
úÁ�ÉÓËÉ ÎÁÕÞÎÙÈÓÅÍÉÎÁÒÏ× ðïíé�ÏÍ 433, 2015 Ç.N. ReshetikhinDEGENERATELY INTEGRABLE SYSTEMSAbstra
t. This is a short survey of degenerate integrability isHamiltonian me
hani
s. The �rst se
tion 
ontains a short des
rip-tion of degenerately integrable systems. It is followed by a numberof examples whi
h in
lude spin Calogero model, Casimir models,integrable models on symple
ti
 leaves of Poisson Lie groups andsome others. Bibliography: 27 titles. Dedi
ated to P.P. Kulishon the o

asion of his 75 birthdayIntrodu
tionDegenerately integrable systems are also known as superintegrable sys-tems and as non
ommutative integrable systems. We will use the term\degenerate integrability" to avoid possible 
onfusion with supermanifolds,Lie superalgebras and supergeometry.Degenerate integrability generalizes well known Liouville integrabilityof Hamiltonian systems on a 2n-dimensional symple
ti
 manifold to the
ase when the dimension of invariant tori is k < n. When k = n we haveto the usual Liouville integrability. This notion in its modern form, andthe term, were �rst introdu
ed in [18℄. Then a series of examples relatedto Lie groups was found in [10℄. First examples were known mu
h earlier,see for example [8, 11, 21, 22℄.The �rst se
tion is a short introdu
tion to degenerate integrability. Thenwe give few examples of degenerately integrable systems. First example isthe Kepler system, whi
h is also the 
lassi
al 
ounterpart of the hydro-gen atom. Its degenerate integrability 
an be tra
ed ba
k to [8, 21, 22℄.The next example is Casimir integrable systems. They 
an be regarded asdegenerations of Gaudin models. These examples are important for under-standing semi
lassi
al asymptoti
 of q-6j symbols for simple Lie algebras.In se
tion 3 spin Calogero{Moser systems, rational spin Ruijsenaars sys-tem and the duality between these systems is des
ribed. This se
tion is aKey words and phrases: integrable systems.224



DEGENERATELY INTEGRABLE SYSTEMS 225
on
ise version of [24℄. Spin generalization of Calogero{Moser system was�rst found in [13℄. The better title of this se
tion would be spin Calogero{Moser{Sutherland{Olshanetsky{Perelomov systems [3, 17, 20, 26℄. For Li-ouville integrability of spin Calogero{Moser systems see [15, 16℄. For theduality for non-spin 
ase see [4, 7, 18℄. For further dis
ussion of duality inthe spin 
ase see [2℄. Further generalization of Calogero{Moser systemssuggested in [5,6℄. Se
tion 5 
ontains the proof of degenerate integrabilityof relativisti
 spin Calogero{Moser systems, of the relativisti
 spin Rui-jsenaars system and the duality between them. Results from this se
tionsseem to be new. The last se
tions des
ribes the degenerate integrability ofToda type systems on symple
ti
 leaves of simple Poisson Lie groups withstandard Poisson Lie stru
ture. It is based on [24℄. The proof of degenerateintegrability in the linearized 
ase was done in [12℄.The degenerate integrability of Calogero{Moser system whi
h is dis-
ussed in [27℄ has somewhat di�erent nature.The paper was 
ompleted while the author was visiting St. Petersburg,ITMO and LOMI. This visit was supported by the proje
t No. 14-11-00598 funded by Russian S
ien
e Foundation. The author is grateful to G.Shrader and to S. Shakirov for helpful dis
ussions.
§1. Degenerate Integrable systems1.1. Degenerate Integrable systems. An integrable system on a 2ndimensional symple
ti
 manifold is 
alled degenerate if all the invariantsubmanifolds have dimension k < n. The nondegenerate 
ase k = n 
orre-sponds to the usual Liouville integrability (non-degenerate 
ase). Abusingthe language we will assume k 6 n and will treat k = n as a parti
ular
ase of degenerate integrable systems.De�nition 1. A degenerate integrable system on a symple
ti
 manifold(M2n; !) 
onsists of a Poisson subalgebra CJ(M2n) in C(M2n) of rank2n− k whi
h has a Poisson 
enter CI (M2n) of rank k.A Hamiltonian dynami
s generated by the fun
tionH ∈ C(M) is said tobe degenerately integrable if H ∈ CI(M). If J1; : : : ; J2n−k are independentfun
tions from CJ(M), we have

{H; Ji} = 0; i = 1; : : : ; 2n− k:In other words, fun
tions Ji are integrals of motion forH . One 
an say thatHamiltonian �elds generated by Ji des
ribe the symmetry of the Hamilton-ian 
ow generated byH . In this sense, fun
tions from CI (M2n) are natural



