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COMPUTATION OF RS-PULLBACK
TRANSFORMATIONS FOR ALGEBRAIC PAINLEVE VI
SOLUTIONS

ABSTRACT. Algebraic solutions of the sixth Painlevé equation can
be constructed with the help of RS-transformations of the hyperge-
ometric equations. Construction of these transformations includes
specially ramified rational coverings of the Riemann sphere and cor-
responding Schlesinger transformations (S-transformations). Some
algebraic solutions can be constructed from rational coverings alone,
without obtaining the corresponding pullbacked isomonodromy
Fuchsian system, i.e., without S part of the RS transformations. At
the same time one and the same covering can be used to pullback
different hypergeometric equations, resulting in different algebraic
Painlevé VI solutions. In case of high degree coverings construction
of S parts of the RS-transformations may represent some compu-
tational difficulties. This paper presents computations of explicit
RS-pullback transformations, and derivation of algebraic Painlevé
VI solutions from them. As an example, we present computation of
all seed solutions for pull-backs of hyperbolic hypergeometric equa-
tions.
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§1. INTRODUCTION

The sixth Painlevé equation is, canonically,
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where a, 3, v, d € C are parameters. As well-known [11], its solutions
define isomonodromic deformations (with respect to t) of the 2 x 2 matrix

Fuchsian equation with 4 singular points (A = 0, 1,¢, and oco):

d (A Ay A, d .
dz‘II_(z +271+27t T, dZAk_O for k € {0,1,¢}.
(1.2)

The standard correspondence is due to Jimbo and Miwa [11]. We choose
the traceless normalization of (1.2), so we assume that the eigenvalues of
Ao, A1, Ay are, respectively, £6¢/2, £6;/2, £6,/2, and that the matrix
Ay := —A; — Ay — A3 is diagonal with the diagonal entries £6,/2. Then
the corresponding Painlevé equation has the parameters
U Y S S}
2 2 2 2

We refer to the numbers 6, 81, 8; and 0, as local monodromy differences.

For any numbers vy,vs, v, v, let us denote by Pyr(vo, Vi, v, Voo t)
the Painlevé VI equation for the local monodromy differences 8; = v; for
i € {0,1,¢,00}, via (1.3). Note that changing the sign of vy, 1,14 or 1 —ve
does not change the Painlevé equation. Fractional-linear transformations
for the Painlevé VI equation permute the 4 singular points and the numbers
vy, V1, Ve, 1 — Vo

Similarly, for any numbers vi,ve,v,vs and a solution y(t) of
Py 1(vo,v1,V, Vo3 t), let us denote by E(vg,v1, v, Voo y(t); 2) a Fuchsian
equation (1.2) corresponding to y(t) by the Jimbo-Miwa correspondence.
The Fuchsian equation is determined uniquely up to conjugation of Ag, Ay,
A; by a diagonal matrix (dependent on ¢ only). In particular, y(¢) = ¢ can
be considered as a solution of Pyr(eg,e1,0,ex;t). The equation
E(eg,e1,0,ex0;t; 2) is a Fuchsian equation with 3 singular points, actu-
ally without the parameter ¢. Its solutions can be expressed in terms of
Gauss hypergeometric function see [11] or the Appendix in [23]. We refer
to E(eq, e1,0, exo; t; 2) as a matriz hypergeometric equation, and see it as a
matrix form of Euler’s ordinary hypergeometric equation.

We consider pullback transformations of 2 x 2 Fuchsian systems
d¥(z)/dz = M(2)¥(z). They have the following general form:

2 R(x),  U(:)— S(a) T(R()), (L4)

(1.3)
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where R(x) is a rational function of x, and S(z) is a Schlesinger transfor-
mation, usually designed to remove apparent singularities. For transforma-
tions to parametric isomonodromic equations, R(z) and S(z) may depend
algebraically on parameter(s) as well. The transformed equation is

dq;sf) = (d};f) 571 (2) M(R(x))S(z) — s—l(@%@) W), (13)

In [12,13], these pullback transformations are called RS-transformations,
meaning that they are compositions of a rational change of the indepen-
dent variable z — R(z) and the Schlesinger transformation S(z). The
Schlesinger transformation S(z) is analogous here to projective equiva-
lence transformations y(x) — 6(x)y(x) of ordinary differential equations.
To merge terminology, we refer to these pullback transformations as RS-
pullbacks, or RS-pullback transformations. If S(x) is the identity transfor-
mation, we have a direct pullback of a Fuchsian equation.

The subject of this article is construction of RS-pullback transforma-
tions of matrix hypergeometric equations to isomonodromic Fuchsian sys-
tems with 4 singular points. To have so few singular points of the trans-
formed equation, we usually have to start with a matrix hypergeometric
equation with restricted local monodromy differences, and the R-part R(x)
must define a specially ramified covering of P!. In particular, the covering
usually may ramify only above the 3 singular points of the hypergeometric
equation, except that there is one additional simple (i.e., order 2) ramifi-
cation point is allowed. Coverings ramified over 4 points of P! in this way
are called here almost Belyi coverings. Recall that a Belyi function is a
rational function on an algebraic curve with at most 3 critical values; the
respective covering of P! by the algebraic curve is ramified above a set of
3 points only.

Suitable starting hypergeometric equations and ramification patterns of
almost Belyi coverings can be classified rather easily [7,13]. This is simi-
lar to classification of algebraic transformations of Gauss hypergeometric
functions [24,25], where Belyi functions typically occur. The computation-
ally hard problem is construction of almost Belyi coverings from a priori
suitable ramification patterns. This leads us towards Grothendieck’s theory
of dessins d’enfant. In particular, Hurwitz spaces for almost Belyi cover-
ings with a fixed ramification pattern define isomonodromy parameters for
the pullbacked Fuchsian equations. Effective computations of high degree
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almost Belyi coverings are presented in [22]. In this paper, we use three
coverings computed in [13].

Computation of S-parts of suitable RS-transformations does not look
hard in principle. However, this problem is not as straightforward as find-
ing suitable projective equivalence transformations for scalar differential
equations. General Schlesinger transformations can be constructed by com-
posing several simple Schlesinger transformations (each shifting just two
local monodromy differences), as was done in [1,2,11]. More effectively, the
method in [23] constructs Schlesinger transformations in one go, avoiding
factorization of high degree polynomials when shifting local monodromy
differences at all conjugate roots by the same integer. In the context of
isomonodromy problems, this approach is adopted in [9] as well.

