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MULTIVARIATE JACOBI POLYNOMIALS AND THE
SELBERG INTEGRAL. II

ABSTRACT. The problem of harmonic analysis for infinite-dimen-
sional classical groups and symmetric spaces leads to a family of
probability measures with infinite-dimensional support. In the pre-
sent paper, we construct these measures in a different way, which
makes it possible to substantially extend the range of the parame-
ters. The measures that we obtain can be interpreted as the result
of formal analytic continuation of the N-dimensional beta distribu-
tions which appear in the Selberg integral. Our procedure of analytic
continuation, based on Carlson’s theorem, turns N into a complex
parameter.

§1. INTRODUCTION

The multivariate Jacobi polynomials we are dealing with are the Heck-
man-Opdam polynomials (see Heckman’s lecture notes [7]) related to the
B(C'y root system with formal root multiplicities, N = 1,2,.... These are
symmetric polynomials in IV variables, orthogonal with respect to a weight
function on the cube [—1, 1] depending on a triple of parameters (a, b, ),
and indexed by the set Vi of Young diagrams with at most N rows. For
some special values of the parameters (in particular, 6 has to take one of
the values %, 1,2), the Jacobi polynomials have a representation-theoretic
interpretation: they are the irreducible characters of compact orthogonal
or symplectic groups, or else indecomposable spherical functions on certain
compact symmetric spaces (see, e.g., Okounkov—Olshanski [15]).

In what follows, the parameters (a,b,8) are assumed to be fixed. We
define, for every N = 2,3,..., a stochastic matrix AY_, of format Vy x
VNn_1, which describes the “branching rule” of the Jacobi polynomials.

Next, we define, for every N = 1,2,..., a family {M](\f’zl)} of probability

Key words and phrases: Jacobi polynomials, Selberg integral, coherent families of
measures.

The research of G. Olshanski was carried out at the Institute for Information Trans-
mission Problems of the Russian Academy of Sciences at the expense of the Russian
Foundation for Sciences (project 14-50-00150).

199



200 G. OLSHANSKI, A. OSINENKO

measures on the discrete set Vy depending on two additional continuous
parameters (z, z’). These measures are called the z-measures (see Definition
3.1; note that starting from Sec. 2 we slightly change the above notation).

The goal of the paper is to prove Theorem 4.1, which says that for fixed
parameters (z, z’), the z-measures form a coherent family in the sense that
they satisfy the coherency relation

S M AN () = MED, N=23., veVy. (1)
AEVN

By a general theory (see Olshanski [16]), Theorem 4.1 implies the fol-
lowing result (Theorem 4.2 below): the coherent family

(MG N=1,2,.. .}

determines a probability measure Méoz *) on an infinite-dimensional space
Q. (That space serves as the boundary for the chain of the spaces Vn
linked by the stochastic matrices AY _,, see Okounkov—Olshanski [15] and
Borodin-Olshanski [3].)

One can show that for the special values of the parameters (a,b, )
that are related to classical groups and symmetric spaces, the measures

MCEOZ’Z/) have a representation-theoretic meaning: they govern the spectral
decomposition of certain unitary representations of infinite-dimensional
classical groups. This fact is one of the motivations for the present work.

For those special values of the parameters (a,b,6), the coherency re-
lation (1) can be obtained, case-by-case, from a representation-theoretic
construction developed in Pickrell [19], Neretin [14], and Olshanski [16].
However, in order to work with general parameters, one has to invent other
methods.

For the first time, an example of a coherency relation of type (1),
with general parameter 6, appeared in Kerov’s paper [9]. Then further
results were obtained in Borodin—Olshanski [2], Olshanski [17], Olshanski-
Osinenko [18], and also (in a somewhat different direction) in the recent
papers Gorin—Olshanski [5, 6].

The present paper is an extension of our previous paper [18], where we
worked out the particular case & = 1. This case is exceptional, because
then the multivariate Jacobi polynomials can be explicitly expressed, in a
simple way, through the classical univariate Jacobi polynomials. For 8 # 1,
such an expression does not exist, and the computational work becomes
more cumbersome. Nevertheless, the structure of the proof remains the
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same, and we tried to closely follow the exposition of [18] in the hope that
a comparison with [18] will help the reader to digest tedious computations.

