
úÁ�ÉÓËÉ ÎÁÕÞÎÙÈÓÅÍÉÎÁÒÏ× ðïíé�ÏÍ 433, 2015 Ç.N. ReshetikhinDEGENERATELY INTEGRABLE SYSTEMSAbstrat. This is a short survey of degenerate integrability isHamiltonian mehanis. The �rst setion ontains a short desrip-tion of degenerately integrable systems. It is followed by a numberof examples whih inlude spin Calogero model, Casimir models,integrable models on sympleti leaves of Poisson Lie groups andsome others. Bibliography: 27 titles. Dediated to P.P. Kulishon the oasion of his 75 birthdayIntrodutionDegenerately integrable systems are also known as superintegrable sys-tems and as nonommutative integrable systems. We will use the term\degenerate integrability" to avoid possible onfusion with supermanifolds,Lie superalgebras and supergeometry.Degenerate integrability generalizes well known Liouville integrabilityof Hamiltonian systems on a 2n-dimensional sympleti manifold to thease when the dimension of invariant tori is k < n. When k = n we haveto the usual Liouville integrability. This notion in its modern form, andthe term, were �rst introdued in [18℄. Then a series of examples relatedto Lie groups was found in [10℄. First examples were known muh earlier,see for example [8, 11, 21, 22℄.The �rst setion is a short introdution to degenerate integrability. Thenwe give few examples of degenerately integrable systems. First example isthe Kepler system, whih is also the lassial ounterpart of the hydro-gen atom. Its degenerate integrability an be traed bak to [8, 21, 22℄.The next example is Casimir integrable systems. They an be regarded asdegenerations of Gaudin models. These examples are important for under-standing semilassial asymptoti of q-6j symbols for simple Lie algebras.In setion 3 spin Calogero{Moser systems, rational spin Ruijsenaars sys-tem and the duality between these systems is desribed. This setion is aKey words and phrases: integrable systems.224



DEGENERATELY INTEGRABLE SYSTEMS 225onise version of [24℄. Spin generalization of Calogero{Moser system was�rst found in [13℄. The better title of this setion would be spin Calogero{Moser{Sutherland{Olshanetsky{Perelomov systems [3, 17, 20, 26℄. For Li-ouville integrability of spin Calogero{Moser systems see [15, 16℄. For theduality for non-spin ase see [4, 7, 18℄. For further disussion of duality inthe spin ase see [2℄. Further generalization of Calogero{Moser systemssuggested in [5,6℄. Setion 5 ontains the proof of degenerate integrabilityof relativisti spin Calogero{Moser systems, of the relativisti spin Rui-jsenaars system and the duality between them. Results from this setionsseem to be new. The last setions desribes the degenerate integrability ofToda type systems on sympleti leaves of simple Poisson Lie groups withstandard Poisson Lie struture. It is based on [24℄. The proof of degenerateintegrability in the linearized ase was done in [12℄.The degenerate integrability of Calogero{Moser system whih is dis-ussed in [27℄ has somewhat di�erent nature.The paper was ompleted while the author was visiting St. Petersburg,ITMO and LOMI. This visit was supported by the projet No. 14-11-00598 funded by Russian Siene Foundation. The author is grateful to G.Shrader and to S. Shakirov for helpful disussions.
§1. Degenerate Integrable systems1.1. Degenerate Integrable systems. An integrable system on a 2ndimensional sympleti manifold is alled degenerate if all the invariantsubmanifolds have dimension k < n. The nondegenerate ase k = n orre-sponds to the usual Liouville integrability (non-degenerate ase). Abusingthe language we will assume k 6 n and will treat k = n as a partiularase of degenerate integrable systems.De�nition 1. A degenerate integrable system on a sympleti manifold(M2n; !) onsists of a Poisson subalgebra CJ(M2n) in C(M2n) of rank2n− k whih has a Poisson enter CI (M2n) of rank k.A Hamiltonian dynamis generated by the funtionH ∈ C(M) is said tobe degenerately integrable if H ∈ CI(M). If J1; : : : ; J2n−k are independentfuntions from CJ(M), we have

{H; Ji} = 0; i = 1; : : : ; 2n− k:In other words, funtions Ji are integrals of motion forH . One an say thatHamiltonian �elds generated by Ji desribe the symmetry of the Hamilton-ian ow generated byH . In this sense, funtions from CI (M2n) are natural



