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DEGENERATELY INTEGRABLE SYSTEMS

ABSTRACT. This is a short survey of degenerate integrability is
Hamiltonian mechanics. The first section contains a short descrip-
tion of degenerately integrable systems. It is followed by a number
of examples which include spin Calogero model, Casimir models,
integrable models on symplectic leaves of Poisson Lie groups and
some others. Bibliography: 27 titles.

Dedicated to P.P. Kulish
on the occasion of his 75 birthday

INTRODUCTION

Degenerately integrable systems are also known as superintegrable sys-
tems and as noncommutative integrable systems. We will use the term
“degenerate integrability” to avoid possible confusion with supermanifolds,
Lie superalgebras and supergeometry.

Degenerate integrability generalizes well known Liouville integrability
of Hamiltonian systems on a 2n-dimensional symplectic manifold to the
case when the dimension of invariant tori is k¥ < n. When k = n we have
to the usual Liouville integrability. This notion in its modern form, and
the term, were first introduced in [18]. Then a series of examples related
to Lie groups was found in [10]. First examples were known much earlier,
see for example [8,11,21,22].

The first section is a short introduction to degenerate integrability. Then
we give few examples of degenerately integrable systems. First example is
the Kepler system, which is also the classical counterpart of the hydro-
gen atom. Its degenerate integrability can be traced back to [8,21,22].
The next example is Casimir integrable systems. They can be regarded as
degenerations of Gaudin models. These examples are important for under-
standing semiclassical asymptotic of q-6j symbols for simple Lie algebras.
In section 3 spin Calogero—Moser systems, rational spin Ruijsenaars sys-
tem and the duality between these systems is described. This section is a
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concise version of [24]. Spin generalization of Calogero-Moser system was
first found in [13]. The better title of this section would be spin Calogero—
Moser—Sutherland—Olshanetsky—Perelomov systems [3,17,20, 26]. For Li-
ouville integrability of spin Calogero-Moser systems see [15,16]. For the
duality for non-spin case see [4,7,18]. For further discussion of duality in
the spin case see [2]. Further generalization of Calogero-Moser systems
suggested in [5,6]. Section 5 contains the proof of degenerate integrability
of relativistic spin Calogero—Moser systems, of the relativistic spin Rui-
jsenaars system and the duality between them. Results from this sections
seem to be new. The last sections describes the degenerate integrability of
Toda type systems on symplectic leaves of simple Poisson Lie groups with
standard Poisson Lie structure. It is based on [24]. The proof of degenerate
integrability in the linearized case was done in [12].

The degenerate integrability of Calogero-Moser system which is dis-
cussed in [27] has somewhat different nature.

The paper was completed while the author was visiting St. Petersburg,
ITMO and LOMI. This visit was supported by the project No. 14-11-
00598 funded by Russian Science Foundation. The author is grateful to G.
Shrader and to S. Shakirov for helpful discussions.

§1. DEGENERATE INTEGRABLE SYSTEMS

1.1. Degenerate Integrable systems. An integrable system on a 2n
dimensional symplectic manifold is called degenerate if all the invariant
submanifolds have dimension k£ < n. The nondegenerate case k = n corre-
sponds to the usual Liouville integrability (non-degenerate case). Abusing
the language we will assume k£ < n and will treat ¥ = n as a particular
case of degenerate integrable systems.

Definition 1. A degenerate integrable system on a symplectic manifold
(May,w) consists of a Poisson subalgebra Cj(May) in C(Masy,) of rank
2n — k which has a Poisson center Cr(May,) of rank k.

A Hamiltonian dynamics generated by the function H € C'(M) is said to
be degenerately integrable if H € Cy(M). If Ji, ..., Japn—i are independent
functions from Cj(M), we have

(H,J)}=0, i=1,...,2n—k.

In other words, functions J; are integrals of motion for H. One can say that
Hamiltonian fields generated by J; describe the symmetry of the Hamilton-
ian flow generated by H. In this sense, functions from Cj(Ma,,) are natural
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to call (Poisson commuting) Hamiltonians, while functions C'y(Ma,) with
be called integrals of motion for Hamiltonians.

The level surface M(cy, ..., can—) = {x € M|J;(z) = ¢;} of functions
Ji is called generic relative to Cr(May,) if for n independent functions
I,...,I;, € C{(Msy,) the form dI; A --- AdI} does not vanish identically
on it. Then the following holds [18]:

Theorem 1. (1) Flow lines of any H € Cr(May,) are parallel to level
surfaces of J;.
(2) Each connected component of a generic level surface has canonical
affine structure generated by the flow lines of I, ..., Ij.
(3) The flow lines of H are linear in this affine structure.

