
úÁ�ÉÓËÉ ÎÁÕÞÎÙÈÓÅÍÉÎÁÒÏ× ðïíé�ÏÍ 437, 2015 Ç.N. M. Bogoliubov, C. MalyshevCOMBINATORIAL ASPECTS OF CORRELATIONFUNCTIONS OF THE XXZ HEISENBERG CHAIN INLIMITING CASESAbstrat. We disuss the onnetion between quantum integrablemodels and some aspets of enumerative ombinatoris and the the-ory of partitions. As a basi example, we onsider the spin XXZHeisenberg hain in the limiting ases of zero and in�nite anisotropy.The representation of the Bethe wave funtions via Shur funtionsallows us to apply the theory of symmetri funtions to alulat-ing the thermal orrelation funtions as well as the form fators inthe determinantal form. We provide a ombinatorial interpretationof the orrelation funtions in terms of nests of self-avoiding lattiepaths. The suggested interpretation is in turn related to the enu-meration of boxed plane partitions. The asymptoti behavior of thethermal orrelation funtions is studied in the limit of small temper-ature provided that the harateristi parameters of the system arelarge enough. The leading asymptotis of the orrelators are foundto be proportional to the squared numbers of boxed plane partitions.
§1. IntrodutionThe exatly solvable Heisenberg XXZ model is a prominent model de-sribing the interation of spins 12 on a hain. The integrability of themodel via the algebrai Bethe ansatz has led to important results, goingfrom the spin dynamis up to exat expressions for the orrelation fun-tions [5, 14, 17℄.The orrelation funtions of the XXZ Heisenberg hain are of onsid-erable interest [5, 17℄. This artile is a ontinuation of a series of worksdediated to the study of the ombinatorial impliations of the orrelationfuntions of the XXZ hain for two limits of the anisotropy parameter:zero and/or in�nite anisotropy [6{10℄. Here we fous on the ase of theXX0 hain, whih is the zero anisotropy limit of the XXZ model. ThisKey words and phrases: XXZ Heisenberg hain, orrelation funtions, symmetrifuntions, plane partitions, q-binomial determinant.Supported in part by the RSF grant 14-11-00598.15



16 N. M. BOGOLIUBOV, C. MALYSHEVlimit, also known as the free fermion ase of the XXZ model, was in-tensively studied in physis and mathematis. It is related, in partiular,to low-energy quantum hromodynamis [26℄, to the theory of symmetrifuntions [20℄, to a third-order phase transition [22℄, and to the theoryof plane partitions [1, 13, 20℄. Plane partitions (three-dimensional Youngdiagrams) appear in probability theory [11, 12, 29℄, enumerative ombina-toris [27℄, the theory of faeted rystals [24℄, topologial string theory [25℄,and the theory of random walks on latties [3, 4, 13, 18℄.We study the asymptoti behavior of the thermal orrelation funtionsof the XX0 model in the limit of low temperature provided that the hainis long enough while the number of ipped spins is moderate. Namely, inthis limit the thermal orrelation funtions are related to random matrixmodels [3℄.We will onsider the periodi XX0 Heisenberg hain. The representa-tion of the Bethe wave funtions via Shur funtions [20℄ allows one toapply the well-developed theory of symmetri funtions to alulating thethermal orrelation funtions as well as the form fators. In the presentpaper, we are interested in the orrelation funtion of the reation operatorof n exitations on onseutive sites of the hain, whih will be alled thesurvival probability of the domain wall . Speial attention will be paid to theombinatorial objets appearing in the alulations (the generating fun-tions of plane partitions and random walks, the q-binomial determinants)and to the ombinatorial interpretation of the obtained results. We willalulate the leading terms of the asymptotis of the orrelation funtionunder onsideration, provided that the harateristi parameters of thesystem are large enough, inluding the ritial exponents of these orrela-tion funtions in the low temperature limit, and the related amplitudes.These amplitudes are found to be proportional to the squared numbers ofboxed plane partitions.
§2. An outline of the XXZ Heisenberg hainThe quantum XXZ Heisenberg hain onsisting of M + 1 sites is de-sribed in the absene of a magneti �eld by the Hamiltonian (see [14℄)ĤXXZ = −