As in [18], our approach relies on the observation that when one of the
parameters z,z’ is an integer, a degeneration occurs: the support of the
measure Méé ) becomes a finite-dimensional subset and the measure itself
can be identified with the multidimensional beta distribution which serves
as the integrand in the Selberg integral. In our proof of the coherency
relation (1), we first verify it in the degenerate case with the help of a
generalized Selberg integral. Then, to handle the general case, we use a
procedure of analytic continuation from integer points to a complex domain
via Carlson’s theorem.

§2. PRELIMINARIES

The Jacobi polynomials. Throughout the paper, we fix a triple (a, b, 8)
of real parameters such that # > 0 and a > b > —%. (Perhaps, the above
condition on (a, b) is redundant and it would be possible to impose weaker
constraints, but here we follow [15, Proposition 1.1].)

Let Hx denote the Hilbert space of all functions on the cube [—1,1]"
that are invariant under the permutations of coordinates and are square
integrable with respect to the measure m?\}b’g on [—1,1]" which has the
density

N

[T —2)* (1 +2)' V()

i=1
relative to the Lebesgue measure, where V' (z) stands for the Vandermonde
determinant,

1<i<j<N

and V¥ (z) := ((V(m))2)9

Let Vi denote the set of N-tuples of nonincreasing nonnegative integers.
The N-variate Jacobi polynomials with parameters (a,b,6) are symmet-
ric polynomials F;\L’b’a(l‘l, ..., zn) indexed by arbitrary N-tuples A € Vn;
these polynomials are uniquely determined by the property of orthogonal-
ity with respect to the inner product in Hp and the triangularity condition

71_()7:71),9( A1

A
Z1,...,eN) =7t oy
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where the dots stand for the sum of lower terms with respect to the lexi-
cographic order on monomials. See, e.g., [7,10-12].

The stochastic matrices A%q- We introduce also the normalized Ja-
cobi polynomials:

@(L,b,@(x T )_ 71-;\l7l)79(a‘l17'"71;1\7)
1s.+:3,TN) =
A T 700001, 1)
Set zxy = 1 in @i’b’e(azl,...,xN) and expand the resulting symmetric
polynomial in the basis {®%%%(zy,...,2x_1), ¥ € Vy_1}:
O (@, ane, ) = Y AN (W) @R (L ey ),
VvEVN -1

where the coefficients AY_| (A, ) depend on the parameters (a,b,8) but
we omit them to simplify the notation.

Lemma 2.1. For every N = 2,3,..., the VN X VN_1 matriz /\%71 bualt
from the coefficients AN | (\,v) of the above expansion is stochastic.

Proof. Setting z; = --- = zy = 1, we obtain that Y, AY (\,v) =1
for any A. The nonnegativity of the coefficients AY_ (), v) is a nontrivial
fact, which can be derived from the two-step branching rule for the Koorn-
winder polynomials established in [20, Sec. 5]. For seven special values of
parameters corresponding to groups and symmetric spaces (see [15, Sec. 6,
Table I1]), this fact is obvious. O

Lemma 2.2. The coefficient AN _|(\,v) is nonzero if and only if there
exists ;1 € Vn—1 such that up < X and v < pU {0}, that is,

M2 2> 2 AN_1 2 UN—1 2 AN,
M Zvr =z p > ... 2 pn—1 = Un_1 = 0.

Proof. This also can be derived from the results of [20, Sec. 5]. O

The space  and the Markov kernels A%. The sequence of sets {Vn}
linked by the stochastic matrices A%, is a projective chain in the sense
of [3, Sec. 2.2], and Theorem 2.4 below describes its boundary (also in the
sense of [3, Sec. 2.2]).

