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THE EINSTEIN-LIKE FIELD THEORY AND THE
RENORMALIZATION OF THE SHEAR MODULUS

ABSTRACT. The Einstein-like field theory is developed to describe
elastic solid containing distribution of screw dislocations with finite-
sized core. The core self-energy is given by the gauge-translational
Lagrangian quadratic in the torsion tensor corresponding to three-
dimensional Riemann—Cartan geometry. The Hilbert—Einstein gauge
equation plays the role of unconventional incompatibility law. The
stress tensor of the modified screw dislocations is smoothed out
within the core. The renormalization of the shear modulus caused by
proliferation of dipoles of non-singular screw dislocations is studied.
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§1. INTRODUCTION

The role of geometry in modern theoretical physics is considerable. The
differential geometry provides framework for the analogies between the
low-dimensional gravity and the defects in solids [1-4]. In turn, the mul-
tivalued fields are of great importance in the condensed matter physics
to describe defects and phase transitions [5]. Multivalued gauge transfor-
mations are responsible for the topological properties of the line defects
characterized by singular densities. Multivalued infinitesimal coordinate
transformations for the dislocated crystals are responsible for arising of
general affine spaces with curvature and torsion. It is the Riemann—Cartan
geometry which is relevant to the theoretical description of solids with dis-
locations and disclinations [1-5].

Singularity of the dislocation densities is an idealization since the dislo-
cation core is not captured by the classical elasticity. The translational
gauge approach allows us to describe the dislocations which are non-
singular due to the core regions [6,7]. The core self-energy is given by the
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translational part of the Lagrangian advanced in [2] to describe defects in
three-dimensional solids. In the case of screw dislocations, the Einstein-
type gauge equation plays the role of unconventional incompatibility law.
The model allows for a continuation of the classical stresses of the screw
dislocation within the core, and the artificial cut-off does not occur [7].
The topological behavior of the dislocations is conventional sufficiently far
from the defect lines.

Proliferation of the dislocation dipoles is responsible for the renormal-
ization of the elastic constants [8-13] (see the review [14]). A field the-
ory is developed in [15,16] to describe thermodynamics of non-singular
screw dislocations in elastic cylinder. The partition function of the sys-
tem is considered as the functional integral. Self-energy of the dislocation
cores is chosen in accordance with the gauge-translational approach [6].
Array of non-singular dislocations is equivalent to the two-dimensional
Coulomb gas with smoothed out coupling. The renormalization of the
shear modulus due to proliferation of dipoles of the modified screw dis-
locations is obtained. The influence of the dislocation cores on the renor-
malization of the shear modulus is demonstrated. It should be reminded
that melting of two-dimensional electron crystals, [17], thermodynamics of
two-dimensional Coulomb systems, [18,19], and the dislocation-mediated
melting in superfluid vortex lattices, [20], attract attention.

§2. THE SCREW DISLOCATIONS WITH FINITE-SIZED CORE

Initial and deformed states of the dislocated three-dimensional solid
are described by the length elements gijdxidxj and 1,,d€%dE®, where the
deformed state is given by the map x —— &(x). The metric components
are related: 1, = g;&,'E,’, where the co-frame components &,’ are given
by 1-form dz’ = £,/dz®. The frame components e% are defined by the
relation 0; = €%9, (henceforth 9; = 9/0z"). The components £, and e
are orthogonal:

e, =8, V€S =],

We consider the Eulerian strain tensor e, referred to the deformed
state:

Napd€®de® — gijda'da’ = 2eqpdg®de’ (1)
where

2€ap = Tab — Yab, 9ab = 9i; BBy . (2)
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The metric gqp (2) is the Cauchy deformation tensor, and the components
B, are given by 1-form dz’ = Bd¢®. Assume that B} are T(3)-gauged:
ozt

Ba = 85“ — Pa- (3)

Then, dislocations are allowed provided that B,d¢® is not closed due to the
gauge potentials ¢,. The entries ¢, are the translational gauge potentials,
which behave under the local shifts ! — 2% + ni(z) as follows:

ox' oxd ..  On , . Ox? on'
oe | 9ge (5 + azj)’ Pa — %0t e azj ' )
The transformations (4) ensure the gauge invariance of B, (3).

The Lagrangian of the model includes, apart from non-linear elastic
energy, the translational part of the eight-parameter Lagrangian £, [2],
which is invariant under the coordinate shifts and local rotations. The
translational part of £, depends quadratically on the torsion tensor (iden-
tified as the dislocation density) 7,,¢ = (8.B" — 9B,")BS (here B¢ are
reciprocals of B,"):

_1 1
B Lyl,_o=—7Tabe(BT™ + BT + BT 0",

B=detB,.

Under the choice 5y = —#, By = 2¢, f3 = 44, the model is governed by the
Einstein-type gauge equation,

G = L (09— (onp)), (5)
20
where o and o, are the total and background stress tensors, and £ is the
measure of the energy of the gauge field . The Einstein tensor G¢/ =
1 £eabEIeR 1yeq is defined by means of the Levi-Civita tensor £2°° and
the Riemann-Christoffel tensor Rg;.% calculated for the metric g, (2)
(see [1], vol. II). The field o, corresponds to a prescribed distribution
of the background dislocations, and & — o, is the driving source. The

. . (n) b (n) b (m .
equilibrium equations are: V, 0% =0, V4 (0bg)* = 0, where V, is the

covariant derivative with respect to 74s.
Non-singular screw dislocation arises in the T(3)-gauge model proposed

1
in [7], and its first-order stress field (U)¢Z in the cylindrical coordinates is
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of the form:
ey W 1
U¢z :7[1/8;; :__(1*KPK1(KJP))7
T p
(6)
1 _p
= %(log p+Ko(kp)).