RS-pullback transformations to isomonodromic Fuchsian systems with
4 singular points gives solutions of the sixth Painlevé equations that are
algebraic, because those solutions are determined algebraically by matrix
entries of pullbacked equations (1.5) while those entries are algebraic func-
tions in z and the isomonodromy parameter. The second author conjec-
tured in [13] that all algebraic solutions of the sixth Painlevé equation
can be obtained by RS-pullback transformations of matrix hypergeometric
equations, up to Okamoto transformations [19]. This conjecture is certainly
true if the monodromy group of the Fuchsian systems is finite, due to cele-
brated Klein’s theorem [15]. Richard Fuchs [10] soon considered extension
of Klein’s theorem to algebraic solutions of Painlevé equations. Recently,
Ohyama and Okumura [18] showed that algebraic solutions of Painlevé
equations from the first to the fifth do arise from pull-back transforma-
tions of confluent hypergeometric equations, affirming the formulation of
R. Fuchs.

The pullback method for computation of algebraic Painlevé VI solu-
tions was previously suggested in [2,7,12,13]. This method is substan-
tially different from the representation-theoretic approach of Dubrovin—
Mazzocco [8] and Boalch [4,5]. Recently, Lisovyy and Tykhyy [16] used
the representation-theoretic method to complete classification of algebraic
Painlevé VI solutions. The mentioned conjecture in [13] is still interesting
as a generalization of Klein’s theorem. There is a similar situation with
classification of algebraic solutions of the Lamé equation, where represen-
tation-theoretic methods (as in [3]) compete with Klein’s pullback method
(as in [17]).
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One important observation is that the same rational covering R(z) can
be used in several RS-pullback transformations. For example, here we
apply the same degree 10 covering to pullback three different matrix hy-
pergeometric equations E(1/7,1/2,0,1/3;t;2), E(2/7,1/2,0,1/3;t; 2) and
E(3/7,1/2,0,1/3;t; z). We obtain Painlevé solutions of, respectively,

PVI(1/77 1/77 1/77 2/3a t)u
PVI(2/77 2/77 2/77 1/3a t)

and

PVI(3/77 3/773/77 2/3a t)u

unrelated by fractional-linear or Okamoto transformations. The first Pain-
levé solution is a fractional-linear version of solution [14, (3.16)—(3.17)].
The second Painlevé solution is the same as in [6, page 106]. The third
Painlevé solution is new.

The article is organized as follows. Section 2 presents the covering of
degree 10 for our exmaples; it was previously used in [14]. There we also
mention how some Painlevé VI solutions can be computed from the ratio-
nal coverings alone, without computation of full RS-transformations. This
kind of possibility is noticed in [7,13], and is summarized in Theorem 3.1
below. In Section 4 a more general Theorem 4.1 from [23] is cited. Thereby
a direct formula for algebraic Painlevé VI solutions is given, with min-
imum information from full RS-transformations. In Section 5, represen-
tative RS-pullback transformations of “hyperbolic” hypergeometric equa-
tions F(1/2,1/3,0,1/7;t;2) and E(1/2,1/3,0,1/8;t; z) to isomonodromic
Fuchsian systems with 4 singularities are sumarized, and the correspond-
ing Painlevé VI solutions are presented (hereby complementing [14]). The
Appendix presents a formula for composition of two quadratic transfor-
mations of Painlevé VI solutions; a general degree formula for the almost
Belyi coverings relevant to algebraic Painlevé VI solutions; and geometric
interpretation of the latter formula.

The authors prepared Maple 9.5 worksheets supplementing this article
and [22,23], with the formulas in Maple input format, and demonstration
of key computations. To access the worksheet, readers may contact the
authors, or search a current website of the first author on the internet.
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§2. THE WORKING COVERING AND RS-TRANSFORMATIONS

First we introduce notation for ramification patterns, and later for RS-
transformations. A ramification pattern for an almost Belyi covering of
degree n is denoted by R4(P1| P2| Ps), where Py, Py, P; are three partitions
of n specifying the ramification orders above three points. The ramification
pattern above the fourth ramification locus is assumed to be 2+ 1+ 1 +
...+ 1. By the extra ramification point we refer to the simple ramification
point in the fourth fiber. The Hurwitz space for such a ramification pattern
is generally one-dimensional [26, Proposition 3.1].

We use only genus 0 almost Belyi coverings, and write them as P, — P,
meaning that the projective line with the projective coordinate  is mapped
to the projective line with the coordinate z. Then the total number of parts
in Py, P>, P; must be equal to n + 3, according to [13, Proposition 2.1];
this is a consequence of Riemann-Hurwitz formula.

The similar notation for a ramification pattern for a Belyi function is
R3(P1| P2| P), as in [1], [14]. The total number of parts in P, P, P; must
be equal to n + 2, as stated in [24, Lemma 2.4] or [13, Proposition 2.1].

Our working almost Belyi covering has the following ramification pat-
tern:

Ry(T+14141|24+24+2+242|3+3+3+1). (2.6)

The covering has degree 10. The three specified fibers with ramified points
can be brought to any three distinct locations by a fractional-linear trans-
formation of PL. We assign the first partition to z = 0, and the next two
partitions — to z = 1 and z = oo respectively. Similarly, by a fractional-
linear transformation of P we may choose any three z-points' as z = 0,
rz=1,z=o0.

All coverings with ramification pattern (2.6) can be computed on mod-
ern computers either using the most straightforward method, or an im-
proved method [22] that uses differentiation. Up to fractional-linear trans-
formations and reparametrization, there is one general such covering given

1Strict1y speaking, the z-points in our settings are curves, or branches, parametrized
by an isomonodromy parameter ¢ or other parameter, since the Hurwitz spaces for al-
most Belyi maps are one-dimensional. For simplicity, we ignore the dimensions intro-
duced by such parameters, and consider a one-dimensional Hurwitz space as a generic
point.
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$7 F10 P2
= —1=-20
G e

p10(z) (2.7)

where

Fio =95%2° —2(25%+ 65+ 155 —16)2°+3(85*+85—13)z—36(s— 1),
Gio =2(s + 1)a® — (s + 45 + 10)2> + 6(s + 2)z — 9, (2.8)
Pro =3s2° — 3(25? + 65 + 7)zt + 2(s® + 65 + 305 + 35)2>

— 18(s? + 45 + T)a? + 54(s + 2)x — 54.