226 N. RESHETIKHINto all (Poisson ommuting) Hamiltonians, while funtions CJ(M2n) withbe alled integrals of motion for Hamiltonians.The level surfae M(1; : : : ; 2n−k) = {x ∈ M|Ji(x) = i} of funtionsJi is alled generi relative to CI(M2n) if for n independent funtionsI1; : : : ; Ik ∈ CI (M2n) the form dI1 ∧ · · · ∧ dIk does not vanish identiallyon it. Then the following holds [18℄:Theorem 1. (1) Flow lines of any H ∈ CI(M2n) are parallel to levelsurfaes of Ji.(2) Eah onneted omponent of a generi level surfae has anonialaÆne struture generated by the ow lines of I1; : : : ; Ik.(3) The ow lines of H are linear in this aÆne struture.When k = n this theorem redues to the Liouville integrability. As aonsequene, eah generi level surfae is isomorphi to Rl × (S1)k−l forsome 0 6 l 6 k.The notion of degenerate integrability has a simple semilassial mean-ing. In the Liouville integrable systems when there are n Poisson ommut-ing integrals on a 2n dimensional sympleti manifold the semilassialspetrum of quantum integrals is either non-degenerate or has stable de-generay whih is determined by the number of onneted omponents of�bers in the Lagrangian �bration given by Hamiltonians.In degenerate integrable systems the semilassial spetrum of quan-tized ommuting integrals Ii is expeted to be degenerate with the mul-tipliity hn−kvol(p−1(b))(1 + O(h)). Quantization of the Poisson algebragenerated by Ji gives the assoiative algebra, whih desribes the symme-try of the joint spetrum of quantum integrals.Geometrially, a degenerate integrable system onsists of two Poissonprojetions
M2n �−→ P2n−k p−→ Bk (1)where P2n−k and Bk are Poisson manifolds and Bk has trivial Poissonstruture. In the algebrai setting P2n−k is the spetrum (of primitiveideals) of CJ (M) and Bk is the spetrum of CI (M). Fibers of p are (pos-sibly disjoint unions of) sympleti leaves of P .One should emphasize that degenerate integrability is a speial stru-ture whih is stronger then Liouville integrability: invariant tori now havedimension k < n. In the extreme ase k = 1 all trajetories are periodi.A degenerately integrable system may also be Liouville integrable, butdegenerate integrability arries more information.



DEGENERATELY INTEGRABLE SYSTEMS 227The projetion p ◦� : M → Bk de�nes the mapping of tangent bundlesd(p ◦ �) : TM → TBk. This gives the distributionDB = !−1(ker(d(p ◦ �))⊥) ⊂ TMwhere the sympleti form ! is regarded as an isomorphism TM ≃ T ∗Mand of ker(d(p◦�))⊥ ⊂ T ∗M is the subbundle orthogonal to ker(d(p◦�)) ⊂TM.Proposition 1. Leaf of DB through x ∈ M oinides with �−1(�(x)).We will say that two degenerate integrable systems (M; P;B) and(M′; P ′; B′) are spetrally equivalent if there is a olletion of mappings
• � : M → M′, a mapping of Poisson manifolds,
• �1 : P → P ′, a mapping of Poisson manifolds,
• �2 : B ≃ B′, a di�eomorphism.suh that the following diagram is ommutative

M
�

//�
��

M′�′

��P �1 //p
��

Pp′
��B �2 // B′Note that the mappings � and �1 may not be di�eomorphisms. If they aredi�eomorphisms then the systems are alled equivalent or di�eomorphidegenerately integrable systems.1.2. Ation-angle variables. Degenerate integrable systems admit a-tion-angle variables, see [18℄.For a generi point  ∈ P2n−k the level surfae �−1() admits anglesoordinates 'i. This is an aÆne oordinate system generated by by owlines of Hamiltonian vetor �elds of integrals I1; : : : Ik [18℄. In a tubularneighborhood of p−1() the sympleti form ! on M an be written as! = ! + k∑i=1 d'i ∧ dIi;where ! is the sympleti leave through  in P2n−k.



228 N. RESHETIKHIN1.3. Kepler system. In this ase the phase spae is M = R6 with oor-dinates, pi; qi; i = 1; 2; 3 and with sympleti form! = 3∑i=1 dpi ∧ dqiThe Hamiltonian is H = 12p2 − 
|q|The non-ommutative Poisson algebra of integrals is generated by mo-menta Mi and omponents of the Lenz vetor Ai:M1 = p2q3 − p3q2; M2 = p3q1 − p1q3; M3 = p1q2 − p2q1A1 = p2M3 − p3M2 +  q1|q| ; A2 = p3M1 − p1M3 +  q2|q| ;A3 = p1M2 − p2M1 +  q3|q|In vetor notations M = p× q and A = p×M +  q

|q| . Components of Mand A have the following Poisson brakets:
{Mi;Mj} = "ijkMk; {Mi; Aj} = "ijkAk; {Ai; Aj} = −2H"ijkMk (2)

{H;Mi} = {H;Ai} = 0The momentum vetor M and the Lenz vetor A satisfy extra relations(M;A) = 0; (A;A) = 2 + 2(M;M)H (3)Denote by P5 the 5-dimensional Poisson manifold whih is a real aÆnealgebrai submanifold in R7 with oordinates Mi; Ai; H de�ned by rela-tions (3) and with Poisson brakets (2).Formulae forM , A, and H in terms of p and q oordinates desribe thePoisson projetion R6 → P5. The following desribes level surfaes of His P5.The level surfae H = E < 0 is the oadjoint orbit O−E ⊂ so(4)∗.This orbit is isomorphi to S2 × S2 where eah S2 has radius =√2|E|and S2 × S2 is naturally embedded into so(3)∗ × so(3)∗ ≃ R3 × R3. Weused the natural isomorphism so(4)∗ ≃ so(3)∗×so(3)∗ where left and rightso(3)∗ omponents are given by Li =Mi − Ai√2|E|
and Ri =Mi − Ai√2|E|

.The level surfae H = 0 is oadjoint orbit in e(3)∗ whih is isomorphito TS2 and the sphere has radius , (A;A) = 2.