When k£ = n this theorem reduces to the Liouville integrability. As a
consequence, each generic level surface is isomorphic to R! x (S1)F~! for
some 0 <[ <k.

The notion of degenerate integrability has a simple semiclassical mean-
ing. In the Liouville integrable systems when there are n Poisson commut-
ing integrals on a 2n dimensional symplectic manifold the semiclassical
spectrum of quantum integrals is either non-degenerate or has stable de-
generacy which is determined by the number of connected components of
fibers in the Lagrangian fibration given by Hamiltonians.

In degenerate integrable systems the semiclassical spectrum of quan-
tized commuting integrals I; is expected to be degenerate with the mul-
tiplicity h"*vol(p~1(b))(1 + O(h)). Quantization of the Poisson algebra
generated by J; gives the associative algebra, which describes the symme-
try of the joint spectrum of quantum integrals.

Geometrically, a degenerate integrable system consists of two Poisson
projections

Map = Pyt > By, (1)

where P»,_j; and Bj are Poisson manifolds and Bj has trivial Poisson
structure. In the algebraic setting P, _j is the spectrum (of primitive
ideals) of Cj(M) and By, is the spectrum of Cy(M). Fibers of p are (pos-
sibly disjoint unions of) symplectic leaves of P.

One should emphasize that degenerate integrability is a special struc-
ture which is stronger then Liouville integrability: invariant tori now have
dimension k& < n. In the extreme case k = 1 all trajectories are periodic.
A degenerately integrable system may also be Liouville integrable, but
degenerate integrability carries more information.
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The projection porw : M — By, defines the mapping of tangent bundles
d(pon): TM — TByg. This gives the distribution

Dp =w Yker(d(pom)t) c TM
where the symplectic form w is regarded as an isomorphism TM ~ T* M

and of ker(d(por))t C T*M is the subbundle orthogonal to ker(d(po)) C
TM.

Proposition 1. Leaf of Dp through x € M coincides with 7= (n(x)).

We will say that two degenerate integrable systems (M, P, B) and
(M’, P, B’) are spectrally equivalent if there is a collection of mappings
e ¢: M — M, a mapping of Poisson manifolds,
e ¢ : P — P’ a mapping of Poisson manifolds,
e ¢ : B ~ B’, a diffeomorphism.

such that the following diagram is commutative

M—¢>M’

P——P

lp ) l

B——pB

Note that the mappings ¢ and ¢; may not be diffeomorphisms. If they are
diffeomorphisms then the systems are called equivalent or diffeomorphic
degenerately integrable systems.

1.2. Action-angle variables. Degenerate integrable systems admit ac-
tion-angle variables, see [18].

For a generic point ¢ € Py, the level surface 7r’1(c) admits angles
coordinates ;. This is an affine coordinate system generated by by flow
lines of Hamiltonian vector fields of integrals Iy,...I; [18]. In a tubular
neighborhood of p~!(c) the symplectic form w on M can be written as

k
WZWC"’Zd‘Pi/\dIiy

i=1

where w, is the symplectic leave through c in P, .
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1.3. Kepler system. In this case the phase space is M = R® with coor-
dinates, p;, ¢;,7 = 1,2,3 and with symplectic form
3

w= Z dp; N dg’
i=1
The Hamiltonian is )
v
H=_p’— —
2 ||

The non-commutative Poisson algebra of integrals is generated by mo-
menta M; and components of the Lenz vector A;:

My =p2q® —psq®, Mo =psq' —;id®, Mz =pig® — pag*
1 2

q
—, Ay =psM; —p Ms +7q—a
lg lg

A =pi My —po My +

Ay =pa Mg —psMs + v

7

[
In vector notations M = pxqgand A =px M + 'y‘%:‘. Components of M
and A have the following Poisson brackets:

{M;, M;} = eiju My, {M;,A;j} =eijnAr, {Ai,Aj} = —2He; My, (2)
{H,M;} ={H, A4} =0
The momentum vector M and the Lenz vector A satisfy extra relations
(M,A) =0, (A, A) =+>+2(M,M)H (3)

Denote by Ps the 5-dimensional Poisson manifold which is a real affine
algebraic submanifold in R” with coordinates M;, A;, H defined by rela-
tions (3) and with Poisson brackets (2).

Formulae for M, A, and H in terms of p and ¢ coordinates describe the
Poisson projection R® — P5. The following describes level surfaces of H
is P5.