12 M∑k=0(�−k+1�+k + �+k+1�−k + �2 (�zk+1�zk − 1)); (1)



COMBINATORIAL ASPECTS 17where � ∈ R is the anisotropy parameter. The loal spin operators �±k =12 (�xk ± i�yk) and �zk, depending on the lattie argument k, are de�ned as(M + 1)-fold tensor produts:�#k = �0 ⊗ · · · ⊗ �0 ⊗ �#︸︷︷︸k ⊗ �0 ⊗ · · · ⊗ �0; (2)where �0 is the 2 × 2 identity matrix and �# at the kth site is a Paulimatrix, �# ∈ su(2) (here # is either x; y; z or ±). The ommutation rulesare given by the relations[�+k ; �−l ℄ = Ækl �zl ; [�zk ; �±l ℄ = ±2 Ækl �±l ;where Ækl is the Kroneker symbol.The spin operators at in the state spae HM+1 =⊗Mk=0 hk whih is theprodut ofM+1 opies of the linear spae hk ≡ C2. The state spae HM+1is spanned by the state vetors ⊗Mk=0 |s〉k , where s =↑; ↓ orrespondsto either the \spin-up" state or the \spin-down" state, |↑〉 ≡
( 10 ) or

|↓〉 ≡
( 01 ). The ation of the operators (2) is de�ned by the followingrules: �− |↑〉 = |↓〉; �− |↓〉 = 0; �− = (0 01 0) ;�+ |↑〉 = 0; �+ |↓〉 = |↑〉; �+ = (0 10 0) :We onsider the XXZ Heisenberg model on a periodi hain with theboundary onditions �#k+(M+1) = �#k .Let the sites with \spin-down" states be labeled by dereasing oordi-nates M > �1 > �2 > : : : > �N > 0, whih onstitute a strit partition� ≡ (�1; �2; : : : ; �N ). Another important partition � ≡ (�1; �2; : : : ; �N )is a weakly dereasing sequene of nonnegative integers L > �1 > �2 >: : : > �N > 0. The relation �j = �j −N + j, where 1 6 j 6 N , onnetsthe parts of � to those of �. Therefore, we an write � = � − ÆN , whereÆN is the partition (N − 1; N − 2; : : : ; 1; 0).



18 N. M. BOGOLIUBOV, C. MALYSHEVTheN -exitation state vetors |	N (u)〉, i.e., the vetors withN \down"spins, are given by the formula
|	N (u)〉 =∑� �XXZ� (u)( N∏k=1 �−�k) |⇑〉; (3)where the summation is over all admissible partitions �. The parametersu (or uN ), u ≡ (u1; u2; : : : ; uN ) are sets of arbitrary omplex numbers.For instane, u2 ≡ (u21; u22; : : : ; u2N ). The state |⇑〉 orresponds to all spins\up": |⇑〉 ≡⊗Mn=0 |↑〉n. Besides,�XXZ� (u) = ∑Sp1;p2;:::;pN AS(u1; u2; : : : ; uN)u2�1p1 u2�2p2 : : : u2�NpN ; (4)where the summation runs over all permutationsSp1;p2;:::;pN ≡ S( 1; 2; : : : ; Np1; p2; : : : ; pN):The amplitude AS is

AS(u1; u2; : : : ; uN) ≡
∏16j<i6N 1− 2�u2pi + u2piu2pju2pi − u2pj :The state vetors (3) are eigenstates of the Hamiltonian (1),ĤXXZ |	N (uN )〉 = EN |	N (uN )〉;with the eigenvalues EN ≡ EN (u1; : : : ; uN ) = − 12∑Ni=1(u2i + u−2i − 2�),if and only if ul (1 6 l 6 N) satisfy the Bethe equations :u2(M+1)l = (−1)N−1 N∏k=1 1− 2�u2l + u2l u2k1− 2�u2k + u2l u2k : (5)The XXZ model was onsidered in [7{9℄ for two limits of the anisotropyparameter: � = 0 and � → ∞.