DEGENERATELY INTEGRABLE SYSTEMS 229The level surfae H = E > 0 is the hyperboloid OE whih is theoadjoint orbit in so(3; 1)∗ with natural oordinates M and B = A√2Eand with Casimir funtions (M;B) = 0 and (B;B)− (M;M) = 2.All of these level surfaes are sympleti manifolds and we just desribedsympleti leaves of the Poisson manifold P5.This struture orrespond to the following sequene of Poisson maps:
R
6 → P5 → Rwhere P5 ≃ ⊔E<0S2 × S2 ⊔E=0 TS2 ⊔E>0 OE (4)The �rst projetion is the map (p; q) → (M(p; q); A(p; q); H(p; q) and se-ond one projets P5 to the E-axis.

§2. Casimir integrable systems2.0.1. Casimir integrable systems. Here we desribe omplex algebrai ver-sion the Casimir system. In this setion G is a omplex algebrai groupand g is it Lie algebra. The phase spae of the Casimir system is theHamiltonian redution of the produt of oadjoint orbits O1 × · · · × On
MO1;:::;On = {(x1; : : : ; xn) ∈ O1 × · · · × On|x1 + · · ·+ xn = 0}=GHere we assume that eah orbit is regular (passes through a regular elementof h∗).The oadjoint ation of the Lie group G on g∗ is Hamiltonian. Themoment map O1 × · · · × On → g∗ for the diagonal ation of G on O1 ×

· · · × On ats is (x1; : : : ; xn) 7→ x1 + · · ·+ xnIt is G-invariant, therefore we have a natural map of Poisson manifolds� : M̃O1×···×On = (O1 × · · · × On)=G→ g∗=Ad∗GHere the quotient spae is the GIT quotient. The Hamiltonian redutiongives sympleti leaves of Poisson manifold M̃O1×···×On :
MO1×···×On|On+1 = �−1(On+1)We have natural sympletomorphisms:

MO1×···×On|On+1 ≃ MO1×···×On;−On+1and MO1;:::;On = MO1;:::;On|{0}.



230 N. RESHETIKHINDe�ne the Poisson manifold PIJ as the �bered produt1.
PI;J = M̃Oi1 ;:::;Oik ×̃g∗=GM̃Oi1 ;:::;Oikwhere (I; J) is a partition of (1; : : : ; n) as above and the twist is x 7→ −x.The following Poisson maps de�ne the Casimir integrable system in theomplex algebrai setting:
MO1;:::;On → PI;J → BI;Jg∗=Ad∗Gwhere BI;J is the image of the last map and the maps areAd∗G(x1; : : : ; xn) 7→ (Ad∗G(xi1 ; : : : ; xik );Ad∗G(xj1 ; : : : ; xjn−k )) 7→Ad∗G(xi1 + · · ·+ xik ) = Ad∗G(xj1 − · · · − xjn−k )The variety BI;J has dimension r but it is, \generially" smaller then

g∗=Ad∗G.2.1. \Relativisti" Casimir systems. We will keep the same data asin the previous setions. Let Ci ⊂ G be onjugation orbits, i = 1; : : : ; n.The moduli spae of at G-onnetions on a sphere with n puntures is aPoisson manifold with the Atiyah{Bott Poisson struture. Assigning on-jugay lasses to puntures �xes a sympleti leaf of this Poisson manifold:
MC1;:::;Cn = {(g1; : : : ; gn) ∈ C1 × · · · × Cn|g1 : : : gn = 1}=Gwhere G ats on the Cartesian produt by diagonal onjugations. ThePoisson struture on the moduli spae itself, i.e. on M = {(g1; : : : ; gn) ∈G× · · · ×G|g1 : : : gn = 1}=G an be desribed using lassial fatorizabler-matries as in [9℄.The group G ats on the produt C1×Cn by diagonal onjugations. Thisation is Poisson and the mapping

C1 × Cn → G; (g1; : : : ; gn) → g1 : : : gn1Reall that given two projetions �1;2 :M1;2 → N , the �bered produt of M1 andM2 over N is M1 ×N M2 = {(x1; x2) ∈ M1 ×M2|�1(x1) = �2(x2)}If � :M2 → M2 is a di�eomorphism, the �bered produt twisted by � isM1×̃NM2 = {(x1; x2) ∈ M1 ×M2|�1(x1) = �2(�(x2))}



DEGENERATELY INTEGRABLE SYSTEMS 231is the group valued moment map for this ation [1℄. It ommutes with theonjugation ation of G and gives the Poisson map
M̃C1;:::;Cn → G=AdGwhere

M̃C1;:::;Cn = {(g1; : : : ; gn) ∈ C1 × · · · × Cn}=GAs in the previous setion, de�ne the Poisson varieties
PI;J(C1; : : : ; Cn) = M̃Ci1 ;:::;Cik ×G=AdG M̃Cj1 ;:::;Cjn−kwhere I; J is a partition (1; : : : ; n) = I ⊔ J . Where the twisted �beredprodut is de�ned in the previous setion. The twist is given by � : g 7→g−1.Relativisti Casimir integrable system is desribed by the following se-quene of Poisson maps