The level surface H = E < 0 is the coadjoint orbit O_g C so(4)*.
This orbit is isomorphic to S? x S? where each S? has radius v//2|E|
and S? x S? is naturally embedded into so(3)* x so(3)* ~ R3 x R3. We
used the natural isomorphism so(4)* ~ s0(3)* x s0(3)* where left and right

* : _ A — Aj
s0(3)* components are given by L; = M; — ol and R; = M; — ek

The level surface H = 0 is coadjoint orbit in e(3)* which is isomorphic
to T'S? and the sphere has radius v, (4, 4) = v2.
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The level surface H = E > 0 is the hyperboloid Op which is the

coadjoint orbit in so(3,1)* with natural coordinates M and B = —A—

\/ﬁ
and with Casimir functions (M, B) =0 and (B, B) — (M, M) = ~%
All of these level surfaces are symplectic manifolds and we just described
symplectic leaves of the Poisson manifold Ps.
This structure correspond to the following sequence of Poisson maps:

R - P, >R
where
Ps ~ L|E<052 X 52 Lp—0 TS2 UEso Og (4)

The first projection is the map (p,q) — (M(p,q), A(p,q), H(p, q) and sec-
ond one projects P5 to the E-axis.

§2. CASIMIR INTEGRABLE SYSTEMS

2.0.1. Casimir integrable systems. Here we describe complex algebraic ver-
sion the Casimir system. In this section G is a complex algebraic group
and g is it Lie algebra. The phase space of the Casimir system is the
Hamiltonian reduction of the product of coadjoint orbits O; x --- x O,
Mo, . o, ={(x1,...,2,) €01 X --- X Oplz1 + -+ 2z, =0}/G

Here we assume that each orbit is regular (passes through a regular element
of h*).

The coadjoint action of the Lie group G on g* is Hamiltonian. The
moment map O1 X --- X O, — g* for the diagonal action of G on O; x
- x O, acts is

(1, Tp) > 1+ -+ oy
It is G-invariant, therefore we have a natural map of Poisson manifolds
p:Moyx..xo, = (01 % - x 0,)/G — g"/Adg
Here the quotient space is the GIT quotient. The Hamiltonian reduction
gives symplectic leaves of Poisson manifold Mo, x...x0,:
M01><~~~><On|(9n+1 = N71(0n+1)

We have natural symplectomorphisms:
Mo, % %0, |0n 11 = MOy xx0,,—0, 41

and Mo, .0, = Mo,,.. 0.0}
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Define the Poisson manifold P;s as the fibered product’.

Pr,g = Mo,,,...0:, Xg+jc Mo, ....0

2
where (I, .J) is a partition of (1,...,n) as above and the twist is z — —z.

The following Poisson maps define the Casimir integrable system in the
complex algebraic setting:

Mao,....0, — Prj— Brsg"/ Adg

where By ; is the image of the last map and the maps are

Ad5($17-~-a$n) = (Ada(xilﬂ"'7xik)7AdE(xj17'"7xjn—k)) =
Adg(xll +...+xik) = Ada(le - 7xjn—k)

The variety By has dimension r but it is, “generically” smaller then
9"/ Adg-

2.1. “Relativistic” Casimir systems. We will keep the same data as
in the previous sections. Let C; C G be conjugation orbits, i = 1,...,n.
The moduli space of flat G-connections on a sphere with n punctures is a
Poisson manifold with the Atiyah—Bott Poisson structure. Assigning con-
jugacy classes to punctures fixes a symplectic leaf of this Poisson manifold:

Mey,..e. ={(g1,-.-,9n) €ECL X -+ X Cplg1...9n =1}/G

where G acts on the Cartesian product by diagonal conjugations. The
Poisson structure on the moduli space itself, i.e. on M = {(g1,...,9n) €
GXx---xG|g1-..9n =1}/G can be described using classical factorizable
r-matrices as in [9].

The group G acts on the product C; x C,, by diagonal conjugations. This
action is Poisson and the mapping

CixCph— G, (g1y---39n) = g1 ---9n

1Recall that given two projections 71 2 : M1,2 — N, the fibered product of M1 and
M> over N is

My xn My = {(x1,22) € My X Ms|mi(x1) = mo(z2)}
If 0 : M2 — My is a diffeomorphism, the fibered product twisted by o is
M1;NM2 = {(:Ehévz) € My x M2|71'1(I1) = 71'2(0’(:E2))}
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is the group valued moment map for this action [1]. It commutes with the
conjugation action of G and gives the Poisson map

Me,....c. — G/ Adg
where

Mey,.co ={(g1,---,9n) €C1 X - X Cp} /G
As in the previous section, define the Poisson varieties

PI,J(Cla .. 7C’n) = MC,‘IW,C% XG/ Adg Mle,...,Cjn_k

where I,.J is a partition (1,...,n) = I U J. Where the twisted fibered
product is defined in the previous section. The twist is given by ¢ : g —
-1
g .
Relativistic Casimir integrable system is described by the following se-
quence of Poisson maps

Mey....e. = Pr.y(Cu,...,Cn) — Brs(Ci,...,Cr) C G/ Ada
acting as

Ada(g1,. -, 9n) — (Ada(gi, - - - 9i)s

AdG (95139, 1)) = (931 -+ 90) = [(91 -+ 9j. )] € G/ Adg

Here B,y is the image of the last map, which has dimension r but is,
generally, smaller then g*/ Adg,.

