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§1. IntrodutionThe role of geometry in modern theoretial physis is onsiderable. Thedi�erential geometry provides framework for the analogies between thelow-dimensional gravity and the defets in solids [1{4℄. In turn, the mul-tivalued �elds are of great importane in the ondensed matter physisto desribe defets and phase transitions [5℄. Multivalued gauge transfor-mations are responsible for the topologial properties of the line defetsharaterized by singular densities. Multivalued in�nitesimal oordinatetransformations for the disloated rystals are responsible for arising ofgeneral aÆne spaes with urvature and torsion. It is the Riemann{Cartangeometry whih is relevant to the theoretial desription of solids with dis-loations and dislinations [1{5℄.Singularity of the disloation densities is an idealization sine the dislo-ation ore is not aptured by the lassial elastiity. The translationalgauge approah allows us to desribe the disloations whih are non-singular due to the ore regions [6,7℄. The ore self-energy is given by theKey words and phrases: translational gauging, srew disloation, shear modulus,renormalization.Partially supported by RFBR No. 13-01-00336.196



THE EINSTEIN-LIKE FIELD THEORY 197translational part of the Lagrangian advaned in [2℄ to desribe defets inthree-dimensional solids. In the ase of srew disloations, the Einstein-type gauge equation plays the role of unonventional inompatibility law.The model allows for a ontinuation of the lassial stresses of the srewdisloation within the ore, and the arti�ial ut-o� does not our [7℄.The topologial behavior of the disloations is onventional suÆiently farfrom the defet lines.Proliferation of the disloation dipoles is responsible for the renormal-ization of the elasti onstants [8{13℄ (see the review [14℄). A �eld the-ory is developed in [15, 16℄ to desribe thermodynamis of non-singularsrew disloations in elasti ylinder. The partition funtion of the sys-tem is onsidered as the funtional integral. Self-energy of the disloationores is hosen in aordane with the gauge-translational approah [6℄.Array of non-singular disloations is equivalent to the two-dimensionalCoulomb gas with smoothed out oupling. The renormalization of theshear modulus due to proliferation of dipoles of the modi�ed srew dis-loations is obtained. The inuene of the disloation ores on the renor-malization of the shear modulus is demonstrated. It should be remindedthat melting of two-dimensional eletron rystals, [17℄, thermodynamis oftwo-dimensional Coulomb systems, [18, 19℄, and the disloation-mediatedmelting in superuid vortex latties, [20℄, attrat attention.
§2. The srew disloations with finite-sized oreInitial and deformed states of the disloated three-dimensional solidare desribed by the length elements gijdxidxj and �abd�ad�b, where thedeformed state is given by the map x 7−→ �(x). The metri omponentsare related: �ab = gijE ia E jb , where the o-frame omponents E ia are givenby 1-form dxi = E ia dxa. The frame omponents eai are de�ned by therelation �i = eai�a (heneforth �i ≡ �=�xi). The omponents E ia and eaiare orthogonal: eaiE ib = Æab ; eaiE ja = Æji :We onsider the Eulerian strain tensor eab referred to the deformedstate: �abd�ad�b − gijdxidxj = 2eabd�ad�b ; (1)where 2eab ≡ �ab − gab; gab ≡ gijB iaB jb : (2)



198 C. MALYSHEVThe metri gab (2) is the Cauhy deformation tensor, and the omponents
B ia are given by 1-form dxi = B ia d�a. Assume that B ia are T(3)-gauged:

B ia = �xi��a − ' ia : (3)Then, disloations are allowed provided that B ia d�a is not losed due to thegauge potentials ' ia . The entries ' ia are the translational gauge potentials,whih behave under the loal shifts xi −→ xi + �i(x) as follows:�xi��a −→
�xj��a (Æij + ��i�xj ); ' ia −→ ' ia + �xj��a ��i�xj : (4)The transformations (4) ensure the gauge invariane of B ia (3).The Lagrangian of the model inludes, apart from non-linear elastienergy, the translational part of the eight-parameter Lagrangian Lg [2℄,whih is invariant under the oordinate shifts and loal rotations. Thetranslational part of Lg depends quadratially on the torsion tensor (iden-ti�ed as the disloation density) T ab = (�aBbi − �bBai)Bi (here Bj arereiproals of Bai):

B
−1
Lg∣∣!=0 = −

14Tab(�1T ab + �2T ab + �3T ebe�a);
B ≡ detB ia :Under the hoie �1 = −`, �2 = 2`, �3 = 4`, the model is governed by theEinstein-type gauge equation,Gef = 12` (�ef − (�bg)ef ) ; (5)where � and �bg are the total and bakground stress tensors, and ` is themeasure of the energy of the gauge �eld '. The Einstein tensor Gef ≡14 EeabEfdRabd is de�ned by means of the Levi{Civita tensor Eab andthe Riemann{Christo�el tensor Rabd alulated for the metri gab (2)(see [1℄, vol. II). The �eld �bg orresponds to a presribed distributionof the bakground disloations, and � − �bg is the driving soure. Theequilibrium equations are: (�)∇a �ab = 0, (�)∇a (�bg)ab = 0, where (�)

∇a is theovariant derivative with respet to �ab.Non-singular srew disloation arises in the T(3)-gauge model proposedin [7℄, and its �rst-order stress �eld (1)� �z in the ylindrial oordinates is



THE EINSTEIN-LIKE FIELD THEORY 199of the form: (1)� �z = −��� (1)�= b�2� 1�(1− ��K1(��));(1)� ≡
−b2� (log �+K0(��)): (6)Here, � is the shear modulus, the Burgers vetor omponent along z-axis isbz = b, and � = (�=`) 12 . The bakground stress is given by (�bg)�z = b�2� 1� .The disloation ore is given by � <