MC1;:::;Cn → PI;J(C1; : : : ; Cn) → BI;J(C1; : : : ; Cn) ⊂ G=AdGating asAdG(g1; : : : ; gn) 7→ (AdG(gi1 : : : gik );AdG(gj1 _sgjn−k)) 7→ [gi1 : : : gik ℄ = [(gj1 : : : gjn−k)−1℄ ∈ G=AdGHere BI;J is the image of the last map, whih has dimension r but is,generally, smaller then g∗=Ad∗G.
§3. Calogero{Moser systems3.1. Degenerate integrability. Spin Calogero{Moser systems are pa-rameterized by pairs (g;O) where g is a simple Lie group and O is ao-adjoint orbit in g. Calogero and Moser disovered suh systems for Liealgebras of type A and oadjont orbit of rank 1. Sutherland generalizedthem to trigonometri and hyperboli potentials. Olshanetsky and Perelo-mov generalized them to all simple Lie algebras and to ellipti potentials.Here we will fous on trigonometri potentials.The degenerate integrability of spin Calogero{Moser systems is givenby the following olletion of Possin projetions.T ∗G //

��

g∗ ×h∗=W g∗

��

L //R // g∗

��T ∗G=AdG // (g∗ ×h∗=W g∗)=G p
// h∗=W ≃ g∗=Ad∗G



232 N. RESHETIKHINHere g∗×h∗=W g∗ is the �bred produt of two opies of g∗ over h∗. The mapsin the upper row of the diagram at as (x; g) 7→ (x;−Ad∗g(x)), L(x; y) = x,and R(x; y) = y. Here and below we assume that the o-adjoint bundleT ∗G is trivialized by left translations T ∗G ≃ g∗ × G and has a standardsympleti struture of a otangent bundle. The lower horizontal sequeneof Poisson maps is at heart of degenerate integrability of spin Calogero{Moser systems [24℄.Reall that lassial spin Calogero{Moser systems are parameterizedby o-adjoint orbits O ⊂ g∗. If O is passing through t ∈ h∗, then itis also passing through eah w(t) where w ∈ W is an element of theWeyl group. We will denote suh orbit passing through t by O[t℄ where[t℄ ∈ h∗=W is the orbit of t with respet to the Weyl group ation. When gis a real ompat form of a simple Lie algebra, we an identify h∗=W withh∗> 0 = {
r∑i=1xi!i|xi ∈ R>0}, where are fundamental weights of g and r isthe rank of g.For a generi o-adjoint orbit O[t℄ the phase spae of the orrespond-ing spin Calogero{Moser system is the sympleti leaf S[t℄ = �−1(O[t℄)=Gwhere � : T ∗G→ h∗ is the moment map for the adjoint ation of G:�(x; g) = x−Ad∗g(x) ∈ g∗Here x ∈ g∗; g ∈ G.The sequene of projetions from the diagram above produes the se-quene of Poisson projetionsS[t℄ → ⊔[s℄∈h∗=WM[s℄;−[s℄|[t℄ → B[t℄ ⊂ h∗=W (5)Here the moduli spae M[s1℄;[s2℄|[t℄ is de�ned as

M[s1℄;[s2℄|[t℄ = {(x1; x2) ∈ O[s1℄ ×O[s2℄|x1 + x2 ∈ O[t℄}=Gand B[t℄ = {[s℄ ∈ h∗=W |M[s℄;−[s℄|[t℄ 6= ∅}. Note that B[t℄ is unboundedbut if t 6= 0 it does not ontain the viinity of zero. Its dimension isr = rank (G). The series of projetions (5) desribes the degenerate in-tegrability of lassial spin Calogero{Moser model. The Hamiltonian ofthe lassial spin Calogero{Moser system is the pull-bak of the quadratiCasimir funtion on h∗=W to S[t℄. Taking into aount the isomorphismS[t℄ ≃ (T ∗h × O[t℄==H)=W (assuming, as above, that t is generi), were
O[t℄==H is the Hamiltonian redution of O[t℄ with respet to the oadjointation of H , the Hamiltonian of lassial spin Calogero{Moser system an



DEGENERATELY INTEGRABLE SYSTEMS 233be written as HsCM = 〈p; p〉+ ∑�∈�+ ���−�(h�=2 − h−�=2)2where p; h� are oordinate funtions on T ∗h and ���−� is a funtion on
O[t℄==H (the Hamiltonian redution of O[t℄ with respet to the ation ofthe Cartan subgroup) see [24℄ for details. One an hek that the Poissonalgebra C(S[t℄) is isomorphi to the subalgebra of W -invariant funtionsfrom Pol(p; h±1� )⊗ C(Ot==H) with the Poisson struture