226 N. RESHETIKHINto 
all (Poisson 
ommuting) Hamiltonians, while fun
tions CJ(M2n) withbe 
alled integrals of motion for Hamiltonians.The level surfa
e M(
1; : : : ; 
2n−k) = {x ∈ M|Ji(x) = 
i} of fun
tionsJi is 
alled generi
 relative to CI(M2n) if for n independent fun
tionsI1; : : : ; Ik ∈ CI (M2n) the form dI1 ∧ · · · ∧ dIk does not vanish identi
allyon it. Then the following holds [18℄:Theorem 1. (1) Flow lines of any H ∈ CI(M2n) are parallel to levelsurfa
es of Ji.(2) Ea
h 
onne
ted 
omponent of a generi
 level surfa
e has 
anoni
alaÆne stru
ture generated by the 
ow lines of I1; : : : ; Ik.(3) The 
ow lines of H are linear in this aÆne stru
ture.When k = n this theorem redu
es to the Liouville integrability. As a
onsequen
e, ea
h generi
 level surfa
e is isomorphi
 to Rl × (S1)k−l forsome 0 6 l 6 k.The notion of degenerate integrability has a simple semi
lassi
al mean-ing. In the Liouville integrable systems when there are n Poisson 
ommut-ing integrals on a 2n dimensional symple
ti
 manifold the semi
lassi
alspe
trum of quantum integrals is either non-degenerate or has stable de-genera
y whi
h is determined by the number of 
onne
ted 
omponents of�bers in the Lagrangian �bration given by Hamiltonians.In degenerate integrable systems the semi
lassi
al spe
trum of quan-tized 
ommuting integrals Ii is expe
ted to be degenerate with the mul-tipli
ity hn−kvol(p−1(b))(1 + O(h)). Quantization of the Poisson algebragenerated by Ji gives the asso
iative algebra, whi
h des
ribes the symme-try of the joint spe
trum of quantum integrals.Geometri
ally, a degenerate integrable system 
onsists of two Poissonproje
tions
M2n �−→ P2n−k p−→ Bk (1)where P2n−k and Bk are Poisson manifolds and Bk has trivial Poissonstru
ture. In the algebrai
 setting P2n−k is the spe
trum (of primitiveideals) of CJ (M) and Bk is the spe
trum of CI (M). Fibers of p are (pos-sibly disjoint unions of) symple
ti
 leaves of P .One should emphasize that degenerate integrability is a spe
ial stru
-ture whi
h is stronger then Liouville integrability: invariant tori now havedimension k < n. In the extreme 
ase k = 1 all traje
tories are periodi
.A degenerately integrable system may also be Liouville integrable, butdegenerate integrability 
arries more information.



DEGENERATELY INTEGRABLE SYSTEMS 227The proje
tion p ◦� : M → Bk de�nes the mapping of tangent bundlesd(p ◦ �) : TM → TBk. This gives the distributionDB = !−1(ker(d(p ◦ �))⊥) ⊂ TMwhere the symple
ti
 form ! is regarded as an isomorphism TM ≃ T ∗Mand of ker(d(p◦�))⊥ ⊂ T ∗M is the subbundle orthogonal to ker(d(p◦�)) ⊂TM.Proposition 1. Leaf of DB through x ∈ M 
oin
ides with �−1(�(x)).We will say that two degenerate integrable systems (M; P;B) and(M′; P ′; B′) are spe
trally equivalent if there is a 
olle
tion of mappings
• � : M → M′, a mapping of Poisson manifolds,
• �1 : P → P ′, a mapping of Poisson manifolds,
• �2 : B ≃ B′, a di�eomorphism.su
h that the following diagram is 
ommutative

M
�

//�
��

M′�′

��P �1 //p
��

Pp′
��B �2 // B′Note that the mappings � and �1 may not be di�eomorphisms. If they aredi�eomorphisms then the systems are 
alled equivalent or di�eomorphi
degenerately integrable systems.1.2. A
tion-angle variables. Degenerate integrable systems admit a
-tion-angle variables, see [18℄.For a generi
 point 
 ∈ P2n−k the level surfa
e �−1(
) admits angles
oordinates 'i. This is an aÆne 
oordinate system generated by by 
owlines of Hamiltonian ve
tor �elds of integrals I1; : : : Ik [18℄. In a tubularneighborhood of p−1(
) the symple
ti
 form ! on M 
an be written as! = !
 + k∑i=1 d'i ∧ dIi;where !
 is the symple
ti
 leave through 
 in P2n−k.



228 N. RESHETIKHIN1.3. Kepler system. In this 
ase the phase spa
e is M = R6 with 
oor-dinates, pi; qi; i = 1; 2; 3 and with symple
ti
 form! = 3∑i=1 dpi ∧ dqiThe Hamiltonian is H = 12p2 − 

|q|The non-
ommutative Poisson algebra of integrals is generated by mo-menta Mi and 
omponents of the Lenz ve
tor Ai:M1 = p2q3 − p3q2; M2 = p3q1 − p1q3; M3 = p1q2 − p2q1A1 = p2M3 − p3M2 + 
 q1|q| ; A2 = p3M1 − p1M3 + 
 q2|q| ;A3 = p1M2 − p2M1 + 
 q3|q|In ve
tor notations M = p× q and A = p×M + 
 q

|q| . Components of Mand A have the following Poisson bra
kets:
{Mi;Mj} = "ijkMk; {Mi; Aj} = "ijkAk; {Ai; Aj} = −2H"ijkMk (2)

{H;Mi} = {H;Ai} = 0The momentum ve
tor M and the Lenz ve
tor A satisfy extra relations(M;A) = 0; (A;A) = 
2 + 2(M;M)H (3)Denote by P5 the 5-dimensional Poisson manifold whi
h is a real aÆnealgebrai
 submanifold in R7 with 
oordinates Mi; Ai; H de�ned by rela-tions (3) and with Poisson bra
kets (2).Formulae forM , A, and H in terms of p and q 
oordinates des
ribe thePoisson proje
tion R6 → P5. The following des
ribes level surfa
es of His P5.The level surfa
e H = E < 0 is the 
oadjoint orbit O−E ⊂ so(4)∗.This orbit is isomorphi
 to S2 × S2 where ea
h S2 has radius 
=√2|E|and S2 × S2 is naturally embedded into so(3)∗ × so(3)∗ ≃ R3 × R3. Weused the natural isomorphism so(4)∗ ≃ so(3)∗×so(3)∗ where left and rightso(3)∗ 
omponents are given by Li =Mi − Ai√2|E|
and Ri =Mi − Ai√2|E|

.The level surfa
e H = 0 is 
oadjoint orbit in e(3)∗ whi
h is isomorphi
to TS2 and the sphere has radius 
, (A;A) = 
2.