• The free fermion limit, � → 0. As � → 0, the Hamiltonian (1) takesthe form ĤXX ≡ −
12 M∑k=0(�−k+1�+k + �+k+1�−k ):Up to an irrelevant prefator, the amplitude (4) looks as follows:�XX� (u) = det(u2�kj )16j;k6N ∏16n<l6N(u2l − u2n)−1:



COMBINATORIAL ASPECTS 19The redued Bethe equations (5) are now exatly solvable:u2(M+1)j = (−1)N−1; u2j = ei 2�M+1 Ij ; 1 6 j 6 N; (6)where Ij are integers or half-integers depending on whether N is odd oreven, M > I1 > I2 > · · · > IN > 0. The eigenenergies are equal toEXXN (I1; I2; : : : ; IN ) = −
N∑l=1 os( 2�IlM + 1):

• The strong anisotropy limit, � → −∞. In this limit, the system isdesribed by the e�etive Hamiltonian (see [8℄)ĤSA = −
12 M∑k=0P(�−k+1�+k + �+k+1�−k )P ;where P ≡

M∏k=0(1− q̂k+1q̂k) and the projetions �qk, q̂k onto the \spin-up"and \spin-down" states are de�ned as�qk ≡
12 (�0k + �zk) = (1 00 0)k ; q̂k ≡

12 (�0k − �zk) = (0 00 1)k :The projetion P uts out states having \down" spins at a pair of neigh-boring sites, sine q̂k |↑〉k = 0, q̂k |↓〉k =|↓〉k (analogously, �qk |↓〉k = 0,�qk |↑〉k =|↑〉k).The wave funtion (4) takes the form�SA� (u) = det(u2(�k−N+k)j )16j;k6N ∏16n<l6N(u2l − u2n)−1;where � is the strit dereasing partition, M > �1 > �2 > : : : > �N > 0,of the \down-spin" states and the parts of � satisfy the exlusion ondi-tion: �i > �i+1 + 1. The Bethe equations (5) in this limit are also exatlysolvable:u2(M+1−N)k = (−1)N−1 N∏j=1 u−2j ; u2k = ei 2�Ik−PM+1−N ; 1 6 k 6 N;



20 N. M. BOGOLIUBOV, C. MALYSHEVwhere Ij are integers or half-integers depending on whether N is odd oreven, and P ≡ 2�M+1∑Nj=1 Ij . The eigenenergies have the formEN (I1; I2; : : : ; IN ) = −
N∑l=1 os( 2�Ik − PM + 1−N );where M −N > I1 > I2 > · · · > IN > 0.The ruial fat in the study of these two limiting models is that theirstate vetors are expressed through Shur funtions (see [20℄):S�(x1; x2; : : : ; xN ) ≡

det(x�k+N−kj )16j;k6Ndet(xN−kj )16j;k6N (7)= det(x�k+N−kj )16j;k6N ∏16n<l6N(xl − xn)−1;where � = (�1; �2; : : : ; �N ) is an N -tuple of noninreasing nonnegativeintegers, L > �1 > �2 > : : : > �N > 0.With the help of (7), the state vetors (3) an be written in the limitingases as follows.
• The free fermion ase:

|	N (u)〉 = ∑�⊆{MN}

S�(u2)( N∏k=1 �−�k) |⇑〉; (8)where � = �− ÆN , M ≡ M + 1−N > �1 > �2 > : : : > �N > 0.
• The strong anisotropy ase:

|	N(u)〉 = ∑�̃⊆{(M−2(N−1))N}

S�̃(u2)( N∏k=1�−�̃k) |⇑〉; (9)where �̃ = �̃− 2ÆN , M + 2(1−N) > �̃1 > �̃2 > : : : > �̃N > 0; the partsof �̃ satisfy the inequalities �̃i > �̃i+1 + 1.11As shown in [28℄, in the ase of the integrable q-boson model, a representation forthe N-partile states arises that is analogous to (8) and (9).



COMBINATORIAL ASPECTS 21The salar produts of state vetors in both limits are alulated bymeans of the Binet{Cauhy formula:
PL=n(y;x) ≡

∑�⊆{(L=n)N}

S�(y)S�(x)= ( N∏l=1 ynl xnl ) det(Tkj)16k;j6N
VN(y)VN (x) ; (10)where VN (y) ≡

∏16k<j6N (yj − yk) is the Vandermonde determinant.The summation ∑�⊆{(L=n)N} runs over the weakly dereasing sequenesof integers satisfying L > �1 > �2 > : : : > �N > n, n > 0. The entries Tjktake the form Tkj = 1− (xkyj)N+L−n1− xkyj : (11)
§3. Correlation funtionsWe will onsider the alulation of the survival probability of the domainwall :