{pi; pj} = 0; {pi; h�} = �ih�; {h�; h�} = 0Poisson algebra C(Ot==H) of funtions on the Hamiltonian redution of Otwith respet to the Hamiltonian ation of H is the quotient of the Poissonalgebra of H-invariant funtions on Ot with respet to the Poisson idealgenerated by Cartan omponents of �i.Note that the evolution with respet to a entral funtion F on g∗ isquite simple: (X; g) 7→ (X; et∇F (X)g)where ∇F is the gradient (with respet to the Killing from on g of F .This formula beomes somewhat ompliated after the projetion T ∗G→T ∗G=G.3.2. Rank 1 orbits for SLn. In this ase�ij = �i j − Æij�;where � = 1n n∑i=1 �i i. The Hamiltonian redution with respet to the a-tion of the Cartan subgroup introdues onstraint �ii = 0 whih implies�i i = �. In this ase �ij�ji = �i i�j j = �2whih means, in partiular that the Hamiltonian redution of a rank 1orbit is a point. The spin Calogero{Moser system for suh orbits beomesCalogero{Moser system with the Hamiltonian. Whih is equal toHCM = 〈p; p〉+∑i<j �24 sin( qi−qj2 )2for the ompat real form of G.



234 N. RESHETIKHIN
§4. Rational spin Ruijsenaars systems4.1. Degenerate integrability. Let us denote by (T ∗G; p) the Poissonmanifold whih is T ∗G as a manifold, whih we assume trivialized T ∗G ≃

g×G by left translations with the Poisson algebra struture on C∞(T ∗G)de�ned uniquely by the following properties:
• The subalgebras C∞(g∗) and C∞(G) are Poisson subalgebras withthe standard and trivial Poisson strutures respetively.
• Poisson braket between a linear funtion X ∈ g on g∗ and f ∈C∞(G) is

{X; f} = (LX −RX )fwhere LX and RX are the left and right invariant vetor �elds onG generated by X .Note that this Poisson struture di�ers from the standard sympletistruture on the otangent bundle to a manifold. Sympleti leaves of(T ∗G; p) are produts O×C where O ⊂ g∗ is a o-adjoint orbit and C ⊂ Gis a onjugay lass.The adjoint ation of the group G (the extension of the adjoint ationfrom G to T ∗G) on (T ∗G; p) is Poisson, thus (T ∗G; p)=G has a naturalPoisson struture. The sympleti leaves of the quotient spae are (O ×
C)=G where G ats diagonally on the produt.It is easy to hek that the map T ∗G → (T ∗G; p) ating as (x; g) →(x−Ad∗g(x); g) is Poisson and it is lear that it ommutes with the adjointG-ations. It indues Poisson map� : T ∗G=AdG → (T ∗G; p)=AdG :We also have a natural projetion� : (T ∗G; p)=AdG → G=AdG :ating as AdG(x; g) 7→ AdG g. This projetion is Poisson with the trivialPoisson struture on the base.Restriting  ̃ to a sympleti leaf of T ∗G=AdG2, we have the sequeneof Poisson maps desribing degenerate integrability of rational spin Ruije-naars (sR) systemsS(O) → P (O) → B(O) ⊂ G=AdG :Here S(O) is the sympleti leaf of T ∗G=AdG orresponding to the oad-joint orbit O ∈ g∗, P (O) = �(S(O)) = (O × O)=G ⊂ (T ∗G; p)=G, and2Sympleti leaves of T ∗G=AdG are desribed earlier.



DEGENERATELY INTEGRABLE SYSTEMS 235B(O) = �(P (O)). Note that � is surjetive and �bers of � has dimen-sion dim(B(O), whih is, generially, r. Reall that sympleti leaves ofT ∗G=AdG are perimages of oadjoint orbits with respet to the momentmap, S(O) = {(x; g)|x− Ad∗g(x) ∈ O}=G. The �ber of the last projetionis the sympleti leaf of P (O):P (O; C) = {(x−Ad∗g(x); g)|x ∈ O; g ∈ C}=GAs in the ase of the spin Calogero{Moser, the dimension of B(O) is r forgeneri O but for degenerate orbits it is less and for maximally degeneratenon-trivial orbits it is 1-dimensional.4.2. Hamiltonians for SLn rank 1 orbits. Here we assume G = SLn.In this ase we an this of both g and g∗ and traeless n× n matries. Wealso assume that O ⊂ g∗ is an orbit through a semisimple element and that� = x− gxg−1 ∈ O. If we hoose the ross-setion of the adjoint G-ationon TG, where xij = Æijhi, the sympleti leaf S(O) ∈ T ∗G=G (its opendense subset) has oordinates hi, �ij�ji gii. The Hamiltonian redutionimposes the onstraint �ii = 0. Elements gij satisfy the equation(hi − hj)gij = n∑k=1 �ikgkj : (6)We will not try to solve this equations here, in order to �nd Hamiltoniansfor rank > 1 orbits. In the next setion we will do it for rank 1 ase (thisomputation an also be found in many other paper, see for example [18℄[4℄.In this ase �ij = �i j − Æij�where � =< �; > =n as in the rank 1 ase of Calogero Moser. Theequation (6) implies(hi − hj)gij = �i ∑k  kgkj − �gijFrom here we have gij = 1hi − hj + ��i ∑k  kgkj (7)This gives the system of equations for  i�in∑i=1 �i ihi − hj + � = 1 (8)