The extra ramification point is z = 7(s — 1)/s(s + 1).

For direct applications to the Painlevé VI equation, it is required to
normalize the point above z = co with the deviating ramification order 1
and the three nonramified points above {0,1,00} CPlasz =0,z =1, =
00, = t. We refer to explicit almost Belyi coverings normalized this way
as properly normalized. A properly normalized covering with ramification
pattern (2.6) was first computed in [13]. To get a properly normalized
expression, we reparametrize

(w4 2)(w —u+2)
s=— 20— 1) , (2.9)

and make the fractional-linear transformation

(u—1)2(u? + 3)w
2r — 1
v 9(u? —u+ 2)2 (22 —1)
(u—1)(u® +u* — 2u® + 18u? — Yu + 27)

9(u? —u + 2)2 ’

(2.10)

where w = /(u — 1)(u + 5)(u2 + 3). The obtained expression is

(u — 1)*(u + 2)w?
8(u+5)(ud+u2—2u+6)3
(z—1) (x —tio) (z — t}y)”
(22 —z)(z— 1 —Ls) — Ly(z— 1)+ L5)3

Pro(z) = —
(2.11)

X
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where
po= 1
10=5
9+ 3u® — 3u” + Tub — 21u® + 21wt — 161u® — 27u? — 144u — 108
2(u — 1)%(u + 2)2(u? + 3)y/(u — 1) (u + 5)(u? + 3) 7
5, = =
10 =5

N u® +ut — 2u® + 18u? — Yu + 27
2(u— 1)(u? + 3)y/(u — 1)(u + 5)(u® + 3)’

and

(2.12)

L (P +aut+u3 41842 +24u+36)(u” +14u? — 2103 4242 +36)
3= 8(u—1)2 (u+t5)(u2+3)3 (u3+tu2—2ut6)

3(u'0 —6uB 2847 —99uS +252u® —668u%+1008u3 —121202 +672u— 408)

La= 8w (u—1)3 (u213)(u3 tul _2ut6)

L. —utB4suldiosul2io8ull126u104616u9—184u84333uT41785u0 15121743276 *46048u?43888u+1206
5= 16w (u—1)3 (u+t5)(u2+3)3(u3+tu2—2ut6)

The Hurwitz space parametrising this properly normalized almost Belyi
covering has still genus 0. To get the rational covering A\; (A\) in [14], one
has to consider t19/P10(z), and substitute z — tio/z, u — 2/s — 1.

In [13], the following symbol is introduced to denote RS-pullback trans-
formations of E(eg,e1,0,ex0;t;2) with respect to a covering with ramifi-
cation pattern R4(Py|P1|Poo):

€1

€co
2.1
wst (gl o o) (2.13)

where the subscripts 2 and 4 indicate a second order Fuchsian system with
4 singular points after the pullback. We assume the same assignment of
the fibers z = 0, z = 1, z = oo as for the Rg-notation. Location of the
a-branches 0, 1, ¢, oo does not have to be normalized. As was noticed in [13]
and [7], some algebraic Painlevé VI solutions determined by RS-pullback

transformations RS} ( 11/3150 1/k 1/’” ) with ko, k1, ke € Z, can be cal-

Py
culated from the rational covering alone, without actual computation of
the full RS-pullbacks. We discuss this possibility in Section 3. Our covering
©10(z) immediately gives a solution of Py r(1/7,1/7,1/7,2/3;t). In Section
4 we formulate a direct way to obtain algebraic Painlevé VI solutions via
computation of suitable syzygies between z2 (or x3), Pig, G19. We obtain
algebraic solutions of

Pyi1(2/7,2/7,2/7,1/3:t) and Py;(3/7,3/7,3/7,2/3;t)
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by implicitly using RS-pullback transformations

RSQ( 2/7 1/2 ‘ 1/3 >
T\T7T+14141|24+24242+2|3+3+3+1
and
R52< 3/7 ‘ 1/2 ‘ 1/3 >
CNTH+H14+141[24+24+2424+2|3+3+3+1)"
respectively.

§3. PULLBACK COVERINGS AND ALGEBRAIC PAINLEVE VI
SOLUTIONS

As noticed in [13] and [7], some algebraic Painlevé VI solutions can
be computed knowing just a pullback covering, without computation of
pullbacked Fuchsian equations of full RS-transformations removing all ap-
parent singularities of a direct pullback. Here we formulate the most in-
teresting general situation.

Theorem 3.1. Let ko, k1, koo denote three integers, all > 2. Let ¢ : PL —
P! denote an almost Belyi map, dependent on a parameter t. Suppose that
the following conditions are satisfied:

(i) The covering z = @(x) is ramified above the points z =0, z = 1,

z = oo; there is one simply ramified point x = y above P. \
{0,1,00}; and there are no other ramified points.

(ii) The points x = 0, © = 1, x = oo, x = t lie above the set
{0,1,00} C PL.

(iii) The points in ©~1(0)\ {0,1,¢,00} are all ramified with the order
ko. The points in o~ (1) \ {0,1,t,00} are all ramified with the
order ky. The points in o~ (00)\ {0,1,¢,00} are all ramified with
the order k.

Let ag, a1, a¢, 000 denote the ramification orders at © = 0,1,¢, 00, respec-
tively. Then the point x =y, as a function of x = t, is an algebraic solution

of

ao ai ag Qoo
PV] < 5 5 ,17 ;t> . (314)
ko) ko) Koty Ko(oo)
Proof. Let Ry(Py|P1|Ps) denote the ramification pattern of the covering
z = @(x). We aim for an RS-pullback transformation

o (ko | 1/ky | 1+ 1/koo
2
RS‘*( P | P P
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with respect to ¢(z). Let d denote the degree of p(z). For time being, we
assume that the point z = oo lies above z = co.

