
úÁ�ÉÓËÉ ÎÁÕÞÎÙÈÓÅÍÉÎÁÒÏ× ðïíé�ÏÍ 433, 2015 Ç.B. Kadets, E. Karolinsky, I. Pop, A. StolinQUANTUM GROUPS: FROM KULISH{RESHETIKHINDISCOVERY TO CLASSIFICATIONAbstrat. The aim of this paper is to provide an overview of theresults about lassi�ation of quantum groups that were obtainedin [10, 11℄. Dediated to P. P. Kulishon the oasion of his 70th birthday
§1. IntrodutionThe �rst example of a quantum group was found by Kulish and Reshe-tikhin in [13℄. They disovered what was later named Uq(sl2) in relationto the study of the inverse quantum sattering method. Later, Drinfeld [3℄and Jimbo [9℄ independently developed a general notion of quantum group.Today there are many di�erent approahes to what quantum group is andthe term has no lear meaning. Informally speaking, the quantum groupis a deformation of a universal enveloping algebra of some Lie algebra g.Of ourse, the preise meaning should be given to the term deformation.We will be using the following de�nition.De�nition 1.1. A quantum group is a topologially free oommutativemod ℏ Hopf algebra over C[[ℏ℄℄ suh that H=ℏH is a universal envelopingalgebra of some Lie algebra g over C.It is well known that many problems about Lie groups beome simplerwhen they are written on the language of Lie algebras. In general theexistene of almost one-to-one orrespondene between Lie groups and Liealgebras is one of the entral parts of Lie theory. Therefore, it is desirableto obtain a notion of quantum algebra that will help to simplify problemsabout quantum groups gradually. The �rst natural attempt was to look atthe linear part of omultipliation of a quantum group H . Indeed, one anKey words and phrases: Quantum groups, Lie bialgebras, lassial double, r-matrix.186



QUANTUM GROUPS 187de�ne a o-Poisson struture Æ : U(g) → U(g)⊗ U(g) by the formulaÆ(x) = �(a)−�21(a)
ℏ

mod ℏ;where x ≡ a mod ℏ. Furthermore, from a o-Poisson struture on U(g) onegets a Lie bialgebra struture on g and the o-Poisson struture is uniquelydetermined by this Lie bialgebra struture. The proess of reovering the(non-unique) quantum group struture from the Lie bialgebra struture isknown as quantization.The following problem naturally arises.Conjeture 1.2 (Drinfeld's quantization onjeture). Any Lie bialgebraan be quantized.The onjeture was solved by Etingof and Kazhdan in [5, 6℄.Kazhdan and Etingof not only proved Drinfeld's quantization onjeturebut found a orret notion of quantum algebra. It was very importantbeause it was not diÆult to see that there might be many di�erentquantizations of a given Lie bialgebra over C. They onstruted a anonialo-Poisson struture on U(g) ⊗ C[[ℏ℄℄. This struture is muh �ner thenthe o-Poisson struture disussed above. The Lie groups { Lie algebrasorrespondene has an analogy in the quantum world.Theorem 1.3. Let Qgroup be the ategory of quantum groups in the senseof De�nition 1.1. Let LieBialg be the ategory of topologially free Liebialgebras over C[[ℏ℄℄ with Æ ≡ 0 mod ℏ. Then there exists a dequantizationfuntor deQuant : Qgroup→ LieBialg that is an equivalene of ategories.In their solution of Drinfeld's quantization onjeture, Etingof and Ka-zhdan onstruted a funtor Quant : LieBialg → Qgroup, whih informallyan be alled universal quantization formula or quantum Baker{Campbell{Hausdor� formula. They proved that if one starts with a Lie bialgebraL[[ℏ℄℄ and applies the funtor Quant to it and then deQuant, the resultingLie bialgebra will be isomorphi to L[[ℏ℄℄. The same is true if one startswith a quantum group H : Quant(deQuant(H)) will be isomorphi to H:One of the uses of Lie groups { Lie algebras orrespondene is the las-si�ation of semisimple Lie groups, beause the lassi�ation of semisim-ple Lie algebras is a muh easier problem. In the same way one an useTheorem 1.3 as an approah to the lassi�ation of quantum groups oversemisimple Lie algebras. This was done in the works [10, 11℄. The rest ofthe paper is dediated to the exposition of the main results of that works.



