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t. The aim of this paper is to provide an overview of theresults about 
lassi�
ation of quantum groups that were obtainedin [10, 11℄. Dedi
ated to P. P. Kulishon the o

asion of his 70th birthday
§1. Introdu
tionThe �rst example of a quantum group was found by Kulish and Reshe-tikhin in [13℄. They dis
overed what was later named Uq(sl2) in relationto the study of the inverse quantum s
attering method. Later, Drinfeld [3℄and Jimbo [9℄ independently developed a general notion of quantum group.Today there are many di�erent approa
hes to what quantum group is andthe term has no 
lear meaning. Informally speaking, the quantum groupis a deformation of a universal enveloping algebra of some Lie algebra g.Of 
ourse, the pre
ise meaning should be given to the term deformation.We will be using the following de�nition.De�nition 1.1. A quantum group is a topologi
ally free 
o
ommutativemod ℏ Hopf algebra over C[[ℏ℄℄ su
h that H=ℏH is a universal envelopingalgebra of some Lie algebra g over C.It is well known that many problems about Lie groups be
ome simplerwhen they are written on the language of Lie algebras. In general theexisten
e of almost one-to-one 
orresponden
e between Lie groups and Liealgebras is one of the 
entral parts of Lie theory. Therefore, it is desirableto obtain a notion of quantum algebra that will help to simplify problemsabout quantum groups gradually. The �rst natural attempt was to look atthe linear part of 
omultipli
ation of a quantum group H . Indeed, one 
anKey words and phrases: Quantum groups, Lie bialgebras, 
lassi
al double, r-matrix.186



QUANTUM GROUPS 187de�ne a 
o-Poisson stru
ture Æ : U(g) → U(g)⊗ U(g) by the formulaÆ(x) = �(a)−�21(a)
ℏ

mod ℏ;where x ≡ a mod ℏ. Furthermore, from a 
o-Poisson stru
ture on U(g) onegets a Lie bialgebra stru
ture on g and the 
o-Poisson stru
ture is uniquelydetermined by this Lie bialgebra stru
ture. The pro
ess of re
overing the(non-unique) quantum group stru
ture from the Lie bialgebra stru
ture isknown as quantization.The following problem naturally arises.Conje
ture 1.2 (Drinfeld's quantization 
onje
ture). Any Lie bialgebra
an be quantized.The 
onje
ture was solved by Etingof and Kazhdan in [5, 6℄.Kazhdan and Etingof not only proved Drinfeld's quantization 
onje
turebut found a 
orre
t notion of quantum algebra. It was very importantbe
ause it was not diÆ
ult to see that there might be many di�erentquantizations of a given Lie bialgebra over C. They 
onstru
ted a 
anoni
al
o-Poisson stru
ture on U(g) ⊗ C[[ℏ℄℄. This stru
ture is mu
h �ner thenthe 
o-Poisson stru
ture dis
ussed above. The Lie groups { Lie algebras
orresponden
e has an analogy in the quantum world.Theorem 1.3. Let Qgroup be the 
ategory of quantum groups in the senseof De�nition 1.1. Let LieBialg be the 
ategory of topologi
ally free Liebialgebras over C[[ℏ℄℄ with Æ ≡ 0 mod ℏ. Then there exists a dequantizationfun
tor deQuant : Qgroup→ LieBialg that is an equivalen
e of 
ategories.In their solution of Drinfeld's quantization 
onje
ture, Etingof and Ka-zhdan 
onstru
ted a fun
tor Quant : LieBialg → Qgroup, whi
h informally
an be 
alled universal quantization formula or quantum Baker{Campbell{Hausdor� formula. They proved that if one starts with a Lie bialgebraL[[ℏ℄℄ and applies the fun
tor Quant to it and then deQuant, the resultingLie bialgebra will be isomorphi
 to L[[ℏ℄℄. The same is true if one startswith a quantum group H : Quant(deQuant(H)) will be isomorphi
 to H:One of the uses of Lie groups { Lie algebras 
orresponden
e is the 
las-si�
ation of semisimple Lie groups, be
ause the 
lassi�
ation of semisim-ple Lie algebras is a mu
h easier problem. In the same way one 
an useTheorem 1.3 as an approa
h to the 
lassi�
ation of quantum groups oversemisimple Lie algebras. This was done in the works [10, 11℄. The rest ofthe paper is dedi
ated to the exposition of the main results of that works.
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§2. First steps of the 
lassifi
ationLet g be a simple Lie algebra over C. We have seen that the 
lassi�
ationof quantum groups over g is equivalent to the 
lassi�
ation of Lie bialgebrastru
tures on g[[ℏ℄℄ := g ⊗ C[[ℏ℄℄. It is easy to see that any Lie bialgebrastru
ture on g[[ℏ℄℄ gives rise to a Lie bialgebra stru
ture on g((ℏ)) :=