The direct pullback of the hypergeometric equation E(1/kg,1/k1,0,1+
1/koo;t; 2) with respect to ¢(x) has apparent singularities at the points
mentioned in part (i) above. Nonapparent singularities are possibly z = 0,
z =1,z = tand z = co. The lower-left entry of the direct pullback is equal,
up to a factor independent of z, to ¢’/ (1 — @), which is the logarithmic
derivative of ¢/(p — 1). The poles of this rational function are simple,
and they are precisely the points above z = 0 and z = 1. The zeroes of
the rational function are the following: the extra ramification point of ¢
(a simple zero); and the points above z = oo, with multiplicities one less
than the respective ramification orders.

Notice that if we apply a Schlesinger transformation of the upper tri-

angular form § = ——_—___ (78 3 where aj, as, as are in-
g (z— ozl)(m a2)( 0 z— a2)’ 1, &2, &3

dependent of z, then the lower-left entry of the matrix differential equa-
tion changes by the factor (z — a1)/(z — a2) and a factor independent
of z. If the point * = a» is above z = oo, this Schlesinger transfor-
mation (with appropriate as) decreases the local monodromy differences
at * = a1 and © = ag by 1. Similarly, the Schlesinger transformation
S = \/961_71 ("3 %) changes the local monodromy differences at = = oy
and r = oo by 1, and it multiplies the lower-left entry by the factor £ — a;
(and a factor independent of x).

Let h denote the number of distinct apparent singularities above z = oco.
There are in total (d + 3) — 4 — h apparent singularities above z = 0 and
z = 1. We can construct d—1—h simple Schlesinger transformations of the
forms presented just above, so that a; runs through the set of apparent
singularities above z = 0 and z = 1, and each point £ = a3 or z =
above z = oo is chosen n, times, where

the ramification order at x, minus 1, if z = oo or
Ng = an apparent singularity;
the ramification order at z, otherwise.

The composite effect of these d — 1 — h transformations is removal of all
apparent singularities above z = 0, z = 1, z = oo; and reducing the local
monodromy difference at £ = 0o from o + Goo /Koo t0 14 oo /koo- The lo-
cal monodromy differences at the other singularities are ao/ky (0, a1/ky (1),
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at/k,(+) after the composite transformation. Hence the transformed equa-
tion has (at most) four singularities. The transformed equation is

B M0ty “ﬁ~~t~x) 3.15
(1%(0) oo Fp R ) 19
where the Painlevé VI solution y(¢) is determined by lower-left entry of the
transformed equation. The lower-left entry is changed from ¢'/p(1 — )
to a rational function whose numerator has only one root. The single root
must be the extra ramification point of ¢(z). Hence y(t) can be identified
with the branch x = y. It is a solution of

PVI(GO/k<p(O)7a1/kap(1)7at/kcp(t)y 1+ aOO/kOO7t)

which is the same equation as (3.14).

If the point £ = oo does not lie above z = oo, we can move the point
z = oo by the fractional-linear transformations. That would only permute
the three fibers, and change the rational function ¢ to 1/, 1/(1 — ¢),
1-1/por ¢/(p —1) . Action of fractional-linear transformations on local
monodromy differences is compatible with the form (3.14). O

The above theorem is a special case of [13, Theorem 2.1], with all k;’s
equal to 1, and with correct parameters in (3.14). Theorem 4.5 in [7] is
a more general statement, but without identification of transformed local
monodromy differences.

In [13], it is regularly implied that the Painlevé VI solutions obtained
with Theorem 3.1 arise from RS-pullback transformations of the type

RS? ( 14,’20 11/3’1“ %f:"). However, the above proof actually uses trans-

formation RS3 (10| 10
from classification [14] of rational coverings for RSZ-pullback transfor-
mations relevant to the sixth Painlevé equation that either kg = 2 or
k1 = 2 or ko, = 2. Once we assume ko, = 2, the transformations types

Rsz(ﬂko 1/k1 1}45000) and Rsz(l/kg 1/ky 1+1§;kx

Hli/fm)' On the other hand, it is apparent

P, P, Po Py
related by extra Schlesinger transformations. If kg = 2 or k; = 2, we still
can relate the two transformation types via Schlesinger transformations.
Hence, the RS-pullback transformation implied in Theorem 3.1 can be

realized as RS} ( 11/3’;(’ 11/3’? 11450“) as well.

Application of Theorem 3.1 to @10(x) gives this solution of
PVI(]-/77 1/77 1/77 2/37 th) :

) are the same or




142 R. VIDUNAS, A. V. KITAEV

1
y71:§

(u+ 5)(u® — u® + 3ut — 13u® + 4u® — 18u — 12) (3.16)
2(u - 1)(U+ 2)(u3 4+ u2 — 2 +6)\/(u — 1)(u_|_ 5)(u2 T 3)

A parametrization of 19 is given in (2.12). To get the solution of

PVI(l/ga 1/77 1/75 6/75 th)

in [14, (3.6)—(3.7)], one has to consider the function t19/y71 and substitute
u+— 2/s — 1. Our implied RS-transformation is

RS? 1/7 1/2 1/3 .
T+1+141|24+24+2+2+2(3+3+3+1

§4. PAINLEVE SOLUTIONS FROM MORE GENERAL RS-PULLBACK
TRANSFORMATIONS

By the Jimbo-Miwa correspondence, a Painlevé VI solution is deter-
mined by the lower-left entry of a pullbacked Fuchsian system. By the
results in [23, Section 4], that lower-left entry is determined by a syzygy
(Us, Vo, Ws) between F'; G, H; that is, a polynomial solution of FU, +
GVs + HWy = 0. If the shift § of local monodromy differences at = co
is small, that syzygy is determined by degree bounds of its components.
The following theorem summarizes the situation.

Theorem 4.1. Let z = p(z) denote a rational covering, and let F(z),
G(z), H(x) denote polynomials in x. Let k denote the order of the pole
of p(z) at x = co. Suppose that the direct pullback of E(eg,e1,0,ex0;t;2)
with respect to p(x) is a Fuchsian equation with the following singularities:

o Four singularities are x = 0, ¢ = 1, x = oo and ¢ = t, with
the local monodromy differences dy, di, di, deo, respectively. The
point x = oo lies above z = co.

o All other singularities in PL \ {0,1,¢,00} are apparent singular-
ities. The apparent singularities above z = 0 (respectively, above
z =1, 2z = o0) are the roots of F(xz) = 0 (respectively, of
G(z) = 0, H(x) = 0). Their local monodromy differences are
equal to the multiplicities of those roots.

