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t. Algebrai
 solutions of the sixth Painlev�e equation 
anbe 
onstru
ted with the help of RS-transformations of the hyperge-ometri
 equations. Constru
tion of these transformations in
ludesspe
ially rami�ed rational 
overings of the Riemann sphere and 
or-responding S
hlesinger transformations (S-transformations). Somealgebrai
 solutions 
an be 
onstru
ted from rational 
overings alone,without obtaining the 
orresponding pullba
ked isomonodromyFu
hsian system, i.e., without S part of the RS transformations. Atthe same time one and the same 
overing 
an be used to pullba
kdi�erent hypergeometri
 equations, resulting in di�erent algebrai
Painlev�e VI solutions. In 
ase of high degree 
overings 
onstru
tionof S parts of the RS-transformations may represent some 
ompu-tational diÆ
ulties. This paper presents 
omputations of expli
itRS-pullba
k transformations, and derivation of algebrai
 Painlev�eVI solutions from them. As an example, we present 
omputation ofall seed solutions for pull-ba
ks of hyperboli
 hypergeometri
 equa-tions.To Professor Peter Kulish in honor of his 70th birthday
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tionThe sixth Painlev�e equation is, 
anoni
ally,d2ydt2 = 12 (1y + 1y − 1 + 1y − t)(dydt)2
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132 R. VIDUNAS, A. V. KITAEV+ y(y − 1)(y − t)t2(t− 1)2 (�+ � ty2 + 
 t− 1(y − 1)2 + Æ t(t− 1)(y − t)2) ; (1.1)where �; �; 
; Æ ∈ C are parameters. As well-known [11℄, its solutionsde�ne isomonodromi
 deformations (with respe
t to t) of the 2× 2 matrixFu
hsian equation with 4 singular points (� = 0; 1; t, and ∞):ddz	 = (A0z + A1z − 1 + Atz − t)	; ddzAk = 0 for k ∈ {0; 1; t}:(1.2)The standard 
orresponden
e is due to Jimbo and Miwa [11℄. We 
hoosethe tra
eless normalization of (1.2), so we assume that the eigenvalues ofA0, A1, At are, respe
tively, ±�0=2, ±�1=2, ±�t=2, and that the matrixA∞ := −A1−A2 −A3 is diagonal with the diagonal entries ±�∞=2. Thenthe 
orresponding Painlev�e equation has the parameters� = (�∞ − 1)22 ; � = −�202 ; 
 = �212 ; Æ = 1− �2t2 : (1.3)We refer to the numbers �0, �1, �t and �∞ as lo
al monodromy di�eren
es.For any numbers �1; �2; �t; �∞, let us denote by PV I(�0; �1; �t; �∞; t)the Painlev�e VI equation for the lo
al monodromy di�eren
es �i = �i fori ∈ {0; 1; t;∞}, via (1.3). Note that 
hanging the sign of �0; �1; �t or 1−�∞does not 
hange the Painlev�e equation. Fra
tional-linear transformationsfor the Painlev�e VI equation permute the 4 singular points and the numbers�0; �1; �t; 1− �∞.Similarly, for any numbers �1; �2; �t; �∞ and a solution y(t) ofPV I (�0; �1; �t; �∞; t), let us denote by E(�0; �1; �t; �∞; y(t); z) a Fu
hsianequation (1.2) 
orresponding to y(t) by the Jimbo-Miwa 
orresponden
e.The Fu
hsian equation is determined uniquely up to 
onjugation of A0, A1,At by a diagonal matrix (dependent on t only). In parti
ular, y(t) = t 
anbe 
onsidered as a solution of PV I (e0; e1; 0; e∞; t). The equationE(e0; e1; 0; e∞; t; z) is a Fu
hsian equation with 3 singular points, a
tu-ally without the parameter t. Its solutions 
an be expressed in terms ofGauss hypergeometri
 fun
tion see [11℄ or the Appendix in [23℄. We referto E(e0; e1; 0; e∞; t; z) as a matrix hypergeometri
 equation, and see it as amatrix form of Euler's ordinary hypergeometri
 equation.We 
onsider pullba
k transformations of 2 × 2 Fu
hsian systemsd	(z)=dz =M(z)	(z). They have the following general form:z 7→ R(x); 	(z) 7→ S(x)	(R(x)); (1.4)