§3. CALOGERO-MOSER SYSTEMS

3.1. Degenerate integrability. Spin Calogero—-Moser systems are pa-
rameterized by pairs (g,O) where g is a simple Lie group and O is a
co-adjoint orbit in g. Calogero and Moser discovered such systems for Lie
algebras of type A and coadjont orbit of rank 1. Sutherland generalized
them to trigonometric and hyperbolic potentials. Olshanetsky and Perelo-
mov generalized them to all simple Lie algebras and to elliptic potentials.
Here we will focus on trigonometric potentials.

The degenerate integrability of spin Calogero-Moser systems is given
by the following collection of Possin projections.

*

* * X *
TlG g hl/wg - gl

T*G/ Adg — (g% Xy yw 6°)/G ——b* /W ~ g*/ Ad
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Here g x « sy g™ is the fibred product of two copies of g* over h*. The maps
in the upper row of the diagram act as (z, g) — (2, — Ad(z)), L(z,y) = =,
and R(z,y) = y. Here and below we assume that the co-adjoint bundle
T*@ is trivialized by left translations T*G ~ g* x G and has a standard
symplectic structure of a cotangent bundle. The lower horizontal sequence
of Poisson maps is at heart of degenerate integrability of spin Calogero—
Moser systems [24].
Recall that classical spin Calogero—Moser systems are parameterized
by co-adjoint orbits O C g*. If O is passing through ¢ € b*, then it
is also passing through each w(t) where w € W is an element of the
Weyl group. We will denote such orbit passing through ¢ by O where
[t] € b* /W is the orbit of ¢ with respect to the Weyl group action. When g
is a real compact form of a simple Lie algebra, we can identify h*/W with
r

> 0={> zw;i|z; € Ry}, where are fundamental weights of g and r is
i=1

the rank olf g.

For a generic co-adjoint orbit O the phase space of the correspond-
ing spin Calogero-Moser system is the symplectic leaf Sy = u='(Opy) /G
where p : T*G — h* is the moment map for the adjoint action of G:

u(r,g) =z — Ady(z) € g
Here z € g*,g € G.

The sequence of projections from the diagram above produces the se-
quence of Poisson projections

St — Usien yw Mis), (s — Brgg € b°/W (5)
Here the moduli space M, 1 (5,117 18 defined as
M[sl},[w”m = {(331,332) € O[Sl} X 0[52”1‘1 + x5 € O[t]}/G

and By = {[s] € */W|Mq 151y # D} Note that By is unbounded
but if ¢ # 0 it does not contain the vicinity of zero. Its dimension is
r = rank (G). The series of projections (5) describes the degenerate in-
tegrability of classical spin Calogero—Moser model. The Hamiltonian of
the classical spin Calogero—Moser system is the pull-back of the quadratic
Casimir function on h*/W to Sp;. Taking into account the isomorphism
Sy =~ (T"h x Oy //H)/W (assuming, as above, that t is generic), were
O}y//H is the Hamiltonian reduction of Op) with respect to the coadjoint
action of H, the Hamiltonian of classical spin Calogero—Moser system can
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be written as

MPalb—o
Hsenr = (p,p) + 5
QEZA+ (hoz/2 - hfoz/Z)z

where p, hy are coordinate functions on T*h and pgp—4 is a function on
Oly//H (the Hamiltonian reduction of Op; with respect to the action of
the Cartan subgroup) see [24] for details. One can check that the Poisson
algebra C'(Sp,) is isomorphic to the subalgebra of W-invariant functions
from Pol(p,ht') ® C(O;//H) with the Poisson structure

{piypj}:07 {pivha}:aihav {hmhﬁ}zo

Poisson algebra C'(O,//H) of functions on the Hamiltonian reduction of O;
with respect to the Hamiltonian action of His the quotient of the Poisson
algebra of H-invariant functions on O, with respect to the Poisson ideal
generated by Cartan components of ;.
Note that the evolution with respect to a central function F' on g*
quite simple:
(X,9) = (X, V)

where VF is the gradient (with respect to the Killing from on g of F.
This formula becomes somewhat complicated after the projection T*G —
T*G/G.