F(� gN−n; n; �) ≡
〈	N−n(� g) | �Fn e−�H �Fn |	N−n(� g)〉

〈	N−n(� g) | e−�H |	N−n(� g)〉 ; (12)where � ∈ C and �Fn ≡
∏n−1j=0 �−j is the operator of reating n onseutive\spin-down" states on sites of the hain, i.e., of reating a domain wall. Theshorthand notation |	N−n(�g)〉 ≡ |	N−n(ei� g=2)〉 implies that the eigen-state is alulated for an (N − n)-partile Bethe solution taken in the ex-ponential form u2N−n = ei�N−n . The notation � gN−n = (� g1 ; � g2 ; : : : ; � gN−n)orresponds to an (N − n)-partile solution of the Bethe equation for theground state:� gj = 2�M + 1 (N − n+ 12 − j) ; 1 6 j 6 N − n: (13)Besides, H means either ĤXX or ĤSA, and �F0 is the identity operator I,i.e., F(� gN−n; 0; �) = 1.In order to alulate the form fator of the operator �Fn,
〈	N (v) | �Fn |	N−n(u)〉;



22 N. M. BOGOLIUBOV, C. MALYSHEVwe de�ne an auxiliary operator Dn(u) whih ats on the expetation 〈·〉uregarded as a funtion of u as follows:Dn(u) 〈·〉u ≡ DuN−n+1;uN−n+2;:::;uN ( VN (u2N )
VN−n(u2N−n) × 〈·〉u) ;whereDuN−n+1;uN−n+2;:::;uN ≡ Dn−1uN−n+1 ◦ Dn−2uN−n+2 ◦ : : : ◦ D0uN ;DjuN−j ≡ limu2N−j→0 1j ! djd(u2N−j)j ; 0 6 j 6 n− 1:Now we are ready to formulate the following theorem.Theorem 1 ( [9℄). The ation of the operator Dn(u) on the salar produt

〈	(vN ) |	(uN )〉 gives the form fator of the domain wall reation operator�Fn:
〈	(vN ) | �Fn |	(uN−n)〉 = Dn(u)〈	(vN ) | 	(uN )〉: (14)Proof.We evaluate the left-hand side of (14) using both the de�nition (8)and the properties of the Shur funtions (7):

〈	N (v) | �Fn |	N−n(u)〉 = (N−n∏l=1 u2nl ) ∑�⊆{MN−n}S�̂(v−2N )S�(u2N−n);(15)where M ≡ M − N + 1 > �1 > �2 > : : : > �N−n > 0. Besides, �̂ is oflength N , sine �̂p = �p for 1 6 p 6 N − n and �̂N−n+1 = �̂N−n+2 =
· · · = �̂N = 0.Applying the orthogonality relation

〈
⇑|

N∏k=1 �+�k N∏l=1 �−�l |⇑ 〉 = N∏n=1 Æ�n�n ;we alulate the salar produt of the state vetors (8) by means of theBinet{Cauhy formula (10):
〈	(vN ) |	(uN )〉 = ∑�⊆{MN}

S�(v−2N )S�(u2N ) = det(T okj)16k;j6N
V(u2N )V(v−2N ) ; (16)where the summation is over all partitions � with at most N parts eahof whih is less than or equal to M =M −N +1. The entries T okj in (16)



COMBINATORIAL ASPECTS 23are given by formula (11) taken at n = 0:T okj = 1− (u2k=v2j )M+11− u2k=v2j : (17)For vN = uN , the salar produt (16) gives the squared \length,"N 2(uN ) ≡
〈	(uN ) |	(uN )〉, of the states (8).A diret evaluation of the right-hand side of (14) by means of Dn(u)also leads to the right-hand side of (15) provided that the salar produtis expressed in terms of Shur funtions aording to (16). �Theorem 1 enables us to obtain two summation rules for produts ofShur funtions whih are ruial in establishing ombinatorial results forthe orrelation funtions in question.Theorem 2 ( [9℄). The following formulas for sums of produts of Shurfuntions hold :

∑�⊆{MN−n}S�̂(v−2N )S�(u2N−n) = (N−n∏l=1 u−2nl ) det( �Tkj)16k;j6N
V(u2N−n)V(v−2N ) ; (18)