DEGENERATELY INTEGRABLE SYSTEMS 229The level surfa
e H = E > 0 is the hyperboloid OE whi
h is the
oadjoint orbit in so(3; 1)∗ with natural 
oordinates M and B = A√2Eand with Casimir fun
tions (M;B) = 0 and (B;B)− (M;M) = 
2.All of these level surfa
es are symple
ti
 manifolds and we just des
ribedsymple
ti
 leaves of the Poisson manifold P5.This stru
ture 
orrespond to the following sequen
e of Poisson maps:
R
6 → P5 → Rwhere P5 ≃ ⊔E<0S2 × S2 ⊔E=0 TS2 ⊔E>0 OE (4)The �rst proje
tion is the map (p; q) → (M(p; q); A(p; q); H(p; q) and se
-ond one proje
ts P5 to the E-axis.

§2. Casimir integrable systems2.0.1. Casimir integrable systems. Here we des
ribe 
omplex algebrai
 ver-sion the Casimir system. In this se
tion G is a 
omplex algebrai
 groupand g is it Lie algebra. The phase spa
e of the Casimir system is theHamiltonian redu
tion of the produ
t of 
oadjoint orbits O1 × · · · × On
MO1;:::;On = {(x1; : : : ; xn) ∈ O1 × · · · × On|x1 + · · ·+ xn = 0}=GHere we assume that ea
h orbit is regular (passes through a regular elementof h∗).The 
oadjoint a
tion of the Lie group G on g∗ is Hamiltonian. Themoment map O1 × · · · × On → g∗ for the diagonal a
tion of G on O1 ×

· · · × On a
ts is (x1; : : : ; xn) 7→ x1 + · · ·+ xnIt is G-invariant, therefore we have a natural map of Poisson manifolds� : M̃O1×···×On = (O1 × · · · × On)=G→ g∗=Ad∗GHere the quotient spa
e is the GIT quotient. The Hamiltonian redu
tiongives symple
ti
 leaves of Poisson manifold M̃O1×···×On :
MO1×···×On|On+1 = �−1(On+1)We have natural symple
tomorphisms:

MO1×···×On|On+1 ≃ MO1×···×On;−On+1and MO1;:::;On = MO1;:::;On|{0}.



230 N. RESHETIKHINDe�ne the Poisson manifold PIJ as the �bered produ
t1.
PI;J = M̃Oi1 ;:::;Oik ×̃g∗=GM̃Oi1 ;:::;Oikwhere (I; J) is a partition of (1; : : : ; n) as above and the twist is x 7→ −x.The following Poisson maps de�ne the Casimir integrable system in the
omplex algebrai
 setting:
MO1;:::;On → PI;J → BI;Jg∗=Ad∗Gwhere BI;J is the image of the last map and the maps areAd∗G(x1; : : : ; xn) 7→ (Ad∗G(xi1 ; : : : ; xik );Ad∗G(xj1 ; : : : ; xjn−k )) 7→Ad∗G(xi1 + · · ·+ xik ) = Ad∗G(xj1 − · · · − xjn−k )The variety BI;J has dimension r but it is, \generi
ally" smaller then

g∗=Ad∗G.2.1. \Relativisti
" Casimir systems. We will keep the same data asin the previous se
tions. Let Ci ⊂ G be 
onjugation orbits, i = 1; : : : ; n.The moduli spa
e of 
at G-
onne
tions on a sphere with n pun
tures is aPoisson manifold with the Atiyah{Bott Poisson stru
ture. Assigning 
on-juga
y 
lasses to pun
tures �xes a symple
ti
 leaf of this Poisson manifold:
MC1;:::;Cn = {(g1; : : : ; gn) ∈ C1 × · · · × Cn|g1 : : : gn = 1}=Gwhere G a
ts on the Cartesian produ
t by diagonal 
onjugations. ThePoisson stru
ture on the moduli spa
e itself, i.e. on M = {(g1; : : : ; gn) ∈G× · · · ×G|g1 : : : gn = 1}=G 
an be des
ribed using 
lassi
al fa
torizabler-matri
es as in [9℄.The group G a
ts on the produ
t C1×Cn by diagonal 
onjugations. Thisa
tion is Poisson and the mapping

C1 × Cn → G; (g1; : : : ; gn) → g1 : : : gn1Re
all that given two proje
tions �1;2 :M1;2 → N , the �bered produ
t of M1 andM2 over N is M1 ×N M2 = {(x1; x2) ∈ M1 ×M2|�1(x1) = �2(x2)}If � :M2 → M2 is a di�eomorphism, the �bered produ
t twisted by � isM1×̃NM2 = {(x1; x2) ∈ M1 ×M2|�1(x1) = �2(�(x2))}



DEGENERATELY INTEGRABLE SYSTEMS 231is the group valued moment map for this a
tion [1℄. It 
ommutes with the
onjugation a
tion of G and gives the Poisson map
M̃C1;:::;Cn → G=AdGwhere