RS-PULLBACK TRANSFORMATIONS 133where R(x) is a rational fun
tion of x, and S(x) is a S
hlesinger transfor-mation, usually designed to remove apparent singularities. For transforma-tions to parametri
 isomonodromi
 equations, R(x) and S(x) may dependalgebrai
ally on parameter(s) as well. The transformed equation isd	(x)dx = (dR(x)dx S−1(x)M(R(x))S(x) − S−1(x)dS(x)dx )	(x): (1.5)In [12, 13℄, these pullba
k transformations are 
alled RS-transformations,meaning that they are 
ompositions of a rational 
hange of the indepen-dent variable z 7→ R(x) and the S
hlesinger transformation S(x). TheS
hlesinger transformation S(x) is analogous here to proje
tive equiva-len
e transformations y(x) → �(x)y(x) of ordinary di�erential equations.To merge terminology, we refer to these pullba
k transformations as RS-pullba
ks, or RS-pullba
k transformations. If S(x) is the identity transfor-mation, we have a dire
t pullba
k of a Fu
hsian equation.The subje
t of this arti
le is 
onstru
tion of RS-pullba
k transforma-tions of matrix hypergeometri
 equations to isomonodromi
 Fu
hsian sys-tems with 4 singular points. To have so few singular points of the trans-formed equation, we usually have to start with a matrix hypergeometri
equation with restri
ted lo
al monodromy di�eren
es, and the R-part R(x)must de�ne a spe
ially rami�ed 
overing of P1. In parti
ular, the 
overingusually may ramify only above the 3 singular points of the hypergeometri
equation, ex
ept that there is one additional simple (i.e., order 2) rami�-
ation point is allowed. Coverings rami�ed over 4 points of P1 in this wayare 
alled here almost Belyi 
overings. Re
all that a Belyi fun
tion is arational fun
tion on an algebrai
 
urve with at most 3 
riti
al values; therespe
tive 
overing of P1 by the algebrai
 
urve is rami�ed above a set of3 points only.Suitable starting hypergeometri
 equations and rami�
ation patterns ofalmost Belyi 
overings 
an be 
lassi�ed rather easily [7, 13℄. This is simi-lar to 
lassi�
ation of algebrai
 transformations of Gauss hypergeometri
fun
tions [24,25℄, where Belyi fun
tions typi
ally o

ur. The 
omputation-ally hard problem is 
onstru
tion of almost Belyi 
overings from a priorisuitable rami�
ation patterns. This leads us towards Grothendie
k's theoryof dessins d'enfant. In parti
ular, Hurwitz spa
es for almost Belyi 
over-ings with a �xed rami�
ation pattern de�ne isomonodromy parameters forthe pullba
ked Fu
hsian equations. E�e
tive 
omputations of high degree