2. Rank 1 orbits for SL,. In this case
ij = Qithj — 0ijk,
where k = Z ¢;1;. The Hamiltonian reduction with respect to the ac-

tion of the Cartan subgroup introduces constraint p; = 0 which implies
¢i10; = k. In this case

pijigi = Giti; v = K
which means, in particular that the Hamiltonian reduction of a rank 1

orbit is a point. The spin Calogero—Moser system for such orbits becomes
Calogero—Moser system with the Hamiltonian. Which is equal to

HCM - p7 +Z
i<j

4sm 111 ‘1]

for the compact real form of G.
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§4. RATIONAL SPIN RUIJSENAARS SYSTEMS

4.1. Degenerate integrability. Let us denote by (T*G, p) the Poisson
manifold which is T*G as a manifold, which we assume trivialized T*G ~
g x G by left translations with the Poisson algebra structure on C*°(T*G)
defined uniquely by the following properties:
e The subalgebras C>°(g*) and C*°(@) are Poisson subalgebras with
the standard and trivial Poisson structures respectively.
e Poisson bracket between a linear function X € g on g* and f €
C>(G) is
{X,f}=Lx —Rx)f
where Lx and Rx are the left and right invariant vector fields on
G generated by X.

Note that this Poisson structure differs from the standard symplectic
structure on the cotangent bundle to a manifold. Symplectic leaves of
(T*@G, p) are products O x C where O C g* is a co-adjoint orbit and C C G
is a conjugacy class.

The adjoint action of the group G (the extension of the adjoint action
from G to T*G) on (T*G,p) is Poisson, thus (T*G,p)/G has a natural
Poisson structure. The symplectic leaves of the quotient space are (O x
C)/G where G acts diagonally on the product.

It is easy to check that the map T*G — (T*G,p) acting as (z,g) —
(z —Adj(x), ) is Poisson and it is clear that it commutes with the adjoint
G-actions. It induces Poisson map

¢ . T*G/ AdG - (T*G,p)/AdG .
We also have a natural projection
7: (TG, p)/ Adg — G/ Adg .
acting as Adg(z,g) — Adgg. This projection is Poisson with the trivial
Poisson structure on the base.
Restricting ¢ to a symplectic leaf of T*G/ Adg?, we have the sequence

of Poisson maps describing degenerate integrability of rational spin Ruije-
naars (sR) systems

S(0) — P(O) — B(O) C G/ Adg .
Here S(O) is the symplectic leaf of T*G/ Adg corresponding to the coad-
joint orbit O € g*, P(O) = ¢(S(0)) = (O x 0)/G C (T*G,p)/G, and

2Symplectic leaves of T*G/ Adg are described earlier.
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B(0O) = =(P(0)). Note that 7 is surjective and fibers of ¢ has dimen-
sion dim(B(0O), which is, generically, r. Recall that symplectic leaves of
T*G/ Adg are perimages of coadjoint orbits with respect to the moment
map, S(O) = {(z,g)|x — Ad,(z) € O} /G. The fiber of the last projection
is the symplectic leaf of P(O):

P(0,C) = {(z — Ady(z),9)|lz € 0,9 € C}/G

As in the case of the spin Calogero-Moser, the dimension of B(O) is r for
generic O but for degenerate orbits it is less and for maximally degenerate
non-trivial orbits it is 1-dimensional.

4.2. Hamiltonians for SL, rank 1 orbits. Here we assume G = SL,,.
In this case we can this of both g and g* and traceless n X n matrices. We
also assume that O C g* is an orbit through a semisimple element and that
u=x—grg 't c O. If we choose the cross-section of the adjoint G-action
on TY, where z;; = d;;hi, the symplectic leaf S(O) € T*G/G (its open
dense subset) has coordinates h;, pi;ft;; gi;. The Hamiltonian reduction
imposes the constraint p; = 0. Elements g;; satisfy the equation

n
(hi = hj)gij = Y _ tikgnj - (6)
k=1

We will not try to solve this equations here, in order to find Hamiltonians
for rank > 1 orbits. In the next section we will do it for rank 1 case (this
computation can also be found in many other paper, see for example [18]
[4].
In this case
pij = ¢ipj — dijk

where kK =< ¢,1 > /n as in the rank 1 case of Calogero Moser. The
equation (6) implies

(hi = hj)gij = &i Y rgrj — Kij
s

From here we have

1
ij = i j 7
= oy % D e (7)
This gives the system of equations for ;¢;
n
o _ .

— h,'—hj-I—I{
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and the identity
_div
9ii = ; Z d)kgkz (9)
k=1
The equation (8) can be solved explicitly:
h; — hj + K
Piv; = H Thioh
J#i
Equations (9) and (7) give the formula for g;;
 did) kg
gy = hifhj—i-li )

Reduced Poisson brackets are log-linear in coordinates h;, u;’
{h,’,h]’} = O, {hi,uj} = (5,’j, {ui,uj} =0
where u; is related to g;; as

i hifhj-i-lﬂ

g’LZ 2 hz—h]

J#

The first two elementary G-invariant functions of g are

tr(g) = Zgn’,
i=1
r(g®) = K gugj :
= (hi = hy + ) (hj — hi 4 K)

The second function gives the Hamiltonian of the rational Ruijsenaars
system.

