
úÁ�ÉÓËÉ ÎÁÕÞÎÙÈÓÅÍÉÎÁÒÏ× ðïíé�ÏÍ 436, 2015 Ç.G. Olshanski, A. OsinenkoMULTIVARIATE JACOBI POLYNOMIALS AND THESELBERG INTEGRAL. IIAbstrat. The problem of harmoni analysis for in�nite-dimen-sional lassial groups and symmetri spaes leads to a family ofprobability measures with in�nite-dimensional support. In the pre-sent paper, we onstrut these measures in a di�erent way, whihmakes it possible to substantially extend the range of the parame-ters. The measures that we obtain an be interpreted as the resultof formal analyti ontinuation of the N-dimensional beta distribu-tions whih appear in the Selberg integral. Our proedure of analytiontinuation, based on Carlson's theorem, turns N into a omplexparameter.
§1. IntrodutionThe multivariate Jaobi polynomials we are dealing with are the Hek-man{Opdam polynomials (see Hekman's leture notes [7℄) related to theBCN root system with formal root multipliities, N = 1; 2; : : : . These aresymmetri polynomials in N variables, orthogonal with respet to a weightfuntion on the ube [−1; 1℄N depending on a triple of parameters (a; b; �),and indexed by the set VN of Young diagrams with at most N rows. Forsome speial values of the parameters (in partiular, � has to take one ofthe values 12 ; 1; 2), the Jaobi polynomials have a representation-theoretiinterpretation: they are the irreduible haraters of ompat orthogonalor sympleti groups, or else indeomposable spherial funtions on ertainompat symmetri spaes (see, e.g., Okounkov{Olshanski [15℄).In what follows, the parameters (a; b; �) are assumed to be �xed. Wede�ne, for every N = 2; 3; : : : , a stohasti matrix �NN−1 of format VN ×

VN−1, whih desribes the \branhing rule" of the Jaobi polynomials.Next, we de�ne, for every N = 1; 2; : : : , a family {M (z;z′)N } of probabilityKey words and phrases: Jaobi polynomials, Selberg integral, oherent families ofmeasures.The researh of G. Olshanski was arried out at the Institute for Information Trans-mission Problems of the Russian Aademy of Sienes at the expense of the RussianFoundation for Sienes (projet 14-50-00150).199



200 G. OLSHANSKI, A. OSINENKOmeasures on the disrete set VN depending on two additional ontinuousparameters (z; z′). These measures are alled the z-measures (see De�nition3.1; note that starting from Se. 2 we slightly hange the above notation).The goal of the paper is to prove Theorem 4.1, whih says that for �xedparameters (z; z′), the z-measures form a oherent family in the sense thatthey satisfy the ohereny relation
∑�∈VN M (z;z′)N (�)�NN−1(�; �) =M (z;z′)� ; N = 2; 3 : : : ; � ∈ VN−1: (1)By a general theory (see Olshanski [16℄), Theorem 4.1 implies the fol-lowing result (Theorem 4.2 below): the oherent family

{M (z;z′)N : N = 1; 2; : : : }determines a probability measure M (z;z′)
∞ on an in�nite-dimensional spae
. (That spae serves as the boundary for the hain of the spaes VNlinked by the stohasti matries �NN−1, see Okounkov{Olshanski [15℄ andBorodin{Olshanski [3℄.)One an show that for the speial values of the parameters (a; b; �)that are related to lassial groups and symmetri spaes, the measuresM (z;z′)

∞ have a representation-theoreti meaning: they govern the spetraldeomposition of ertain unitary representations of in�nite-dimensionallassial groups. This fat is one of the motivations for the present work.For those speial values of the parameters (a; b; �), the ohereny re-lation (1) an be obtained, ase-by-ase, from a representation-theoretionstrution developed in Pikrell [19℄, Neretin [14℄, and Olshanski [16℄.However, in order to work with general parameters, one has to invent othermethods.For the �rst time, an example of a ohereny relation of type (1),with general parameter �, appeared in Kerov's paper [9℄. Then furtherresults were obtained in Borodin{Olshanski [2℄, Olshanski [17℄, Olshanski{Osinenko [18℄, and also (in a somewhat di�erent diretion) in the reentpapers Gorin{Olshanski [5, 6℄.The present paper is an extension of our previous paper [18℄, where weworked out the partiular ase � = 1. This ase is exeptional, beausethen the multivariate Jaobi polynomials an be expliitly expressed, in asimple way, through the lassial univariate Jaobi polynomials. For � 6= 1,suh an expression does not exist, and the omputational work beomesmore umbersome. Nevertheless, the struture of the proof remains the