∼ �−1 , sine the gauge orretion to 1� isexponentially small outside the ore. Inside the ore (1)� �z∼ A� log(B�) at� → 0.
§3. The renormalization of the shear modulusThe partition funtion Z of the elasti ylinder ontaining distributionof non-singular srew disloations is given by the funtional integral [15℄:

Z = ∫ e�L [Meas℄ ; L ≡ Lel + Lore − iEext ; (7)where � is inverse of the absolute temperature, and [Meas℄ is the integrationmeasure. In framework of the plane problem of the elastiity theory, the La-grangian L (7) inludes the elasti ontribution Lel = −12� ∫ (�bi + �i )2 d2x,while the other ones are:
Lore = ∫

(`(�iej − �jei)2+2ei�i ) d2x;
Eext = ∫ �bi (�iu−2Pi) d2x; (8)where u ≡ u3 and ei ≡ ei3 are the displaement and the strain omponents(i = 1; 2). The stress omponents �#i ≡ �#i3 are independent �eld variablesorresponding to, so-alled, bakground (# is b) or ore (# is ) ontribu-tions. Besides, Pi is the plasti soure whih presribes distribution of thebakground disloation lines. The integration in Z (7) is over �#i , u, andei (i = 1; 2).We onsider the grand-anonial ensemble of the disloations in thedipole phase, whih orresponds to bound pairs of the disloations with



200 C. MALYSHEVopposite Burgers vetors (bz = ±b). De�ne two-point stress-stress orrela-tion funtion:
〈〈�i(x1)�j(x2)〉〉 = Z−1dip ∑n&p ∫ �i(x1)�j(x2) e�L[Meas℄ ; (9)where �i(x) = �bi (x) + �i (x), L is expressed by (7), (8), and Zdip isthe partition funtion of the array of the srew disloations in the dipoleapproximation [15,16℄. The funtional integration in (9) is performed witha referene to a given distribution of the disloation lines expressed by

Pi, and ∑n&p implies summation over number of dipoles N , N > 1, andaveraging over their positions. The integral in right-hand side of (9) isalulated in [15℄, and the orrelator in the dipole representation of theCoulomb gas is obtained:
〈〈�i(x1)�j(x2)〉〉 = −�2�� �(x1)i�(x2)jU(�|x1 − x2|)+ Z−1dip ∑n&p�i(x1)�j(x2) e−�Wdip ;

U(s) ≡ log(2 s)+K0(s); (10)where �i = ��ik �xk�, and � ≡
(1)� is the stress potential of superpositionof N dipoles. Positions of dipoles are on�ned within a disk of radius R.The energy Wdip in (10) arises, [16℄, in the dipole approximation fromthe e�etive energy W of 2N non-singular srew disloations with unitBurgers vetors (b = 1):

W = −�4� ∑I;J (

U(�|y+I −y+J |)+U(�|y−I − y−J |)−2U(�|y+I − y−J |)); (11)where U(s) is given by (10). Due to ondition of \eletro-neutrality", thenumber of positive disloations at the points {y+I }16I6N is equal to thenumber of negative ones at the points {y−I }16I6N . The energy W (11)demonstrates that the array of the modi�ed srew disloations is equivalentto the two-dimensional Coulomb gas of unit harges ±1 haraterized bythe two-body potential U (10) whih is logarithmi at large separation buttends to zero for the harges suÆiently lose to eah other.The stress-stress orrelator 〈〈�i(x1)�j(x2)〉〉 given by (10) is alulatedin [16℄ with respet of the dipole-dipole oupling. It is given with leading



THE EINSTEIN-LIKE FIELD THEORY 201logarithmi auray:
〈〈�i(x1)�j(x2)〉〉 ≈

−�2�� (�(x1)i�(x2)jU(�|�x|)++ �ik�jl �(x1)k�(x2)l ��dU(�|�x|) + log(1 + ��d)D�K0(�|�x|)1 + ��d ) ;(12)where �x ≡ x1 − x2, �x ≡ (�x1 ; �x2), D� stands for −�2 dd� , and d isproportional to mean area overed by the dipoles.We onsider the renormalization of the shear modulus � aused by pro-liferation of the disloation dipoles. The renormalized �ren is de�ned asfollows [8, 10, 11, 13℄:1�ren ≡
��2S ∑i;k=1;2 ∫∫

〈〈�i(x1)�k(x2)〉〉d2x1d2x2 ; (13)where S is the ross-setion area. Using 〈〈�i(x1)�k(x2)〉〉 (12) in (13), oneobtains: ��ren = (1 + 2��d) C1(�R)− log(1 + ��d) CD(�R)1 + ��d ; (14)where C1 and CD are given by the modi�ed Bessel funtions,
C1(z) = 1− 2K1(z)I1(z) ;
CD(z) = −DzC1(z) = −1 + zI1(z)(K0(z) +K2(z)) : (15)Equation (14) enables us to express the renormalized shear modulus as thefuntion of temperature, �ren = �ren(T ), below the melting temperatureT = �8� , [15, 16℄.The renormalized shear modulus �ren (14) depends on the ratioR=�−1 =�R of two lengths haraterizing the ylinder ross-setion and the disloa-tion ore. The dependene on �R displays the e�et of the unonventionaldisloation solution on the shear modulus near the melting transition. Re-all that properly resaled Young modulus tends to 16� at T → T− a-ording to the theory developed in [9{13℄. This universality is ruial forsingular defets, and it is also disussed in [1℄. A on�rmation of this fatfor two-dimensional olloidal rystals has been reported in [21℄. The ap-proah [16℄ demonstrates that the limiting value of the renormalized shearmodulus deviates from a multiple of � due to the peuliar singularityless



202 C. MALYSHEVharater of the disloations:�ren(T− )T ≈
8�
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