1 . he —hy + Kk
H™ = xa(0) = 5(ir(g") ~tr(9)) = = Dwy [] =550
i<j ac{ij},be{ij}Vv ¢ ’

Here {i,5} C {1,...,n} and {4,5}" is its complimentary subset. Char-
acters of fundamental representations x.,(g) evaluated on elements g de-
scribed above are classical analogs of rational Macdonald operators.

3To be more precise the algebra of functions on S(0) is isomorphic to the algebra
of symmetric polynomials in p;, u®?!.
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4.3. Duality. A duality relation between spin Calogero—Moser systems
and systems which we will call rational spin Ruijsenaars systems was ob-
served in [19] [9] (see also references therein). This is a duality between
two Liouville integrable systems which maps angle variables of one sys-
tem to the action variable of the other system. The duality between spin
Calogero—Moser and rational spin Ruijsenaars systems (as the duality of
degenerately integrable systems) was found in [24]. Here we will recall this
property.

Let F(G(x,7v)) be the fiber of the projection ¢ : T*G /G — (9" X4+ /¢
g*)/G containing G(z,7). Recall that (G (z,7v)) = G(z, — Ad}(x)). Tt is
clear that

F(G(z,v)) = G(z, Zy)

where Z, = {g € G|Ad,(x) = x}. This fiber is the Liouville torus of
the spin C-M system passing through the point G(z,v). It projects to
Adg(x) € g*/G on the base of the last projection in (5). Hamiltonian flows
of functions on g*/G generate angle variable for spin C-M system, i.e. an
affine coordinate on F(G(x,7)). Generic fiber F(G(z,~)) has dimension
r = rank (G).

Define F(G(z7)) as a fiber of the map ¢ : T*G/G — (T*@, p)/G which
contains G(z,7). Recall that ¢(z,v) = (z — Ad’(x),7). Tt is easy to see
that

F(G(z,7)) = Gz + Cy,7)

Here C,, = {z € g*|Ad}(z) = =x}. This fiber is the Liouville torus of
the rational spin Rujsenaars system passing through G(z,~). Hamiltonian
flows of functions on G/ Adg generate an affine coordinate system on it
which is the collection of angle variables for the rational spin Ruijenaars
system.

Theorem 2. The fibers F(G(z,7)) and F(G(z,)) are dual in a sense
that

F(G(z,7) NF(G(z,7)) = G(z,7)

For rank 1 orbits, when both systems are Liouville integrable, this du-
ality reduces to the one from [4,19].
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§5. RELATIVISTIC SPIN CALOGERO—MOSER AND SPIN
RUIJSENAARS SYSTEMS

5.1. Relativistic spin Calogero—Moser system.

5.1.1. Hamiltonian structure and degenerate integrability of relativistic spin
Caloero—Moser and Ruijsenaars models. The underlying Poisson manifold
for relativistic spin Calogery—Moser system is a “nonlinear” version of
T*@G which is known as a Heisenberg double H(G) of G with the standard
Poisson Lie structure. Equivalently H(G)/G where G acts by diagonal
conjugations can be regarded as the moduli space of flat connections on a
punctures torus (see [9]).

As a manifold the Heisenberg double is H(G) = G x G. A point (x,y)
should be regarded as a pair of monodromies o the local system on a
punctures torus around two fundamental cycles. The monodromy around
the puncture is zyz 'y ~!. The Poisson structure on H(G) can be described
in terms of r-matrices for standard Poisson Lie structure on G. Poisson
brackets between coordinate functions can be written as [7]:

{5171,332} = T12T1T2 — T1X2T21 + X1T21X2 — To2T1227

{®1,y2} = —ro121y2 — T1yar21 + T1T21Y2 — Y2r1271 (10)

{Y1,y2} = r12y192 — y1yarar + y1r21Y2 — Yar12y1
Here z and y are matrix elements of £ € G in some finite dimensional
representation with some basis (these matrix elements from a basis in the
space of regular functions on ). The matrix ry» is the result of evaluation
of the universal classical r-matrix from section 6.1 in the tensor product
of two finite dimensional represenations of G.

The phase space of relativistic Calogero—Moser system is the symplec-
tic leaf of the moduli space H(G)/G corresponding to fixing the conjugacy
class of the monodromy zyz~'y~' around the puncture. In terms of Pois-
son geometry, this symplectic leaf can be described as follows.