To describe the boundary, we need some additional notation. Let R be
the set of nonnegative reals, R® be the direct product of countably many



MULTIVARIATE JACOBI POLYNOMIALS 203

copies of Ry, and 2 C R x R x R be the subset of triples w = (o, 3, )
such that

a=(a1>a2>. -20)7 B=Br1=2ph2=...20),

51<17 Zaz'i‘Zﬁzg(s

Due to the last inequality, 2 is a locally compact space with respect to the
product topology of R x R x R
The following definition is taken from [15]. For w = (a, §,9) € Q we set

7:5—2%—252'20

and

e e (O]

U(z;w) =@ H

97
1 (1 — aul@ai) (o 1))

rel-1,1. (2

Given N = 1,2,... and w € Q, the product ¥(z1;w)... U(zy;w) is
a continuous symmetric function on [—1, 1]N, and therefore it can be ex-
panded in the normalized Jacobi polynomials, which form an orthogo-
nal basis in the space Hy. We denote the corresponding coefficients by

AR (w, N):

‘Il(xl;w)' xNa Z AOO (ﬁa’bﬁ(xlu"'axN)' (3)
AEVN
(Note that the coefficients A (w, A) depend on (a, b, 8).)
Taking z1 = ...znx = 1in (3), we get

Z AF(w,A) =1, forevery w €.
AEVN
Next, it follows from the results of [15] that AP (w, A) > 0. Thus, for every

fixed N the coefficients AP (w, A) form a Markov kernel. We denote it by
A%

Coherent families of measures. From the very construction of the ker-
nels A% it follows that they are consistent with the stochastic matrices
A%qi

A?A%—l = A?—r (4)
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Definition 2.3. Let {My : N =1,2,...} be a family of complex measures
with finite variation on the sets V. We say that the family {Mn} is
coherent if MNAN | = Mn_1 for every N > 2. That is,

Z My(MAN (N v) = My_1(v), for every veEVn_1. (5)
AEVN

The following theorem is a special case of the results obtained in [15]
and [16].

Theorem 2.4. There exists a one-to-one correspondence Mo, — {Mn}
between the probability measures on Q0 and the coherent families of proba-
bility measures, given by the following formula:

My()) = / Mo(d)AS(w, ), N=12.... AeVy.  (6)
Q
We say that M, is the boundary measure of the coherent family {My}.

The degenerate case. Given K = 1,2,..., we set
VN(K) = {)\E Vv A < K} C Vn.

The set Vn(K) is finite, and its elements can be identified with Young
diagrams contained in the rectangular diagram O(N, K) with N rows and
K columns.

Next, we denote by Q(K) the subset of Q formed by those triples («, 8, )
for which

a=0, Prp=Prp=--=0, =5+ +Pk.

We identify Q(K) with the closed subset of [0, 1]V consisting of the vectors
with real nonincreasing coordinates:

UK) ={(p1 > ... > Br) € [0,1]"}.
The proof of the following proposition is exactly the same as in [18].

Proposition 2.5. If w € Q(K), then AR (w,A) = 0 for all X € Vn \
Vi (K).
Corollary 2.6. If M, is a probability measure concentrated on Q(K) C

Q, then the corresponding measures My = M A are concentrated on
the subsets VN (K) C Vn.
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Conversely, one may prove that if {My} is a coherent family of proba-
bility measures concentrated on the subsets Vy(K) for a certain fixed K,
then the corresponding boundary measure M, is concentrated on Q(K).
Such coherent families are called degenerate.

§3. Z-MEASURES

We now define the main object of the paper. First, we set
D:={ze€C:Rez>—(1+b)/2}. (7)
For z € D, the function (14 z)? is square integrable with the Jacobi weight
(1 — 2)%(1 + z)® on [~1,1]. Therefore, the function
N
fz|N(x17"'7$N) :H(1+x1)zu ZGDa
i=1
lies in Hpy.
Definition 3.1. The z-measure on Vy with parameters (z,2') € D x D
is the complex measure given by

,b,0 ,b,0
(fZ\N77Tf\l )(ﬂ-i 7f£’|N)
,b,0 ¢
(fons Fz a7y ™12

where (-, -) stands for the inner product in Hx and || - || is the corresponding
norm.
Note that (f.n, f7n) # 0 (see Lemma 3.8 below). An explicit formula

for Mn(M\ | 2,2, a,b,0) is given below in Proposition 3.9.

My | 2,2',a,b,0) =

s A€ VN, (8)

From formula (8) it is easy to see that
ZMN(/\ | z,2',a,b,60) = 1.