∑�⊆{MN−n}S�(v−2N−n)S�̂(u2N ) = (N−n∏l=1 v2nl ) det( ~Tkj)16k;j6N
V(v−2N−n)V(u2N ) ; (19)where the entries of the matries ( �Tkj)16k;j6N and ( ~Tkj)16k;j6N are�Tkj = T okj ; 1 6 k 6 N − n; 1 6 j 6 N;�Tkj = v−2(N−k)j ; N − n+ 1 6 k 6 N; 1 6 j 6 N; (20)and ~Tkj = T okj ; 1 6 k 6 N; 1 6 j 6 N − n;~Tkj = u2(N−k)j ; 1 6 k 6 N; N − n+ 1 6 j 6 N:Here the entries T okj given by (17) are used.Proof. We alulate the right-hand side of (14) using the determinantalform of the salar produt given by (16):

〈	N (v) | �Fn |	N−n(u)〉 = Dn(u) (det(T okj)16k;j6N
VN (u2)VN (v−2)) : (21)Further, using (17), we obtain from (21) that

〈	N (v) | �Fn |	N−n(u)〉 = det( �Tkj)16k;j6N
VN−n(u2)VN (v−2) ; (22)



24 N. M. BOGOLIUBOV, C. MALYSHEVwhere the entries of �T are given by (20). Sine the right-hand sides of (15)and (22) oinide, the relation (18) for Shur funtions does indeed takeplae. By the same arguments, the validity of (19) an be established. �To alulate the survival probability of the domain wall, we insert a res-olution of the identity operator into the numerator of (12) taken, however,at an arbitrary parametrization, see [9℄:
〈	(vN−n) | �F+n e−�H �Fn |	(uN−n)〉 = ∑

{�N}

〈	(vN−n) | �F+n |	(ei�N=2)〉 (23)
× 〈	(ei�N=2) | �Fn |	(uN−n)〉 e−�EN(�N )

N 2(�N ) (24)= Dn(u)Dn(v−1)〈	(vN ) | e−�H |	(uN )〉: (25)The deomposition (24) turns into (25) if (14) is used for eah of the formfators in (24).The expliit expression (15) for the form fator allows us to express thesurvival probability of the domain wall in terms of Shur funtions startingwith relation (24):
F(� gN−n; n; �) == 1

N 2(� gN−n)(M + 1)N−n ∑

{�N−n} e−�(EN−n(�N−n)−EN−n(� gN−n))
×
∣∣∣V(ei�N−n) ∑�⊆{MN−n}S�̂(e−i�N−n)S�(ei� gN−n)∣∣∣2; (26)where the summation is over all solutions to the Bethe equation (6) and� gN−n is the ground state solution (13) of the system of N − n partiles.

§4. q-Binomial determinants and generating funtionsof plane partitionsLet us show that the orrelators obtained above are related to generatingfuntions of boxed plane partitions and self-avoiding lattie walks.An array (�ij)i;j >1 of nonnegative integers that is noninreasing as afuntion both of i and j is alled a boxed plane partition �. The entries �ijare the parts of the plane partition, and its volume is |�| = ∑i;j >1 �ij .Eah plane partition is represented by the three-dimensional Young dia-gram onsisting of ubes arranged into staks so that the stak with oor-dinates (i; j) is of height �ij . It is said that a plane partition is ontained



COMBINATORIAL ASPECTS 25in a box B(L;N; P ) if i 6 L, j 6 N , and �ij 6 P for all ubes of theYoung diagram (see Fig. 1).The generating funtion of plane partitions in the box B(L;N; P ) is theformal series Zq(L;N; P ) ≡∑{�} q|�| (the summation is over all partitionsin the box), and it takes the form (see [13, 20℄)