The map H(G) — G, (z,y) — x is the G-valued moment map for the
left action of the group on H(G) (regarded as non-linear version of the
cotangent bundle on G trivialized by left translations). The map H(G) —
G, (z,y) — yxy~! is the group valued moment map for the corresponding
right action of G. The map p: H(G) — G, p : (z,y) — zyx~ty~! is the
group valued map corresponding to the conjugation action. For details on
group valued moment maps see [1]. Thus,

M(C) =p~H(C) C H(G)/G
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is the symplectic leaf corresponding to the conjugacy class C of the mon-
odromy around the puncture. Here GG acts by conjugation.

Hamiltonians of the relativistic spin Calogero—Moser system correspond-
ing to the conjugacy class C are conjugation invariant functions on G,
i.e. functions on G//G. The Hamiltonian corresponding to f € CY(G) is
Hy(w,y) = f(@).

The degenerate integrability of the relativistic spin Calogero—Moser sys-
tem is described by restricting the following sequences of Poisson maps:

(GXG)/G—>(GQG/AdGG)/GHG/AdG (11)
to the symplectic leaf M(C). Here the fibered product is twisted as in the
relativistic Casimir system by g — ¢! and [(z, y)] — [(z,yz "'y~ ")] — [2].
For compact simple Lie group G this gives the degenerate integrability of
relativistic spin Calogero systems:

M(C) — {G(g1,92)|G(91) = G(g2), 9192 €C} — B(C) C G/G
where B(C) = {C' € G/G|M(C',C'",C) # @}.

Hamiltonians of relativistic spin Ruijsenaars system are Hy(z,y) = f(y)
where f € C%(G) is a function on G, invariant with respect to conjuga-
tions.

The degenerate integrability of relativistic spin Ruijsenaars system is
given by restricting maps

(GxG)/G— (GxG)G—G/G
where G(x,y) — G(zyx~ty~1,y) — Gy, to a symplectic leaf of (G xG)/G.

Two systems are related as follows.

Proposition 2. The mapping G x G — G x G, (z,y) — (y,z7!) is a
Poisson map and it induces the symplectomorphism M(C) — M(C) which

maps relotivistic spin Calogero—Moser system to relativistic spin Rujse-
naars system.

The proof is straightforward.

5.1.2. Duality. Let us prove that the two systems are dual in a sense of
intersection property of Lioville tori.
Let 7 be the projection

(Gx Q)G — (GXa/aG) /G, Gla,y) — Gz,yz " y™")
and my be the projection
(GxG)/G—(GxQ)[G, Glx,y) — Glayz™y™",y),
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Denote fibers of these projections through the point G(z,y) € (G x G)/G
by Fi (G(z,y)) and F>(G(x,y)) respectively. The following is easy to prove.

Proposition 3. For generic (z,y we have:

1) Fl (C(f(a:,y)) = {G(z,yz)|z € Z,} where Z, is the centralizer of x
2) Fo(Gla,y)) = (Glaz, )|z € Z,)
3) Fi(G(z,y)) N F2(G(z,y) = G(z,y)

5.1.3. Hamiltonians for rank 1 conjugacy classes in SL,. Assume that
2z = zyx~'y~! € SL, belongs to the rank 1 conjugacy class. For generic
rank 1 conjugacy class this means

z= Udia’g (qn_17 q,---, q)u_l
for some v € SL, and ¢ € C*. Equivalently, we can write
2ij = ¢itby +q 10y

where (¢, ) = é%@ — gt — gL

=
Hamiltonians of relativistic Calogero-Moser and relativistic Ruijenaars
system are

HiM = x (@), HF = xu, ()

Let us compute them in appropriate coordinates.
First, assume x is semisimple and bring it to the diagonal form with

eigenvalues z1,...,Z,. From the definition of z we have
n n
Yyijrj = Zwkykj =i ZW%%;‘ —q 'wiyi (12)
k=1 k=1
From here we have:
n
Pi Z 1/kal?kykj
k=1
Yij = _
Y T —q 'z

Multiplying by ¢;%; and taking sum over ¢ gives the following equation for
Vi

Zn: Yigiwi 1
el
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Solving this equation we have

_ 1—gqx
Yigs = (1—q )z 1H . L

i 11—z,

When i = j, (12) implies
_ Pi
Yii = :L’l(]. — q,l) Zk:wkmkykz
Solving this for > Yxxryr; we have
k

¢ty (1 —q Yyj;

1

Yig = 1—qloz;
Now we can compute Hamiltonians of rsR model in terms of y;; and z;.

