
úÁ�ÉÓËÉ ÎÁÕÞÎÙÈÓÅÍÉÎÁÒÏ× ðïíé�ÏÍ 433, 2015 Ç.C. MalyshevTHE EINSTEIN-LIKE FIELD THEORY AND THERENORMALIZATION OF THE SHEAR MODULUSAbstra
t. The Einstein-like �eld theory is developed to des
ribeelasti
 solid 
ontaining distribution of s
rew dislo
ations with �nite-sized 
ore. The 
ore self-energy is given by the gauge-translationalLagrangian quadrati
 in the torsion tensor 
orresponding to three-dimensional Riemann{Cartan geometry. The Hilbert{Einstein gaugeequation plays the role of un
onventional in
ompatibility law. Thestress tensor of the modi�ed s
rew dislo
ations is smoothed outwithin the 
ore. The renormalization of the shear modulus 
aused byproliferation of dipoles of non-singular s
rew dislo
ations is studied.Dedi
ated to P. P. Kulishon the o

asion of his 70th birthday
§1. Introdu
tionThe role of geometry in modern theoreti
al physi
s is 
onsiderable. Thedi�erential geometry provides framework for the analogies between thelow-dimensional gravity and the defe
ts in solids [1{4℄. In turn, the mul-tivalued �elds are of great importan
e in the 
ondensed matter physi
sto des
ribe defe
ts and phase transitions [5℄. Multivalued gauge transfor-mations are responsible for the topologi
al properties of the line defe
ts
hara
terized by singular densities. Multivalued in�nitesimal 
oordinatetransformations for the dislo
ated 
rystals are responsible for arising ofgeneral aÆne spa
es with 
urvature and torsion. It is the Riemann{Cartangeometry whi
h is relevant to the theoreti
al des
ription of solids with dis-lo
ations and dis
linations [1{5℄.Singularity of the dislo
ation densities is an idealization sin
e the dislo-
ation 
ore is not 
aptured by the 
lassi
al elasti
ity. The translationalgauge approa
h allows us to des
ribe the dislo
ations whi
h are non-singular due to the 
ore regions [6,7℄. The 
ore self-energy is given by theKey words and phrases: translational gauging, s
rew dislo
ation, shear modulus,renormalization.Partially supported by RFBR No. 13-01-00336.196



THE EINSTEIN-LIKE FIELD THEORY 197translational part of the Lagrangian advan
ed in [2℄ to des
ribe defe
ts inthree-dimensional solids. In the 
ase of s
rew dislo
ations, the Einstein-type gauge equation plays the role of un
onventional in
ompatibility law.The model allows for a 
ontinuation of the 
lassi
al stresses of the s
rewdislo
ation within the 
ore, and the arti�
ial 
ut-o� does not o

ur [7℄.The topologi
al behavior of the dislo
ations is 
onventional suÆ
iently farfrom the defe
t lines.Proliferation of the dislo
ation dipoles is responsible for the renormal-ization of the elasti
 
onstants [8{13℄ (see the review [14℄). A �eld the-ory is developed in [15, 16℄ to des
ribe thermodynami
s of non-singulars
rew dislo
ations in elasti
 
ylinder. The partition fun
tion of the sys-tem is 
onsidered as the fun
tional integral. Self-energy of the dislo
ation
ores is 
hosen in a

ordan
e with the gauge-translational approa
h [6℄.Array of non-singular dislo
ations is equivalent to the two-dimensionalCoulomb gas with smoothed out 
oupling. The renormalization of theshear modulus due to proliferation of dipoles of the modi�ed s
rew dis-lo
ations is obtained. The in
uen
e of the dislo
ation 
ores on the renor-malization of the shear modulus is demonstrated. It should be remindedthat melting of two-dimensional ele
tron 
rystals, [17℄, thermodynami
s oftwo-dimensional Coulomb systems, [18, 19℄, and the dislo
ation-mediatedmelting in super
uid vortex latti
es, [20℄, attra
t attention.
§2. The s
rew dislo
ations with finite-sized 
oreInitial and deformed states of the dislo
ated three-dimensional solidare des
ribed by the length elements gijdxidxj and �abd�ad�b, where thedeformed state is given by the map x 7−→ �(x). The metri
 
omponentsare related: �ab = gijE ia E jb , where the 
o-frame 
omponents E ia are givenby 1-form dxi = E ia dxa. The frame 
omponents eai are de�ned by therelation �i = eai�a (hen
eforth �i ≡ �=�xi). The 
omponents E ia and eaiare orthogonal: eaiE ib = Æab ; eaiE ja = Æji :We 
onsider the Eulerian strain tensor eab referred to the deformedstate: �abd�ad�b − gijdxidxj = 2eabd�ad�b ; (1)where 2eab ≡ �ab − gab; gab ≡ gijB iaB jb : (2)