Fig. 1. A three-dimensional Young diagram.Zq(L;N; P ) = L∏j=1 N∏k=1 P∏i=1 1− qi+j+k−11− qi+j+k−2 = L∏j=1 N∏k=1 1− qP+j+k−11− qj+k−1 :The limit q → 1 leads to the MaMahon formula [21℄:A(L;N; P ) = L∏j=1 N∏k=1 P∏i=1 i+ j + k − 1i+ j + k − 2 = L∏j=1 N∏k=1 P + j + k − 1j + k − 1 :To study the asymptoti behavior of the orrelation funtions, we needthe determinant of (�T)16j;k6N taken under the q-parametrizationv−2N = qN ≡ (q; q2; : : : ; qN ); u2N = qN=q = (1; q; : : : ; qN−1): (27)For arbitrary P and L 6 N , these entries take the form�Tkj = 1− q(P+1)(j+k−1)1− qj+k−1 ; 1 6 k 6 L; 1 6 j 6 N;�Tkj = qj(N−k); L+ 1 6 k 6 N; 1 6 j 6 N: (28)



26 N. M. BOGOLIUBOV, C. MALYSHEV

Fig. 2. An S-tuple (w1; w2; : : : ; wS) of self-avoiding lattiepaths for S = 5.The matrix (�T)16j;k6N onsists of two bloks with sizes L × N and(N − L) × N . It is appropriate to all det �T a Kuperberg-type determi-nant, sine it is losely related to the determinant obtained in [19℄ for theproblem of enumerating the alternating sign matries [13, 23℄.Several de�nitions are in order. We use the standard de�nition of theq-binomial determinant (see [27℄):
(ab)q ≡

(a1; a2; : : : aSb1; b2; : : : bS)q ≡ det([ajbi])16i;j6S ;where a and b are ordered tuples, 0 6 a1 < a2 < · · · < aS and 0 6 b1 <b2 < · · · < bS. The entries [ajbi] are the q-binomial oeÆients :
[Nr ] ≡

(1− qN )(1− qN−1) : : : (1− qN−r+1)(1− q)(1− q2) : : : (1− qr) ; q ∈ R:As q → 1, the q-binomial oeÆients are replaed by the binomial oef-�ients and the q-binomial determinant is transformed into the binomialdeterminant :(ab) ≡

(a1; a2; : : : aSb1; b2; : : : bS) = det((ajbi))16i;j6S : (29)The binomial determinant (29) gives the number of self-avoiding walksaross a two-dimensional lattie [16℄. A nest of self-avoiding lattie paths is



COMBINATORIAL ASPECTS 27shown in Fig. 2, where eah path wi belonging to a tuple (w1; w2; : : : ; wS)goes from Ai = (0; ai) to Bi = (bi; bi), 1 6 i 6 S (only northward andeastward steps are allowed).Now we are ready to formulate the following theorem.Theorem 3 ([9℄). Let (�T)16j;k6N be the matrix with the entries (28) whereP2 < N < P . The determinant of (�T)16j;k6N is given byq−L2 (L−1)(N−L) det(�T)16j;k6N
V(qN )V(qL=q)= q−N2 (P−1)P (L+N; L+N + 1; : : : L+N + P − 1L; L+ 1; : : : L+ P − 1 )q (30)= P∏k=1 L∏j=1 1− qj+k+N−11− qj+k−1 = Zq(L;N;P); (31)where P ≡ P −N +1 and Zq(L;N;P) is the generating funtion of planepartitions.Proof. The proof is based on symmetri funtions. Before going further,we de�ne the elementary symmetri funtions er = er(x) depending on Nvariables x = (x1; x2; : : : ; xN ):er ≡

∑i1<i2<···<ir xi1xi2 : : : xir :The value of er at x = q ≡ (q; q2; : : : ; qN ) is er = qr(r+1)=2[Nr ].Let us turn to the Shur funtions (7) labeled by nonstrit partitions �.Consider the onjugate partitions ��. The Young diagram of �� is obtainedby transposing the Young diagram of �. The parts of a nonstrit partition�� satisfy the onditions N > ��1 > ��2 > : : : > ��P > 0, P ≡ P + 1−N . Itis known that S�(x) = det(e��i−i+j(x))16i;j6P
:In order to express det �T as a q-binomial determinant, we use Theorem 2under the q-parametrization:det �T = q L2 (L−1)(N−L)V(qN )V(qL=q) ∑�⊆{PL}S�̂(qN )S�(qL=q):