236 N. RESHETIKHINand the identity gii = �i� n∑k=1 kgki (9)The equation (8) an be solved expliitly:�i i = ∏j 6=i hi − hj + �hi − hjEquations (9) and (7) give the formula for gijgij = �i�−1j �gjjhi − hj + � :Redued Poisson brakets are log-linear in oordinates hi; ui3
{hi; hj} = 0; {hi; uj} = Æij ; {ui; uj} = 0where ui is related to gii asgii = ui n∏j 6=i hi − hj + �hi − hjThe �rst two elementary G-invariant funtions of g aretr(g) = n∑i=1 gii ;tr(g2) = �2 ∑ij giigjj 1(hi − hj + �)(hj − hi + �) :The seond funtion gives the Hamiltonian of the rational Ruijsenaarssystem.HrR = �!2(g) = 12(tr(g2)− tr(g)2) = −

∑i<j uiuj ∏a∈{ij};b∈{ij}∨

ha − hb + �ha − hbHere {i; j} ⊂ {1; : : : ; n} and {i; j}∨ is its omplimentary subset. Char-aters of fundamental representations �!i(g) evaluated on elements g de-sribed above are lassial analogs of rational Madonald operators.3To be more preise the algebra of funtions on S(O) is isomorphi to the algebraof symmetri polynomials in pi; u±1.



DEGENERATELY INTEGRABLE SYSTEMS 2374.3. Duality. A duality relation between spin Calogero{Moser systemsand systems whih we will all rational spin Ruijsenaars systems was ob-served in [19℄ [9℄ (see also referenes therein). This is a duality betweentwo Liouville integrable systems whih maps angle variables of one sys-tem to the ation variable of the other system. The duality between spinCalogero{Moser and rational spin Ruijsenaars systems (as the duality ofdegenerately integrable systems) was found in [24℄. Here we will reall thisproperty.Let F (G(x; )) be the �ber of the projetion  : T ∗G=G → (g∗ ×g∗=G
g∗)=G ontaining G(x; ). Reall that  (G(x; )) = G(x;−Ad∗(x)). It islear that F (G(x; )) = G(x; Zx)where Zx = {g ∈ G|Ad∗g(x) = x}. This �ber is the Liouville torus ofthe spin C{M system passing through the point G(x; ). It projets toAdG(x) ∈ g∗=G on the base of the last projetion in (5). Hamiltonian owsof funtions on g∗=G generate angle variable for spin C{M system, i.e. anaÆne oordinate on F (G(x; )). Generi �ber F (G(x; )) has dimensionr = rank (G).De�ne F̃ (G(x)) as a �ber of the map  ̃ : T ∗G=G→ (T ∗G; p)=G whihontains G(x; ). Reall that  ̃(x; ) = (x − Ad∗(x); ). It is easy to seethat F̃ (G(x; )) = G(x+ C ; )Here C = {x ∈ g∗|Ad∗(x) = x}. This �ber is the Liouville torus ofthe rational spin Rujsenaars system passing through G(x; ). Hamiltonianows of funtions on G=AdG generate an aÆne oordinate system on itwhih is the olletion of angle variables for the rational spin Ruijenaarssystem.Theorem 2. The �bers F (G(x; )) and F̃ (G(x; )) are dual in a sensethat F (G(x; )) ∩ F̃ (G(x; )) = G(x; )For rank 1 orbits, when both systems are Liouville integrable, this du-ality redues to the one from [4,19℄.
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§5. Relativisti spin Calogero{Moser and spinRuijsenaars systems5.1. Relativisti spin Calogero{Moser system.5.1.1. Hamiltonian struture and degenerate integrability of relativisti spinCaloero{Moser and Ruijsenaars models. The underlying Poisson manifoldfor relativisti spin Calogery{Moser system is a \nonlinear" version ofT ∗G whih is known as a Heisenberg double H(G) of G with the standardPoisson Lie struture. Equivalently H(G)=G where G ats by diagonalonjugations an be regarded as the moduli spae of at onnetions on apuntures torus (see [9℄).As a manifold the Heisenberg double is H(G) = G ×G. A point (x; y)should be regarded as a pair of monodromies o the loal system on apuntures torus around two fundamental yles. The monodromy aroundthe punture is xyx−1y−1. The Poisson struture onH(G) an be desribedin terms of r-matries for standard Poisson Lie struture on G. Poissonbrakets between oordinate funtions an be written as [7℄:

{x1; x2} = r12x1x2 − x1x2r21 + x1r21x2 − x2r12x1
{x1; y2} = −r21x1y2 − x1y2r21 + x1r21y2 − y2r12x1
{y1; y2} = r12y1y2 − y1y2r21 + y1r21y2 − y2r12y1 (10)Here x and y are matrix elements of x ∈ G in some �nite dimensionalrepresentation with some basis (these matrix elements from a basis in thespae of regular funtions on G). The matrix r12 is the result of evaluationof the universal lassial r-matrix from setion 6.1 in the tensor produtof two �nite dimensional represenations of G.The phase spae of relativisti Calogero{Moser system is the symple-ti leaf of the moduli spae H(G)=G orresponding to �xing the onjugaylass of the monodromy xyx−1y−1 around the punture. In terms of Pois-son geometry, this sympleti leaf an be desribed as follows.The map H(G) → G, (x; y) 7→ x is the G-valued moment map for theleft ation of the group on H(G) (regarded as non-linear version of theotangent bundle on G trivialized by left translations). The map H(G) →G, (x; y) → yxy−1 is the group valued moment map for the orrespondingright ation of G. The map � : H(G) → G, � : (x; y) 7→ xyx−1y−1 is thegroup valued map orresponding to the onjugation ation. For details ongroup valued moment maps see [1℄. Thus,

