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COMBINATORIAL ASPECTS OF CORRELATION
FUNCTIONS OF THE XXZ HEISENBERG CHAIN IN
LIMITING CASES

ABSTRACT. We discuss the connection between quantum integrable
models and some aspects of enumerative combinatorics and the the-
ory of partitions. As a basic example, we consider the spin XXZ
Heisenberg chain in the limiting cases of zero and infinite anisotropy.
The representation of the Bethe wave functions via Schur functions
allows us to apply the theory of symmetric functions to calculat-
ing the thermal correlation functions as well as the form factors in
the determinantal form. We provide a combinatorial interpretation
of the correlation functions in terms of nests of self-avoiding lattice
paths. The suggested interpretation is in turn related to the enu-
meration of boxed plane partitions. The asymptotic behavior of the
thermal correlation functions is studied in the limit of small temper-
ature provided that the characteristic parameters of the system are
large enough. The leading asymptotics of the correlators are found
to be proportional to the squared numbers of boxed plane partitions.

§1. INTRODUCTION

The exactly solvable Heisenberg X X Z model is a prominent model de-
1

scribing the interaction of spins 3 on a chain. The integrability of the
model via the algebraic Bethe ansatz has led to important results, going
from the spin dynamics up to exact expressions for the correlation func-
tions [5,14,17].

The correlation functions of the X X Z Heisenberg chain are of consid-
erable interest [5,17]. This article is a continuation of a series of works
dedicated to the study of the combinatorial implications of the correlation
functions of the X X Z chain for two limits of the anisotropy parameter:
zero and/or infinite anisotropy [6-10]. Here we focus on the case of the

X X0 chain, which is the zero anisotropy limit of the X XZ model. This
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16 N. M. BOGOLIUBOV, C. MALYSHEV

limit, also known as the free fermion case of the X X Z model, was in-
tensively studied in physics and mathematics. It is related, in particular,
to low-energy quantum chromodynamics [26], to the theory of symmetric
functions [20], to a third-order phase transition [22], and to the theory
of plane partitions [1,13,20]. Plane partitions (three-dimensional Young
diagrams) appear in probability theory [11,12,29], enumerative combina-
torics [27], the theory of faceted crystals [24], topological string theory [25],
and the theory of random walks on lattices [3,4,13,18].

We study the asymptotic behavior of the thermal correlation functions
of the X X0 model in the limit of low temperature provided that the chain
is long enough while the number of flipped spins is moderate. Namely, in
this limit the thermal correlation functions are related to random matrix
models [3].

We will consider the periodic X X0 Heisenberg chain. The representa-
tion of the Bethe wave functions via Schur functions [20] allows one to
apply the well-developed theory of symmetric functions to calculating the
thermal correlation functions as well as the form factors. In the present
paper, we are interested in the correlation function of the creation operator
of n excitations on consecutive sites of the chain, which will be called the
survival probability of the domain wall. Special attention will be paid to the
combinatorial objects appearing in the calculations (the generating func-
tions of plane partitions and random walks, the g-binomial determinants)
and to the combinatorial interpretation of the obtained results. We will
calculate the leading terms of the asymptotics of the correlation function
under consideration, provided that the characteristic parameters of the
system are large enough, including the critical exponents of these correla-
tion functions in the low temperature limit, and the related amplitudes.
These amplitudes are found to be proportional to the squared numbers of
boxed plane partitions.

§2. AN OUTLINE OF THE XXZ HEISENBERG CHAIN

The quantum X X7 Heisenberg chain consisting of M + 1 sites is de-
scribed in the absence of a magnetic field by the Hamiltonian (see [14])

M

~ B A
HXXZ:—§ Z(akﬂalj—l—aktrlak +5(a,;+1a,;—1)), (1)
k=0
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where A € R is the anisotropy parameter. The local spin operators a,f =
%(a,‘"g +i0}) and o}, depending on the lattice argument k, are defined as
(M + 1)-fold tensor products:

i =0"e 22 92 - @, (2)
k

where ¢ is the 2 x 2 identity matrix and o# at the kth site is a Pauli
matrix, % € su(2) (here # is either z,y, z or +). The commutation rules
are given by the relations

(0,0, ] = duof, [of,07] = £20n0i,

where dy; is the Kronecker symbol.