134 R. VIDUNAS, A. V. KITAEValmost Belyi 
overings are presented in [22℄. In this paper, we use three
overings 
omputed in [13℄.Computation of S-parts of suitable RS-transformations does not lookhard in prin
iple. However, this problem is not as straightforward as �nd-ing suitable proje
tive equivalen
e transformations for s
alar di�erentialequations. General S
hlesinger transformations 
an be 
onstru
ted by 
om-posing several simple S
hlesinger transformations (ea
h shifting just twolo
al monodromy di�eren
es), as was done in [1,2,11℄. More e�e
tively, themethod in [23℄ 
onstru
ts S
hlesinger transformations in one go, avoidingfa
torization of high degree polynomials when shifting lo
al monodromydi�eren
es at all 
onjugate roots by the same integer. In the 
ontext ofisomonodromy problems, this approa
h is adopted in [9℄ as well.RS-pullba
k transformations to isomonodromi
 Fu
hsian systems with4 singular points gives solutions of the sixth Painlev�e equations that arealgebrai
, be
ause those solutions are determined algebrai
ally by matrixentries of pullba
ked equations (1.5) while those entries are algebrai
 fun
-tions in x and the isomonodromy parameter. The se
ond author 
onje
-tured in [13℄ that all algebrai
 solutions of the sixth Painlev�e equation
an be obtained by RS-pullba
k transformations of matrix hypergeometri
equations, up to Okamoto transformations [19℄. This 
onje
ture is 
ertainlytrue if the monodromy group of the Fu
hsian systems is �nite, due to 
ele-brated Klein's theorem [15℄. Ri
hard Fu
hs [10℄ soon 
onsidered extensionof Klein's theorem to algebrai
 solutions of Painlev�e equations. Re
ently,Ohyama and Okumura [18℄ showed that algebrai
 solutions of Painlev�eequations from the �rst to the �fth do arise from pull-ba
k transforma-tions of 
on
uent hypergeometri
 equations, aÆrming the formulation ofR. Fu
hs.The pullba
k method for 
omputation of algebrai
 Painlev�e VI solu-tions was previously suggested in [2, 7, 12, 13℄. This method is substan-tially di�erent from the representation-theoreti
 approa
h of Dubrovin{Mazzo

o [8℄ and Boal
h [4, 5℄. Re
ently, Lisovyy and Tykhyy [16℄ usedthe representation-theoreti
 method to 
omplete 
lassi�
ation of algebrai
Painlev�e VI solutions. The mentioned 
onje
ture in [13℄ is still interestingas a generalization of Klein's theorem. There is a similar situation with
lassi�
ation of algebrai
 solutions of the Lam�e equation, where represen-tation-theoreti
 methods (as in [3℄) 
ompete with Klein's pullba
k method(as in [17℄).



RS-PULLBACK TRANSFORMATIONS 135One important observation is that the same rational 
overing R(x) 
anbe used in several RS-pullba
k transformations. For example, here weapply the same degree 10 
overing to pullba
k three di�erent matrix hy-pergeometri
 equations E(1=7; 1=2; 0; 1=3; t; z),E(2=7; 1=2; 0; 1=3; t; z) andE(3=7; 1=2; 0; 1=3; t; z). We obtain Painlev�e solutions of, respe
tively,PV I(1=7; 1=7; 1=7; 2=3; t);PV I(2=7; 2=7; 2=7; 1=3; t)and PV I(3=7; 3=7; 3=7; 2=3; t);unrelated by fra
tional-linear or Okamoto transformations. The �rst Pain-lev�e solution is a fra
tional-linear version of solution [14, (3.16){(3.17)℄.The se
ond Painlev�e solution is the same as in [6, page 106℄. The thirdPainlev�e solution is new.The arti
le is organized as follows. Se
tion 2 presents the 
overing ofdegree 10 for our exmaples; it was previously used in [14℄. There we alsomention how some Painlev�e VI solutions 
an be 
omputed from the ratio-nal 
overings alone, without 
omputation of full RS-transformations. Thiskind of possibility is noti
ed in [7, 13℄, and is summarized in Theorem 3.1below. In Se
tion 4 a more general Theorem 4.1 from [23℄ is 
ited. Therebya dire
t formula for algebrai
 Painlev�e VI solutions is given, with min-imum information from full RS-transformations. In Se
tion 5, represen-tative RS-pullba
k transformations of \hyperboli
" hypergeometri
 equa-tions E(1=2; 1=3; 0; 1=7; t; z) and E(1=2; 1=3; 0; 1=8; t; z) to isomonodromi
Fu
hsian systems with 4 singularities are sumarized, and the 
orrespond-ing Painlev�e VI solutions are presented (hereby 
omplementing [14℄). TheAppendix presents a formula for 
omposition of two quadrati
 transfor-mations of Painlev�e VI solutions; a general degree formula for the almostBelyi 
overings relevant to algebrai
 Painlev�e VI solutions; and geometri
interpretation of the latter formula.The authors prepared Maple 9.5 worksheets supplementing this arti
leand [22,23℄, with the formulas in Maple input format, and demonstrationof key 
omputations. To a

ess the worksheet, readers may 
onta
t theauthors, or sear
h a 
urrent website of the �rst author on the internet.