MULTIVARIATE JACOBI POLYNOMIALS 201same, and we tried to losely follow the exposition of [18℄ in the hope thata omparison with [18℄ will help the reader to digest tedious omputations.As in [18℄, our approah relies on the observation that when one of theparameters z; z′ is an integer, a degeneration ours: the support of themeasureM (z;z′)
∞ beomes a �nite-dimensional subset and the measure itselfan be identi�ed with the multidimensional beta distribution whih servesas the integrand in the Selberg integral. In our proof of the oherenyrelation (1), we �rst verify it in the degenerate ase with the help of ageneralized Selberg integral. Then, to handle the general ase, we use aproedure of analyti ontinuation from integer points to a omplex domainvia Carlson's theorem.

§2. PreliminariesThe Jaobi polynomials. Throughout the paper, we �x a triple (a; b; �)of real parameters suh that � > 0 and a > b > − 12 . (Perhaps, the aboveondition on (a; b) is redundant and it would be possible to impose weakeronstraints, but here we follow [15, Proposition 1.1℄.)Let HN denote the Hilbert spae of all funtions on the ube [−1; 1℄Nthat are invariant under the permutations of oordinates and are squareintegrable with respet to the measure ma;b;�N on [−1; 1℄N whih has thedensity N∏i=1(1− xi)a(1 + xi)bV 2�(x)relative to the Lebesgue measure, where V (x) stands for the Vandermondedeterminant, V (x) = ∏16i<j6N(xi − xj);and V 2�(x) := ((V (x))2)�.Let VN denote the set ofN -tuples of noninreasing nonnegative integers.The N -variate Jaobi polynomials with parameters (a; b; �) are symmet-ri polynomials �a;b;�� (x1; : : : ; xN ) indexed by arbitrary N -tuples � ∈ VN ;these polynomials are uniquely determined by the property of orthogonal-ity with respet to the inner produt in HN and the triangularity ondition�a;b;�� (x1; : : : ; xN ) = x�11 : : : x�NN + : : : ;



202 G. OLSHANSKI, A. OSINENKOwhere the dots stand for the sum of lower terms with respet to the lexi-ographi order on monomials. See, e.g., [7, 10{12℄.The stohasti matries �NN−1. We introdue also the normalized Ja-obi polynomials:�a;b;�� (x1; : : : ; xN ) = �a;b;�� (x1; : : : ; xN )�a;b;�� (1; : : : ; 1) :Set xN = 1 in �a;b;�� (x1; : : : ; xN ) and expand the resulting symmetripolynomial in the basis {�a;b;�� (x1; : : : ; xN−1); � ∈ VN−1}:�a;b;�� (x1; : : : ; xN−1; 1) = ∑�∈VN−1�NN−1(�; �)�a;b;�� (x1; : : : ; xN−1);where the oeÆients �NN−1(�; �) depend on the parameters (a; b; �) butwe omit them to simplify the notation.Lemma 2.1. For every N = 2; 3; : : : , the VN × VN−1 matrix �NN−1 builtfrom the oeÆients �NN−1(�; �) of the above expansion is stohasti.Proof. Setting x1 = · · · = xN = 1, we obtain that ∑�NN−1(�; �) = 1for any �. The nonnegativity of the oeÆients �NN−1(�; �) is a nontrivialfat, whih an be derived from the two-step branhing rule for the Koorn-winder polynomials established in [20, Se. 5℄. For seven speial values ofparameters orresponding to groups and symmetri spaes (see [15, Se. 6,Table II℄), this fat is obvious. �Lemma 2.2. The oeÆient �NN−1(�; �) is nonzero if and only if thereexists � ∈ VN−1 suh that � ≺ � and � ≺ � ∪ {0}, that is,�1 > �1 > �2 > : : : > �N−1 > �N−1 > �N ;�1 > �1 > �2 > : : : > �N−1 > �N−1 > 0:Proof. This also an be derived from the results of [20, Se. 5℄. �The spae 
 and the Markov kernels �∞N . The sequene of sets {VN}linked by the stohasti matries �NN−1 is a projetive hain in the senseof [3, Se. 2.2℄, and Theorem 2.4 below desribes its boundary (also in thesense of [3, Se. 2.2℄).To desribe the boundary, we need some additional notation. Let R+ bethe set of nonnegative reals, R∞+ be the diret produt of ountably many