M̃C1;:::;Cn = {(g1; : : : ; gn) ∈ C1 × · · · × Cn}=GAs in the previous se
tion, de�ne the Poisson varieties
PI;J(C1; : : : ; Cn) = M̃Ci1 ;:::;Cik ×G=AdG M̃Cj1 ;:::;Cjn−kwhere I; J is a partition (1; : : : ; n) = I ⊔ J . Where the twisted �beredprodu
t is de�ned in the previous se
tion. The twist is given by � : g 7→g−1.Relativisti
 Casimir integrable system is des
ribed by the following se-quen
e of Poisson maps

MC1;:::;Cn → PI;J(C1; : : : ; Cn) → BI;J(C1; : : : ; Cn) ⊂ G=AdGa
ting asAdG(g1; : : : ; gn) 7→ (AdG(gi1 : : : gik );AdG(gj1 _sgjn−k)) 7→ [gi1 : : : gik ℄ = [(gj1 : : : gjn−k)−1℄ ∈ G=AdGHere BI;J is the image of the last map, whi
h has dimension r but is,generally, smaller then g∗=Ad∗G.
§3. Calogero{Moser systems3.1. Degenerate integrability. Spin Calogero{Moser systems are pa-rameterized by pairs (g;O) where g is a simple Lie group and O is a
o-adjoint orbit in g. Calogero and Moser dis
overed su
h systems for Liealgebras of type A and 
oadjont orbit of rank 1. Sutherland generalizedthem to trigonometri
 and hyperboli
 potentials. Olshanetsky and Perelo-mov generalized them to all simple Lie algebras and to ellipti
 potentials.Here we will fo
us on trigonometri
 potentials.The degenerate integrability of spin Calogero{Moser systems is givenby the following 
olle
tion of Possin proje
tions.T ∗G //

��

g∗ ×h∗=W g∗

��

L //R // g∗

��T ∗G=AdG // (g∗ ×h∗=W g∗)=G p
// h∗=W ≃ g∗=Ad∗G



232 N. RESHETIKHINHere g∗×h∗=W g∗ is the �bred produ
t of two 
opies of g∗ over h∗. The mapsin the upper row of the diagram a
t as (x; g) 7→ (x;−Ad∗g(x)), L(x; y) = x,and R(x; y) = y. Here and below we assume that the 
o-adjoint bundleT ∗G is trivialized by left translations T ∗G ≃ g∗ × G and has a standardsymple
ti
 stru
ture of a 
otangent bundle. The lower horizontal sequen
eof Poisson maps is at heart of degenerate integrability of spin Calogero{Moser systems [24℄.Re
all that 
lassi
al spin Calogero{Moser systems are parameterizedby 
o-adjoint orbits O ⊂ g∗. If O is passing through t ∈ h∗, then itis also passing through ea
h w(t) where w ∈ W is an element of theWeyl group. We will denote su
h orbit passing through t by O[t℄ where[t℄ ∈ h∗=W is the orbit of t with respe
t to the Weyl group a
tion. When gis a real 
ompa
t form of a simple Lie algebra, we 
an identify h∗=W withh∗> 0 = {
r∑i=1xi!i|xi ∈ R>0}, where are fundamental weights of g and r isthe rank of g.For a generi
 
o-adjoint orbit O[t℄ the phase spa
e of the 
orrespond-ing spin Calogero{Moser system is the symple
ti
 leaf S[t℄ = �−1(O[t℄)=Gwhere � : T ∗G→ h∗ is the moment map for the adjoint a
tion of G:�(x; g) = x−Ad∗g(x) ∈ g∗Here x ∈ g∗; g ∈ G.The sequen
e of proje
tions from the diagram above produ
es the se-quen
e of Poisson proje
tionsS[t℄ → ⊔[s℄∈h∗=WM[s℄;−[s℄|[t℄ → B[t℄ ⊂ h∗=W (5)Here the moduli spa
e M[s1℄;[s2℄|[t℄ is de�ned as

M[s1℄;[s2℄|[t℄ = {(x1; x2) ∈ O[s1℄ ×O[s2℄|x1 + x2 ∈ O[t℄}=Gand B[t℄ = {[s℄ ∈ h∗=W |M[s℄;−[s℄|[t℄ 6= ∅}. Note that B[t℄ is unboundedbut if t 6= 0 it does not 
ontain the vi
inity of zero. Its dimension isr = rank (G). The series of proje
tions (5) des
ribes the degenerate in-tegrability of 
lassi
al spin Calogero{Moser model. The Hamiltonian ofthe 
lassi
al spin Calogero{Moser system is the pull-ba
k of the quadrati
Casimir fun
tion on h∗=W to S[t℄. Taking into a

ount the isomorphismS[t℄ ≃ (T ∗h × O[t℄==H)=W (assuming, as above, that t is generi
), were
O[t℄==H is the Hamiltonian redu
tion of O[t℄ with respe
t to the 
oadjointa
tion of H , the Hamiltonian of 
lassi
al spin Calogero{Moser system 
an



DEGENERATELY INTEGRABLE SYSTEMS 233be written as HsCM = 〈p; p〉+ ∑�∈�+ ���−�(h�=2 − h−�=2)2where p; h� are 
oordinate fun
tions on T ∗h and ���−� is a fun
tion on
O[t℄==H (the Hamiltonian redu
tion of O[t℄ with respe
t to the a
tion ofthe Cartan subgroup) see [24℄ for details. One 
an 
he
k that the Poissonalgebra C(S[t℄) is isomorphi
 to the subalgebra of W -invariant fun
tionsfrom Pol(p; h±1� )⊗ C(Ot==H) with the Poisson stru
ture