136 R. VIDUNAS, A. V. KITAEV
§2. The working 
overing and RS-transformationsFirst we introdu
e notation for rami�
ation patterns, and later for RS-transformations. A rami�
ation pattern for an almost Belyi 
overing ofdegree n is denoted by R4(P1|P2|P3), where P1; P2; P3 are three partitionsof n spe
ifying the rami�
ation orders above three points. The rami�
ationpattern above the fourth rami�
ation lo
us is assumed to be 2 + 1 + 1 +: : :+1. By the extra rami�
ation point we refer to the simple rami�
ationpoint in the fourth �ber. The Hurwitz spa
e for su
h a rami�
ation patternis generally one-dimensional [26, Proposition 3.1℄.We use only genus 0 almost Belyi 
overings, and write them as P1x → P1z,meaning that the proje
tive line with the proje
tive 
oordinate x is mappedto the proje
tive line with the 
oordinate z. Then the total number of partsin P1, P2, P3 must be equal to n + 3, a

ording to [13, Proposition 2.1℄;this is a 
onsequen
e of Riemann-Hurwitz formula.The similar notation for a rami�
ation pattern for a Belyi fun
tion isR3(P1|P2|P3), as in [1℄, [14℄. The total number of parts in P1, P2, P3 mustbe equal to n+ 2, as stated in [24, Lemma 2.4℄ or [13, Proposition 2.1℄.Our working almost Belyi 
overing has the following rami�
ation pat-tern: R4(7 + 1 + 1 + 1 | 2 + 2 + 2 + 2 + 2 | 3 + 3 + 3 + 1): (2.6)The 
overing has degree 10. The three spe
i�ed �bers with rami�ed points
an be brought to any three distin
t lo
ations by a fra
tional-linear trans-formation of P1z. We assign the �rst partition to z = 0, and the next twopartitions | to z = 1 and z = ∞ respe
tively. Similarly, by a fra
tional-linear transformation of P1x we may 
hoose any three x-points1 as x = 0,x = 1, x = ∞.All 
overings with rami�
ation pattern (2.6) 
an be 
omputed on mod-ern 
omputers either using the most straightforward method, or an im-proved method [22℄ that uses di�erentiation. Up to fra
tional-linear trans-formations and reparametrization, there is one general su
h 
overing given1Stri
tly speaking, the x-points in our settings are 
urves, or bran
hes, parametrizedby an isomonodromy parameter t or other parameter, sin
e the Hurwitz spa
es for al-most Belyi maps are one-dimensional. For simpli
ity, we ignore the dimensions intro-du
ed by su
h parameters, and 
onsider a one-dimensional Hurwitz spa
e as a generi
point.



RS-PULLBACK TRANSFORMATIONS 137by '10(x) = x7 F104G310 ; or '10(x) − 1 = P 2104G310 ; (2.7)whereF10 =9s2x3−2(2s3+6s2+15s−16)x2+3(8s2+8s−13)x−36(s−1);G10 =2(s+ 1)x3 − (s2 + 4s+ 10)x2 + 6(s+ 2)x− 9; (2.8)P10 =3sx5 − 3(2s2 + 6s+ 7)x4 + 2(s3 + 6s2 + 30s+ 35)x3
− 18(s2 + 4s+ 7)x2 + 54(s+ 2)x− 54:The extra rami�
ation point is x = 7(s− 1)=s(s+ 1).For dire
t appli
ations to the Painlev�e VI equation, it is required tonormalize the point above z = ∞ with the deviating rami�
ation order 1and the three nonrami�ed points above {0; 1;∞} ⊂ P1z as x = 0, x = 1, x =