Thus, if the parameters z,z’ € D are such that My (A | z,2',a,b,0) is real
and nonnegative for all A, then My (X | z,2’,a,b,0) defines a probability
measure. For instance, this is so in the case when z and 2z’ are conjugate
to each other.

In what follows, we use the notation

a+b+1

and
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In the next two lemmas we compute the quantities w;‘be(lN ) and

a,b,0
Xl

Lemma 3.2. For A\ € Vy we have

poboqy — LT = +0G —i+ 1) TG — )
x N Ty =X +6( —1)) T@OG—i+1)

T(Ai+ A+ 02N —j—i+1)+2) TH@N —j—i)+2)
TOv+ X\ + 02N —j—i)+25) TORN—j—i+1)+2)

(
NOT(2M + 20(N — i) +2a+1) T(20(N — i) + 2¢)
11 T2\ +20(N —i) +2¢) T(20(N —i) +2a+1)

N T\ +0(N —i)+2) TON —i)+a+1)

LA\ +20(N —i)+a+3) DON —i)+ 2¢)

i=1
Proof. This is a particular case of a result due to Opdam, see [7, Theorem

3.6.6] and [15, (2.12)]. O

Lemma 3.3. For A € Vy we have

= ] T — A +0(G—i—1)+1) T — A+ 00 —i+1))
Tv — X +0G—9)+1) Tu—X +6( —1i)

I<i<j<N

N . .
<[22 eHeN -2 T P+ A +0RN —j—i—1)+2+1)

TOv+ X\ +002N —j—i)+2e+1)

i=1 1<i<j<N

1 T(\i+ X + 002N —j—i+1)+2e)

XHF}‘* — 0f+b+1) T(h + & + 602N —j — i)+ 22)

1<i<j<N
N'H —)0+1) T\ +(N—i)042e+1)T( X + (N —i)f+a+1)
2>\ + (2N —20)8 + 2e + I (2N + (2N — 20)6 + 2¢)

Proof. See [7, Sec. 3.5]. O
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Proposition 3.4. For A € Vy and z € D we have

a.b,0 19+ N (z+(N—1)0+2¢) P(z+1+ (i —1)0)
o) = 2 2SI CESERCES )Y

ﬁ T(z+(N—i)0+b+ I)F()\i—l—(N—i)9+25)F()\¢+(N—i)9+a+ 1)

L~ T on 120N —0)8+20) T vt @N—1—0)0+ 2 +2+1)
0 DA\ — Aj 480G — i+ 1) T+ A + 002N — j — i+ 1)+ 2)
I‘(/\i,/\j +6(j —1i)) F(/\i+/\j+(9(2N7jfi)+2€)

X
1<i<j<N

Proof. Step 1. Let us prove this formula for z = K = 1,2,.... We shall
use the dual Cauchy identity for multivariate Jacobi polynomials, which
can be found in [13]. With every A € Vn(K) we associate

=(N—-XNg,....,N = X)) € Vg (N),

where ) is the diagram conjugate to A. The dual Cauchy identity says
that

N K
a,b,0 b,a,0
[T+ = 3 w2 @riady), (9)
i=1j=1 ACKN
where
a+1 - b+1 -~ 1
a+1= b+1l=—, O8=-.
a-+ B + PR g
Taking the inner product with W;L\’b’a and setting y = 1%, we obtain
(frein, 73 %0) = [[a 0 Pl (15). (10)

The explicit expression for 772 a.0(1K) is given by Lemma 3.2, but we need
to rewrite it in terms of A\. We shall use the following three lemmas whose
proofs will be given a bit later.