Let us denote A = deg F' + deg G + deg H, and let § < max(2,k) denote a
non-negative integer such that A + § is even. Suppose that (Ua, Vo, W) is
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a syzygy between the three polynomials F', G, H, satisfying, if 6 =0,

A A A
degUs = 5 —degF, degl, = 5 —degG, degWs < 5 —deg H,

(4.17)
or, if § >0,
deg Uy < % —degF, degls < % —degG, degW, = % —deg H.
(4.18)
Then the numerator of the (simplified) rational function
UaWa ((e0 —e1 +exc) ¢ (FU2) n (HW>)'
Ll ermes) oWe @' (coter —ex) Uale  ¢f '
2 F -1 2 H p(lp—1)
has degree 1 in x, and the x-root of it is an algebraic solution of
PVI(d07d17dt7dOO +67t)
Proof. See Theorem 5.1 in [23]. O

Alternative forms of expression (4.19) are given in formulas (5.17)—
(5.22) in [23]. For greater ¢, formula (4.19) is still valid for a suitable
syzygy (Us, Vi, Wa), but that syzygy depends on initial coefficients of lo-
cal solutions at z = 0 of the original hypergeometric equation. Taking
only small shifts § < max(2,k) at x = oo seems to be enough to generate
interesting “seed” solutions of the sixth Painlevé equation.

We can apply this theorem to obtain algebraic solutions of

Pyr(1/7,1/7,1/7,2/3;t), Pyr(2/7,2/7,2/7,1/3;t)
and
PVI(3/77 3/77 3/77 2/3a t)
Implicitly, we apply pullback transformations

R 1/7 1/2 1/3 |
TH1+1+1|2424+24+242(3+3+3+1

Rsi( 2/7 ‘ 1/2 ‘ 1/3 )

T+1+14+1(24+2+2424+2|3+3+3+1

R 3/7 1/2 1/3 |
TH1+1+1|2424+24+242(3+3+3+1

and
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respectively. Like in Section 3, we work with the covering z = p1o(x)
rather than with the normalized covering z = @19(x) while computing
syzygies, and apply reparametrization (2.9) and normalizing fractional-
linear transformation (2.10) at the latest stage. We have k = 1. Therefore
recall the definition of Fip, G1o and Pjp in (2.8). We take § = 0 for the
second RS-transformation, or § = 1 for the other two. We have to compute
syzygies between F' = x (or, respectively, F = z2, or F = 2%) and G = Py,
H= G10~

The syzygy for a solution of Pyr(1/7,1/7,1/7,2/3;t) is (G1o,0, —x),
up to a scalar multiple. With this trivial syzygy, the solution is the same
v10(t10) asin (3.16). In fact, Theorem 4.1 reduces to Theorem 3.1 whenever
one of syzygy components is zero; see [23, Remark 5.2].

The full RS-pullback RS} (1,117, 20214755 545054, ) would give
a solution yr1(t7o) of Pyr(1/7,1/7,1/7,—2/3;t10) as well. The equation
Pyr(1/7,1/7,1/7,8/3;t10) is identical. It turns out that the same Painlevé
solution can be obtained by applying Theorem 4.1 with § = 3. (Have a look
at the second part of [23, Remark 5.3].) However, since 6 = 3 > max(2,1)
we are not given restrictions on the syzygy (Us, Vo, Ws), and additional
knowledge of the normalized solutions of E(1/7,1/2,0,1/3;t;2) at z = o0
is needed. The syzygy can be eventually computed to be

( — 63s%2* + (T45° + 2225 + 2855 — 52)a°
— 2(85* + 485% 4 25752 + 2975 — 130)22 + 6(165% + 645% + 101s — 52)
1445 — 2885 + 234, 215, 26(s + 1)%z — 1263).
The numerator of simplified expression (4.19) is then indeed linear in z.
The solution 71 (t10) is rather stupendous:

1 (u+5)(65u®+195u17 —195u16 4325415 —1104u +. .. — 24893142 —209835u + 222534)

2 10(u+2)y/(u— 1) (u+5)(u2 +3)(13uld +65u14 +42u11 — 1050010 4. .. —37611u2 +63927u —783)

On the other hand, this solution can be obtained by applying a series of
Okamoto transformations to y1(t10)-

To get a solution of Py;(2/7,2/7,2/7,1/3;t) we apply Theorem 4.1 with
(F,G,H) = (xz, P10,G10)- With 6 = 0, the degree specifications in (4.17)
are

deg Uy = 3, deg V2 =0, deg Wo < 2. (4.20)
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As expected, there is one syzygy satisfying these bounds, up to a constant
multiple:

(3sz® — (25 + 65 + 13)x% 4 6(2s + 3)z — 18, -1, —2(s + 2)z + 6) .(4.21)
With this syzygy, expression (4.19) is equal to

4(s(2s* +4s — 19)z — 3(2s? — 125 + 7))

. (4.22)

The form is as expected: the numerator has degree 1 in z, while the de-
nominator is a cubic polynomial in z. After reparametrization (2.9) and
normalizing fractional-linear transformation (2.10) the denominator poly-
nomial surely factors as z(x — 1)(z — t10), with #1o given in (2.12). The
z-root of the transformed numerator gives the following solution y72(#19)
of PV](2/7,2/7,2/7, 1/3;t10)2
1
Y72 = 5
(u+5)(ud +u” +ub — u® + 8u* — 82u® — 54u? — 90u — 108)
2(u+2) (w8 4 2u’ — 3ut 4 8u — 26u2 +60u —6)/(u— 1) (u+5) (u2+3)
(4.23)

To relate to Boalch’s parametrization in [6, page 106] for the same solution,
we have to substitute u — (s+5)/(s—1) into the expressions for y72 and t1¢.