The spin operators act in the state space Hrr41 = ®kM:0 b which is the
product of M +1 copies of the linear space by = C2. The state space Hary1
is spanned by the state vectors ®,1y:0 | )k , where s =1, | corresponds

. . . 1
to either the “spin-up” state or the “spin-down” state, |T) = ( 0 ) or

1) = ( ? ) The action of the operators (2) is defined by the following

rules:

=l =0 o= (),

e N L

We consider the XX Z Heisenberg model on a periodic chain with the
boundary conditions Uli( Mt1) = U;f.

Let the sites with “spin-down” states be labeled by decreasing coordi-
nates M > p1 > p2 > ... > puny = 0, which constitute a strict partition
p = (1, p2, - -, ). Another important partition X = (A, A2, ..., AN)
is a weakly decreasing sequence of nonnegative integers L > A1 = A2 >

. 2 An 2 0. The relation A\; = p; — N + 7, where 1 < j < N, connects
the parts of A to those of . Therefore, we can write A = u — d, where
dn is the partition (N —1,N —2,...,1,0).
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The N-excitation state vectors | ¥ x(u)), i.e., the vectors with N “down”
spins, are given by the formula

N
u)) = XXZu o
i) = S >(kr11 ) ), 3)

where the summation is over all admissible partitions g. The parameters

u (or uy), u = (ug,us,...,uyn) are sets of arbitrary complex numbers.
For instance, u®> = (uf,u3,...,u%). The state |{}) corresponds to all spins
“up”: |ft) = ®7]\L/‘f:0 [T}y, Besides,
) =Y st un) e, (4)
s

where the summation runs over all permutations

1 2 N
s = S( o )
P1,P2,--sPN P, P2, ..., DN

?

The amplitude Ag is
2 2.2
1 —2Au;, + uy, Uy

As(ul,u2,...,uN) = H u2 —u2

1<j<i<N pi pj

The state vectors (3) are eigenstates of the Hamiltonian (1),

Hxxz |¥n(un)) = Ex | ¥n(un)),
with the eigenvalues Exy = En(ui,...,un) = —% Zfil(uf +u;? —2A),
if and only if u; (1 <1 < N) satisfy the Bethe equations:

2MH1) _ (_yN-1 A 2Au? + ulu? .
B = (=1 Hl—QAui—l—u‘fu%' (5)
k=1

The X X Z model was considered in [7-9] for two limits of the anisotropy
parameter: A = 0 and A — oo.

e The free fermion limit, A — 0. As A — 0, the Hamiltonian (1) takes

the form
M

Hxx =— 3 Z(U,;HU; + U,J;Ll(j];).
k=0
Up to an irrelevant prefactor, the amplitude (4) looks as follows:

XX () = det(@i™)igren [ @i —ud)7h
1<n<I<N
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The reduced Bethe equations (5) are now exactly solvable:

WM = (VL =D 1< SN, (6)

where [; are integers or half-integers depending on whether N is odd or
even, M > I; > I > --- > In > 0. The eigenenergies are equal to

BN L I = =S 21,
N (I, L, N)—ZICOS(M+1).

e The strong anisotropy limit, A — —oo. In this limit, the system is
described by the effective Hamiltonian (see [8])

M
~ 1 -~ _
Hsa == 2 E:P(C’lcﬂak+ + O—IJc:LlO—k )P,
k=0

M
where P = H(l — Qr+1qr) and the projections g, g onto the “spin-up”

k=0
and “spin-down” states are defined as

R 1 0 zZ\ 10 ~ 1 0 A 00
qk§(0—k+0—k)_<00)ku qki(o-ko-k)_<01>k'

The projection P cuts out states having “down” spins at a pair of neigh-
boring sites, since ¢x |T)r = 0, @r |1} =||)r (analogously, ¢x |1)r = 0,
G [Tk =1T)k)-

The wave function (4) takes the form

2 —N+k 5 2y -
) = det(u; " NN Gren [T @ —ud)7
1<n<I<N

where p is the strict decreasing partition, M > pu; > po > ... > uny =0,
of the “down-spin” states and the parts of p satisfy the exclusion condi-
tion: p; > pir1 + 1. The Bethe equations (5) in this limit are also exactly
solvable:

N
2(M+1-N - — j 2l =P
uk( + ):(—I)N ! Iluj27 uj = ' MFI-N | 1<kE<N

j=1

N
N
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where [; are integers or half-integers depending on whether N is odd or

27 N . .
7141 2uj=1 1j- The eigenenergies have the form

even, and P =

N
27TIk - P
Ex(Ii,Is,.... In) = — (7)
NI, I N) ;cos e
where M —N>L >1,>--->1Iny > 0.
The crucial fact in the study of these two limiting models is that their
state vectors are expressed through Schur functions (see [20]):
det(z* ™V F) i ren
Sx(z1,m2,...,7N) = L d (7)
det (™ )1<jk<n
= det(@}* "N Fhgren I @-za)h
1<n<IKN

where A = (Ar, A2,...,An) is an N-tuple of nonincreasing nonnegative
integers, L>M M > X2 > ... 2 Ay 2 0.

With the help of (7), the state vectors (3) can be written in the limiting
cases as follows.

e The free fermion case:

=

Ty = 3 Syd) (

AC{MN}

o) I ®)

1

where A=y -0y M=M+1-NZ2X > >...2 Ay =20.

e The strong anisotropy case:
o [ -

= Y s (e )

AC{(M—2(N-1))N}

whereX:ﬁ725N, M+2(1-N) >X1 >X2 > ... >XN > 0; the parts
of [ satisfy the inequalities z; > fij41 + 1.1

LAs shown in (28], in the case of the integrable g-boson model, a representation for
the N-particle states arises that is analogous to (8) and (9).
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The scalar products of state vectors in both limits are calculated by
means of the Binet—Cauchy formula:

Y. Sasax)
AC{(L/n)N}

(ﬁ n n) det(Thj) 1<k, j<N (10

LI ) =y vn (=)

PL/n(ny)

where VnN(y) = [[i<p<jcn (¥j —yr) is the Vandermonde determinant.
The summation ZAQ {(L/n)~} TUDS over the weakly decreasing sequences
of integers satisfying L > Ay > Xy > ... > Ax > n, n > 0. The entries T}
take the form

_ 1= (zpyy)N

Ty = . 11
kj 171’]{:?!] ( )

§3. CORRELATION FUNCTIONS

We will consider the calculation of the survival probability of the domain
wall:

(Un_n(08) | Fre PMF, |Un_n(05))

FON—omB) = G 6 [ PR [ (85))

(12)

where 3 € C and F,, = H?:_OI o; is the operator of creating n consecutive
“spin-down” states on sites of the chain, i.e., of creating a domain wall. The
shorthand notation |¥yx_,(08)) = |¥x_,(e?®*/?)) implies that the eigen-
state is calculated for an (N — n)-particle Bethe solution taken in the ex-
ponential form u%_, = e®~-». The notation 85 = (0£,65,...,05 )
corresponds to an (N — n)-particle solution of the Bethe equation for the
ground state:

2T N—-n+1 .
08 = — 1<j<N-—n. 1
j M+1< 5 J>, j n (13)

Besides, H means either H xx Or f[s A, and Fg is the identity operator I,
ie, F(6%_,,0,8) =1 .
In order to calculate the form factor of the operator F,,

(TN (V) | Fo [Tn—n(w)),
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we define an auxiliary operator D" (u) which acts on the expectation (-)y
regarded as a function of u as follows:

D (1) () = Duuy ot sorin (L?V)) x <~>u),

VN—n(u?V—n

where
— n—1 n—2 0
DUN7n+17UN7n+25~~~7UN = DuN_n_H °© DuN_n+2 ©...0 DuN7
i . 1 & .
D’ = lim ———— 0<j<<n—1

UN —j U?Vﬁ_)O j ! d(u?vij)j y

Now we are ready to formulate the following theorem.
Theorem 1 ([9]). The action of the operator D™(u) on the scalar product
(P(vN) | T(un)) gives the form factor of the domain wall creation operator

F,:
(W(vn) | Fp [P(un-n)) = D" (u)(¥(vn) | ¥(un)). (14)

Proof. We evaluate the left-hand side of (14) using both the definition (8)
and the properties of the Schur functions (7):

N—n
(O (v) | Fo | W n(u)) = (H u?”) S SRS ().
I=1 AC{MN-n}

(15)
where M =M —-N4+12 X 2 X > ... 2 An_n = 0. Besides, A is of
length N, since Xp =X for1<p<N-—nand XN_H_H = /):N_n+2 =
= 2 0.