{pi; pj} = 0; {pi; h�} = �ih�; {h�; h�} = 0Poisson algebra C(Ot==H) of fun
tions on the Hamiltonian redu
tion of Otwith respe
t to the Hamiltonian a
tion of H is the quotient of the Poissonalgebra of H-invariant fun
tions on Ot with respe
t to the Poisson idealgenerated by Cartan 
omponents of �i.Note that the evolution with respe
t to a 
entral fun
tion F on g∗ isquite simple: (X; g) 7→ (X; et∇F (X)g)where ∇F is the gradient (with respe
t to the Killing from on g of F .This formula be
omes somewhat 
ompli
ated after the proje
tion T ∗G→T ∗G=G.3.2. Rank 1 orbits for SLn. In this 
ase�ij = �i j − Æij�;where � = 1n n∑i=1 �i i. The Hamiltonian redu
tion with respe
t to the a
-tion of the Cartan subgroup introdu
es 
onstraint �ii = 0 whi
h implies�i i = �. In this 
ase �ij�ji = �i i�j j = �2whi
h means, in parti
ular that the Hamiltonian redu
tion of a rank 1orbit is a point. The spin Calogero{Moser system for su
h orbits be
omesCalogero{Moser system with the Hamiltonian. Whi
h is equal toHCM = 〈p; p〉+∑i<j �24 sin( qi−qj2 )2for the 
ompa
t real form of G.
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§4. Rational spin Ruijsenaars systems4.1. Degenerate integrability. Let us denote by (T ∗G; p) the Poissonmanifold whi
h is T ∗G as a manifold, whi
h we assume trivialized T ∗G ≃

g×G by left translations with the Poisson algebra stru
ture on C∞(T ∗G)de�ned uniquely by the following properties:
• The subalgebras C∞(g∗) and C∞(G) are Poisson subalgebras withthe standard and trivial Poisson stru
tures respe
tively.
• Poisson bra
ket between a linear fun
tion X ∈ g on g∗ and f ∈C∞(G) is

{X; f} = (LX −RX )fwhere LX and RX are the left and right invariant ve
tor �elds onG generated by X .Note that this Poisson stru
ture di�ers from the standard symple
ti
stru
ture on the 
otangent bundle to a manifold. Symple
ti
 leaves of(T ∗G; p) are produ
ts O×C where O ⊂ g∗ is a 
o-adjoint orbit and C ⊂ Gis a 
onjuga
y 
lass.The adjoint a
tion of the group G (the extension of the adjoint a
tionfrom G to T ∗G) on (T ∗G; p) is Poisson, thus (T ∗G; p)=G has a naturalPoisson stru
ture. The symple
ti
 leaves of the quotient spa
e are (O ×
C)=G where G a
ts diagonally on the produ
t.It is easy to 
he
k that the map T ∗G → (T ∗G; p) a
ting as (x; g) →(x−Ad∗g(x); g) is Poisson and it is 
lear that it 
ommutes with the adjointG-a
tions. It indu
es Poisson map� : T ∗G=AdG → (T ∗G; p)=AdG :We also have a natural proje
tion� : (T ∗G; p)=AdG → G=AdG :a
ting as AdG(x; g) 7→ AdG g. This proje
tion is Poisson with the trivialPoisson stru
ture on the base.Restri
ting  ̃ to a symple
ti
 leaf of T ∗G=AdG2, we have the sequen
eof Poisson maps des
ribing degenerate integrability of rational spin Ruije-naars (sR) systemsS(O) → P (O) → B(O) ⊂ G=AdG :Here S(O) is the symple
ti
 leaf of T ∗G=AdG 
orresponding to the 
oad-joint orbit O ∈ g∗, P (O) = �(S(O)) = (O × O)=G ⊂ (T ∗G; p)=G, and2Symple
ti
 leaves of T ∗G=AdG are des
ribed earlier.



DEGENERATELY INTEGRABLE SYSTEMS 235B(O) = �(P (O)). Note that � is surje
tive and �bers of � has dimen-sion dim(B(O), whi
h is, generi
ally, r. Re
all that symple
ti
 leaves ofT ∗G=AdG are perimages of 
oadjoint orbits with respe
t to the momentmap, S(O) = {(x; g)|x− Ad∗g(x) ∈ O}=G. The �ber of the last proje
tionis the symple
ti
 leaf of P (O):P (O; C) = {(x−Ad∗g(x); g)|x ∈ O; g ∈ C}=GAs in the 
ase of the spin Calogero{Moser, the dimension of B(O) is r forgeneri
 O but for degenerate orbits it is less and for maximally degeneratenon-trivial orbits it is 1-dimensional.4.2. Hamiltonians for SLn rank 1 orbits. Here we assume G = SLn.In this 
ase we 
an this of both g and g∗ and tra
eless n× n matri
es. Wealso assume that O ⊂ g∗ is an orbit through a semisimple element and that� = x− gxg−1 ∈ O. If we 
hoose the 
ross-se
tion of the adjoint G-a
tionon TG, where xij = Æijhi, the symple
ti
 leaf S(O) ∈ T ∗G=G (its opendense subset) has 
oordinates hi, �ij�ji gii. The Hamiltonian redu
tionimposes the 
onstraint �ii = 0. Elements gij satisfy the equation(hi − hj)gij = n∑k=1 �ikgkj : (6)We will not try to solve this equations here, in order to �nd Hamiltoniansfor rank > 1 orbits. In the next se
tion we will do it for rank 1 
ase (this
omputation 
an also be found in many other paper, see for example [18℄[4℄.In this 
ase �ij = �i j − Æij�where � =< �; > =n as in the rank 1 
ase of Calogero Moser. Theequation (6) implies(hi − hj)gij = �i ∑k  kgkj − �gijFrom here we have gij = 1hi − hj + ��i ∑k  kgkj (7)This gives the system of equations for  i�in∑i=1 �i ihi − hj + � = 1 (8)
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an be solved expli
itly:�i i = ∏j 6=i hi − hj + �hi − hjEquations (9) and (7) give the formula for gijgij = �i�−1j �gjjhi − hj + � :Redu
ed Poisson bra
kets are log-linear in 
oordinates hi; ui3
{hi; hj} = 0; {hi; uj} = Æij ; {ui; uj} = 0where ui is related to gii asgii = ui n∏j 6=i hi − hj + �hi − hjThe �rst two elementary G-invariant fun
tions of g aretr(g) = n∑i=1 gii ;tr(g2) = �2 ∑ij giigjj 1(hi − hj + �)(hj − hi + �) :The se
ond fun
tion gives the Hamiltonian of the rational Ruijsenaarssystem.HrR = �!2(g) = 12(tr(g2)− tr(g)2) = −