A solution gra(tio) of Pyr(2/7,2/7,2/7,—1/3;t19) can be computed
without extra knowledge of the normalized solutions at z = co. The identi-
cal Painlevé equation is Pyr(2/7,2/7,2/7,7/3;t10), and Theorem 4.1 can
be applied with § = 2. The following syzygy fits into formula (4.19):

( —69s(s 4+ 1)z® + (325® + 1285% + 3255 — 65)2”
— 6(325% + 59s — 15)x + 2885 — 90,
— 55— 5,42s2% — 10(s + 1)(s + 2)a + 30 + 305).

Application of Theorem 4.1 with (F,G,H) = (xB,Plo,Glo) and § =
1 gives a solution of Pyr(3/7,3/7,3/7,2/3;t). The degree bounds are
degUs < 3, deg Vo < 1, deg Wy = 2. An appropriate syzygy is

(—(s+4)2”> + (25 + )z — 6,—1,22° — 2(5 + 2)z + 6) (4.24)



146 R. VIDUNAS, A. V. KITAEV

Simplified expression (4.19) has the unique z-root & = —(2s — 5)(4s —
7)/s(10s — 11). After reparametrization (2.9) and normalizing fractional-
linear transformation (2.10) we derive the following solution yr3(t10) of
PV[(3/7,3/7,3/7,2/3;tlo)l

Yr3 =
(u+5)(5u” — 10u® + 5u® — 20u* + 13u® — 68u® — 3u — 30)
2w — 1)2(u 4 2)(5u3 + 5u2 + 11u + 9)y/(u—1)(u+5) (u>+3)

DN =

(4.25)
+

This solution cannot be obtained by Okamoto, fractional-linear and qua-
dratic transformations from previously know solutions.

§5. PULL-BACKS OF HYPERBOLIC HYPERGEOMETRIC EQUATIONS

Here we survey RS3-pullback transformations of hyperbolic hypergeo-
metric equations E(eg,e1,0, ex;t;2); these are defined by the properties
that 1/eg, 1/e1,1/e~ are positive integers and eg+e1 €5 < 1. These pull-
back coverings (and corresponding Okamoto orbits of algebraic Painlevé VI
solutions) are classified in [14] and [7]. The following ramification patterns
are possible:

Ry(T+1+1+1|242+2+2+2[3+3+3+1), (5.26)
Ri(3+3+3+3[2+2+2+2+2+2[7+2+1+1+1), (5.27)
Ri(3+3+3+3[24+2+2+2+2+2|8+1+1+1+1), (5.28)
Ry(343+343+43+3 | 2+242+2+24+2+242+2] 7+7+1+1+1q(Ll). :

5.29

The coverings have degree 10, 12, 12, 18, respectively.

The generic degree 10 covering is our @19(x), up to reparametrization.
We already considered the solutions y71(t10), y72(t10), ¥73(t10) representing
three possible Okamoto orbits.

The generic degree 12 covering with ramification (5.27) is

4 (2 4 25(35 + 1)2® + 25(5s + 2)2? +452x+32)3
~ 27s(s+ 1)327 (423 + 45(8s + 5)x2 + s(13s + 1)x + 4s2)

P12(z) . (5.30)
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It can be normalized with the substitutions

o (u‘—l— 1)%(u —1)? 7 (5.31)
(w2 + 7w +u+2)(u?—u+2)
(u+ -1 wu+D(u—1)(w+3) (5.32)
2?2 —u+2)2  (w+u+2)2w2-u+2)? '
A normalized expression for 1/¢12(z) is presented in [13], reparametrized
with u — 1/s. Similarly as with ¢19(z), we can pullback

E(1/3,1/2,0,1/7;t;2), E(1/3,1/2,0,2/7;:t; 2)

and
E(1/3,1/2,0,3/7;t; 2)
with respect to a properly normalized ¢12(z) and derive? algebraic so-
lutions of, respectively, Pyr(1/7,1/7,1/7,5/7;t), Pvi(2/7,2/7,2/7,4/7;1)
and Pyr(3/7,3/7,3/7,1/7;t). However, the three solutions are related by
Okamoto transformations. A solution yr4(t70) of Pyr(1/7,1/7,1/7,5/7;t)
can be obtained using Theorem 3.1. Here is a parametrization:
(u—3)%(u? +u+2)? (u—1)(u—3)2(u?+u+2)
to="— 302 5 Yra= 2 2 : (5.33)
wd(u? +7) 2u(u? + 3)(u? +7)
It is related to the parametrization in [13] via u +— 1/s. Solutions y75(t70),
y76(tro) of, respectively, Pyr(2/7,2/7,2/7,4/7;t), Py1(3/7,3/7,3/7,1/7;t),
can be obtained using Theorem 4.1. The same solutions can be obtained

2The implied RS-pullback transformations are, respectively,

RS? 1/3 1/2 1/7
"\34+3+34+3/2+242+24+242(7+2+1+14+1)"°
RS;{( 1/3 1/2 2/7 >
3+3+3+3|24+2+2+24+24+2|7T+24+14+1+1
and
RS2 1/3 1/2 3/7 .
343+3+3|24+24+24+24+242|7T+24+1+1+4+1

As indicated in [14], one may also consider RS-pullback transformations

RS2 (s+§f§,+3‘ pior il oo ‘7+2+1ﬁl+1> of E(1/3,1/2,0,1/2;t;z) and de-
rive solutions of, say, Pyr(1/2,1/2,1/2,-5/2;t), Pyr(1/2,1/2,1/2,—1/2;¢),
Pyr(1/2,1/2,1/2,1/2;¢). For this, other proper normalization of ¢i2(z) has to
be used, similarly as other proper normalization of pi2(x) was used in [23, Section 6]
to compute solutions ye3(t60), y62(t60), ysa(teo) of the same equations (respectively).
Incidentally, pullbacks with respect to ¢12(x) give exactly the same solutions ye3(te0),
ye2(t60), ysa(teo) in [23] of the same three Painlevé equations, up to reparametrization

u— (u+3)/(1—u).
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as Okamoto transformations of y74(¢70). In the notation of [21, (2.3)], we
have:

yrs =Ki1/7,-1/1,-1/7,5/Tt0) Y74 Y16 =K(1/7,1/7,1/7,5/7:t70) Y74 (5.34)
Here are parametrizations of yr5(t70) and yre(t70):

u—3)2(w? +u+2)?w?+2u+5b
yrs = - =D Lot 2utd), (5.35)
6u(u+ 1)(u — 1)(u®+7)
(u—1)(u—3)*(u® +u+2)(u* — 4u?® — 6u® — 28u — 11)
2u(u? + 7)(ub + 21u* 4+ 3u? + 39)

The solution yr75(t70) is the Kleinian solution of [4], reparametrized with
ur 3s/(s—2).

