned, is a subvariety in X(3; 6)=S3 ×Y (6) X(3; 6)=S3. Let Tbe its preimage in X(3; 6)×Y (6)X(3; 6). Consider the open subset To ⊂ Tof points that lie over the lous Yo of irreduible representations for thealgebra A(6). Aording to Proposition 6, the open subset X(6; 6)o is iso-morphi to X(3; 6)o ×Y (6)o X(3; 6)o. Thus To is a subvariety in X(6; 6)o.Note that �T is irreduible by onstrution, and T might have several om-ponents. By onstrution, �T and all omponents of T have dimension 4.Now onsider the point x0 ∈ X(6; 6) onstruted in Lemma 11. Bythe lemma, x0 lies over Yo, i.e., it orresponds to a point in To under the



ORTHOGONAL PAIRS AND MUTUALLY UNBIASED BASES 55isomorphism from Proposition 6. Sine the dimension of the tangent spaeto X(6; 6) at this point is 4 and To is of dimension 4, it follows that x0 is asmooth point on To. Hene the irreduible omponent of To that ontainsx0 is an irreduible omponent of X(6; 6). �Sine X(6; 6) an be interpreted as the moduli spae of orthogonal pairsin sl(6), as it was explained in Se. 2.2, we have the following result.Corollary 18. There exists a four-dimensional family of orthogonal pairsin sl(6), whih ontains the standard pair.It might be instrutive to reformulate Proposition 16 in terms of ele-mentary linear algebra.Proposition 19. Let W be the irreduible variety parameterizing the 6×6matries P of rank 3 with 12 on the diagonal that satisfy P 2 = P and admita deomposition into three matries pi of rank 1 with 16 on the diagonal(whih implies p2i = pi): P = p1 + p2 + p3:Then for almost all P ∈ W, the matrix 1− P is also in W.Chanes are that this statement is true for all P ∈ W .
§5. Mutually unbiased bases5.1. Mutually unbiased bases and a system of projetors. Theterminology of unbiased bases �rst appeared in physis.Let V be an n-dimensional omplex vetor spae with a �xed Hermitianmetri 〈 ; 〉. Two orthonormal Hermitian bases {ei} and {fj} in V aremutually unbiased if for all (i; j)

|〈ei; fj〉|2 = 1n: (18)There are two types of obvious transformations ating on the set ofmutually unbiased bases. First, one an independently hange the phaseof all vetors in both bases:ej 7→ exp(√−1�j)ej ;fj 7→ exp(√−1�j)fj :Seond, one an transform all bases by a simultaneous linear transforma-tion from GL(n;C).



56 A. BONDAL, I. ZHDANOVSKIYLet {pi} be the orthogonal (i.e., pipj = 0 for i 6= j) system of minimalprojetors in V related to the base {ei}, and {qj} be the system of minimalprojetors related to the base {fj}. Sine both bases are orthonormal, allprojetors are Hermitian, i.e., satisfy p†j = pj and q†j = qj . Moreover,the ondition that the bases are mutually unbiased is equivalent to theondition Tr piqj = 1nfor all (i; j). The onverse is also true: two orthogonal systems of Hermit-ian projetors satisfying the above equation uniquely de�ne a mutuallyunbiased pair of bases up to the �rst type of transformations, i.e., up tohanging the phases of basi vetors.It follows from Se. 2.1 that a pair of mutually unbiased bases de�nesa pair of orthogonal Cartan subalgebras in the Lie algebra sl(n;C). Therequirement that the projetors are Hermitian means that the pair of Car-tan subalgebras is speial. We will see in the next subsetion that theyparameterize a real submanifold in the moduli spae of all pairs of Cartansubalgebras.5.2. The moduli of mutually unbiased bases as a \positive" realform of the moduli of orthogonal pairs. Let �X be the (singular)algebrai variety over C that parameterizes all pairs of orthogonal Cartansubalgebras in the Lie algebra sl(V ) where V ≃ Cn. Sine it is identi�edwith the variety RepnBn;n, it is an aÆne variety. The group GL(V ) ats on�X , and the GIT quotient �M = �X=GL(V ) is the moduli spae of orthogonalpairs in V . Sine it is a GIT fator of an aÆne variety, it is aÆne too.As we know, an orthogonal pair is uniquely de�ned by a pair of or-thogonal systems of minimal projetors, where any pair of projetors fromdi�erent systems are algebraially unbiased. For brevity, we will all suha pair of systems of projetors a on�guration. A on�guration is de�nedby an n-dimensional representation of the algebra Bn;n, whih is knownto be always irreduible (f. [13℄).We redue �X to its open subvariety X of smooth points, and we denote
M = X=GL(V ). Let us onsider the real subvariety XR in X that is the lo-us of points that orrespond to algebraially unbiased pairs of orthogonalsystems of Hermitian projetors. The unitary group U(n) ats on XR, andthe quotient MR = XR=U(n) is the moduli of mutually unbiased bases.