∑i<j uiuj ∏a∈{ij};b∈{ij}∨

ha − hb + �ha − hbHere {i; j} ⊂ {1; : : : ; n} and {i; j}∨ is its 
omplimentary subset. Char-a
ters of fundamental representations �!i(g) evaluated on elements g de-s
ribed above are 
lassi
al analogs of rational Ma
donald operators.3To be more pre
ise the algebra of fun
tions on S(O) is isomorphi
 to the algebraof symmetri
 polynomials in pi; u±1.
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h we will 
all rational spin Ruijsenaars systems was ob-served in [19℄ [9℄ (see also referen
es therein). This is a duality betweentwo Liouville integrable systems whi
h maps angle variables of one sys-tem to the a
tion variable of the other system. The duality between spinCalogero{Moser and rational spin Ruijsenaars systems (as the duality ofdegenerately integrable systems) was found in [24℄. Here we will re
all thisproperty.Let F (G(x; 
)) be the �ber of the proje
tion  : T ∗G=G → (g∗ ×g∗=G
g∗)=G 
ontaining G(x; 
). Re
all that  (G(x; 
)) = G(x;−Ad∗
(x)). It is
lear that F (G(x; 
)) = G(x; Zx
)where Zx = {g ∈ G|Ad∗g(x) = x}. This �ber is the Liouville torus ofthe spin C{M system passing through the point G(x; 
). It proje
ts toAdG(x) ∈ g∗=G on the base of the last proje
tion in (5). Hamiltonian 
owsof fun
tions on g∗=G generate angle variable for spin C{M system, i.e. anaÆne 
oordinate on F (G(x; 
)). Generi
 �ber F (G(x; 
)) has dimensionr = rank (G).De�ne F̃ (G(x
)) as a �ber of the map  ̃ : T ∗G=G→ (T ∗G; p)=G whi
h
ontains G(x; 
). Re
all that  ̃(x; 
) = (x − Ad∗
(x); 
). It is easy to seethat F̃ (G(x; 
)) = G(x+ C
 ; 
)Here C
 = {x ∈ g∗|Ad∗
(x) = x}. This �ber is the Liouville torus ofthe rational spin Rujsenaars system passing through G(x; 
). Hamiltonian
ows of fun
tions on G=AdG generate an aÆne 
oordinate system on itwhi
h is the 
olle
tion of angle variables for the rational spin Ruijenaarssystem.Theorem 2. The �bers F (G(x; 
)) and F̃ (G(x; 
)) are dual in a sensethat F (G(x; 
)) ∩ F̃ (G(x; 
)) = G(x; 
)For rank 1 orbits, when both systems are Liouville integrable, this du-ality redu
es to the one from [4,19℄.
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§5. Relativisti
 spin Calogero{Moser and spinRuijsenaars systems5.1. Relativisti
 spin Calogero{Moser system.5.1.1. Hamiltonian stru
ture and degenerate integrability of relativisti
 spinCaloero{Moser and Ruijsenaars models. The underlying Poisson manifoldfor relativisti
 spin Calogery{Moser system is a \nonlinear" version ofT ∗G whi
h is known as a Heisenberg double H(G) of G with the standardPoisson Lie stru
ture. Equivalently H(G)=G where G a
ts by diagonal
onjugations 
an be regarded as the moduli spa
e of 
at 
onne
tions on apun
tures torus (see [9℄).As a manifold the Heisenberg double is H(G) = G ×G. A point (x; y)should be regarded as a pair of monodromies o the lo
al system on apun
tures torus around two fundamental 
y
les. The monodromy aroundthe pun
ture is xyx−1y−1. The Poisson stru
ture onH(G) 
an be des
ribedin terms of r-matri
es for standard Poisson Lie stru
ture on G. Poissonbra
kets between 
oordinate fun
tions 
an be written as [7℄:

{x1; x2} = r12x1x2 − x1x2r21 + x1r21x2 − x2r12x1
{x1; y2} = −r21x1y2 − x1y2r21 + x1r21y2 − y2r12x1
{y1; y2} = r12y1y2 − y1y2r21 + y1r21y2 − y2r12y1 (10)Here x and y are matrix elements of x ∈ G in some �nite dimensionalrepresentation with some basis (these matrix elements from a basis in thespa
e of regular fun
tions on G). The matrix r12 is the result of evaluationof the universal 
lassi
al r-matrix from se
tion 6.1 in the tensor produ
tof two �nite dimensional represenations of G.The phase spa
e of relativisti
 Calogero{Moser system is the symple
-ti
 leaf of the moduli spa
e H(G)=G 
orresponding to �xing the 
onjuga
y
lass of the monodromy xyx−1y−1 around the pun
ture. In terms of Pois-son geometry, this symple
ti
 leaf 
an be des
ribed as follows.The map H(G) → G, (x; y) 7→ x is the G-valued moment map for theleft a
tion of the group on H(G) (regarded as non-linear version of the
otangent bundle on G trivialized by left translations). The map H(G) →G, (x; y) → yxy−1 is the group valued moment map for the 
orrespondingright a
tion of G. The map � : H(G) → G, � : (x; y) 7→ xyx−1y−1 is thegroup valued map 
orresponding to the 
onjugation a
tion. For details ongroup valued moment maps see [1℄. Thus,