Applying the orthogonality relation

N N N
(1 TLo% TTo 1) = T oo
k=1 =1 n=1

we calculate the scalar product of the state vectors (8) by means of the
Binet—Cauchy formula (10):
_det(T) ) 1<k i<n

(@ (vy) | T(uy)) = Sa(Vi?)Sa () = SkISkISN g
A AQ{ZMN} MYV = S v

where the summation is over all partitions A with at most N parts each
of which is less than or equal to M = M — N + 1. The entries Ty, in (16)
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are given by formula (11) taken at n = 0:
1 (u fu)M

kj 2 /2
1 — g /v;

(17)
For vy = uy, the scalar product (16) gives the squared “length,” N2 (uy) =
(T(un) |¥(upn)), of the states (8).

A direct evaluation of the right-hand side of (14) by means of D™(u)
also leads to the right-hand side of (15) provided that the scalar product
is expressed in terms of Schur functions according to (16). O

Theorem 1 enables us to obtain two summation rules for products of
Schur functions which are crucial in establishing combinatorial results for
the correlation functions in question.

Theorem 2 ([9]). The following formulas for sums of products of Schur
functions hold:

N—n —
Yo SISy ) = (H uﬁ") d“T)—N (18)

9\
N 1 Vg V(i)

N—n od
. . det (T ; »
S Sa(vi?,)S;(ud) = <H ,> detiThjhishish (1)

Nl LU I Y2 ve)

where the entries of the matrices (Tkj)1gk,jgN and (Tkj)i<h,j<n are

Ty = T§;, 1<k<N —n, tjen
Tj=v;""™M Non+1<k<N, 1<j<N,
and .
Tk]:Tkoja 1<k<N7 1<]<N*n7
Tiy =N ™Y 1<E<N, N-n+1<j<N.

Here the entries Ty, given by (17) are used.

Proof. We calculate the right-hand side of (14) using the determinantal
form of the scalar product given by (16):
(TN (V) | Fa [Tn—n(w)) = D"(u) < (21)

Further, using (17), we obtain from (21) that

det(Tﬁj)1<k7j<N)
Vn(u?)Vn(v—2)

(Un() [ [ () = SRS o)
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where the entries of T are given by (20). Since the right-hand sides of (15)
and (22) coincide, the relation (18) for Schur functions does indeed take
place. By the same arguments, the validity of (19) can be established. O

To calculate the survival probability of the domain wall, we insert a res-
olution of the identity operator into the numerator of (12) taken, however,
at an arbitrary parametrization, see [9)]:

(T(vn—n) | e MR |Tuy ) = Y (T(viv_n) | FL [(e7/2)) (23)
{6~}
e~ BEN(ON)

X (W(e®N/2)| Fp [ (un_p)) TNZ(0N) (24)

= D"(u) D" (v )(T(vy) | e 77 [T(un)). (25)

The decomposition (24) turns into (25) if (14) is used for each of the form
factors in (24).

The explicit expression (15) for the form factor allows us to express the

survival probability of the domain wall in terms of Schur functions starting
with relation (24):

FOR_pn,B) =
1 .
— 7B(Ean(ean)fEan(ngn))
NEOF_,) (M + DN {GZ .
) ) - 2
G I DI e R ENCL S (26)

AC{MN =}

where the summation is over all solutions to the Bethe equation (6) and
0% _,, is the ground state solution (13) of the system of N — n particles.

§4. q-BINOMIAL DETERMINANTS AND GENERATING FUNCTIONS
OF PLANE PARTITIONS

Let us show that the correlators obtained above are related to generating
functions of bozed plane partitions and self-avoiding lattice walks.