198 C. MALYSHEVThe metri
 gab (2) is the Cau
hy deformation tensor, and the 
omponents
B ia are given by 1-form dxi = B ia d�a. Assume that B ia are T(3)-gauged:

B ia = �xi��a − ' ia : (3)Then, dislo
ations are allowed provided that B ia d�a is not 
losed due to thegauge potentials ' ia . The entries ' ia are the translational gauge potentials,whi
h behave under the lo
al shifts xi −→ xi + �i(x) as follows:�xi��a −→
�xj��a (Æij + ��i�xj ); ' ia −→ ' ia + �xj��a ��i�xj : (4)The transformations (4) ensure the gauge invarian
e of B ia (3).The Lagrangian of the model in
ludes, apart from non-linear elasti
energy, the translational part of the eight-parameter Lagrangian Lg [2℄,whi
h is invariant under the 
oordinate shifts and lo
al rotations. Thetranslational part of Lg depends quadrati
ally on the torsion tensor (iden-ti�ed as the dislo
ation density) T 
ab = (�aBbi − �bBai)B
i (here B
j arere
ipro
als of Bai):

B
−1
Lg∣∣!=0 = −

14Tab
(�1T ab
 + �2T 
ab + �3T ebe�a
);
B ≡ detB ia :Under the 
hoi
e �1 = −`, �2 = 2`, �3 = 4`, the model is governed by theEinstein-type gauge equation,Gef = 12` (�ef − (�bg)ef ) ; (5)where � and �bg are the total and ba
kground stress tensors, and ` is themeasure of the energy of the gauge �eld '. The Einstein tensor Gef ≡14 EeabEf
dRab
d is de�ned by means of the Levi{Civita tensor Eab
 andthe Riemann{Christo�el tensor Rab
d 
al
ulated for the metri
 gab (2)(see [1℄, vol. II). The �eld �bg 
orresponds to a pres
ribed distributionof the ba
kground dislo
ations, and � − �bg is the driving sour
e. Theequilibrium equations are: (�)∇a �ab = 0, (�)∇a (�bg)ab = 0, where (�)

∇a is the
ovariant derivative with respe
t to �ab.Non-singular s
rew dislo
ation arises in the T(3)-gauge model proposedin [7℄, and its �rst-order stress �eld (1)� �z in the 
ylindri
al 
oordinates is



THE EINSTEIN-LIKE FIELD THEORY 199of the form: (1)� �z = −��� (1)�= b�2� 1�(1− ��K1(��));(1)� ≡
−b2� (log �+K0(��)): (6)Here, � is the shear modulus, the Burgers ve
tor 
omponent along z-axis isbz = b, and � = (�=`) 12 . The ba
kground stress is given by (�bg)�z = b�2� 1� .The dislo
ation 
ore is given by � <

∼ �−1 , sin
e the gauge 
orre
tion to 1� isexponentially small outside the 
ore. Inside the 
ore (1)� �z∼ A� log(B�) at� → 0.
§3. The renormalization of the shear modulusThe partition fun
tion Z of the elasti
 
ylinder 
ontaining distributionof non-singular s
rew dislo
ations is given by the fun
tional integral [15℄:

Z = ∫ e�L [Meas℄ ; L ≡ Lel + L
ore − iEext ; (7)where � is inverse of the absolute temperature, and [Meas℄ is the integrationmeasure. In framework of the plane problem of the elasti
ity theory, the La-grangian L (7) in
ludes the elasti
 
ontribution Lel = −12� ∫ (�bi + �
i )2 d2x,while the other ones are:
L
ore = ∫

(`(�iej − �jei)2+2ei�
i ) d2x;
Eext = ∫ �bi (�iu−2Pi) d2x; (8)where u ≡ u3 and ei ≡ ei3 are the displa
ement and the strain 
omponents(i = 1; 2). The stress 
omponents �#i ≡ �#i3 are independent �eld variables
orresponding to, so-
alled, ba
kground (# is b) or 
ore (# is 
) 
ontribu-tions. Besides, Pi is the plasti
 sour
e whi
h pres
ribes distribution of theba
kground dislo
ation lines. The integration in Z (7) is over �#i , u, andei (i = 1; 2).We 
onsider the grand-
anoni
al ensemble of the dislo
ations in thedipole phase, whi
h 
orresponds to bound pairs of the dislo
ations with



200 C. MALYSHEVopposite Burgers ve
tors (bz = ±b). De�ne two-point stress-stress 
orrela-tion fun
tion:
〈〈�i(x1)�j(x2)〉〉 = Z−1dip ∑n&p ∫ �i(x1)�j(x2) e�L[Meas℄ ; (9)where �i(x) = �bi (x) + �
i (x), L is expressed by (7), (8), and Zdip isthe partition fun
tion of the array of the s
rew dislo
ations in the dipoleapproximation [15,16℄. The fun
tional integration in (9) is performed witha referen
e to a given distribution of the dislo
ation lines expressed by