Lemma 3.5. We have

H 2u]+29 —j)+26+1) TOE-j)+b+13)

i —j)+2b+1)  T(uj+0(K —j)+b+1) )
_22W MK+ (N—i)f+b+1)
C gl AT+ (N =08+ b+ 1)
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Lemma 3.6. We have
D(pi —p; +0( —i+1) TO(G i)
weitiex D=5 +0G—9) TOG—i+1)

_ (K +14 (i —1)8)
_;I;‘IIZF(K'i'l"‘(Z'*1)0*/\1‘)F(/\i+1+(N7i)(9)

N

< 1 mesi Gt
1<i<j<N t J J— )0)

Lemma 3.7. Set £ = (b+a+ 1)/2. We have

D(pi +pj+ 02K —j —i+ 1) +28) T(O(2K — j —i+ 1) + 28)
D(pi+pj + 02K —j—i)+26)  T(O(2K —j — i) + 26)

1<i<j<K

K TQO(K —j)+28) Ty +0(K — j) +22)
X H [

2u; +20(K — j) +28) T((K — j) + 28)

9|“|H T2\ + (2N —20)0 + 22 + 1)
B LT\ + (2N —1—i)f+2e+ K +1)

H TAi+Aj+1+ (2N —j—i)f+2)

8 TOv+ A +1+ 2N —j —i—1)f+2)

1<i<j<N

Combining Lemmas 3.2, 3.3, 3.5, 3.6, and 3.7 with formula (10), we
obtain the desired result for the positive integer valuesof z = K =1,2,... .

Step 2. In order to prove the proposition for general values of z, we apply
Carlson’s theorem, or, rather, its weaker version saying that a function that
is holomorphic in a right half-plane Re z > const, has at most polynomial
growth at infinity, and vanishes at the integer points of this half-plane, is
identically zero; see, e.g., [1, Theorem 2.8.1].

Let us examine the equality to be proved (see the formulation of Propo-
sition 3.4 above). The difference between the left- and right-hand sides is a
holomorphic function in the variable z € D which vanishes at the positive
integer points by virtue of Step 1. It remains to check that this function
has at most polynomial growth. But this follows from the the fact that

Fz+1+ (@ —-1)8) F(z+(N—-i)f+b+1)
LPG+ 1+ G- 10— M) TN+ 2N —1—i)f +2e + 2+ 1)
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has at most polynomial growth in D, which, in turn, follows from the
well-known asymptotic formula

[(consty +z)

_ pconsty —consty (q 1 12
['(consts +1x) v (1+0l/z), -

where £ — oo in a right half-plane.
This completes the proof of the proposition, but we have to return to
the three lemmas stated above. O

Proof of Lemma 3.5. By the duplication formula for the gamma func-
tion
L(2)T(z + 3)

I'(2z) = NG

2z—1
27575,

the left-hand side of (11) equals

K . 5
D(uj +0(K —j) +b+1)
11 TOK —j)+b+1)

j=1
Then (11) follows from the formula
ﬁr(u]w( ) + ) —iﬂ + (N —i)8 + ) 13
i r(é(K_J)H; glul 22 + (N —14)8 +6z)’
which can be proved as follows.
Let us use the Pochhammer symbol
(W) =T(u+n)/T(u), n=0,1,2,....
The left-hand side of (13) is equal to
K
[T6 =) +2)u,, (14)
j=1
while the right-hand side is equal to
GMHA + (N =)0 +0z) 5 (15)

It is easy to see that both (1

4)
IT 0K -j)+z+i-1) (16)

(4ii)ep

and (15) are equal to
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and, therefore, they are equal to each other. Here, in (16), (j,¢) means the
box in the jth row and ith column of the diagram p and the product is
taken over all boxes of p. O

Lemma 3.6 can be easily proved by induction on K.

Proof of Lemma 3.7. Performing simple transformations, we obtain
that the left-hand side of the equality stated in this lemma equals

-1
K K+1

[T II Gk —i—j+0)+25+ 1+ pm+psms | - (17)
i=1 j=i+1
while the right-hand side equals

-1
N N

]:[]:[(9(2]\[71-7.].)+26+]‘+A’L‘+A]‘))\j71*)\j . (18)

i=1j=1
Now, the claim follows from the observation that both (17) and (18) are
equal to
IT s+ — 1)+ @K —2i —1(i, /)6 + 29,
(di)en
where (i, ) = pj — i+ 1. O
Lemma 3.8. For z,2z' € D we have
(Fas foi) = N1ZN @45+ N-10)
ﬂ T(l+z+2 +b+(i—1D)O(a+ 1+ (i — 1)O)I(6)
paley F2e+14+2+2 4+ (N+i—-2)0)(0)
In particular, (fZ|N,va‘N) #0.