An array (m;;)i,; >1 of nonnegative integers that is nonincreasing as a
function both of 7 and j is called a bozed plane partition 7. The entries 7;;
are the parts of the plane partition, and its volume is |7| = Z” >1 Tij -
Each plane partition is represented by the three-dimensional Young dia-
gram consisting of cubes arranged into stacks so that the stack with coor-
dinates (i, §) is of height 7;;. It is said that a plane partition is contained
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in a box B(L,N,P)if i < L, j < N, and m;; < P for all cubes of the
Young diagram (see Fig. 1).

The generating function of plane partitions in the box B(L, N, P) is the
formal series Z,(L, N, P) = Z{ﬂ} ¢'™! (the summation is over all partitions
in the box), and it takes the form (see [13,20])

Fig. 1. A three-dimensional Young diagram.

L N P 1— gitith—t L N 1 — gPHith=1
Zq(L, N, P) = HHHl,qurﬁkfz - HH 1 gith1
j=1k=1i=1 j=1k=1
The limit ¢ — 1 leads to the MacMahon formula [21]:
L N P . . L N .
i+j+k—1 P+j+k-1
A(L,N,P) = — = L
ooon =TT - T

To study the asymptotic behavior of the correlation functions, we need
the determinant of (T)1<;r<n taken under the g-parametrization

vy =an =(¢.¢°,--,q"),  uy=av/a=(1,q...,¢"").  (27)
For arbitrary P and L < N, these entries take the form

B
Thy = —o

- 1<k<L, 1<j<N,
]_7qj+k71 ’ J (28)

Thj = @ NP, L+1<k<N, I<j<N
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Fig. 2. An S-tuple (w1, ws, ..., ws) of self-avoiding lattice
paths for S = 5.

The matrix (T)ig;k<n consists of two blocks with sizes L x N and
(N — L) x N. It is appropriate to call det T a Kuperberg-type determi-
nant, since it is closely related to the determinant obtained in [19] for the
problem of enumerating the alternating sign matrices [13,23].

Several definitions are in order. We use the standard definition of the
g-binomial determinant (see [27]):

a aq a» as a;
_ (o =aee([9])
(b)q (bl, ba, ... bs)q b; 1<ij<S

where a and b are ordered tuples, 0 < a; < as < ---<ag and 0 < b; <

bs < --- < bg. The entries {Z]} are the g-binomial coefficients:

m I [C ) FOOYC e S

r QI-gl-¢)...(L=¢q) ~
As ¢ — 1, the g-binomial coefficients are replaced by the binomial coef-

ficients and the g-binomial determinant is transformed into the binomial
determinant:

a ay a9 as a;
= ’ ’ = det J . 29
<b) <b1’ b27 b5> © ((bi))1<z’,j<5 ( )

The binomial determinant (29) gives the number of self-avoiding walks
across a two-dimensional lattice [16]. A nest of self-avoiding lattice paths is
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shown in Fig. 2, where each path w; belonging to a tuple (wy,ws, ..., ws)
goes from A; = (0,a;) to B; = (b;,b;), 1 < i < S (only northward and
eastward steps are allowed).

Now we are ready to formulate the following theorem.

Theorem 3 ([9]). Let (T)1<jr<n be the matriz with the entries (28) where
L < N < P. The determinant of (T)i<jr<n is given by

—L(L—1)(N-L) det(T)1<j k<N

q
V(an)V(ac/q)
_ e (DN, LEN L LENSP T g
-4 L, L+l ... L+P-1 )
Pl gitkN-l
= HHW = Z4(L,N,P), (31)

k=1j=1

where P =P — N +1 and Z,(L, N, P) is the generating function of plane
partitions.