M(C) = �−1(C) ⊂ H(G)=G



DEGENERATELY INTEGRABLE SYSTEMS 239is the sympleti leaf orresponding to the onjugay lass C of the mon-odromy around the punture. Here G ats by onjugation.Hamiltonians of the relativisti spin Calogero{Moser system orrespond-ing to the onjugay lass C are onjugation invariant funtions on G,i.e. funtions on G=G. The Hamiltonian orresponding to f ∈ CG(G) isHf (x; y) = f(x).The degenerate integrability of the relativisti spin Calogero{Moser sys-tem is desribed by restriting the following sequenes of Poisson maps:(G×G)=G → (G×̃G=AdGG)=G→ G=AdG (11)to the sympleti leaf M(C). Here the �bered produt is twisted as in therelativisti Casimir system by g 7→ g−1 and [(x; y)℄ 7→ [(x; yx−1y−1)℄ 7→ [x℄.For ompat simple Lie group G this gives the degenerate integrability ofrelativisti spin Calogero systems:
M(C) → {G(g1; g2)|G(g1) = G(g2); g1g2 ∈ C} → B(C) ⊂ G=Gwhere B(C) = {C′ ∈ G=G|M(C′; C′−1; C) 6= ∅}.Hamiltonians of relativisti spin Ruijsenaars system areHf (x; y) = f(y)where f ∈ CG(G) is a funtion on G, invariant with respet to onjuga-tions.The degenerate integrability of relativisti spin Ruijsenaars system isgiven by restriting maps(G×G)=G→ (G×G)=G → G=Gwhere G(x; y) 7→ G(xyx−1y−1; y) 7→ Gy, to a sympleti leaf of (G×G)=G.Two systems are related as follows.Proposition 2. The mapping G × G → G × G, (x; y) 7→ (y; x−1) is aPoisson map and it indues the sympletomorphism M(C) 7→ M(C) whihmaps relativisti spin Calogero{Moser system to relativisti spin Rujse-naars system.The proof is straightforward.5.1.2. Duality. Let us prove that the two systems are dual in a sense ofintersetion property of Lioville tori.Let �1 be the projetion(G×G)=G→ (G×̃G=GG)=G; G(x; y) 7→ G(x; yx−1y−1)and �2 be the projetion(G×G)=G→ (G×G)=G; G(x; y) 7→ G(xyx−1y−1; y);



240 N. RESHETIKHINDenote �bers of these projetions through the point G(x; y) ∈ (G×G)=Gby F1(G(x; y)) and F2(G(x; y)) respetively. The following is easy to prove.Proposition 3. For generi (x; y we have:1) F1(G(x; y)) = {G(x; yz)|z ∈ Zx} where Zx is the entralizer of xin G.2) F2(G(x; y)) = {G(xz; y)|z ∈ Zy}3) F1(G(x; y)) ∩ F2(G(x; y)) = G(x; y)5.1.3. Hamiltonians for rank 1 onjugay lasses in SLn. Assume thatz = xyx−1y−1 ∈ SLn belongs to the rank 1 onjugay lass. For generirank 1 onjugay lass this meansz = u diag (qn−1; q; : : : ; q)u−1for some u ∈ SLn and q ∈ C∗. Equivalently, we an writezij = �i j + q−1Æijwhere (�;  ) = n∑i=1 i�i = qn−1 − q−1.Hamiltonians of relativisti Calogero{Moser and relativisti Ruijenaarssystem are HrCMk = �!k(x); HsRk = �!k(y)Let us ompute them in appropriate oordinates.First, assume x is semisimple and bring it to the diagonal form witheigenvalues x1; : : : ; xn. From the de�nition of z we haveyijxj = n∑k=1 xkykj = �i n∑k=1 kxkykj − q−1xiyij (12)From here we have: yij = �i n∑k=1 kxkykjxj − q−1xiMultiplying by �i i and taking sum over i gives the following equation for i�i: n∑i=1  i�ixixj − q−1xi = 1



DEGENERATELY INTEGRABLE SYSTEMS 241Solving this equation we have i�i = (1− q−1)x−1i n∏j 6=i 1− qxjx−1i1− xjx−1iWhen i = j, (12) impliesyii = �ixi(1− q−1) ∑k  kxkykiSolving this for ∑k  kxkyki we haveyij = �i�−1j (1− q−1)yjj1− q−1xix−1jNow we an ompute Hamiltonians of rsR model in terms of yii and xi.For the �rst two we have tr(y) = n∑j=1 yjjtr(y2) = n∑ij (1− q−1)2yiiyjj(1− q−1xix−1j )(1− q−1xjx−1i )Poisson algebra C(M(C) is isomorphi to the algebra of symmetri Lau-rant polynomials in yii and xi (with respet to the diagonal ation of thesymmetri group) with following Poisson brakets between x and y:
{xi; xj} = 0; {xi; uj} = Æijxiuj ; {ui; uj} = 0where yii = ui ∏j 6=i 1− q−1xjx−1i1− xjx−1iThe Hamiltonians �!i(y) are lassial analogs of Madonald operators.The Hamiltonian of the relativisti Ruijsenaars model isH2 = �!2(y) = −q−1 ∑i<j uiuj ∏a∈{ij};b∈{ij}∨