For the first two we have

n
v) = i
j=1

1- q’l *Yiiyjs
D e R
Poisson algebra C'(M(C) is isomorphlc to the algebra of symmetric Lau-
rant polynomials in y;; and z; (with respect to the diagonal action of the
symmetric group) with following Poisson brackets between x and y:

{lL‘i,ZL‘j} = 0, {a:i,uj} = 52']':L‘,'Uj, {ui,uj} =0

where
-1

1—gq x]x_l
O | e
J#

The Hamiltonians ., (y) are classical analogs of Macdonald operators.
The Hamiltonian of the relativistic Ruijsenaars model is

_ 1—q¢ 'z z; !
TR EED ST | G
i<j ac{ij}be{ij}v Laly

The mapping (z,y) — (y,x~!) intertwine the relativistic Calogero-Moser
system and Relativistic Ruijenaars system. So, the Hamiltonian of rela-
tivistic Calogero-Moser model is given by essentially the same formulae.
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§6. CHARACTERISTIC SYSTEMS ON SIMPLE POISSON LIE GROUPS
WITH STANDARD POISSON LIE STRUCTURE

6.1. Symplectic leaves and degenerate integrability of charac-
teristic system. Standard Poisson Lie structure on a simple Lie group
requires a choice of a Borel subgroup in G. This fixes a Catran subalgebra
b, the root system and positive roots. Assuming that the tangent bundle
TG is trivialized by left translations TG ~ g x G, the Poison bivector field
corresponding to the standard structure is

1,
n(z) = Ad,(r) — r, r:§;h ®hi+az>:0E“®F“

Here o and positive roots of g, E,, F,, are corresponding elements of the
basis in g, r is the rank of g, h; is a basis in the Cartan subalgebra b
and h? is the dual basis with respect to the Killing form. We assume that
gAgCg®g.

Symplectic leaves of any Poisson Lie group are orbits of the dressing
action of the dual Poisson Lie group. For a simple Lie group G with the
standard Poisson Lie structure are known to be fibers of the fibration of
double Bruhat cells over tori inside of the Cartan subgroup H of G. Recall
that a double Bruhat cell in G is the intersection of a Bruhat cell for B
and a Bruhat cell for B~:

G"“Y" = BuBNB vB~

where BuB is defined as BuB C G, where u € W and uw € N(H) C G is
its representative in the normalizer of H, and B~ vB~ is defined similarly.
Generalized minors give a natural fibration

GUY <——— Qusv

|

Tu.v

For the explicit description of it see, for example [23] and references therein.

Hamiltonians of the characteristic integrable system are central func-
tions on G. There are only r independent central functions which can be
chosen as characters of fundamental representations. Their restriction to
a generic symplectic leave of G generate a degenerately integrable sys-
tem [23]. Poisson projections describing degenerate integrability can be
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described as follows:
Sup — P*? — Adg Su,v. (13)

Here P*? = (S™¥ x S™")/ Adg~ where S*? x §™¥ C G x G and the dual
Poisson Lie group G* is embedded in G x G as usual G* = {(b",b7) €
Bx B~ CGxG|bo = 'Jo}, where [b]y is the Cartan component
of b € B. The first map is the diagonal embedding, the second map is the
projection to (G x G)/ Adgx¢ followed by the projection to any of the
factors in the Cartesian product.

In other words, characteristic Hamiltonian systems are integrable and
their Liouville tori are intersections of adjoint orbits of G and of orbits of
the dressing action of G* (which are symplectic leaves of G).

6.1.1. Hamiltonian flows as the factorization dynamics. Let G be a fac-
torizable Poisson-Lie group. Standard Poisson Lie group structure on a
simple Lie group is an example of a factorizable Poisson Lie group. Let
I(G) C C*(G) be the subspace of Adg-invariant functions on G.

Let G* be the dual Poisson Lie group to GG. It has a natural embedding
to G x GG described above. The multiplication in G, together with this
embedding gives the mapping G* — G, (by,b_) +— b b_'. When the
inverse exists g — (g+,9—) (in a vicinity of the unit element in G it is
unique when it exists), it is called the factorization map. Note that at the
level of Lie algebras there is always a linear isomorphism g — g*, such that
r=a4+x0+2_ — (rp + 52, —2x_ — ). It is called the factorization
isomorphism.

The dynamics of characteristic systems can be described explicitly by
the following theorem [25]:

Theorem 3. Assume the factorization map is defined and unique on an
open dense subset of G, then
1) I(G) is a commutative Poisson algebra in C*°(G).
ii) In a neighborhood of t = 0 the flow lines of the Hamiltonian flow
induced by H € I(G) passing through x € G at t = 0 have the form
z(t) = g=(H) g (t),
where the mappings g+ (t) are determined by
g+(t)g—(8)"" = exp (t1 (d H (x))) ,

and I : g* — g is the inverse to the factorization isomorphism.
Here diH(xz) € g* is the left differential of H(z). For X € g,
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1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

assuming the left trivialization of TG we have < d;H(x), X >=
%H(etxx)h:g where < .,. >: g* x g — C is the natural pairing
(assuming we are over C).
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