Proof. The proof is based on symmetric functions. Before going further,
we define the elementary symmetric functions e, = e,.(x) depending on N
variables x = (z1,2,...,ZN):

€r = E Ljy Liy -+ - Tg,.-

11 <dp < - <ip
The value of e, at x =q = (q,¢%,...,¢") is e, = ¢"("+1)/? []ﬂ

Let us turn to the Schur functions (7) labeled by nonstrict partitions A.
Consider the conjugate partitions X. The Young diagram of X is obtained
by transposing the Young diagram of A. The parts of a nonstrict partition
X satisfy the conditions N > A\ > o> ... 2 Ap >0, P=P+1—-N. It
is known that

Sx (X) = det (e/_\i—i-‘rj (X)) 1<i,j<P"

In order to express det T as a g-binomial determinant, we use Theorem 2
under the g-parametrization:

det T = g2 DVN"DV(gy)(ar/a) Y. Sxlan)Sx(az/a).
AC{PE)
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Denote the sum by ¥s and bring it to the form

s = Z det(exj—j+k(qN))1<j7k<7> det(e;\p—p+l(qlz/q))1<l7p<fpu
AC{L7}

where the summation is over the conjugate partitions A. For ¥s we obtain

Yo = g ¥(P-DP L+N, L+N+1, ... L+N+P-1
s=4 L, L+1, ... L+P—1
L P 1 gNtitk-1
= HH l—qj+k—1 = Z‘I(L’P’N) = Zq(L,N,P) g
j=1k=1

Theorem 3 relates det T to the g-binomial determinant, which is trans-
formed as ¢ — 1 into the binomial determinant, equal, in turn, to the
number of P-tuples of lattice self-avoiding paths between the end points
A =0O,N+L+!l-1)and B=(L+1—-1,L+1-1), 1 <I<P,see [16].
Figure 3 gives an appropriate picture with equidistant points A; and B
(in the figure, P =L =3 and N =2).

Since the lattice paths are self-avoiding, each of them has a horizontal
part terminating at the abscissa axis. After a partial “amputation” of
these horizontal parts, a configuration called a watermelon comes to play.
A watermelon configuration consists of lattice paths connecting the points
Ci=(l-1,N+L+l—1)and B=(L+1—-1,L+1—-1),1<I<P.
For every path, the numbers of steps along the abscissa and ordinate axes
coincide.

The generating function Z,(L, N, P) from (31) gives, as ¢ — 1, the
number A(L, N, P) of plane partitions inside B(L, N, P) :

79+]+k 1

L
Z,(L,N,P) ]:[H T

N+L+i1-1
— A(L,N det . . 32
P ( P) = de (( L+j-1 ))1<i,j<79 (32)

The right-hand side of (32) expresses the fact that the number A(L, N, P)
of plane partitions is equal to the number of self-avoiding lattice paths.
Just the paths constituting a “watermelon” are in a bijection with the

so-called gradient lines (Fig. 3) corresponding to a plane partition in the
box B(L, N, P).
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o 1 2 3 4 5 X
1 ;
2 C
3 B
PC
| Bz
A G
Ao Bs
As
v L N

Fig. 3. Self-avoiding lattice paths constituting a water-
melon configuration (left) and a three-dimensional Young
diagram with gradient lines.

Definition. The generating function Wy (L, N) of “watermelon” configu-
rations, characterized by the total numbers of steps, L and IV, along the
abscissa and ordinate axes, is given by the formula

W (L,N)= > gvevl)
{wrn}
where (win} implies the summation over all nests of paths wyn con-

stituting a “watermelon.” Here ¢/"=~! is the statistical weight of a config-
uration of paths wyy, and |wyy| is the volume of a configuration wy, .
This volume is equal, by definition, to the sum of the volumes of the paths
constituting the watermelon. The volume of a path is equal to the number
of cells below the path inside the corresponding rectangle.

Due to Theorems 1 and 2, the form factor of the domain wall creation
operator (15) under the g-parametrization (27) takes the form

(@(an?) | Fu [2((ay_n/q)?))

= gz WNenmh) o S (an)Salan—a/a) (33)
_ AC{MN =}
_ det T
V(anv)V(an-n/q)’
where T is given by (28) at L = N —n and P = M. From (30) and
12
(31) we obtain that the form factor (¥(qy?) | Fp | T ((an_n/q)?)) is the
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generating function of plane partitions in the box B(N — n, N, M):

i n
(T(ay®) | Fu | T((av—n/9)%)) = EV "D Z (N =0, N, M).
(34)
As ¢ — 1, this expression becomes the MacMahon formula for the number
of plane partitions in the box B(N — n, N, M):

lim (B(ay®) | Fo [((@v-n/@)®) = AN =0, N,M). (35)