g⊗C((ℏ)) and any Lie bialgebra stru
ture on g((ℏ)) be
omes a Lie biagebrastru
ture on g[[ℏ℄℄ after a multipli
ation by an appropriate power of ℏ.Therefore, it is enough to 
lassify Lie bialgebra stru
tures on g((ℏ)).Let us �rst look at the 
lassi�
ation of Lie bialgebra stru
tures onsemisimple Lie algebras over an algebrai
ally 
losed �eld F of 
hara
teristi
zero. This 
lassi�
ation was obtained by Belavin and Drinfeld [1℄. We willnow give a brief outline of their results. Let Æ be a Lie bialgebra stru
tureon g: First, one noti
es that the \
ompatibility 
ondition" for Æ is equiv-alent to the fa
t that Æ is a 
o
y
le. From the triviality of 
ohomology ofsimple Lie algebras we see that there exists r ∈ g⊗g su
h that Æ = dr. The
ondition that Æ is a Lie bialgebra stru
ture 
an be rewritten in terms of r: it turns out that after an appropriate s
aling r should satisfy the 
lassi
alYang-Baxter equation. There are two quite di�erent 
ases, r skewsymmet-ri
 or non-skewsymmetri
. In the �rst 
ase there is no hope to obtain ameaningful 
lassi�
ation. However, there is a lot of stru
ture asso
iated toa skewsymmetri
 r-matrix, these obje
ts are intimately related to quasi-Frobenius Lie algebras [1℄. In the se
ond 
ase Belavin and Drinfeld foundthe expli
it formulas for r-matri
es up to 
onjugation.Theorem 2.1. Let g be a simple Lie algebra over an algebrai
ally 
losed�eld of 
hara
teristi
 zero. Then any Lie bialgebra stru
ture on g is 
o-boundary. Let r be a 
orresponding r-matrix. If r is not skewsymmetri
then for some root de
omposition we haver = r0 + ∑�>0 e−� ⊗ e� + ∑�∈Span(�1)+ ∑k∈N

e−� ∧ e�k(�):Here �1;�2 are the subsets of the set of simple roots, � : �1 → �2 isisometri
 bije
tion, and for every � ∈ �1 there exists k ∈ N su
h that�k(�) ∈ �2 \ �1. The triple (�1;�2; �) is 
alled admissible. The tensorr0 ∈ h ⊗ h must satisfy the following two 
onditions:(1) r0 + r210 = ∑ tk ⊗ tk, where tk is an orthonormal basis of h,(2) for any � ∈ �1 we have (�(�) ⊗ id + id⊗ �)r0 = 0.
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ing that there is an equivalent way to distinguish skew-symmetri
 and non-skewsymmetri
 r-matri
es: in the �rst 
ase the Drinfelddouble D(g) is isomorphi
 to g ⊗ F["℄, "2 = 0, in the se
ond 
ase D(g) ≃
g ⊕ g, see [17℄.We want to obtain a version of Belavin{Drinfeld 
lassi�
ation over thenon-
losed �eld C((ℏ)). Let again g be a simple Lie algebra over C. Firstnoti
e that we have a natural notion of equivalen
e for Lie bialgebras on
g((ℏ)): Æ1 ∼ Æ2 if and only if there exists � ∈ C((ℏ)) and X ∈ G(C((ℏ)))su
h that Æ1 = �AdXÆ2. Here G is an algebrai
 group asso
iated to g.Any Lie bialgebra stru
ture on g((ℏ)) 
an be lifted to g ⊗ C((ℏ)).Over the algebrai
ally 
losed �eld C((ℏ)) we have the Belavin{Drinfeld
lassi�
ation. Therefore, any Lie bialgebra stru
ture on g((ℏ)) is givenby an r-matrix of the form �AdXr, where r is an r-matrix from theBelavin{Drinfeld list or a skewsymmetri
 r-matrix. One 
an prove thatfor a non-skew matrix up to equivalen
e � is either 1 or √