28 N. M. BOGOLIUBOV, C. MALYSHEVDenote the sum by �S and bring it to the form�S = ∑��⊆{LP}

det(e��j−j+k(qN ))16j;k6P
det(e��p−p+l(qL=q))16l;p6P

;where the summation is over the onjugate partitions ��. For �S we obtain�S = q−N2 (P−1)P (L+N; L+N + 1; : : : L+N + P − 1L; L+ 1; : : : L+ P − 1 )q= L∏j=1 P∏k=1 1− qN+j+k−11− qj+k−1 = Zq(L;P ; N) = Zq(L;N;P): �Theorem 3 relates det �T to the q-binomial determinant, whih is trans-formed as q → 1 into the binomial determinant, equal, in turn, to thenumber of P-tuples of lattie self-avoiding paths between the end pointsAl = (0; N +L+ l− 1) and Bl = (L+ l− 1; L+ l− 1), 1 6 l 6 P , see [16℄.Figure 3 gives an appropriate piture with equidistant points Al and Bl(in the �gure, P = L = 3 and N = 2).Sine the lattie paths are self-avoiding, eah of them has a horizontalpart terminating at the absissa axis. After a partial \amputation" ofthese horizontal parts, a on�guration alled a watermelon omes to play.A watermelon on�guration onsists of lattie paths onneting the pointsCl = (l − 1; N + L + l − 1) and Bl = (L + l − 1; L + l − 1), 1 6 l 6 P .For every path, the numbers of steps along the absissa and ordinate axesoinide.The generating funtion Zq(L;N;P) from (31) gives, as q → 1, thenumber A(L;N;P) of plane partitions inside B(L;N;P) :Zq(L;N;P) = L∏j=1 N∏k=1 1− qP+j+k−11− qj+k−1
−→q→1 A(L;N;P) = det(( N + L+ i − 1L+ j − 1 ))16i;j6P

: (32)The right-hand side of (32) expresses the fat that the number A(L;N;P)of plane partitions is equal to the number of self-avoiding lattie paths.Just the paths onstituting a \watermelon" are in a bijetion with theso-alled gradient lines (Fig. 3) orresponding to a plane partition in thebox B(L;N;P).
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Fig. 3. Self-avoiding lattie paths onstituting a water-melon on�guration (left) and a three-dimensional Youngdiagram with gradient lines.De�nition. The generating funtion Wq(L;N) of \watermelon" on�gu-rations, haraterized by the total numbers of steps, L and N , along theabsissa and ordinate axes, is given by the formulaWq(L;N) ≡ ∑

{wLN}

q|wLN |;where ∑{wLN} implies the summation over all nests of paths wLN on-stituting a \watermelon." Here q|wLN | is the statistial weight of a on�g-uration of paths wLN , and |wLN | is the volume of a on�guration wLN .This volume is equal, by de�nition, to the sum of the volumes of the pathsonstituting the watermelon. The volume of a path is equal to the numberof ells below the path inside the orresponding retangle.Due to Theorems 1 and 2, the form fator of the domain wall reationoperator (15) under the q-parametrization (27) takes the form
〈	(q− 12N ) | �Fn |	((qN−n=q) 12 )〉= q n2 (N−n)(N−n−1) ∑�⊆{MN−n}S�̂(qN )S�(qN−n=q)= det �T

V(qN )V(qN−n=q) ; (33)where �T is given by (28) at L = N − n and P = M . From (30) and(31) we obtain that the form fator 〈	(q− 12N ) | �Fn |	((qN−n=q) 12 )〉 is the



30 N. M. BOGOLIUBOV, C. MALYSHEVgenerating funtion of plane partitions in the box B(N − n;N;M):
〈	(q− 12N ) | �Fn |	((qN−n=q) 12 )〉 = q n2 (N−n)(N−n−1)Zq(N − n;N;M):(34)As q → 1, this expression beomes the MaMahon formula for the numberof plane partitions in the box B(N − n;N;M):limq→1 〈	(q− 12N ) | �Fn |	((qN−n=q) 12 )〉 = A(N − n;N;M): (35)

§5. Low temperatureAssume that M ≫ 1 and 1 ≪ N;N − n ≪ M . To study the asymptotibehavior of the survival probability of the domain wall orrelation funtion,we an replae the sums in (26) in this limit by integrals. For large � (lowtemperature), we approximately obtain
F(� gN−n; n; �) ≃