Proof. This is an easy consequence of the well-known Selberg integral
(see [4]):

/01"'/01 (ilf[lf”?l(l xi)ﬁ_1> \V(2)|* dxy ... dx,

_ 1 D+ G = DNTE+ G = DYTA +y)
P L S (S E T (e

j=1
(]
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Proposition 3.9. The right-hand side of formula (8) defining the z-
measure is given by the following expression:
H P\=Aj+14+(j—1)0) T(N+X+1+(2N—j—1i)8+2¢)
Fi—=XN+14+(G—i—1DE) TN+ A +1+(2N—j—i—1)0+2¢)

1<i<j<N
P\ =X +0(G—i+1) TN+ A +02N —j—i+1)+2¢)
< 1 2 =
1<z’<j<N T\ — X +0( —1i)) T+ X +002N —j—i)+2)

L+ @GE—-1)0+b+ 1" +1+ (i —1)8)
LT 14+ G- D8 AT+ @N —1— ) + 26+ 2 + 1)

Xﬁ (2Xi+ (2N —2i)0+2¢)T(A\i+ (N —i)0+26)T(A\i+ (N —i)f+a+1)

L+ (N=0)0+b+1)T(A\+ 14 (N —1)6)

y ﬂ T(2e+142+2+(N+i—2)0)T'(6)
LTI+ 242"+0+ (i - 1O (a+ 1+ (i—1)8)1'(i6)
N

Tz+(G@—-180+b+1)T(z+1+ (i —1)6)
]-_-[F(z—l—1+(i—1)9—)\i)F()\i+(2N—1—i)9+2£+z+1)'

i=1
Proof. We combine the results of Lemmas 3.4, 3.8, and 3.3. O

Proposition 3.10. Assume that
z=Ke{l,2,...}, Z=K+s, s>-1.

Then the z-measures are well defined and the whole family is degenerate:
for each N, the support of the Nth measure lies in Vn(K). Moreover, all
measures are nonnegative, and, therefore, they are probability measures.

Proof. Both parameters lie in the half-plane D, therefore the proposition
readily follows from the explicit formula given in the previous proposition.
O

§4. THE MAIN RESULTS. THE BEGINNING OF THE PROOF IN THE
DEGENERATE CASE
Here are the main results of the paper.

Theorem 4.1. Assume that parameters z and 2z’ lie in the half-plane D.
Then the family of z-measures {Mn(\ | z,2’,a,b,0)} is coherent in the
sense of Definition 2.3.
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Theorem 4.2. Let, as above, the parameters lie in D, and assume addi-
tionally that they are such that the z-measures are nonnegative and hence
are probability measures (for instance, this happens if z’ = z).

Then the coherent family {Mn(- | z,2',a,b,8) : N = 1,2,...} deter-
mines a probability measure Moo (dw | z,2',a,b,8) on Q — the boundary
measure.

Theorem 4.2 is a direct corollary of Theorem 4.1 and the abstract The-
orem 2.4. In the rest of the paper, we prove Theorem 4.1.

The idea of the proof is the following. We first examine the case when
z=Ke{l,2,...} and 2’ = K + s, s > —1. Then, by Proposition 3.10,
the corresponding z-measures are probability measures supported by the
subsets Vi (K). By Theorem 2.4 and the argument following it, it is enough
to find a probability measure M, on the finite-dimensional set Q(K) such
that

My(\| K, K + 5,a,b,0) = / Moo (d)ASE (w0, 2). (20)
Q

By the general theory, the boundary measure M., can be found as the
limit as N — oo of the images of My’s under the map
A by
VN DA — (NlWK) € O(K),
but the corresponding computation is rather tedious and formally is not
needed for the proof. So we only exhibit the final result:

Moo (dw) = const(V((1 — B1)2,..., (1 — Bx)?)*
K
% H(]‘ o (1 . 5j)2)(s+1)§71(1 o 6j)25+1d6i-

j=1

In this section we make equality (20) explicit, and we prove it in the
next section, which concludes the proof in the degenerate case. In the last
section we use Carlson’s theorem to prove Theorem 4.1 for general values
of the parameters z and 2’.