ORTHOGONAL PAIRS AND MUTUALLY UNBIASED BASES 57Consider the involution that ats on X by Hermitian onjugation of allprojetors: p 7→ p†:Clearly, the involution is antiholomorphi, and XR is the lous of stablepoints of the involution. It is easy to hek that the involution desends toan involution � on M and that MR is embedded into the stable lous M�of the involution on M. We will show that MR is an open subset in M�.Let H be the set of Hermitian operators in V , and H× be the opensubset of invertible Hermitian operators. De�ne a subset Y ⊂ H× ×X by
Y = {(g; {pi; qj}) ∈ H

× ×X| p†i = g−1pig; q†i = g−1qig}:Let H
×
± ⊂ H× be the open subset of invertible Hermitian matries thatare either positive or negative. De�ne Y± ⊂ Y as the open subset of those(g; {pi; qj}) for whih g ∈ H

×
±.We onsider the map � : Y → X given by the projetion to the seondomponent of H

× ×X and the similar map �± : Y± → X .Denote by R× the group of nonzero real numbers. Consider the groupG = R× × PGL(n;C) and its ation on H× ×X by(�; h)(g; {pi; qj}) = (�hgh†; {hpih−1; hqjh−1}):It is easy to hek that Y and Y± are preserved by this ation.Proposition 20. The set Y is a prinipal homogeneous G-bundle over
M�. Similarly, Y± is a prinipal homogeneous G-bundle over MR.Proof. Let us hek that the orbits of the ation by R× are �bers of themap Y → X . If (g1; {pi; qj}) and (g2; {pi; qj}) are in the �ber of Y → X ,then (g1)−1g2 lies in the stabilizers of all projetors in the on�guration.Sine we onsider irreduible representations of Bn;n, by Shur's lemmawe have (g1)−1g2 = � · 1. Therefore,g2 = �g1;where � 6= 0 beause g2 is invertible. Sine g1 and g2 are Hermitian, ap-plying the Hermitian onjugation givesg2 = ��g1:Hene, � = ��, i.e., � ∈ R×.As it was already mentioned, any on�guration is given by an irreduiblerepresentation of Bn;n. Therefore, the ation of PGL(n;C) on X is free,



58 A. BONDAL, I. ZHDANOVSKIYbeause the stabilizer of any on�guration is a salar matrix by Shur'slemma. It follows that the ation of G on Y is free.Take a point m ∈ M�. A point in X over it is presented by a on�gu-ration of projetors {pi; qj}. Sine m is stable under the involution � onthe quotient spae M, there exists g ∈ GL(n;C) suh thatp† = g−1pgfor every projetor p from the on�guration. If we onjugate this equation,we get p = g†p†(g†)−1:Together, these equations imply that g†g−1 stabilizes all projetors p in-volved. It follows from Shur's lemma that g†g−1 = � ·1, for some nonzeromultiplier � ∈ C. Hene g† = �g:By taking the Hermitian dual, we have��g† = g;whih, when ombined with the previous relation, implies
|�|2 = 1:It is easy to see that we an replae g by �g, for some � ∈ C, and getg† = g. The inverse inlusion �(Y) ⊂ �−1(M�) is obvious. This provesthat Y=G = M�.Now let us hek that �(Y±) ⊂ �−1(MR). Take a point (g; {pi; qj}) ∈

Y±. We may assume that g > 0, beause hanging the sign of G does nothange the onjugation by it. For positive nondegenerate g, it is knownthat there exists a deompositiong = v†v;for some invertible operator v. Sine for all projetors p in the on�gurationwe have p† = g−1pg = v−1(v†)−1pv†v;it follows that (v†)−1pv† is self-adjoint. Hene, we an onjugate our on-�guration to a self-adjoint one.Conversely, take a point m ∈ MR. By de�nition, there exists a pointin the �-�ber of m suh that all projetors from its on�guration are Her-mitian. Let us take another point in the same �ber. Then every projetor



ORTHOGONAL PAIRS AND MUTUALLY UNBIASED BASES 59p from its on�guration is onjugate to the orresponding Hermitian pro-jetor r: p = h−1rh;where h ∈ GL(n;C) is the same for all projetors p of the on�guration.Sine r† = r, we havep† = h†r†(h†)−1 = h†r(h†)−1 = h†hph−1(h†)−1:Sine h†h is positive, we have �−1(MR) ⊂ �(Y±). �Corollary 21. The subset MR ⊂ M� is open and is de�ned by a systemof strit real polynomial inequalities.Proof. Aording to Sylvester's theorem, the positive Hermitian matriesare given by a system of n strit polynomial inequalities with real (eveninteger!) oeÆients. Hene the open subset Y± ⊂ Y is de�ned by stritpolynomial inequalities too. Sine Y± is invariant with respet to the freeG-ation, the inequalities desend to strit polynomial inequalities on M�.
�5.3. A four-dimensional family of mutually unbiased bases. Theo-rem 17 together with Corollary 21 imply the existene of a four-dimensionalfamily of mutually unbiased bases in the six-dimensional omplex spae.Theorem 22. There exists a family of real dimension 4 of mutually un-biased bases in C6.Proof. We have an antiholomorphi involution � on the moduli spaeX(6; 6) of six-dimensional representations of Bn;n. Let us restrit to thelous M of smooth points in all irreduible omponents of X(6; 6), asabove. The lous of stable points of the involution on eah omponent is asmooth real submanifold of real dimension equal to the omplex dimensionof the omponent. By Theorem 17, we have a four-dimensional irreduibleomponent in X(6; 6). Hene, we need simply to hek that the stable lousof � is not empty on the smooth part of the omponent.Consider the point x0 onstruted in Lemma 11. Aording to Theo-rem 17, it is a smooth point on a four-dimensional omponent of X(6; 6).Sine formula (16) for the transition matrix A from the basis {pi} to thebasis {qi} is a unitary matrix, the point x0 is an element of MR. �Remark. Sine the transformation matrix from one mutually unbiasedbase to another one is known to be a omplex Hadamard matrix, the
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