188 B. KADETS, E. KAROLINSKY, I. POP, A. STOLIN
§2. First steps of the lassifiationLet g be a simple Lie algebra over C. We have seen that the lassi�ationof quantum groups over g is equivalent to the lassi�ation of Lie bialgebrastrutures on g[[ℏ℄℄ := g ⊗ C[[ℏ℄℄. It is easy to see that any Lie bialgebrastruture on g[[ℏ℄℄ gives rise to a Lie bialgebra struture on g((ℏ)) :=

g⊗C((ℏ)) and any Lie bialgebra struture on g((ℏ)) beomes a Lie biagebrastruture on g[[ℏ℄℄ after a multipliation by an appropriate power of ℏ.Therefore, it is enough to lassify Lie bialgebra strutures on g((ℏ)).Let us �rst look at the lassi�ation of Lie bialgebra strutures onsemisimple Lie algebras over an algebraially losed �eld F of harateristizero. This lassi�ation was obtained by Belavin and Drinfeld [1℄. We willnow give a brief outline of their results. Let Æ be a Lie bialgebra strutureon g: First, one noties that the \ompatibility ondition" for Æ is equiv-alent to the fat that Æ is a oyle. From the triviality of ohomology ofsimple Lie algebras we see that there exists r ∈ g⊗g suh that Æ = dr. Theondition that Æ is a Lie bialgebra struture an be rewritten in terms of r: it turns out that after an appropriate saling r should satisfy the lassialYang-Baxter equation. There are two quite di�erent ases, r skewsymmet-ri or non-skewsymmetri. In the �rst ase there is no hope to obtain ameaningful lassi�ation. However, there is a lot of struture assoiated toa skewsymmetri r-matrix, these objets are intimately related to quasi-Frobenius Lie algebras [1℄. In the seond ase Belavin and Drinfeld foundthe expliit formulas for r-matries up to onjugation.Theorem 2.1. Let g be a simple Lie algebra over an algebraially losed�eld of harateristi zero. Then any Lie bialgebra struture on g is o-boundary. Let r be a orresponding r-matrix. If r is not skewsymmetrithen for some root deomposition we haver = r0 + ∑�>0 e−� ⊗ e� + ∑�∈Span(�1)+ ∑k∈N

e−� ∧ e�k(�):Here �1;�2 are the subsets of the set of simple roots, � : �1 → �2 isisometri bijetion, and for every � ∈ �1 there exists k ∈ N suh that�k(�) ∈ �2 \ �1. The triple (�1;�2; �) is alled admissible. The tensorr0 ∈ h ⊗ h must satisfy the following two onditions:(1) r0 + r210 = ∑ tk ⊗ tk, where tk is an orthonormal basis of h,(2) for any � ∈ �1 we have (�(�) ⊗ id + id⊗ �)r0 = 0.



QUANTUM GROUPS 189It is worth notiing that there is an equivalent way to distinguish skew-symmetri and non-skewsymmetri r-matries: in the �rst ase the Drinfelddouble D(g) is isomorphi to g ⊗ F["℄, "2 = 0, in the seond ase D(g) ≃
g ⊕ g, see [17℄.We want to obtain a version of Belavin{Drinfeld lassi�ation over thenon-losed �eld C((ℏ)). Let again g be a simple Lie algebra over C. Firstnotie that we have a natural notion of equivalene for Lie bialgebras on
g((ℏ)): Æ1 ∼ Æ2 if and only if there exists � ∈ C((ℏ)) and X ∈ G(C((ℏ)))suh that Æ1 = �AdXÆ2. Here G is an algebrai group assoiated to g.Any Lie bialgebra struture on g((ℏ)) an be lifted to g ⊗ C((ℏ)).Over the algebraially losed �eld C((ℏ)) we have the Belavin{Drinfeldlassi�ation. Therefore, any Lie bialgebra struture on g((ℏ)) is givenby an r-matrix of the form �AdXr, where r is an r-matrix from theBelavin{Drinfeld list or a skewsymmetri r-matrix. One an prove thatfor a non-skew matrix up to equivalene � is either 1 or √