ℏ. Therefore,for any non-skew matrix from the Belavin{Drinfeld list there are two setsH1BD(rBD) andH1BD(rBD) of equivalen
e 
lasses of r-matri
es.H1BD(rBD)parametrizes the equivalen
e 
lasses of r-matri
es of the form AdXrBDthat de�ne a Lie bialgebra stru
ture on g((ℏ)) and, respe
tively,H1BD(rBD)parametrizes equivalen
e 
lasses of matri
es of the form √
ℏAdXrBD. We
all H1BD(rBD) and H1BD(rBD) the set of, respe
tively, twisted and non-twisted Belavin{Drinfeld 
ohomologies. Analogously for a skewsymmetri
r-matrix r we de�ne the Frobenius 
ohomology set H1F (r).There is an alternative way to see the di�eren
e between twisted andnon-twisted Lie bialgebra stru
tures. Let us look at the stru
ture of theDrinfeld double D(g). It easily follows from methods developed in [15℄that there are three possible 
ases:D(g((ℏ))) 
an be isomorphi
 to g((ℏ))⊕

g((ℏ)); g((ℏ))[√ℏ℄ or to g((ℏ))["℄, where "2 = 0. These possibilities pre
isely
orrespond to the non-twisted, twisted and skew 
ases respe
tively.We have shown that all Lie bialgebra stru
tures on g fall into one of thethree types: non-twisted, twisted or skew. In what follows we will examineea
h 
ase in more detail.
§3. Non-twisted 
aseWe have de�ned H1BD(rBD) as a set of equivalen
e 
lasses of Lie bialge-bra stru
tures. However, there is an equivalent de�nition that appeals only
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ture of g((ℏ)). In what follows G is an algebrai
 groupthat 
orresponds to g.De�nition 3.1. The 
entralizer C(r) of an r-matrix r is the set of allX ∈ G(C((ℏ))) su
h that AdXr = r.De�nition 3.2. X ∈ G(C((ℏ))) is 
alled a non-twisted Belavin{Drinfeld
o
y
le for rBD if for any � ∈ Gal(C((ℏ))=C((ℏ))) we have X−1�(X) ∈C(rBD). The set of non-twisted 
o
y
les will be denoted by Z(rBD) =Z(G; rBD).De�nition 3.3. Two 
o
y
les X1; X2 ∈ Z(rBD) are 
alled equivalent ifthere exist Q ∈ G(C((ℏ))) and C ∈ C(rBD) su
h that X1 = QX2C.De�nition 3.4. The set of equivalen
e 
lasses of non-twisted 
o
y
lesis denoted by H1BD(rBD) = H1BD(G; rBD) and is 
alled the non-twistedBelavin{Drinfeld 
ohomology.We were able to 
ompute H1BD for the algebras of A −D series. Firstlet us make a small remark about An 
ase. In this 
ase g((ℏ)) is naturallya
ted upon by the group GL(n) and we 
an 
ompute the 
ohomology withrespe
t to 
onjugation by GL(n) or SL(n). To distinguish between these
ases we write H1BD(GL(n); rBD) and H1BD(SL(n); rBD).If (�1;�2; �) is an admissible triple then the set �; �(�); : : : ; �k(�),where � ∈ �1 \ �2 and �k(�) ∈ �2 \ �1 will be 
alled a string of � . Thefollowing table des
ribes H1BD for algebras of type A−D. The 
ohomologyis 
alled trivial if |H1BD(rBD)| = 1.Algebra Triple type H1BD foran arbitrary �eld H1BD for C((ℏ))An trivial (GL(n) 
ase)Bn trivialCn trivialDn there exists astring of � that
ontains �n−1and �n F ∗=(F ∗)2 2 elements�n−1 and �ndo not belong tothe same string of � trivial