MULTIVARIATE JACOBI POLYNOMIALS 203opies of R+, and 
 ⊂ R∞+ ×R∞+ ×R+ be the subset of triples ! = (�; �; Æ)suh that � = (�1 > �2 > : : : > 0); � = (�1 > �2 > : : : > 0);�1 6 1; Æ > 0; ∑�i +∑�i 6 Æ:Due to the last inequality, 
 is a loally ompat spae with respet to theprodut topology of R∞+ × R∞+ × R+.The following de�nition is taken from [15℄. For ! = (�; �; Æ) ∈ 
 we set = Æ −∑�i −∑ �i > 0and	(x;!) := e(x−1) ∞∏i=1 1 + �i(2−�i)2 (x− 1)
(1− �i(2�+�i)2�2 (x− 1))� ; x ∈ [−1; 1℄: (2)Given N = 1; 2; : : : and ! ∈ 
, the produt 	(x1;!) : : :	(xN ;!) isa ontinuous symmetri funtion on [−1; 1℄N , and therefore it an be ex-panded in the normalized Jaobi polynomials, whih form an orthogo-nal basis in the spae HN . We denote the orresponding oeÆients by�∞N (!; �):	(x1;!) : : :	(xN ;!) = ∑�∈VN �∞N (!; �)�a;b;�� (x1; : : : ; xN ): (3)(Note that the oeÆients �∞N (!; �) depend on (a; b; �).)Taking x1 = : : : xN = 1 in (3), we get

∑�∈VN �∞N (!; �) = 1; for every ! ∈ 
:Next, it follows from the results of [15℄ that �∞N (!; �) > 0. Thus, for every�xed N the oeÆients �∞N (!; �) form a Markov kernel. We denote it by�∞N .Coherent families of measures. From the very onstrution of the ker-nels �∞N it follows that they are onsistent with the stohasti matries�NN−1: �∞N�NN−1 = �∞N−1: (4)



204 G. OLSHANSKI, A. OSINENKODe�nition 2.3. Let {MN : N = 1; 2; : : :} be a family of omplex measureswith �nite variation on the sets VN . We say that the family {MN} isoherent if MN�NN−1 =MN−1 for every N > 2. That is,
∑�∈VN MN (�)�NN−1(�; �) =MN−1(�); for every � ∈ VN−1: (5)The following theorem is a speial ase of the results obtained in [15℄and [16℄.Theorem 2.4. There exists a one-to-one orrespondene M∞ ↔ {MN}between the probability measures on 
 and the oherent families of proba-bility measures, given by the following formula:MN(�) = ∫
M∞(d!)�∞N (!; �); N = 1; 2; : : : ; � ∈ VN : (6)We say thatM∞ is the boundary measure of the oherent family {MN}.The degenerate ase. Given K = 1; 2; : : : , we set

VN (K) = {� ∈ VN : �1 6 K} ⊂ VN :The set VN (K) is �nite, and its elements an be identi�ed with Youngdiagrams ontained in the retangular diagram �(N;K) with N rows andK olumns.Next, we denote by 
(K) the subset of 
 formed by those triples (�; �; Æ)for whih� ≡ 0; �K+1 = �K+2 = · · · = 0; Æ = �1 + · · ·+ �K :We identify 
(K) with the losed subset of [0; 1℄N onsisting of the vetorswith real noninreasing oordinates:
(K) = {(�1 > : : : > �K) ∈ [0; 1℄N}:The proof of the following proposition is exatly the same as in [18℄.Proposition 2.5. If ! ∈ 
(K), then �∞N (!; �) = 0 for all � ∈ VN \
VN(K).Corollary 2.6. If M∞ is a probability measure onentrated on 
(K) ⊂
, then the orresponding measures MN = M∞�∞N are onentrated onthe subsets VN(K) ⊂ VN .



MULTIVARIATE JACOBI POLYNOMIALS 205Conversely, one may prove that if {MN} is a oherent family of proba-bility measures onentrated on the subsets VN(K) for a ertain �xed K,then the orresponding boundary measure M∞ is onentrated on 
(K).Suh oherent families are alled degenerate.
§3. z-MeasuresWe now de�ne the main objet of the paper. First, we setD := {z ∈ C : Re z > −(1 + b)=2}: (7)For z ∈ D, the funtion (1+x)z is square integrable with the Jaobi weight(1− x)a(1 + x)b on [−1; 1℄. Therefore, the funtionfz|N (x1; : : : ; xN ) := N∏i=1(1 + xi)z; z ∈ D;lies in HN .De�nition 3.1. The z-measure on VN with parameters (z; z′) ∈ D × Dis the omplex measure given byMN(� | z; z′; a; b; �) = (fz|N ; �a;b;�� )(�a;b;�� ; f �z′|N )(fz|N ; f �z′|N )‖�a;b;�� ‖2 ; � ∈ VN ; (8)where (·; ·) stands for the inner produt in HN and ‖ · ‖ is the orrespondingnorm.Note that (fz|N ; f �z′|N ) 6= 0 (see Lemma 3.8 below). An expliit formulafor MN (� | z; z′; a; b; �) is given below in Proposition 3.9.From formula (8) it is easy to see that