ℏ. Therefore,for any non-skew matrix from the Belavin{Drinfeld list there are two setsH1BD(rBD) andH1BD(rBD) of equivalene lasses of r-matries.H1BD(rBD)parametrizes the equivalene lasses of r-matries of the form AdXrBDthat de�ne a Lie bialgebra struture on g((ℏ)) and, respetively,H1BD(rBD)parametrizes equivalene lasses of matries of the form √
ℏAdXrBD. Weall H1BD(rBD) and H1BD(rBD) the set of, respetively, twisted and non-twisted Belavin{Drinfeld ohomologies. Analogously for a skewsymmetrir-matrix r we de�ne the Frobenius ohomology set H1F (r).There is an alternative way to see the di�erene between twisted andnon-twisted Lie bialgebra strutures. Let us look at the struture of theDrinfeld double D(g). It easily follows from methods developed in [15℄that there are three possible ases:D(g((ℏ))) an be isomorphi to g((ℏ))⊕

g((ℏ)); g((ℏ))[√ℏ℄ or to g((ℏ))["℄, where "2 = 0. These possibilities preiselyorrespond to the non-twisted, twisted and skew ases respetively.We have shown that all Lie bialgebra strutures on g fall into one of thethree types: non-twisted, twisted or skew. In what follows we will examineeah ase in more detail.
§3. Non-twisted aseWe have de�ned H1BD(rBD) as a set of equivalene lasses of Lie bialge-bra strutures. However, there is an equivalent de�nition that appeals only



190 B. KADETS, E. KAROLINSKY, I. POP, A. STOLINto the inner struture of g((ℏ)). In what follows G is an algebrai groupthat orresponds to g.De�nition 3.1. The entralizer C(r) of an r-matrix r is the set of allX ∈ G(C((ℏ))) suh that AdXr = r.De�nition 3.2. X ∈ G(C((ℏ))) is alled a non-twisted Belavin{Drinfeldoyle for rBD if for any � ∈ Gal(C((ℏ))=C((ℏ))) we have X−1�(X) ∈C(rBD). The set of non-twisted oyles will be denoted by Z(rBD) =Z(G; rBD).De�nition 3.3. Two oyles X1; X2 ∈ Z(rBD) are alled equivalent ifthere exist Q ∈ G(C((ℏ))) and C ∈ C(rBD) suh that X1 = QX2C.De�nition 3.4. The set of equivalene lasses of non-twisted oylesis denoted by H1BD(rBD) = H1BD(G; rBD) and is alled the non-twistedBelavin{Drinfeld ohomology.We were able to ompute H1BD for the algebras of A −D series. Firstlet us make a small remark about An ase. In this ase g((ℏ)) is naturallyated upon by the group GL(n) and we an ompute the ohomology withrespet to onjugation by GL(n) or SL(n). To distinguish between theseases we write H1BD(GL(n); rBD) and H1BD(SL(n); rBD).If (�1;�2; �) is an admissible triple then the set �; �(�); : : : ; �k(�),where � ∈ �1 \ �2 and �k(�) ∈ �2 \ �1 will be alled a string of � . Thefollowing table desribes H1BD for algebras of type A−D. The ohomologyis alled trivial if |H1BD(rBD)| = 1.Algebra Triple type H1BD foran arbitrary �eld H1BD for C((ℏ))An trivial (GL(n) ase)Bn trivialCn trivialDn there exists astring of � thatontains �n−1and �n F ∗=(F ∗)2 2 elements�n−1 and �ndo not belong tothe same string of � trivial