We proceed with equality (20). It is convenient to make a change of
coordinates by setting ¢; = (1 — ;). In these new coordinates,

K
Moo(dw) = const [ [ 5 (1 — t;) V=V (1)dty ..., dix
j=1



MULTIVARIATE JACOBI POLYNOMIALS 213

and the normalization constant can be found from the Selberg integral
(19). However, we shall not need the explicit value of this constant.

Proposition 4.3. For w = (f1,...,0k) € QK) and X € Vn(K), the
following relation holds:

K
o) 1 I I b,a,0 a,o,
AN(qu) = K (17t])N Z 9(:’/17 7yK) be(lN)

j=1

where
1+ (1 -5)7 1+t
A T (B

(21)

Proof. Recall that A (w,A) is the coefficient with index A in the ex-
pansion of Hi\; ¥(z;;w) in the normalized Jacobi polynomials. For w =
(B1,...,Bk) € QK), the expression (2) for ¥(z;w) simplifies significantly
and we have

N K N K
H‘I’(xi;w) = H B;(2—55)) HH(mH—y])
=1 j=1 i=1j=1
Thus, the result follows from the dual Cauchy identity (9). O

Now we can rewrite the desired equality (20) as

™

Mpn(N) COHSt H tb )(s+) G- 1+NV29( )

a0
— 0 () dt.
7.[.;71779(1N) ()

[0 1]% Jj=1

Since both left- and right-hand sides of equality (20), which we have to
prove, are probability measures on Vy(K), we may simplify the compu-
tations by ignoring any factors that do not depend on . In that case, we
replace the equality sign by a tilde. Thus, the last equality can be rewritten
as

My Ht s+1)9 1+NV2€( t)r

a,b,0
7T)\ ( ) [0 l]K j=1
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§5. THE KADELL-TYPE INTEGRAL AND THE END OF THE PROOF
IN THE DEGENERATE CASE

In this section we compute the integral on the right-hand side of (22):

K
I:= [ 85— ty)Eeto=tmNy20 () ph ol (4) .
[0,1]K Jj=1
It is similar to the Kadell integral (see [8]) with the difference that a Jack
polynomial in Kadell’s integral is replaced by a Jacobi polynomial and the
arguments of the polynomial are transformed.

Making a change of variables t — y and performing simple transforma-
tions, we obtain

K
T~ [ T = 0%+ ) PV ) dy,
[1,00)K j=1
where
B=Q2K+s—10+N+b+1.

Note that the integration domain changed from the cube [0, 1]% to [1, 0o
The next claim (see [18, Lemma 6.2]) allows us to return to the integration
over the cube.

).

Lemma 5.1. Let F(y) = F(y1,-..,yx) be an arbitrary polynomial. Then

K -~
[ P I - vPa+ ) tay
[1,00)K j=1
: K K _
- <sin(7rs(lg(i5;))— 1))) / Py) [T =00 +u)~dy. (23)

[-1.1]%

Here the integral on the right-hand side diverges, and it should be un-
derstood in the sense of the analytical continuation with respect to B.
Applying the lemma with F(y) = Vzg(y)ﬂz’a’g(y), we obtain that

K - ~ -
I~ / TT1 = ) (4 3) BV ()a539 ) dy.
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Note that the integral on the right-hand side is equal to the scalar product
(f-B_a,7 bag) Thus,

I~ (f*Bffn 71—”’&’5)7
where the explicit formula for the right-hand side is given in Proposition 3.4
and the analytic continuation with respect to the parameter B is assumed.
Now, (20) can be rewritten as

My (N) b0
W;\l’b’e(lN) (ffoaﬂTu )- (24)
The explicit formulas for all quantities in (24) are given by Lemmas 3.9,
3.2 and Proposition 3.4. However, the left-hand side is expressed in terms
of A, while the right-hand side is expressed in terms of p. In the rest of
this section we show how to overcome this difficulty.