∑MN(� | z; z′; a; b; �) = 1:Thus, if the parameters z; z′ ∈ D are suh that MN (� | z; z′; a; b; �) is realand nonnegative for all �, then MN (� | z; z′; a; b; �) de�nes a probabilitymeasure. For instane, this is so in the ase when z and z′ are onjugateto eah other.In what follows, we use the notation" = a+ b+ 12and 1N = 1; : : : ; 1
︸ ︷︷ ︸N :



206 G. OLSHANSKI, A. OSINENKOIn the next two lemmas we ompute the quantities �a;b;�� (1N ) and
‖�a;b;�� ‖.Lemma 3.2. For � ∈ VN we have�a;b;�� (1N ) = 12|�| �(�i − �j + �(j − i+ 1))�(�i − �j + �(j − i)) �(�(j − i))�(�(j − i+ 1))

×�(�i + �j + �(2N − j − i+ 1) + 2")�(�i + �j + �(2N − j − i) + 2") �(�(2N − j − i) + 2")�(�(2N − j − i+ 1) + 2")
×

N∏i=1 �(2�i + 2�(N − i) + 2a+ 1)�(2�i + 2�(N − i) + 2") �(2�(N − i) + 2")�(2�(N − i) + 2a+ 1)
×

N∏i=1 �(�i + �(N − i) + 2")�(�i + 2�(N − i) + a+ 12 ) �(�(N − i) + a+ 12 )�(�(N − i) + 2") :Proof. This is a partiular ase of a result due to Opdam, see [7, Theorem3.6.6℄ and [15, (2.12)℄. �Lemma 3.3. For � ∈ VN we have
‖�a;b;�� ‖2= ∏16i<j6N �(�i − �j + �(j − i− 1) + 1)�(�i − �j + �(j − i) + 1) �(�i − �j + �(j − i+ 1))�(�i − �j + �(j − i))
×

N∏i=1 22�i+(2N−2i)�+2" ∏16i<j6N �(�i + �j + �(2N − j − i − 1) + 2"+ 1)�(�i + �j + �(2N − j − i) + 2"+ 1)
×

N∏i=1�(�i+(N − i)�+b+1) ∏16i<j6N �(�i + �j + �(2N − j − i+ 1) + 2")�(�i + �j + �(2N − j − i) + 2")
×N ! N∏i=1 �(�i+(N−i)�+1)�(�i+(N−i)�+2"+1)�(�i+(N−i)�+a+1)�(2�i + (2N − 2i)� + 2"+ 1)�(2�i + (2N − 2i)� + 2") :Proof. See [7, Se. 3.5℄. �



MULTIVARIATE JACOBI POLYNOMIALS 207Proposition 3.4. For � ∈ VN and z ∈ D we have(fz; �a;b;�� ) = N !2|�|+N(z+(N−1)�+2") N∏i=1 �(z + 1+ (i− 1)�)�(z + 1 + (i− 1)� − �i)
×

N∏i=1 �(z+(N−i)�+b+1)�(�i+(N−i)�+2")�(�i+(N−i)�+a+1)�(2�i+2(N − i)�+2")�(�i+(2N−1−i)�+2"+z+1)
×

∏16i<j6N �(�i − �j + �(j − i+ 1))�(�i − �j + �(j − i)) �(�i + �j + �(2N − j − i+ 1) + 2")�(�i + �j + �(2N − j − i) + 2") :Proof. Step 1. Let us prove this formula for z = K = 1; 2; : : : . We shalluse the dual Cauhy identity for multivariate Jaobi polynomials, whihan be found in [13℄. With every � ∈ VN (K) we assoiate� = (N − �′K ; : : : ; N − �′1) ∈ VK(N);where �′ is the diagram onjugate to �. The dual Cauhy identity saysthat N∏i=1 K∏j=1(xi + yj) = ∑�⊂KN �a;b;�� (x)�~b;~a;~�� (y); (9)where ~a+ 1 = a+ 1� ; ~b+ 1 = b+ 1� ; ~� = 1� :Taking the inner produt with �a;b;�� and setting y = 1K , we obtain(fK|N ; �a;b;�� ) = ||�a;b;�� ||2�~b;~a;~�� (1K): (10)The expliit expression for �~b;~a;~�� (1K) is given by Lemma 3.2, but we needto rewrite it in terms of �. We shall use the following three lemmas whoseproofs will be given a bit later.Lemma 3.5. We haveK∏j=1 �(2�j + 2~�(K − j) + 2~b+ 1)�(2~�(K − j) + 2~b+ 1) �(~�(K − j) + ~b+ 12 )�(�j + ~�(K − j) + ~b+ 12 )= 22|�|�|�| N∏i=1 �(K + (N − i)� + b+ 1)�(�i + (N − i)� + b+ 1) : (11)