QUANTUM GROUPS 191Remark 3.5. In this paper �n; �n−1 are the branhendpoints in theDynkin diagram for DnRemark 3.6. One an similarly de�ne Belavin{Drinfeld ohomologiesover an arbitrary �eld F as a tool to understand Lie bialgebra strutureson g(F ).The result for H1BD(SL(n); rBD) is more interesting. Let �i1 ; : : : ; �ikbe a string of � , �(�ip ) = �ip+1 . If �(�ip) is not de�ned, then anyway wede�ne the orresponding string, whih onsists of one element {�ip} only.For any string S = {�i1 ; : : : ; �ik} of � , we de�ne the weight of S bywS = ∑p ip. Moreover, for any Belavin{Drinfeld triple we will also formallyonsider the string {�n} with weight n. Let t1; : : : ; tn be the ends of thestrings with weights w1; : : : ; wn. We note that some indies in w1; : : : ; wnare missing unless �1 is an empty set and wn = n is always present. LetN = GCD(w1; : : : ; wn).Theorem 3.7. The number of elements of H1BD(SL(n); r) is N . Eahohomology lass ontains a diagonal matrix D = A1A2, where A2 ∈C(GL(n); r) and A1 ∈ diag(n;C((ℏ))). Two suh diagonal matries D1 =A1A2 and D2 = B1B2 are ontained in the same lass of H1BD(SL(n); r)if and only if det(A1) = det(B1) in C((ℏ))∗=(C((ℏ))∗)N .
§4. Twisted aseAs in non-twisted ase there is a way to de�ne H1BD without mentioningLie bialgebra strutures.Theorem 4.1. aAdXrBD de�nes a Lie bialgebra struture on g(C((ℏ)))if and only if X is a non-twisted oyle for the �eld C((ℏ))[√ℏ℄ andAdX−1�0(X)rBD = r21BD. Here �0 is the non-trivial element of the groupGal(C((ℏ))[√ℏ℄=C((ℏ))).To deal with the ondition AdX−1�0(X)rBD = r21BD we lassi�ed alltriples (�1;�2; �) suh that r21BD and rBD are onjugate. In eah ase wefound a suitable S ∈ G(F ) suh that r21BD = AdSrBD . Then we an de-�ne Belavin{Drinfeld oyles and ohomologies similar to the non-twistedase. In all ases S2 = ±1.De�nition 4.2. X ∈ G(C((ℏ))) is alled a Belavin{Drinfeld twisted o-yle if for any � ∈ Gal(C((ℏ))=C((ℏ))[√ℏ℄) we have X−1�(X) ∈ C(rBD)



192 B. KADETS, E. KAROLINSKY, I. POP, A. STOLINand SX−1�0(X) ∈ C(rBD). The set of Belavin{Drinfeld twisted oylesis denoted by Z(rBD) = Z(G; rBD).De�nition 4.3. Two twisted oyles X1; X2 are alled equivalent if thereexist Q ∈ G(C((ℏ))) and C ∈ C(rBD) suh that X1 = QX2C. The setof equivalene lasses of twisted oyles is alled the twisted Belavin{Drinfeld ohomology and is denoted by H1BD(rBD) = H1BD(G; rBD).Algebra Triple type H1BD for C((ℏ))An s� = �−1s, where s is the non-trivialautomorphism of the Dynkin diagram one elementother emptyBn Drinfeld-Jimbo one elementnot DJ emptyCn Drinfeld-Jimbo one elementnot DJ emptyDn even n Drinfeld-Jimbo one elementnot DJ empty
odd n �1 = {�n−1}�(�n−1) = �n ;�1 = {�n}�(�n) = �n−1 ;�1 = (�n−1; �k), k 6= n�(�n−1) = �k; �(�(k)) = �n;�1 = (�n; �k), k 6= n− 1�(�n = �k); �(�k) = �n−1 two elementsDrinfeld-Jimbo one elementnot DJ emptyHere the ohomology for sln is onsidered with respet to the groupGL(n). For the results for An over arbitrary �eld see [16℄.