We rewrite the left-hand side of (24) using (8) and (10) (which can be
applied since z = K):

My (f, 7o, 700 fi FAEY(fur, w0
— .

a PP ANY T (fo fo)| |0 2RO (AN) Fo)mhP(anN)

Since (f., f./) does not depend on A, (24) is equivalent to

(for, w5 N (f-B—a,my™?)
ib&(lN) E,?L,é(lK) ’

(25)

Using Proposition 3.4 and Lemma 3.2 and again ignoring factors that
do not depend on A, we can rewrite (25) as

N
1
HI‘Z "I+ (E-1)0 = X)) TN+ (2N -1 —i)f+2e+2'+1)

i=1

1
1;[ —B—a'+14(j — 1) —p; )T (pj + (2K —1—§)§+26—B—a+1)’

which is easily verified by making use of (13) and Euler’s reflection formula

™

I(1-2)(z) =

sinmz’

This concludes the proof of Theorem 4.1 in the degenerate case.
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§6. PROOF IN THE GENERAL CASE

In this section we prove that Theorem 4.1 holds for arbitrary z and 2z’
lying in the half-plane D. We do it in two steps.

Step 1. Let us fix z = K, N, and v € Vy_1. For A € Vy, we write
A O v if A and v satisfy the condition of Lemma 2.2 expressing the fact
that AN (\,v) # 0. Then we may write the coherency relation as

My_1(v]2,7,a,b,0) — Z Mnx(X| 2,2 ,a,b,0)AN _ (A, v) = 0.
AEVN: AY
(26)

Since z = K, the measure My is degenerate and hence the sum on the
left-hand side is finite. From the explicit formula for the z-measure given
in Proposition 3.9 it is seen that My (A | z,2’,a,b,8) is a rational function
of the parameter 2’: indeed, the part of the formula that depends on 2’
can be represented as a product of factors of the form I'(z' + z) /T'(2' + y),
where © — y is an integer.

Therefore, the left-hand side of (26) is a rational function, and it van-
ishes on the ray 2/ = K + s, s > —1, as was shown in the previous section.
Hence it is identically zero.

Step 2. Conversely, let us fix an arbitrary z’ € D and consider the
left-hand side of (26) as a function G(z) of the complex parameter z.

The function G(z) is holomorphic in the half-plane D. Indeed, z — f.|n
is a holomorphic vector function with values in the Hilbert space Hy. This
and formula (8) defining z-measures imply that the weight of any diagram
is a holomorphic function in z and the series in (26) converges absolutely
and uniformly on compact sets with respect to the parameter z € D. Hence
G(#) is holomorphic.

Since A J v and v is fixed, all coordinates A; in (26) with ¢ > 2 vary in
a finite range, so we can assume them to be fixed. We shall prove that for
Rez > 0, the quantity |[Mnx(\ | 2,2/, a,b,60)| is bounded from above by a
polynomial in z multiplied by ((A; + 1)(A2 + 1))~2, which will imply that
G(z) has at most polynomial growth at infinity, which, in turn, will imply
that G(z) is identically zero by Carlson’s theorem.

Let us examine the formula for My (A | z,2',a,b,0) given in Proposi-
tion 3.9. The product of the first four lines does not depend on z and has
at most polynomial growth in (A1, A2) because of the asymptotic relation
(12). The product in the fifth line does not depend on A and has at most
polynomial growth in z.
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Let us turn to the product in the last, sixth, line, which we split into
two parts:

N 24 (i — 1O +b+ DT(z+ 1+ (i — 1)6)
ng+l+(z—l)9 AT+ 2N -1 -0 +2e+2+1)

Xﬁ T(z+ (i —1)0+b+1)D(z+ 1+ (i — 1)0)
Sa P+ 143 —1)0 - \)D N+ 2N —-1-)0+2e+2z+1)

The first product, corresponding to i = 3,..., N, does not depend on
(A1, A2) and has at most polynomial growth in z.

It remains to handle the product over ¢ = 1,2, and here we apply the
same argument as in [18, Sec. 4, Step 3]. We obtain that this expression is
bounded from above by a polynomial in z times ((A; +1)(Aa+1))~?, where
p is a positive integer which can be chosen arbitrarily large in advance.
Taking p large enough, we compensate the possible polynomial growth
in (A1, A2) of the expressions in the first four lines. Thus, we obtain the
desired estimate.

This completes the proof of Theorem 4.1 in the general case.
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