208 G. OLSHANSKI, A. OSINENKOLemma 3.6. We have
∏16i<j6K �(�i − �j + ~�(j − i+ 1))�(�i − �j + ~�(j − i)) �(~�(j − i))�(~�(j − i+ 1))= N∏i=1 �(K + 1 + (i− 1)�)�(K + 1 + (i− 1)� − �i)�(�i + 1 + (N − i)�)
×

∏16i<j6N �(�i − �j + 1 + (j − i)�)�(�i − �j + 1+ (j − i− 1)�) :Lemma 3.7. Set ~" = (~b+ ~a+ 1)=2. We have
∏16i<j6K �(�i + �j + ~�(2K − j − i+ 1) + 2~")�(�i + �j + ~�(2K − j − i) + 2~") �(~�(2K − j − i+ 1) + 2~")�(~�(2K − j − i) + 2~")

×
K∏j=1 �(2~�(K − j) + 2~")�(2�j + 2~�(K − j) + 2~") �(�j + ~�(K − j) + 2~")�(~�(K − j) + 2~")= �|�| N∏i=1 �(2�i + (2N − 2i)� + 2"+ 1)�(�i + (2N − 1− i)� + 2"+K + 1)

×
∏16i<j6N �(�i + �j + 1 + (2N − j − i)� + 2")�(�i + �j + 1 + (2N − j − i− 1)� + 2") :Combining Lemmas 3.2, 3.3, 3.5, 3.6, and 3.7 with formula (10), weobtain the desired result for the positive integer values of z = K = 1; 2; : : : .Step 2. In order to prove the proposition for general values of z, we applyCarlson's theorem, or, rather, its weaker version saying that a funtion thatis holomorphi in a right half-plane Re z > onst, has at most polynomialgrowth at in�nity, and vanishes at the integer points of this half-plane, isidentially zero; see, e.g., [1, Theorem 2.8.1℄.Let us examine the equality to be proved (see the formulation of Propo-sition 3.4 above). The di�erene between the left- and right-hand sides is aholomorphi funtion in the variable z ∈ D whih vanishes at the positiveinteger points by virtue of Step 1. It remains to hek that this funtionhas at most polynomial growth. But this follows from the the fat thatN∏i=1 �(z + 1 + (i− 1)�)�(z + 1+ (i− 1)� − �i) �(z + (N − i)� + b+ 1)�(�i + (2N − 1− i)� + 2"+ z + 1)



MULTIVARIATE JACOBI POLYNOMIALS 209has at most polynomial growth in D, whih, in turn, follows from thewell-known asymptoti formula�(onst1+x)�(onst2+x) = xonst1 − onst2(1 +O(1=x)); (12)where x → ∞ in a right half-plane.This ompletes the proof of the proposition, but we have to return tothe three lemmas stated above. �Proof of Lemma 3.5. By the dupliation formula for the gamma fun-tion �(2x) = �(x)�(x + 12 )√� 22x−1;the left-hand side of (11) equalsK∏j=1 �(�j + ~�(K − j) + ~b+ 1)�(~�(K − j) + ~b+ 1) :Then (11) follows from the formulaK∏j=1 �(�j + ~�(K − j) + x)�(~�(K − j) + x) = 1�|�| N∏i=1 �(K + (N − i)� + �x)�(�i + (N − i)� + �x) ; (13)whih an be proved as follows.Let us use the Pohhammer symbol(u)n = �(u+ n)=�(u); n = 0; 1; 2; : : : :The left-hand side of (13) is equal toK∏j=1(~�(K − j) + x)�j ; (14)while the right-hand side is equal to1�|�| N∏i=1(�i + (N − i)� + �x)K−�i : (15)It is easy to see that both (14) and (15) are equal to
∏(j;i)∈�(~�(K − j) + x+ i− 1) (16)



210 G. OLSHANSKI, A. OSINENKOand, therefore, they are equal to eah other. Here, in (16), (j; i) means thebox in the jth row and ith olumn of the diagram � and the produt istaken over all boxes of �. �Lemma 3.6 an be easily proved by indution on K.Proof of Lemma 3.7. Performing simple transformations, we obtainthat the left-hand side of the equality stated in this lemma equals