M(C) = �−1(C) ⊂ H(G)=G
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ti
 leaf 
orresponding to the 
onjuga
y 
lass C of the mon-odromy around the pun
ture. Here G a
ts by 
onjugation.Hamiltonians of the relativisti
 spin Calogero{Moser system 
orrespond-ing to the 
onjuga
y 
lass C are 
onjugation invariant fun
tions on G,i.e. fun
tions on G=G. The Hamiltonian 
orresponding to f ∈ CG(G) isHf (x; y) = f(x).The degenerate integrability of the relativisti
 spin Calogero{Moser sys-tem is des
ribed by restri
ting the following sequen
es of Poisson maps:(G×G)=G → (G×̃G=AdGG)=G→ G=AdG (11)to the symple
ti
 leaf M(C). Here the �bered produ
t is twisted as in therelativisti
 Casimir system by g 7→ g−1 and [(x; y)℄ 7→ [(x; yx−1y−1)℄ 7→ [x℄.For 
ompa
t simple Lie group G this gives the degenerate integrability ofrelativisti
 spin Calogero systems:
M(C) → {G(g1; g2)|G(g1) = G(g2); g1g2 ∈ C} → B(C) ⊂ G=Gwhere B(C) = {C′ ∈ G=G|M(C′; C′−1; C) 6= ∅}.Hamiltonians of relativisti
 spin Ruijsenaars system areHf (x; y) = f(y)where f ∈ CG(G) is a fun
tion on G, invariant with respe
t to 
onjuga-tions.The degenerate integrability of relativisti
 spin Ruijsenaars system isgiven by restri
ting maps(G×G)=G→ (G×G)=G → G=Gwhere G(x; y) 7→ G(xyx−1y−1; y) 7→ Gy, to a symple
ti
 leaf of (G×G)=G.Two systems are related as follows.Proposition 2. The mapping G × G → G × G, (x; y) 7→ (y; x−1) is aPoisson map and it indu
es the symple
tomorphism M(C) 7→ M(C) whi
hmaps relativisti
 spin Calogero{Moser system to relativisti
 spin Rujse-naars system.The proof is straightforward.5.1.2. Duality. Let us prove that the two systems are dual in a sense ofinterse
tion property of Lioville tori.Let �1 be the proje
tion(G×G)=G→ (G×̃G=GG)=G; G(x; y) 7→ G(x; yx−1y−1)and �2 be the proje
tion(G×G)=G→ (G×G)=G; G(x; y) 7→ G(xyx−1y−1; y);
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tions through the point G(x; y) ∈ (G×G)=Gby F1(G(x; y)) and F2(G(x; y)) respe
tively. The following is easy to prove.Proposition 3. For generi
 (x; y we have:1) F1(G(x; y)) = {G(x; yz)|z ∈ Zx} where Zx is the 
entralizer of xin G.2) F2(G(x; y)) = {G(xz; y)|z ∈ Zy}3) F1(G(x; y)) ∩ F2(G(x; y)) = G(x; y)5.1.3. Hamiltonians for rank 1 
onjuga
y 
lasses in SLn. Assume thatz = xyx−1y−1 ∈ SLn belongs to the rank 1 
onjuga
y 
lass. For generi
rank 1 
onjuga
y 
lass this meansz = u diag (qn−1; q; : : : ; q)u−1for some u ∈ SLn and q ∈ C∗. Equivalently, we 
an writezij = �i j + q−1Æijwhere (�;  ) = n∑i=1 i�i = qn−1 − q−1.Hamiltonians of relativisti
 Calogero{Moser and relativisti
 Ruijenaarssystem are HrCMk = �!k(x); HsRk = �!k(y)Let us 
ompute them in appropriate 
oordinates.First, assume x is semisimple and bring it to the diagonal form witheigenvalues x1; : : : ; xn. From the de�nition of z we haveyijxj = n∑k=1 xkykj = �i n∑k=1 kxkykj − q−1xiyij (12)From here we have: yij = �i n∑k=1 kxkykjxj − q−1xiMultiplying by �i i and taking sum over i gives the following equation for i�i: n∑i=1  i�ixixj − q−1xi = 1



DEGENERATELY INTEGRABLE SYSTEMS 241Solving this equation we have i�i = (1− q−1)x−1i n∏j 6=i 1− qxjx−1i1− xjx−1iWhen i = j, (12) impliesyii = �ixi(1− q−1) ∑k  kxkykiSolving this for ∑k  kxkyki we haveyij = �i�−1j (1− q−1)yjj1− q−1xix−1jNow we 
an 
ompute Hamiltonians of rsR model in terms of yii and xi.For the �rst two we have tr(y) = n∑j=1 yjjtr(y2) = n∑ij (1− q−1)2yiiyjj(1− q−1xix−1j )(1− q−1xjx−1i )Poisson algebra C(M(C) is isomorphi
 to the algebra of symmetri
 Lau-rant polynomials in yii and xi (with respe
t to the diagonal a
tion of thesymmetri
 group) with following Poisson bra
kets between x and y:
{xi; xj} = 0; {xi; uj} = Æijxiuj ; {ui; uj} = 0where yii = ui ∏j 6=i 1− q−1xjx−1i1− xjx−1iThe Hamiltonians �!i(y) are 
lassi
al analogs of Ma
donald operators.The Hamiltonian of the relativisti
 Ruijsenaars model isH2 = �!2(y) = −q−1 ∑i<j uiuj ∏a∈{ij};b∈{ij}∨