∞, x = t. We refer to expli
it almost Belyi 
overings normalized this wayas properly normalized. A properly normalized 
overing with rami�
ationpattern (2.6) was �rst 
omputed in [13℄. To get a properly normalizedexpression, we reparametrizes = − (u+ 2)(u2 − u+ 2)2(u− 1) ; (2.9)and make the fra
tional-linear transformationx 7→ (u− 1)2(u2 + 3)w9(u2 − u+ 2)2 (2x− 1)
− (u− 1)(u5 + u4 − 2u3 + 18u2 − 9u+ 27)9(u2 − u+ 2)2 ; (2.10)where w =√(u− 1)(u+ 5)(u2 + 3). The obtained expression is'̂10(x) = − (u− 1)2(u+ 2)2w38(u+5)(u3+u2−2u+6)3
× x (x− 1) (x− t10) (x− t∗10)7((x2 − x) (x− 12 − L3)− L4(x− 12 ) + L5)3 ; (2.11)



138 R. VIDUNAS, A. V. KITAEVwheret10 = 12+ u9 + 3u8 − 3u7 + 7u6 − 21u5 + 21u4 − 161u3 − 27u2 − 144u− 1082(u− 1)3(u+ 2)2(u2 + 3)√(u− 1)(u+ 5)(u2 + 3) ;t∗10 = 12+ u5 + u4 − 2u3 + 18u2 − 9u+ 272(u− 1)(u2 + 3)√(u− 1)(u+ 5)(u2 + 3) ; (2.12)andL3= (u5+4u4+u3+18u2+24u+36)(u7+14u4−21u3+42u2+36)8(u−1)2(u+5)(u2+3)3(u3+u2−2u+6) ;L4= 3(u10−6u8+28u7−99u6+252u5−668u4+1008u3−1212u2+672u−408)8w(u−1)3(u2+3)(u3+u2−2u+6) ;L5=u15+5u14+28u12+98u11−126u10+616u9−184u8+333u7+1785u6−1512u5+3276u4+6048u2+3888u+129616w(u−1)3(u+5)(u2+3)3(u3+u2−2u+6) :The Hurwitz spa
e parametrising this properly normalized almost Belyi
overing has still genus 0. To get the rational 
overing �1(�) in [14℄, onehas to 
onsider t10/'̂10(x), and substitute x 7→ t10=x, u 7→ 2=s− 1.In [13℄, the following symbol is introdu
ed to denote RS-pullba
k trans-formations of E(e0; e1; 0; e∞; t; z) with respe
t to a 
overing with rami�-
ation pattern R4(P0|P1|P∞):RS24 ( e0P0 ∣∣∣∣ e1P1 ∣∣∣∣ e∞P∞

) ; (2.13)where the subs
ripts 2 and 4 indi
ate a se
ond order Fu
hsian system with4 singular points after the pullba
k. We assume the same assignment ofthe �bers z = 0, z = 1, z = ∞ as for the R4-notation. Lo
ation of thex-bran
hes 0; 1; t;∞ does not have to be normalized. As was noti
ed in [13℄and [7℄, some algebrai
 Painlev�e VI solutions determined by RS-pullba
ktransformations RS24 ( 1=k0P0 ∣∣∣ 1=k1P1 ∣∣∣ 1=k∞P∞

), with k0; k1; k∞ ∈ Z, 
an be 
al-
ulated from the rational 
overing alone, without a
tual 
omputation ofthe full RS-pullba
ks. We dis
uss this possibility in Se
tion 3. Our 
overing'̂10(x) immediately gives a solution of PV I(1=7; 1=7; 1=7; 2=3; t). In Se
tion4 we formulate a dire
t way to obtain algebrai
 Painlev�e VI solutions via
omputation of suitable syzygies between x2 (or x3), P10, G10. We obtainalgebrai
 solutions ofPV I(2=7; 2=7; 2=7; 1=3; t) and PV I(3=7; 3=7; 3=7; 2=3; t)