K∏i=1 K+1∏j=i+1(~�(2K − i− j + 1) + 2~"+ 1 + �i + �j)�j−1−�j−1 ; (17)while the right-hand side equals




N∏i=1 N∏j=i(�(2N − i− j) + 2"+ 1 + �i + �j)�j−1−�j−1 : (18)Now, the laim follows from the observation that both (17) and (18) areequal to
∏(j;i)∈�((�i + j − 1) + (2K − 2i− l(i; j))~� + 2~")−1;where l(i; j) = �′j − i+ 1. �Lemma 3.8. For z; z′ ∈ D we have(fz|N ; f �z′|N ) = N !2N(2"+z′+z+(N−1)�)
×

N∏i=1 �(1 + z + z′ + b+ (i− 1)�)�(a+ 1 + (i− 1)�)�(i�)�(2"+ 1 + z + z′ + (N + i− 2)�)�(�) :In partiular, (fz|N ; f �z′|N ) 6= 0.Proof. This is an easy onsequene of the well-known Selberg integral(see [4℄):
∫ 10 : : :∫ 10 ( n∏i=1x�−1i (1− xi)�−1) |V (x)|2 dx1 : : : dxn= n∏j=1 �(� + (j − 1))�(� + (j − 1))�(1 + j)�(�+ � + (n+ j − 2))�(1 + ) : (19)

�



MULTIVARIATE JACOBI POLYNOMIALS 211Proposition 3.9. The right-hand side of formula (8) de�ning the z-measure is given by the following expression:
∏16i<j6N �(�i−�j+1+(j−i)�)�(�i−�j+1+(j−i−1)�) �(�i+�j+1+(2N−j−i)�+2")�(�i+�j+1+(2N−j−i−1)�+2")

×
∏16i<j6N �(�i − �j + �(j − i+ 1))�(�i − �j + �(j − i)) �(�i + �j + �(2N − j − i+ 1) + 2")�(�i + �j + �(2N − j − i) + 2")

×
N∏i=1 �(z′ + (i− 1)� + b+ 1)�(z′ + 1 + (i− 1)�)�(z′ + 1 + (i− 1)� − �i)�(�i + (2N − 1− i)� + 2"+ z′ + 1)

×
N∏i=1 (2�i+(2N−2i)�+2")�(�i+(N−i)�+2")�(�i+(N−i)�+a+1)�(�i+(N−i)�+b+1)�(�i+1+(N−i)�)

×
N∏i=1 �(2"+1+z+z′+(N+i−2)�)�(�)�(1+z+z′+b+(i−1)�)�(a+1+(i−1)�)�(i�)

×
N∏i=1 �(z + (i− 1)� + b+ 1)�(z + 1 + (i− 1)�)�(z + 1 + (i− 1)� − �i)�(�i + (2N − 1− i)� + 2"+ z + 1) :Proof. We ombine the results of Lemmas 3.4, 3.8, and 3.3. �Proposition 3.10. Assume thatz = K ∈ {1; 2; : : :}; z′ = K + s; s > −1:Then the z-measures are well de�ned and the whole family is degenerate:for eah N , the support of the N th measure lies in VN (K). Moreover, allmeasures are nonnegative, and, therefore, they are probability measures.Proof. Both parameters lie in the half-plane D, therefore the propositionreadily follows from the expliit formula given in the previous proposition.

�

§4. The main results. The beginning of the proof in thedegenerate aseHere are the main results of the paper.Theorem 4.1. Assume that parameters z and z′ lie in the half-plane D.Then the family of z-measures {MN(� | z; z′; a; b; �)} is oherent in thesense of De�nition 2.3.



212 G. OLSHANSKI, A. OSINENKOTheorem 4.2. Let, as above, the parameters lie in D, and assume addi-tionally that they are suh that the z-measures are nonnegative and heneare probability measures (for instane, this happens if z′ = �z).Then the oherent family {MN( · | z; z′; a; b; �) : N = 1; 2; : : :} deter-mines a probability measure M∞(d! | z; z′; a; b; �) on 
 { the boundarymeasure.Theorem 4.2 is a diret orollary of Theorem 4.1 and the abstrat The-orem 2.4. In the rest of the paper, we prove Theorem 4.1.The idea of the proof is the following. We �rst examine the ase whenz = K ∈ {1; 2; : : :} and z′ = K + s, s > −1. Then, by Proposition 3.10,the orresponding z-measures are probability measures supported by thesubsets VN (K). By Theorem 2.4 and the argument following it, it is enoughto �nd a probability measureM∞ on the �nite-dimensional set 
(K) suhthat MN (� | K;K + s; a; b; �) = ∫
M∞(d!)�∞N (!; �): (20)By the general theory, the boundary measure M∞ an be found as thelimit as N → ∞ of the images of MN 's under the map
VN ∋ � →