§5. LOW TEMPERATURE

Assume that M > land 1 < N,N —n < M. To study the asymptotic
behavior of the survival probability of the domain wall correlation function,
we can replace the sums in (26) in this limit by integrals. For large 5 (low
temperature), we approximately obtain

A2(N —n,N,M — N +1) In_
F(O%_n,p) ~ AN N M ) _In-n

JREEsa NEOF )’
where the Mehta integral
[ 3% dydus ... d
b m 2adr1Ar ...ATN
In = Yish - _—
V= / / / oy — "R (36)

1<L<I<N

— o0 —00

is used, whose value is known:

N
IN:6<‘0N, = E
k=

Finally, we use the estimate
1 (27T)(N7n)(N7n71)
N2(Ox_,) (M2

N2
~ 27T 624’91\’
M+1

valid for 1 <« N, N — n < M and express the answer for the survival prob-
ability of the domain wall:

F(O8% ,,n,B) ~ AX(N —n,N,M — N + 1) e2N:M:5) (38)
2

N
_ 4

H Ir — s|?

1<r<s<N—n

®(N,M,B) = N?log
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where A(N — n,N,M — N + 1) is the number of plane partitions (35)
in the box B(N — n,N,M — N + 1) with rectangular bottom. The low
temperature decay of the correlator is governed by the critical exponent
N?2/2, while its amplitude is proportional to the squared number of plane
partitions in the box B(N —n,N,M — N + 1).

To study the asymptotic behavior, it is convenient to express ¢ through
the Barnes G-function (see [2]):

Gz+1) = (27r)z/2e%z(z+1)—%z2 ﬁ (1 + %)n6_2+£’

n=1

which is an integral function satisfying the following relations: G(1) = 1,
G(z +1) =T(2)G(z), and

Gm+n:—ﬂﬂl——ﬁrw.

1122 nm
k=1
For Zn (given by (36)) and ¢ (given by (37)) we obtain
N
on = logG(N +1) — Elog?w,

G(N +1)
(2m)N/2

The asymptotics of log G(z + 1) at z — oo is known, and it gives ¢ for
N> 1:

IN =

N? 3N?2
PN = TIOgN - + O(log N), N> 1
Thus, for ®(N, M, 5) given by (39) we approximately obtain
3/2
~ 2 —_—
B(N, M, 8) = N log(AMﬁl/z),

where A is a constant.
We express the number of plane partitions in B(N —n, N, M — N + 1)
as
G(N+1)G(N —n+1)
G2N —n+1)
GIM+2—-n+N)G(M+2—N)
GM+2—-—n)G(M+2)

AN -n,N,M—N+1) =
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and estimate it using the properties of the G-function:

log A(N —n,N,M — N +1) ~ N(N —n)log (DM),
2N —n
M-n>»>N-n,N>1,

where D is some constant. Eventually, we obtain

N3/2
log F(0%,n,8) ~ N?log (A ) +

MG
+2N(N —n)log <D 2]\_74\%2) . (40)

Equation (40) enables us to state that F (0%, n, ) decreases as M and N
increase provided that T is small enough and goes to zero, see [9].

§6. CONCLUDING REMARKS

The N-particle thermal correlation functions of the domain wall cre-
ation operator F, in the A — 0 limit of the X XZ Heisenberg model
on a cyclic chain were considered. Calculations based on the theory of
symmetric functions allow us to express the answers in the determinantal
form. The combinatorial aspects of the form factors and thermal correla-
tion functions of the operator F,, were studied. The representation of the
form factors through g-binomial determinants stated in Theorem 3 plays
an important role in establishing a connection between plane partitions
and self-avoiding lattice paths. The asymptotic behavior of the correlation
functions of the operator F,, is estimated for sufficiently low temperatures.
The low temperature approximation allows us both to extract the com-
binatorial pre-factor and to reduce matrix-type integrals to the partition
function of the Gaussian Unitary Ensemble [15]. The correlation function
demonstrates a power-law decay, and its amplitude is given by the squared
number of plane partitions in a box.

Though we have focused only on the zero limit of the anisotropy pa-
rameter, the infinite anisotropy limit is studied in a similar way since the
wave functions in this limit are also expressed through Schur functions.
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