As noticed in [14], there are two composite coverings with ramification
patterns (5.28) or (5.29). They are compositions of Belyi coverings with a
quadratic almost Belyi covering:

Ry(2|14+1]1+1)0R3(2[2]|14+1)0Rs(2+1|24+1]3), (537

Ri(1+1|2|1+1)0R3(3+3+3|2+2+2+2+1|7+1+1).
(5.38)

Here the compositions are from right to left, and the order 2 ramification
points of a subsequent quadratic covering are indicated by the hat sym-
bol. The algebraic Painlevé VI solutions are determined by the quadratic
almost Belyi coverings. The solutions are related (via fractional-linear or
Okamoto transformations) to the solution y(t) = v/% of the general equa-
tion Pyr(a,b,b,1—a;t). We specifically have a =b=1/8 ora =b = 1/7if
we apply Theorem 3.1 to the two composite coverings. The Belyi coverings
are known from algebraic transformations of Gauss hypergeometric func-
tions [25]. In particular, an explicit degree 9 covering is given in [25, (24)].

Beside the indicated coverings, there is exactly one covering (up to
fractional-linear transformations) to pullback hyperbolic hypergeometric
equations. It has ramification pattern (5.28):

4 (92" 4+ 182% + 3(2s + 5)x — 2(s — 2)z + s(s — 2)))?
(45 + 1)3(92* 4 1423 + 3(25 + 3)22 — 65z + s2)
To get a proper normalization or apply Theorem 4.1, we need to choose
the point x = co appropriately; hence first a transformation

1 1,

1,5, .
s»—>71v2(3v2+8v+6), T — v

Y6 = (5.36)

Y12(z) =— , (5.39)

(5.40)
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For a proper normalization, we still need to factor the remaining degree
3 factor polynomial in the denominator, and localize the points z = 0,
x = 1, x =t properly. This is achieved with the substitutions

(u? — 2)(u* — 4u® + 8u? + 8u + 4)
V= . G »
6u(u? — 2u + 2)(u? + 2u + 2)
_ 36u>(ut + 4)
(u?+2u—2)(ut+8u?+4)
Siu(u?—2u—2)(u?+2)%z  (u?+2i)(u®+2iu+2)
(ut —4ud+8u+8u+4)3 ' (u242(i—u+2i)’ |’

Theorem 3.1 eventually gives the following solution ys; (tg0) of

PV[(1/8,1/8,1/8,7/8;t80) :

iuti—1)2(uw—i+1)? ('u,2 T+ 204+ )u — 2i)3 ('u,2 —2(i4L)u — 2i)3
64u? (u2 — 2)% (u2 4 2)3 ’

tgo = (5.41)

i (uti—D)(u—i+1)(w?+2iu+2)(w? + 26+ Du — 20)2 (w? — 2(i+1)u — 2i) (5.42)
8u (u2 —2)2 (u2 +2) (u2 — 2u — 2) ’ ’

Yg1 =

The numerator of ¢gy can also be written as i (u? + 2i)2 (u* — 12iu? — 4)3,
for instance. The substitution u — —(1 4 4)/u gives the parametrization
[14, (4.12)—(4.13)].

With the same proper normalization of ¥12(x), one may consider RS-
transformations

RSQ( 1/3 ‘ 1/2 ‘ 3/8 )
Y\34+3+3+324+2+242+24+2|841+14+1+1)"
R52< 1/3 ‘ 1/2 ‘ 1/4 )
P\B34+34+34+3(24+24+242424+2|84+1+1+1+1
and
RSf( 1/3 ‘ 1/2 ‘ 1/2 )
3+34+34+3|24+24+24+24+24+2|84+14+14+14+1

to derive solutions of Py(3/8,3/8,3/8,5/8;ts0), Pvr(1/4,1/4,1/4,1/4;ts0)
and Py(1/2,1/2,1/2,1/2;ts0), respectively. The last two equations turn
out to be the same as yg2(tg0) and ye4(teo), respectively; Theorem 4.1 gives
expressions reparametrized by

ut +12iu% — 4

e
ut — 4iu? — 4

(5.43)
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The solution of Py1(3/8,3/8,3/8,5/8;ts0) is

i(uti—1)(u—i+1) (u? +2(i+1)u — 22‘)2 (u? — 2(i+1)u — 2i)
8u (u? — 2)% (u2 + 2) (ub + 6u’ + 6u* + 16u3 — 12u? + 24u — 8)
x (u® — 6iu® — 6u + 160w’ — 12u® — 24iu + 8) . (5.44)
This solution is presented in [6, pg. 102], reparametrized with u — (i —1)s.
The same solution can be obtained by an Okamoto transformation: yg3 =

K1 _1/8,-1/8,-1/8,7/8; ts0] Ys1-
As was suspected in [14], the solutions yg2(t60) of

Pyr(1/4,1/4,1/4,1/4;ts0)

Ygz =

and ygl(tgo) of

Pyr(1/8,1/8,1/8,7/8;ts0)
are related by a sequence of two quadratic transformations. Indeed, a
fractional-linear transformation of

K[—1/4,—1/4,—1/4, 1/4;t60] Y62

solves Py1(0,0,1/2,1;ts0), and then we can apply the following result on
composition of two quadratic transformations. After substitution (5.43)
the square roots are extractable; see Lemma 6.1.

§6. APPENDIX

Here we briefly recall or consider the following topics:

e A formula for composition of two subsequent quadratic transfor-
mations of Painlevé VI functions; see Lemma 6.1.

e A general formula for the degree of almost Belyi coverings relevant
to algebraic Painlevé VI solutions; see Lemma 6.2.

e A geometric interpretation of the degree formula.