(�′1N ; : : : ; �′KN )

∈ 
(K);but the orresponding omputation is rather tedious and formally is notneeded for the proof. So we only exhibit the �nal result:M∞(d!) = onst(V ((1− �1)2; : : : ; (1− �K)2))2~�
×

K∏j=1(1− (1− �j)2)(s+1)~�−1(1− �j)2~b+1d�i:In this setion we make equality (20) expliit, and we prove it in thenext setion, whih onludes the proof in the degenerate ase. In the lastsetion we use Carlson's theorem to prove Theorem 4.1 for general valuesof the parameters z and z′.We proeed with equality (20). It is onvenient to make a hange ofoordinates by setting tj = (1− �j)2. In these new oordinates,M∞(d!) = onst K∏j=1 t~bj(1− tj)(s+1)~�−1V 2~�(t)dt1 : : : ; dtK



MULTIVARIATE JACOBI POLYNOMIALS 213and the normalization onstant an be found from the Selberg integral(19). However, we shall not need the expliit value of this onstant.Proposition 4.3. For ! = (�1; : : : ; �K) ∈ 
(K) and � ∈ VN (K), thefollowing relation holds:�∞N (!; �) = 12NK K∏j=1(1− tj)N�~b;~a;~�� (y1; : : : ; yK)�a;b;�� (1N );where yj = 1 + (1− �j)21− (1− �j)2 = 1 + tj1− tj : (21)Proof. Reall that �∞N (!; �) is the oeÆient with index � in the ex-pansion of ∏Ni=1	(xi;!) in the normalized Jaobi polynomials. For ! =(�1; : : : ; �K) ∈ 
(K), the expression (2) for 	(x;!) simpli�es signi�antlyand we haveN∏i=1	(xi;!) = 12NK K∏j=1(�j(2− �j))N N∏i=1 K∏j=1(xi + yj):Thus, the result follows from the dual Cauhy identity (9). �Now we an rewrite the desired equality (20) asMN(�)�a;b;�� (1N ) = onst2NK ∫[0;1℄K K∏j=1 t~bj(1− tj)(s+1)~�−1+NV 2~�(t)�~b;~a;~�� (y) dt:Sine both left- and right-hand sides of equality (20), whih we have toprove, are probability measures on VN (K), we may simplify the ompu-tations by ignoring any fators that do not depend on �. In that ase, wereplae the equality sign by a tilde. Thus, the last equality an be rewrittenas MN(�)�a;b;�� (1N) ∼
∫[0;1℄K K∏j=1 t~bj(1− tj)(s+1)~�−1+NV 2~�(t)�~b;~a;~�� (y) dt: (22)
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§5. The kadell-type integral and the end of the proofin the degenerate aseIn this setion we ompute the integral on the right-hand side of (22):I := ∫[0;1℄K K∏j=1 t~bj(1− tj)(s+1)~�−1+NV 2~�(t)�~b;~a;~�� (y) dt:It is similar to the Kadell integral (see [8℄) with the di�erene that a Jakpolynomial in Kadell's integral is replaed by a Jaobi polynomial and thearguments of the polynomial are transformed.Making a hange of variables t → y and performing simple transforma-tions, we obtainI ∼

∫[1;∞)K K∏j=1(yj − 1)~b(1 + yj)−BV 2~�(y)�~b;~a;~�� (y) dy;where B = (2K + s− 1)~� +N +~b+ 1:Note that the integration domain hanged from the ube [0; 1℄K to [1;∞)K .The next laim (see [18, Lemma 6.2℄) allows us to return to the integrationover the ube.Lemma 5.1. Let F (y) = F (y1; : : : ; yK) be an arbitrary polynomial. Then
∫[1;∞)K F (y) K∏j=1(yj − 1)~b(1 + yj)−Bdy= ( sin(�B)sin(�(B − b− 1)))K ∫[−1;1℄K F (y) K∏j=1(yj − 1)~b(1 + yj)−Bdy: (23)Here the integral on the right-hand side diverges, and it should be un-derstood in the sense of the analytial ontinuation with respet to B.Applying the lemma with F (y) = V 2~�(y)�~b;~a;~�� (y), we obtain thatI ∼

∫[−1;1℄K K∏j=1(1− yj)~b(1 + yj)−BV 2~�(y)�~b;~a;~�� (y) dy:



MULTIVARIATE JACOBI POLYNOMIALS 215Note that the integral on the right-hand side is equal to the salar produt(f−B−~a; �~b;~a;~�� ). Thus, I ∼ (f−B−~a; �~b;~a;~�� );where the expliit formula for the right-hand side is given in Proposition 3.4and the analyti ontinuation with respet to the parameter B is assumed.Now, (20) an be rewritten asMN (�)�a;b;�� (1N ) ∼ (f−B−~a; �~b;~a;~�� ): (24)The expliit formulas for all quantities in (24) are given by Lemmas 3.9,3.2 and Proposition 3.4. However, the left-hand side is expressed in termsof �, while the right-hand side is expressed in terms of �. In the rest ofthis setion we show how to overome this diÆulty.We rewrite the left-hand side of (24) using (8) and (10) (whih an beapplied sine z = K):MN (�)�a;b;�� (1N ) = (fz ; �a;b;�� )(fz′ ; �a;b;�� )(fz; fz′)||�a;b;�� ||2�a;b;�� (1N ) = �~b;~a;~�� (1K)(fz′ ; �a;b;�� )(fz; fz′)�a;b;�� (1N ) :Sine (fz ; fz′) does not depend on �, (24) is equivalent to(fz′ ; �a;b;�� )�a;b;�� (1N ) ∼
(f−B−~a; �~b;~a;~�� )�~b;~a;~�� (1K) : (25)Using Proposition 3.4 and Lemma 3.2 and again ignoring fators thatdo not depend on �, we an rewrite (25) asN∏i=1 1�(z′ + 1 + (i− 1)� − �i)�(�i + (2N − 1 − i)� + 2"+ z′ + 1)

∼
K∏j=1 1�(−B−~a′+1+(j − 1)~�−�j)�(�j+(2K−1−j)~�+2~"−B−~a+1) ;whih is easily veri�ed by making use of (13) and Euler's reetion formula�(1− z)�(z) = �sin�z :This onludes the proof of Theorem 4.1 in the degenerate ase.
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§6. Proof in the general aseIn this setion we prove that Theorem 4.1 holds for arbitrary z and z′lying in the half-plane D. We do it in two steps.Step 1. Let us �x z = K, N , and � ∈ VN−1. For � ∈ VN , we write� ⊐ � if � and � satisfy the ondition of Lemma 2.2 expressing the fatthat �NN−1(�; �) 6= 0. Then we may write the ohereny relation asMN−1(� | z; z′; a; b; �)− ∑�∈VN :�⊐�MN(� | z; z′; a; b; �)�NN−1(�; �) = 0:(26)Sine z = K, the measure MN is degenerate and hene the sum on theleft-hand side is �nite. From the expliit formula for the z-measure givenin Proposition 3.9 it is seen that MN(� | z; z′; a; b; �) is a rational funtionof the parameter z′: indeed, the part of the formula that depends on z′an be represented as a produt of fators of the form �(z′+x)=�(z′+ y),where x− y is an integer.Therefore, the left-hand side of (26) is a rational funtion, and it van-ishes on the ray z′ = K+ s, s > −1, as was shown in the previous setion.Hene it is identially zero.Step 2. Conversely, let us �x an arbitrary z′ ∈ D and onsider theleft-hand side of (26) as a funtion G(z) of the omplex parameter z.The funtion G(z) is holomorphi in the half-plane D. Indeed, z → fz|Nis a holomorphi vetor funtion with values in the Hilbert spae HN . Thisand formula (8) de�ning z-measures imply that the weight of any diagramis a holomorphi funtion in z and the series in (26) onverges absolutelyand uniformly on ompat sets with respet to the parameter z ∈ D. HeneG(z) is holomorphi.Sine � ⊐ � and � is �xed, all oordinates �i in (26) with i > 2 vary ina �nite range, so we an assume them to be �xed. We shall prove that forRe z ≫ 0, the quantity |MN (� | z; z′; a; b; �)| is bounded from above by apolynomial in z multiplied by ((�1 + 1)(�2 + 1))−2, whih will imply thatG(z) has at most polynomial growth at in�nity, whih, in turn, will implythat G(z) is identially zero by Carlson's theorem.Let us examine the formula for MN (� | z; z′; a; b; �) given in Proposi-tion 3.9. The produt of the �rst four lines does not depend on z and hasat most polynomial growth in (�1; �2) beause of the asymptoti relation(12). The produt in the �fth line does not depend on � and has at mostpolynomial growth in z.



MULTIVARIATE JACOBI POLYNOMIALS 217Let us turn to the produt in the last, sixth, line, whih we split intotwo parts:N∏i=3 �(z + (i− 1)� + b+ 1)�(z + 1 + (i− 1)�)�(z + 1 + (i− 1)� − �i)�(�i + (2N − 1− i)� + 2"+ z + 1)
×
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