A2(N − n;N;M −N + 1)� (N−n)22 IN−n
N 2(� gN−n) ;where the Mehta integral

IN ≡
1N ! ∞∫

−∞

∞∫

−∞

· · ·

∞∫

−∞

e− 12 N∑l=1x2l ∏16k<l6N∣∣xk − xl∣∣2 dx1dx2 : : : dxN(2�)N (36)is used, whose value is known:
IN = e'N ; 'N ≡

N∑k=1 log �(k)(2�)1=2 : (37)Finally, we use the estimate1
N 2(� gN−n) ≃

(2�)(N−n)(N−n−1)(M + 1)(N−n)2 ∏16r<s6N−n |r − s|2
≈

( 2�M + 1)N2 e2'Nvalid for 1 ≪ N;N − n≪ M and express the answer for the survival prob-ability of the domain wall:
F(� gN−n; n; �) ≃ A2(N − n;N;M −N + 1) e�(N;M;�); (38)�(N;M; �) ≡ N2 log 2�M + 1 −

N22 log� + 3'N ; (39)



COMBINATORIAL ASPECTS 31where A(N − n;N;M − N + 1) is the number of plane partitions (35)in the box B(N − n;N;M − N + 1) with retangular bottom. The lowtemperature deay of the orrelator is governed by the ritial exponentN2=2, while its amplitude is proportional to the squared number of planepartitions in the box B(N − n;N;M −N + 1).To study the asymptoti behavior, it is onvenient to express 'N throughthe Barnes G-funtion (see [2℄):G(z + 1) = (2�)z=2e−z2 (z+1)− 2 z2 ∞∏n=1(1 + zn)ne−z+ z22n ;whih is an integral funtion satisfying the following relations: G(1) = 1,G(z + 1) = �(z)G(z), andG(n+ 1) = (n!)n11 22 : : : nn = n∏k=1�(k):For IN (given by (36)) and 'N (given by (37)) we obtain'N = logG(N + 1)− N2 log 2�;
IN = G(N + 1)(2�)N=2 :The asymptotis of logG(z + 1) at z → ∞ is known, and it gives 'N forN ≫ 1: 'N = N22 logN −

3N24 + O(logN); N ≫ 1:Thus, for �(N;M; �) given by (39) we approximately obtain�(N;M; �) ≃ N2 log(A N3=2M�1=2);where A is a onstant.We express the number of plane partitions in B(N − n;N;M −N + 1)as A(N − n;N;M −N + 1) = G(N + 1)G(N − n+ 1)G(2N − n+ 1)
×
G(M + 2− n+N)G(M + 2−N)G(M + 2− n)G(M + 2)



32 N. M. BOGOLIUBOV, C. MALYSHEVand estimate it using the properties of the G-funtion:logA(N − n;N;M −N + 1) ≃ N(N − n) log(D M − n2N − n) ;M − n ≫ N − n;N ≫ 1;where D is some onstant. Eventually, we obtainlogF(� gN ; n; �) ≃ N2 log(A N3=2M�1=2) ++2N(N − n) log(D M − n2N − n) : (40)Equation (40) enables us to state that F(� gN ; n; �) dereases as M and Ninrease provided that T is small enough and goes to zero, see [9℄.
§6. Conluding remarksThe N -partile thermal orrelation funtions of the domain wall re-ation operator �Fn in the � → 0 limit of the XXZ Heisenberg modelon a yli hain were onsidered. Calulations based on the theory ofsymmetri funtions allow us to express the answers in the determinantalform. The ombinatorial aspets of the form fators and thermal orrela-tion funtions of the operator �Fn were studied. The representation of theform fators through q-binomial determinants stated in Theorem 3 playsan important role in establishing a onnetion between plane partitionsand self-avoiding lattie paths. The asymptoti behavior of the orrelationfuntions of the operator �Fn is estimated for suÆiently low temperatures.The low temperature approximation allows us both to extrat the om-binatorial pre-fator and to redue matrix-type integrals to the partitionfuntion of the Gaussian Unitary Ensemble [15℄. The orrelation funtiondemonstrates a power-law deay, and its amplitude is given by the squarednumber of plane partitions in a box.Though we have foused only on the zero limit of the anisotropy pa-rameter, the in�nite anisotropy limit is studied in a similar way sine thewave funtions in this limit are also expressed through Shur funtions.AknowledgmentsWe aknowledge helpful disussions with A. M. Vershik.
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