QUANTUM GROUPS 191Remark 3.5. In this paper �n; �n−1 are the bran
hendpoints in theDynkin diagram for DnRemark 3.6. One 
an similarly de�ne Belavin{Drinfeld 
ohomologiesover an arbitrary �eld F as a tool to understand Lie bialgebra stru
tureson g(F ).The result for H1BD(SL(n); rBD) is more interesting. Let �i1 ; : : : ; �ikbe a string of � , �(�ip ) = �ip+1 . If �(�ip) is not de�ned, then anyway wede�ne the 
orresponding string, whi
h 
onsists of one element {�ip} only.For any string S = {�i1 ; : : : ; �ik} of � , we de�ne the weight of S bywS = ∑p ip. Moreover, for any Belavin{Drinfeld triple we will also formally
onsider the string {�n} with weight n. Let t1; : : : ; tn be the ends of thestrings with weights w1; : : : ; wn. We note that some indi
es in w1; : : : ; wnare missing unless �1 is an empty set and wn = n is always present. LetN = GCD(w1; : : : ; wn).Theorem 3.7. The number of elements of H1BD(SL(n); r) is N . Ea
h
ohomology 
lass 
ontains a diagonal matrix D = A1A2, where A2 ∈C(GL(n); r) and A1 ∈ diag(n;C((ℏ))). Two su
h diagonal matri
es D1 =A1A2 and D2 = B1B2 are 
ontained in the same 
lass of H1BD(SL(n); r)if and only if det(A1) = det(B1) in C((ℏ))∗=(C((ℏ))∗)N .
§4. Twisted 
aseAs in non-twisted 
ase there is a way to de�ne H1BD without mentioningLie bialgebra stru
tures.Theorem 4.1. aAdXrBD de�nes a Lie bialgebra stru
ture on g(C((ℏ)))if and only if X is a non-twisted 
o
y
le for the �eld C((ℏ))[√ℏ℄ andAdX−1�0(X)rBD = r21BD. Here �0 is the non-trivial element of the groupGal(C((ℏ))[√ℏ℄=C((ℏ))).To deal with the 
ondition AdX−1�0(X)rBD = r21BD we 
lassi�ed alltriples (�1;�2; �) su
h that r21BD and rBD are 
onjugate. In ea
h 
ase wefound a suitable S ∈ G(F ) su
h that r21BD = AdSrBD . Then we 
an de-�ne Belavin{Drinfeld 
o
y
les and 
ohomologies similar to the non-twisted
ase. In all 
ases S2 = ±1.De�nition 4.2. X ∈ G(C((ℏ))) is 
alled a Belavin{Drinfeld twisted 
o-
y
le if for any � ∈ Gal(C((ℏ))=C((ℏ))[√ℏ℄) we have X−1�(X) ∈ C(rBD)



192 B. KADETS, E. KAROLINSKY, I. POP, A. STOLINand SX−1�0(X) ∈ C(rBD). The set of Belavin{Drinfeld twisted 
o
y
lesis denoted by Z(rBD) = Z(G; rBD).De�nition 4.3. Two twisted 
o
y
les X1; X2 are 
alled equivalent if thereexist Q ∈ G(C((ℏ))) and C ∈ C(rBD) su
h that X1 = QX2C. The setof equivalen
e 
lasses of twisted 
o
y
les is 
alled the twisted Belavin{Drinfeld 
ohomology and is denoted by H1BD(rBD) = H1BD(G; rBD).Algebra Triple type H1BD for C((ℏ))An s� = �−1s, where s is the non-trivialautomorphism of the Dynkin diagram one elementother emptyBn Drinfeld-Jimbo one elementnot DJ emptyCn Drinfeld-Jimbo one elementnot DJ emptyDn even n Drinfeld-Jimbo one elementnot DJ empty
odd n �1 = {�n−1}�(�n−1) = �n ;�1 = {�n}�(�n) = �n−1 ;�1 = (�n−1; �k), k 6= n�(�n−1) = �k; �(�(k)) = �n;�1 = (�n; �k), k 6= n− 1�(�n = �k); �(�k) = �n−1 two elementsDrinfeld-Jimbo one elementnot DJ emptyHere the 
ohomology for sln is 
onsidered with respe
t to the groupGL(n). For the results for An over arbitrary �eld see [16℄.