Here, u is the shear modulus, the Burgers vector component along z-axis is

b. = b, and k = (11/€)2. The background stress is given by (Obg)e: = %’j—r %.
-1

The dislocation core is given by p Sk , since the gauge correction to % is

1
exponentially small outside the core. Inside the core (U)¢Z~ Aplog(Bp) at
p—0.

§3. THE RENORMALIZATION OF THE SHEAR MODULUS

The partition function Z of the elastic cylinder containing distribution
of non-singular screw dislocations is given by the functional integral [15]:

Z = /GBC [Meas] R L = Lo+ Leore — 1€ext 5 (7)

where 3 is inverse of the absolute temperature, and [Meas] is the integration
measure. In framework of the plane problem of the elasticity theory, the La-
grangian £ (7) includes the elastic contribution Le = ;—; [(o? +0%)? d?x,
while the other ones are:

Ccore = /(f(&ej — ajei)2+2€i0§) dgl‘,
(8)
Eext = /U?(@iu—QPi) d?z,

where u = u3 and e; = e;3 are the displacement and the strain components
(¢ = 1,2). The stress components o] = Ufg are independent field variables
corresponding to, so-called, background (# is b) or core (# is ¢) contribu-
tions. Besides, P; is the plastic source which prescribes distribution of the
background dislocation lines. The integration in Z (7) is over 0’;#, u, and
e; (1=1,2).

We consider the grand-canonical ensemble of the dislocations in the
dipole phase, which corresponds to bound pairs of the dislocations with
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opposite Burgers vectors (b, = £b). Define two-point stress-stress correla-
tion function:

(o,(x) 0,20 = Zagy 3 / i) osx) P Men] . (9)

n&p

where 0;(x) = oP(x) + 0¢(x), L is expressed by (7), (8), and Zg;, is
the partition function of the array of the screw dislocations in the dipole
approximation [15,16]. The functional integration in (9) is performed with
a reference to a given distribution of the dislocation lines expressed by
P;, and Zn&p implies summation over number of dipoles N', A/ > 1, and
averaging over their positions. The integral in right-hand side of (9) is
calculated in [15], and the correlator in the dipole representation of the
Coulomb gas is obtained:

(o30x)73(062))) = 55 O D, U I31 = 2])
+ Z:lilp z&: oi(x1)0;(x2) e FWaip (10)
n&p

U(s) = log(%s) + Ko(s),

1
where o; = pei Oy, @, and ¢ E(¢) is the stress potential of superposition
of N dipoles. Positions of dipoles are confined within a disk of radius R.
The energy Waip, in (10) arises, [16], in the dipole approximation from
the effective energy W of 2N non-singular screw dislocations with unit
Burgers vectors (b = 1):

W = ;—: S (Uklyf -y D+Usly; —y ) —2U(klyf —y; D), (11)
I,J

where U(s) is given by (10). Due to condition of “electro-neutrality”, the
number of positive dislocations at the points {y} }1<r<n is equal to the
number of negative ones at the points {y; }1<r<n. The energy W (11)
demonstrates that the array of the modified screw dislocations is equivalent
to the two-dimensional Coulomb gas of unit charges +1 characterized by
the two-body potential U (10) which is logarithmic at large separation but
tends to zero for the charges sufficiently close to each other.

The stress-stress correlator (o;(x1) o;(x2))) given by (10) is calculated
in [16] with respect of the dipole-dipole coupling. It is given with leading
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logarithmic accuracy:

(i) o5 (e)) = 525 (B Do U1 AX]) +
BpdU(k|Ax|) + log(1 + Bud) DNKo(IfIAXI))
(

+ €€t O(xy ), Oxa ), 1+ Bud

2)
where Ax = x; — X2, Ox = (0y,,0:,), D, stands for %"%, and d is
proportional to mean area covered by the dipoles.

We consider the renormalization of the shear modulus g caused by pro-
liferation of the dislocation dipoles. The renormalized pren is defined as
follows [8,10,11,13]:

; - /Jz% Z //<<Ui(X1)Uk(X2)>>d2X1d2X2’ (13)

Hren ik=1,2

where S is the cross-section area. Using ((o;(x1) o (x2))) (12) in (13), one
obtains:

B (1+2Bud)Ci(sR) —log(1 + Bud) Cp(kR)

= , 14
e L+ Gud 4
where C; and Cp are given by the modified Bessel functions,
Cl(Z) =1- 2K1(Z)Il (Z) y
(15)

Cp(z) = =D;Ci(z) = =1+ 2L (2)(Ko(z) + K2(2)) .

Equation (14) enables us to express the renormalized shear modulus as the
function of temperature, piren = piren(I"), below the melting temperature
T, = &=, [15,16].

The renormalized shear modulus piren (14) depends on the ratio R/ k=
kR of two lengths characterizing the cylinder cross-section and the disloca-
tion core. The dependence on kR displays the effect of the unconventional
dislocation solution on the shear modulus near the melting transition. Re-
call that properly rescaled Young modulus tends to 167 at T' — T ac-
cording to the theory developed in [9-13]. This universality is crucial for
singular defects, and it is also discussed in [1]. A confirmation of this fact
for two-dimensional colloidal crystals has been reported in [21]. The ap-
proach [16] demonstrates that the limiting value of the renormalized shear
modulus deviates from a multiple of = due to the peculiar singularityless
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character of the dislocations:

Nren(Tci) ~ 8 N
TC Cl (IiR) wR>1

87, d<1. (16)

The results obtained should be applicable to nanotubes and nanowires
with comparable R and x~!. Further development for nonsingular edge
dislocations seems to be interesting as far as multi-layer nanotubes and
wrapped crystals are concerned. It should also be noticed that the melting
criteria of two-dimensional systems are still actively discussed [22,23].
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