RS-PULLBACK TRANSFORMATIONS 139by impli
itly using RS-pullba
k transformationsRS24 ( 2=77 + 1 + 1 + 1 ∣∣∣∣ 1=22 + 2 + 2 + 2 + 2 ∣∣∣∣ 1=33 + 3 + 3 + 1)and RS24 ( 3=77 + 1 + 1 + 1 ∣∣∣∣ 1=22 + 2 + 2 + 2 + 2 ∣∣∣∣ 1=33 + 3 + 3 + 1) ;respe
tively.
§3. Pullba
k 
overings and algebrai
 Painlev�e VIsolutionsAs noti
ed in [13℄ and [7℄, some algebrai
 Painlev�e VI solutions 
anbe 
omputed knowing just a pullba
k 
overing, without 
omputation ofpullba
ked Fu
hsian equations of full RS-transformations removing all ap-parent singularities of a dire
t pullba
k. Here we formulate the most in-teresting general situation.Theorem 3.1. Let k0; k1; k∞ denote three integers, all ≥ 2. Let ' : P1x →

P1z denote an almost Belyi map, dependent on a parameter t. Suppose thatthe following 
onditions are satis�ed:(i) The 
overing z = '(x) is rami�ed above the points z = 0, z = 1,z = ∞; there is one simply rami�ed point x = y above P1z \
{0; 1;∞}; and there are no other rami�ed points.(ii) The points x = 0, x = 1, x = ∞, x = t lie above the set
{0; 1;∞} ⊂ P1z.(iii) The points in '−1(0) \ {0; 1; t;∞} are all rami�ed with the orderk0. The points in '−1(1) \ {0; 1; t;∞} are all rami�ed with theorder k1. The points in '−1(∞)\ {0; 1; t;∞} are all rami�ed withthe order k∞.Let a0; a1; at; a∞ denote the rami�
ation orders at x = 0; 1; t;∞, respe
-tively. Then the point x = y, as a fun
tion of x = t, is an algebrai
 solutionof PV I ( a0k'(0) ; a1k'(1) ; atk'(t) ; 1− a∞k'(∞) ; t) : (3.14)Proof. Let R4(P0|P1|P∞) denote the rami�
ation pattern of the 
overingz = '(x). We aim for an RS-pullba
k transformationRS24 ( 1=k0P0 ∣∣∣∣

1=k1P1 ∣∣∣∣
1 + 1=k∞P∞

)