Lemma 6.1. Suppose that y(t) is a solution of Py1(0,0,a,1;t). Then the
following expression is a solution of Pyr(a/4,a/4,a/4,1— a/4;t):

Vyt+i ' '

Proof. The result [20] of Ramani-Gramatikos-Tamizhmani states that if
Yo(Tb) is a solution of Py;(0,b,c,1;Tp), and

v - W+ DT +1) o (VT +1)?
VRS DWR - (VR -

(6.46)
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then Y1 (T1) is a solution of Py(b/2,¢/2,¢/2,1—b/2;T1). We can trans-
form y(t) to a solution of Pyr(0,a/2,a/2,1;...), and then apply the same
transformation to get the asserted solution. (Other branches of the trans-
formed solution can be obtained by flipping the sign of the square roots

V=D -1 and \/yt.) 0

The following is a degree formula for pullback coverings generating al-
gebraic Painlevé VI solutions by Theorem 3.1. In particular, it implies that
the pullback covering for an icosahedral [5] solution of Py r(vg, v1, v, Voo t)
with vg, v1, 1, Voo € (0,1) has the degree 30(vo + v1 + v — Voo )-

Lemma 6.2. In the situation of Theorem 3.1, we have, if k—lo—l—%—i-kL #1:

ao ai ay Ao 1 1 1
dog o= LS 1)/(_+—+—1>.
&Y <’%<0> koay Koy koo ko ki ko (6.47)

Proof. Let d denote the degree of . Let by, by respectively b, denote the
sums of those a, with z € {0,1,¢, 00} such that, respectively, ¢(z) = 0,
w(z) = 1, p(x) = co. By the Hurwitz formula, we have

d—b d—>b d— by
2d — 2(ko — 1) —— + (k1 — 1) —— + (koo — 1)
0 1 koo
+(a—1)+ (a1 —1)+(as — 1) + (@ — 1) + 1.
The formula follows, since by + b1 + boo = ag + a1 + ¢ + Goo- O

Notice that this Lemma implies that it is not possible to obtain so-
lutions like y72(t12) yr5(t70) using Theorem 3.1: the degree of the cov-
ering would be negative. In other words, we cannot pullback the hyper-
bolic hypergeometric equation F(1/3,1/2,0,1/7;t; z) to the equations like
E(2/7,2/7,2]7,1/3;y72;2) or E(2/7,2/7,2/7,4/7;yzs; 2). As one can see,
there are just a few pullback coverings for infinitely many “hyperbolic”
Painlevé VI solutions. This is in contrast to icosahedral Painlevé VI solu-
tions (or more generally, solutions corresponding to Fuchsian systems with
a finite monodromy), which can be obtained from a standard icosahedral
hypergeometric equation thanks to Klein’s theorem.

There is a geometric interpretation of this degree formula. If L—lo +

kL + ki > 1, then the expression (kL + kL + ki — 1)7r is the area of
1 oo 0 1 oo

the spherical triangle with the angles w/ko, 7/k1, 7/koo in the standard
Riemannian metric on the sphere. The spherical triangle is the image of
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the upper-half plane of a Schwarz map for a hypergeometric differential
equation with the local exponent differences 1/kg, 1/k1, 1/koo. The image
of a Schwarz map for a scalar Fuchsian equation associated with (3.15)
is a degenerate pentagon, with four angles equal to aom/ky(0y, a17/ky(1),
a7 [ky(r), T — @ooT/ky(c), and one angles (corresponding to the extra
ramification point) equal to 2n. The area of the degenerate pentagon is

equal to (k—“o— + ot bt e - 1)7r. If the covering z = ¢(x)
»(0) (1) P (t) w(o0) .

can be defined over R, then the degenerate pentagon can be triangulated

into the Schwarz triangles with the angles 7 /ko, 7/k1, 7/kso, respecting

analytic continuation (between the two complex half-planes) in the fiber

(with respect to ) of the degenerate pentagon. If L—lo + ]%1 + ki <1

then we have hyperbolic triangles instead of spherical triangles, with the

area (1 — % — kl—l — %)7‘(‘ with respect to a hyperbolic metric, but other

features are the same.

Figures 1(a) and (b) depict Schwarz triangulations for the degree 8
map @g(z) in [23, (2.7)]. The cut for the fifth vertex in Figure 1(b) can
either include or do not reach the interior vertex. Two different figures
correspond to two connected components over R of the Hurwitz curve
w? = s(s — 1)(s + 3)(s + 8). The two components can be distinguished by
the cut from a point above z = 0: in Figure 1(a) the cut goes towards a
point above z = oo, while in Figure 1(b) it goes towards a point above
z = 1. One can evaluate Pg(z) at the extra ramification point:

3125(u + 3)(u + 2)*(2u + 1)*u? (u — 1)°
4(u+ 8)(u? + 4u? +2u + 2)5(u — 2)2

©s(y26) = (6.48)

The value @g(y26) oscillates between z = 0 and z = 1 for u € [-3,0],
and the value is negative or z = 0, z = oo when u > 1 or v < —8. Hence,
Figure 1(b) corresponds to the real component with v € [—3, 0], and Figure
1(a) corresponds to the other real component. Notice that @g(ys6), as a
function of u, is a Belyi map.

Figure 1(d) depicts a Schwarz triangulation for the degree 12 map
P12(z) in [23, (2.13)]. Figure 1(c) depicts a Schwarz triangulation for a
normalization of ¢12(x) here; this is a hyperbolic triangulation. Schwarz
triangulations for our $1o(z) and normalized composite coverings for (5.37)
are modifications of two triangulations for Belyi coverings in [25, Fig. 1]:
there has to be a cut from the vertices with the angles 27/7 and 27/8.
Figures 1(e), (f), (g) depict Schwarz triangulations for the degree 11, 12,
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N

a) b) c)

N> AIEY

) )
& z
f) g)

Fig. 1. Triangulations for Schwarz maps

20 maps in [22]. Note that the lens shaped figures (d) and (g) correspond
precisely to Dubrovin—Mazzocco solutions.

Not all almost Belyi coverings have Schwarz tringulations. If a covering
is not defined over R, analytic continuations of Schwarz maps for the origi-
nal and transformed equations do not match. For example, normalizations
of ¢12(x) can be defined only over Q(¢). Normalized composite coverings
for (5.37), or the composite degree 20 map @4 o p5(z) in [22, Section 5] are
not defined over R either; nor they have Schwarz triangulations.
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