§5. Skewsymmetri
 
aseFollowing the pattern in [1℄, it 
an be easily proved that the 
lassi�
ationof Lie bialgebra stru
tures related to skew (triangular) r-matri
es on g((ℏ))is equivalent to the 
lassi�
ation of quasi-Frobenius Lie subalgebras of
g((ℏ)). This 
an be used to prove that if r is skewsymmetri
 then r has to bede�ned over C((ℏ)). However, di�erent r-matri
es de�ned over C((ℏ)) 
an
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onjugate over C((ℏ)). We 
an de�ne Frobenius 
ohomology similarlyto Belavin{Drinfeld 
ohomology. We 
all two r-matri
es equivalent if thereexists a ∈ C((ℏ)), X ∈ G(C((ℏ))) su
h that r1 = aAdXr2. If r de�nes a Liebialgebra stru
ture on g((ℏ)) then we de�ne the Frobenius 
ohomology setH1F (r) to be the set of equivalen
e 
lasses of r-matri
es that are 
onjugateto r over C((ℏ)). We do not have a 
lassi�
ation of skew r-matri
es evenover an algebrai
ally 
losed �eld, but this 
ohomology 
an be 
omputed ina way similar to Belavin{Drinfeld 
ase.De�nition 5.1. The 
entralizer C(r) of an r-matrix r is the set of allX ∈ G(C((ℏ))) su
h that AdXr = r.De�nition 5.2. X ∈ G(C((ℏ))) is 
alled a non-twisted Frobenius 
o
y
lefor r if for any � ∈ Gal(C((ℏ))=C((ℏ))) we have X−1�(X) ∈ C(r). The setof non-twisted 
o
y
les will be denoted by ZF (r) = ZF (G; r).De�nition 5.3. Two 
o
y
les X1; X2 ∈ ZF (r) are 
alled equivalent ifthere exists Q ∈ G(C((ℏ))) and C ∈ C(r) su
h that X1 = QX2C.De�nition 5.4. The set of equivalen
e 
lasses of Frobenius 
o
y
les isdenoted by H1F (r) = H1F (G; r) and is 
alled the Frobenius 
ohomology.Example 5.5. Let rJ be the Jordan r-matrix, i.e. rJ = E ∧ H . ThenH1F (rJ ) is trivial. Here {E;F;H} is the standard basis in sl2
§6. Histori
al RemarksQuantum groups (as in De�nition 1.1) were de�ned by Drinfeld inhis talk at the International Congress of Mathemati
ians in Berkeley,1986. Relations between quantum groups and quantum algebras (quan-tization and dequantization fun
tors, quantum Baker-Campbell-Hausdor�formula) were obtained by Etingof and Kazhdan in a series of papers [5, 6℄.The �rst example of a quantum group of the non-twisted type is dueto Kulish and Reshetikhin [13℄. Generalizations for all simple Lie algebraswere obtained by Drinfeld and Jimbo [3, 9℄, where they found quantumgroups whi
h quantize Lie bialgebra stru
tures on g de�ned by �1=�2=∅.Further 
lasses of Lie bialgebra stru
tures on g, related to 
ertain triples(�1;�2; �), were quantized by Kulish and Mudrov in [12℄.Finally, Etingof, S
hi�man, and S
hedler quantized all Lie bialgebrastru
tures de�ned by all admissible triples (�1;�2; �) [7℄.There are no expli
it formulas for quantum groups related to the twistedBelavin{Drinfeld 
ohomologies.



194 B. KADETS, E. KAROLINSKY, I. POP, A. STOLINConstru
tion of quantum groups of skewsymmetri
 type appeared inthe work of Drinfeld [4℄ by means of a 
ertain twisting element F . The�rst expli
it formula for F is due to Coll, Gerstenhaber, and Giaquinto[2℄. This formula was used by Kulish and Stolin to expli
itly quantize a
ertain nonstandard Lie bialgebra stru
ture on the polynomial Lie algebra
sl2[u℄.This paper is dedi
ated to Petr P. Kulish on the o

asion of his 70-yearsjubilee. The authors are thankful for valuable remarks to G. Rozenblumwho joins the 
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