§5. Skewsymmetri aseFollowing the pattern in [1℄, it an be easily proved that the lassi�ationof Lie bialgebra strutures related to skew (triangular) r-matries on g((ℏ))is equivalent to the lassi�ation of quasi-Frobenius Lie subalgebras of
g((ℏ)). This an be used to prove that if r is skewsymmetri then r has to bede�ned over C((ℏ)). However, di�erent r-matries de�ned over C((ℏ)) an



QUANTUM GROUPS 193be onjugate over C((ℏ)). We an de�ne Frobenius ohomology similarlyto Belavin{Drinfeld ohomology. We all two r-matries equivalent if thereexists a ∈ C((ℏ)), X ∈ G(C((ℏ))) suh that r1 = aAdXr2. If r de�nes a Liebialgebra struture on g((ℏ)) then we de�ne the Frobenius ohomology setH1F (r) to be the set of equivalene lasses of r-matries that are onjugateto r over C((ℏ)). We do not have a lassi�ation of skew r-matries evenover an algebraially losed �eld, but this ohomology an be omputed ina way similar to Belavin{Drinfeld ase.De�nition 5.1. The entralizer C(r) of an r-matrix r is the set of allX ∈ G(C((ℏ))) suh that AdXr = r.De�nition 5.2. X ∈ G(C((ℏ))) is alled a non-twisted Frobenius oylefor r if for any � ∈ Gal(C((ℏ))=C((ℏ))) we have X−1�(X) ∈ C(r). The setof non-twisted oyles will be denoted by ZF (r) = ZF (G; r).De�nition 5.3. Two oyles X1; X2 ∈ ZF (r) are alled equivalent ifthere exists Q ∈ G(C((ℏ))) and C ∈ C(r) suh that X1 = QX2C.De�nition 5.4. The set of equivalene lasses of Frobenius oyles isdenoted by H1F (r) = H1F (G; r) and is alled the Frobenius ohomology.Example 5.5. Let rJ be the Jordan r-matrix, i.e. rJ = E ∧ H . ThenH1F (rJ ) is trivial. Here {E;F;H} is the standard basis in sl2
§6. Historial RemarksQuantum groups (as in De�nition 1.1) were de�ned by Drinfeld inhis talk at the International Congress of Mathematiians in Berkeley,1986. Relations between quantum groups and quantum algebras (quan-tization and dequantization funtors, quantum Baker-Campbell-Hausdor�formula) were obtained by Etingof and Kazhdan in a series of papers [5, 6℄.The �rst example of a quantum group of the non-twisted type is dueto Kulish and Reshetikhin [13℄. Generalizations for all simple Lie algebraswere obtained by Drinfeld and Jimbo [3, 9℄, where they found quantumgroups whih quantize Lie bialgebra strutures on g de�ned by �1=�2=∅.Further lasses of Lie bialgebra strutures on g, related to ertain triples(�1;�2; �), were quantized by Kulish and Mudrov in [12℄.Finally, Etingof, Shi�man, and Shedler quantized all Lie bialgebrastrutures de�ned by all admissible triples (�1;�2; �) [7℄.There are no expliit formulas for quantum groups related to the twistedBelavin{Drinfeld ohomologies.



194 B. KADETS, E. KAROLINSKY, I. POP, A. STOLINConstrution of quantum groups of skewsymmetri type appeared inthe work of Drinfeld [4℄ by means of a ertain twisting element F . The�rst expliit formula for F is due to Coll, Gerstenhaber, and Giaquinto[2℄. This formula was used by Kulish and Stolin to expliitly quantize aertain nonstandard Lie bialgebra struture on the polynomial Lie algebra
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