1− q−1xax−1b1− xax−1bThe mapping (x; y) 7→ (y; x−1) intertwine the relativisti
 Calogero{Mosersystem and Relativisti
 Ruijenaars system. So, the Hamiltonian of rela-tivisti
 Calogero{Moser model is given by essentially the same formulae.
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§6. Chara
teristi
 systems on simple Poisson Lie groupswith standard Poisson Lie stru
ture6.1. Symple
ti
 leaves and degenerate integrability of 
hara
-teristi
 system. Standard Poisson Lie stru
ture on a simple Lie grouprequires a 
hoi
e of a Borel subgroup in G. This �xes a Catran subalgebra
h, the root system and positive roots. Assuming that the tangent bundleTG is trivialized by left translations TG ≃ g×G, the Poison bive
tor �eld
orresponding to the standard stru
ture is�(x) = Adx(r) − r; r = 12 r∑i=1 hi ⊗ hi + ∑�>0E� ⊗ F�Here � and positive roots of g, E�; F� are 
orresponding elements of thebasis in g, r is the rank of g, hi is a basis in the Cartan subalgebra hand hi is the dual basis with respe
t to the Killing form. We assume that
g ∧ g ⊂ g ⊗ g.Symple
ti
 leaves of any Poisson Lie group are orbits of the dressinga
tion of the dual Poisson Lie group. For a simple Lie group G with thestandard Poisson Lie stru
ture are known to be �bers of the �bration ofdouble Bruhat 
ells over tori inside of the Cartan subgroup H of G. Re
allthat a double Bruhat 
ell in G is the interse
tion of a Bruhat 
ell for Band a Bruhat 
ell for B−:Gu;v = BuB ∩B−vB−where BuB is de�ned as BuB ⊂ G, where u ∈ W and u ∈ N(H) ⊂ G isits representative in the normalizer of H , and B−vB− is de�ned similarly.Generalized minors give a natural �brationGu;v

��

Su;vooT u;vFor the expli
it des
ription of it see, for example [23℄ and referen
es therein.Hamiltonians of the 
hara
teristi
 integrable system are 
entral fun
-tions on G. There are only r independent 
entral fun
tions whi
h 
an be
hosen as 
hara
ters of fundamental representations. Their restri
tion toa generi
 symple
ti
 leave of G generate a degenerately integrable sys-tem [23℄. Poisson proje
tions des
ribing degenerate integrability 
an be
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ribed as follows: Su;v → P u;v → AdG Su;v: (13)Here P u;v = (Su;v ×Su;v)=AdG∗ where Su;v ×Su;v ⊂ G×G and the dualPoisson Lie group G∗ is embedded in G × G as usual G∗ = {(b+; b−) ∈B × B− ⊂ G × G|[b+℄0 = [b−−1℄0}, where [b℄0 is the Cartan 
omponentof b ∈ B. The �rst map is the diagonal embedding, the se
ond map is theproje
tion to (G × G)=AdG×G followed by the proje
tion to any of thefa
tors in the Cartesian produ
t.In other words, 
hara
teristi
 Hamiltonian systems are integrable andtheir Liouville tori are interse
tions of adjoint orbits of G and of orbits ofthe dressing a
tion of G∗ (whi
h are symple
ti
 leaves of G).6.1.1. Hamiltonian 
ows as the fa
torization dynami
s. Let G be a fa
-torizable Poisson{Lie group. Standard Poisson Lie group stru
ture on asimple Lie group is an example of a fa
torizable Poisson Lie group. LetI(G) ⊂ C∞(G) be the subspa
e of AdG-invariant fun
tions on G.Let G∗ be the dual Poisson Lie group to G. It has a natural embeddingto G × G des
ribed above. The multipli
ation in G, together with thisembedding gives the mapping G∗ → G, (b+; b−) 7→ b+b−1
− . When theinverse exists g 7→ (g+; g−) (in a vi
inity of the unit element in G it isunique when it exists), it is 
alled the fa
torization map. Note that at thelevel of Lie algebras there is always a linear isomorphism g → g∗, su
h thatx = x+ + x0 + x− 7→ (x+ + x02 ;−x− − x02 ). It is 
alled the fa
torizationisomorphism.The dynami
s of 
hara
teristi
 systems 
an be des
ribed expli
itly bythe following theorem [25℄:Theorem 3. Assume the fa
torization map is de�ned and unique on anopen dense subset of G, theni) I(G) is a 
ommutative Poisson algebra in C∞(G).ii) In a neighborhood of t = 0 the 
ow lines of the Hamiltonian 
owindu
ed by H ∈ I(G) passing through x ∈ G at t = 0 have the formx(t) = g±(t)−1xg±(t);where the mappings g±(t) are determined byg+(t)g−(t)−1 = exp (tI (dlH(x))) ;and I : g∗ −→ g is the inverse to the fa
torization isomorphism.Here dlH(x) ∈ g∗ is the left di�erential of H(x). For X ∈ g,
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