1− q−1xax−1b1− xax−1bThe mapping (x; y) 7→ (y; x−1) intertwine the relativisti Calogero{Mosersystem and Relativisti Ruijenaars system. So, the Hamiltonian of rela-tivisti Calogero{Moser model is given by essentially the same formulae.
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§6. Charateristi systems on simple Poisson Lie groupswith standard Poisson Lie struture6.1. Sympleti leaves and degenerate integrability of hara-teristi system. Standard Poisson Lie struture on a simple Lie grouprequires a hoie of a Borel subgroup in G. This �xes a Catran subalgebra
h, the root system and positive roots. Assuming that the tangent bundleTG is trivialized by left translations TG ≃ g×G, the Poison bivetor �eldorresponding to the standard struture is�(x) = Adx(r) − r; r = 12 r∑i=1 hi ⊗ hi + ∑�>0E� ⊗ F�Here � and positive roots of g, E�; F� are orresponding elements of thebasis in g, r is the rank of g, hi is a basis in the Cartan subalgebra hand hi is the dual basis with respet to the Killing form. We assume that
g ∧ g ⊂ g ⊗ g.Sympleti leaves of any Poisson Lie group are orbits of the dressingation of the dual Poisson Lie group. For a simple Lie group G with thestandard Poisson Lie struture are known to be �bers of the �bration ofdouble Bruhat ells over tori inside of the Cartan subgroup H of G. Reallthat a double Bruhat ell in G is the intersetion of a Bruhat ell for Band a Bruhat ell for B−:Gu;v = BuB ∩B−vB−where BuB is de�ned as BuB ⊂ G, where u ∈ W and u ∈ N(H) ⊂ G isits representative in the normalizer of H , and B−vB− is de�ned similarly.Generalized minors give a natural �brationGu;v

��

Su;vooT u;vFor the expliit desription of it see, for example [23℄ and referenes therein.Hamiltonians of the harateristi integrable system are entral fun-tions on G. There are only r independent entral funtions whih an behosen as haraters of fundamental representations. Their restrition toa generi sympleti leave of G generate a degenerately integrable sys-tem [23℄. Poisson projetions desribing degenerate integrability an be



DEGENERATELY INTEGRABLE SYSTEMS 243desribed as follows: Su;v → P u;v → AdG Su;v: (13)Here P u;v = (Su;v ×Su;v)=AdG∗ where Su;v ×Su;v ⊂ G×G and the dualPoisson Lie group G∗ is embedded in G × G as usual G∗ = {(b+; b−) ∈B × B− ⊂ G × G|[b+℄0 = [b−−1℄0}, where [b℄0 is the Cartan omponentof b ∈ B. The �rst map is the diagonal embedding, the seond map is theprojetion to (G × G)=AdG×G followed by the projetion to any of thefators in the Cartesian produt.In other words, harateristi Hamiltonian systems are integrable andtheir Liouville tori are intersetions of adjoint orbits of G and of orbits ofthe dressing ation of G∗ (whih are sympleti leaves of G).6.1.1. Hamiltonian ows as the fatorization dynamis. Let G be a fa-torizable Poisson{Lie group. Standard Poisson Lie group struture on asimple Lie group is an example of a fatorizable Poisson Lie group. LetI(G) ⊂ C∞(G) be the subspae of AdG-invariant funtions on G.Let G∗ be the dual Poisson Lie group to G. It has a natural embeddingto G × G desribed above. The multipliation in G, together with thisembedding gives the mapping G∗ → G, (b+; b−) 7→ b+b−1
− . When theinverse exists g 7→ (g+; g−) (in a viinity of the unit element in G it isunique when it exists), it is alled the fatorization map. Note that at thelevel of Lie algebras there is always a linear isomorphism g → g∗, suh thatx = x+ + x0 + x− 7→ (x+ + x02 ;−x− − x02 ). It is alled the fatorizationisomorphism.The dynamis of harateristi systems an be desribed expliitly bythe following theorem [25℄:Theorem 3. Assume the fatorization map is de�ned and unique on anopen dense subset of G, theni) I(G) is a ommutative Poisson algebra in C∞(G).ii) In a neighborhood of t = 0 the ow lines of the Hamiltonian owindued by H ∈ I(G) passing through x ∈ G at t = 0 have the formx(t) = g±(t)−1xg±(t);where the mappings g±(t) are determined byg+(t)g−(t)−1 = exp (tI (dlH(x))) ;and I : g∗ −→ g is the inverse to the fatorization isomorphism.Here dlH(x) ∈ g∗ is the left di�erential of H(x). For X ∈ g,
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