Pi, and ∑n&p implies summation over number of dipoles N , N > 1, andaveraging over their positions. The integral in right-hand side of (9) is
al
ulated in [15℄, and the 
orrelator in the dipole representation of theCoulomb gas is obtained:
〈〈�i(x1)�j(x2)〉〉 = −�2�� �(x1)i�(x2)jU(�|x1 − x2|)+ Z−1dip ∑n&p�i(x1)�j(x2) e−�Wdip ;

U(s) ≡ log(
2 s)+K0(s); (10)where �i = ��ik �xk�, and � ≡
(1)� is the stress potential of superpositionof N dipoles. Positions of dipoles are 
on�ned within a disk of radius R.The energy Wdip in (10) arises, [16℄, in the dipole approximation fromthe e�e
tive energy W of 2N non-singular s
rew dislo
ations with unitBurgers ve
tors (b = 1):

W = −�4� ∑I;J (

U(�|y+I −y+J |)+U(�|y−I − y−J |)−2U(�|y+I − y−J |)); (11)where U(s) is given by (10). Due to 
ondition of \ele
tro-neutrality", thenumber of positive dislo
ations at the points {y+I }16I6N is equal to thenumber of negative ones at the points {y−I }16I6N . The energy W (11)demonstrates that the array of the modi�ed s
rew dislo
ations is equivalentto the two-dimensional Coulomb gas of unit 
harges ±1 
hara
terized bythe two-body potential U (10) whi
h is logarithmi
 at large separation buttends to zero for the 
harges suÆ
iently 
lose to ea
h other.The stress-stress 
orrelator 〈〈�i(x1)�j(x2)〉〉 given by (10) is 
al
ulatedin [16℄ with respe
t of the dipole-dipole 
oupling. It is given with leading
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 a

ura
y:
〈〈�i(x1)�j(x2)〉〉 ≈

−�2�� (�(x1)i�(x2)jU(�|�x|)++ �ik�jl �(x1)k�(x2)l ��dU(�|�x|) + log(1 + ��d)D�K0(�|�x|)1 + ��d ) ;(12)where �x ≡ x1 − x2, �x ≡ (�x1 ; �x2), D� stands for −�2 dd� , and d isproportional to mean area 
overed by the dipoles.We 
onsider the renormalization of the shear modulus � 
aused by pro-liferation of the dislo
ation dipoles. The renormalized �ren is de�ned asfollows [8, 10, 11, 13℄:1�ren ≡
��2S ∑i;k=1;2 ∫∫

〈〈�i(x1)�k(x2)〉〉d2x1d2x2 ; (13)where S is the 
ross-se
tion area. Using 〈〈�i(x1)�k(x2)〉〉 (12) in (13), oneobtains: ��ren = (1 + 2��d) C1(�R)− log(1 + ��d) CD(�R)1 + ��d ; (14)where C1 and CD are given by the modi�ed Bessel fun
tions,
C1(z) = 1− 2K1(z)I1(z) ;
CD(z) = −DzC1(z) = −1 + zI1(z)(K0(z) +K2(z)) : (15)Equation (14) enables us to express the renormalized shear modulus as thefun
tion of temperature, �ren = �ren(T ), below the melting temperatureT
 = �8� , [15, 16℄.The renormalized shear modulus �ren (14) depends on the ratioR=�−1 =�R of two lengths 
hara
terizing the 
ylinder 
ross-se
tion and the dislo
a-tion 
ore. The dependen
e on �R displays the e�e
t of the un
onventionaldislo
ation solution on the shear modulus near the melting transition. Re-
all that properly res
aled Young modulus tends to 16� at T → T−
 a
-
ording to the theory developed in [9{13℄. This universality is 
ru
ial forsingular defe
ts, and it is also dis
ussed in [1℄. A 
on�rmation of this fa
tfor two-dimensional 
olloidal 
rystals has been reported in [21℄. The ap-proa
h [16℄ demonstrates that the limiting value of the renormalized shearmodulus deviates from a multiple of � due to the pe
uliar singularityless
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hara
ter of the dislo
ations:�ren(T−
 )T
 ≈
8�

C1(�R) −−−−→�R≫1 8� ; d ≪ 1 : (16)The results obtained should be appli
able to nanotubes and nanowireswith 
omparable R and �−1. Further development for nonsingular edgedislo
ations seems to be interesting as far as multi-layer nanotubes andwrapped 
rystals are 
on
erned. It should also be noti
ed that the melting
riteria of two-dimensional systems are still a
tively dis
ussed [22, 23℄.Referen
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