140 R. VIDUNAS, A. V. KITAEVwith respe
t to '(x). Let d denote the degree of '(x). For time being, weassume that the point x = ∞ lies above z = ∞.The dire
t pullba
k of the hypergeometri
 equation E(1=k0; 1=k1; 0; 1+1=k∞; t; z) with respe
t to '(x) has apparent singularities at the pointsmentioned in part (iii) above. Nonapparent singularities are possibly x = 0,x = 1, x = t and x = ∞. The lower-left entry of the dire
t pullba
k is equal,up to a fa
tor independent of x, to '′='(1− '), whi
h is the logarithmi
derivative of '=(' − 1). The poles of this rational fun
tion are simple,and they are pre
isely the points above z = 0 and z = 1. The zeroes ofthe rational fun
tion are the following: the extra rami�
ation point of '(a simple zero); and the points above z = ∞, with multipli
ities one lessthan the respe
tive rami�
ation orders.Noti
e that if we apply a S
hlesinger transformation of the upper tri-angular form S = 1√(x−�1)(x−�2)(x−�1 �30 x−�2 ), where �1, �2, �3 are in-dependent of x, then the lower-left entry of the matrix di�erential equa-tion 
hanges by the fa
tor (x − �1)=(x − �2) and a fa
tor independentof x. If the point x = �2 is above z = ∞, this S
hlesinger transfor-mation (with appropriate �3) de
reases the lo
al monodromy di�eren
esat x = �1 and x = �2 by 1. Similarly, the S
hlesinger transformationS = 1√x−�1 (x−�1 00 1 ) 
hanges the lo
al monodromy di�eren
es at x = �1and x = ∞ by 1, and it multiplies the lower-left entry by the fa
tor x−�1(and a fa
tor independent of x).Let h denote the number of distin
t apparent singularities above z = ∞.There are in total (d + 3)− 4− h apparent singularities above z = 0 andz = 1. We 
an 
onstru
t d−1−h simple S
hlesinger transformations of theforms presented just above, so that �1 runs through the set of apparentsingularities above z = 0 and z = 1, and ea
h point x = �2 or x = ∞above z = ∞ is 
hosen nx times, wherenx =  the rami�
ation order at x, minus 1; if x = ∞ oran apparent singularity;the rami�
ation order at x; otherwise:The 
omposite e�e
t of these d − 1 − h transformations is removal of allapparent singularities above z = 0, z = 1, z = ∞; and redu
ing the lo
almonodromy di�eren
e at x = ∞ from a∞+a∞=k∞ to 1+a∞=k∞. The lo-
al monodromy di�eren
es at the other singularities are a0=k'(0), a1=k'(1),



RS-PULLBACK TRANSFORMATIONS 141at=k'(t) after the 
omposite transformation. Hen
e the transformed equa-tion has (at most) four singularities. The transformed equation isE ( a0k'(0) ; a1k'(1) ; atk'(t) ; 1 + a∞k∞ ; ỹ(t);x) ; (3.15)where the Painlev�e VI solution ỹ(t) is determined by lower-left entry of thetransformed equation. The lower-left entry is 
hanged from '′='(1 − ')to a rational fun
tion whose numerator has only one root. The single rootmust be the extra rami�
ation point of '(x). Hen
e ỹ(t) 
an be identi�edwith the bran
h x = y. It is a solution ofPV I(a0=k'(0); a1=k'(1); at=k'(t); 1 + a∞=k∞; t)whi
h is the same equation as (3.14).If the point x = ∞ does not lie above z = ∞, we 
an move the pointz = ∞ by the fra
tional-linear transformations. That would only permutethe three �bers, and 
hange the rational fun
tion ' to 1=', 1=(1 − '),1− 1=' or '=('− 1) . A
tion of fra
tional-linear transformations on lo
almonodromy di�eren
es is 
ompatible with the form (3.14). �The above theorem is a spe
ial 
ase of [13, Theorem 2.1℄, with all kij 'sequal to 1, and with 
orre
t parameters in (3.14). Theorem 4.5 in [7℄ isa more general statement, but without identi�
ation of transformed lo
almonodromy di�eren
es.In [13℄, it is regularly implied that the Painlev�e VI solutions obtainedwith Theorem 3.1 arise from RS-pullba
k transformations of the typeRS24 ( 1=k0P0 ∣∣∣ 1=k1P1 ∣∣∣ 1=k∞P∞

). However, the above proof a
tually uses trans-formation RS24 ( 1=k0P0 ∣∣∣ 1=k1P1 ∣∣∣ 1+1=k∞P∞

). On the other hand, it is apparentfrom 
lassi�
ation [14℄ of rational 
overings for RS24 -pullba
k transfor-mations relevant to the sixth Painlev�e equation that either k0 = 2 ork1 = 2 or k∞ = 2. On
e we assume k∞ = 2, the transformations typesRS24 ( 1=k0P0 ∣∣∣ 1=k1P1 ∣∣∣ 1=k∞P∞

) and RS24 ( 1=k0P0 ∣∣∣ 1=k1P1 ∣∣∣ 1+1=k∞P∞

) are the same orrelated by extra S
hlesinger transformations. If k0 = 2 or k1 = 2, we still
an relate the two transformation types via S
hlesinger transformations.Hen
e, the RS-pullba
k transformation implied in Theorem 3.1 
an berealized as RS24 ( 1=k0P0 ∣∣∣ 1=k1P1 ∣∣∣ 1=k∞P∞

) as well.Appli
ation of Theorem 3.1 to '̂10(x) gives this solution ofPV I(1=7; 1=7; 1=7; 2=3; t10) :



142 R. VIDUNAS, A. V. KITAEVy71 = 12+ (u+ 5)(u6 − u5 + 3u4 − 13u3 + 4u2 − 18u− 12)2(u− 1)(u+ 2)(u3 + u2 − 2u+ 6)√(u− 1)(u+ 5)(u2 + 3) : (3.16)A parametrization of t10 is given in (2.12). To get the solution ofPV I(1=3; 1=7; 1=7; 6=7; t10)in [14, (3.6){(3.7)℄, one has to 
onsider the fun
tion t10=y71 and substituteu 7→ 2=s− 1. Our implied RS-transformation isRS24 ( 1=77 + 1 + 1 + 1 ∣∣∣∣ 1=22 + 2 + 2 + 2 + 2 ∣∣∣∣ 1=33 + 3 + 3 + 1) :
§4. Painlev�e solutions from more general RS-pullba
ktransformationsBy the Jimbo-Miwa 
orresponden
e, a Painlev�e VI solution is deter-mined by the lower-left entry of a pullba
ked Fu
hsian system. By theresults in [23, Se
tion 4℄, that lower-left entry is determined by a syzygy(U2; V2;W2) between F , G, H ; that is, a polynomial solution of FU2 +GV2 +HW2 = 0. If the shift Æ of lo
al monodromy di�eren
es at x = ∞is small, that syzygy is determined by degree bounds of its 
omponents.The following theorem summarizes the situation.Theorem 4.1. Let z = '(x) denote a rational 
overing, and let F (x),G(x), H(x) denote polynomials in x. Let k denote the order of the poleof '(x) at x = ∞. Suppose that the dire
t pullba
k of E(e0; e1; 0; e∞; t; z)with respe
t to '(x) is a Fu
hsian equation with the following singularities:

• Four singularities are x = 0, x = 1, x = ∞ and x = t, withthe lo
al monodromy di�eren
es d0, d1, dt, d∞, respe
tively. Thepoint x = ∞ lies above z = ∞.
• All other singularities in P1x \ {0; 1; t;∞} are apparent singular-ities. The apparent singularities above z = 0 (respe
tively, abovez = 1, z = ∞) are the roots of F (x) = 0 (respe
tively, ofG(x) = 0, H(x) = 0). Their lo
al monodromy di�eren
es areequal to the multipli
ities of those roots.Let us denote � = degF +degG+degH, and let Æ ≤ max(2; k) denote anon-negative integer su
h that �+ Æ is even. Suppose that (U2; V2;W2) is



RS-PULLBACK TRANSFORMATIONS 143a syzygy between the three polynomials F , G, H, satisfying, if Æ = 0,degU2 = �2 − degF; deg V2 = �2 − degG; degW2 < �2 − degH;(4.17)or, if Æ > 0,degU2 < �+Æ2 −degF; deg V2 < �+Æ2 −degG; degW2 = �−Æ2 −degH:(4.18)Then the numerator of the (simpli�ed) rational fun
tionU2W2G ((e0 − e1 + e∞)2 '′' − (FU2)′FU2 + (HW2)′HW2 )+ (e0 − e1 − e∞)2 V2W2F '′'− 1 + (e0 + e1 − e∞)2 U2V2H '′' (' − 1) ; (4.19)has degree 1 in x, and the x-root of it is an algebrai
 solution ofPV I(d0; d1; dt; d∞ + Æ; t):Proof. See Theorem 5.1 in [23℄. �Alternative forms of expression (4.19) are given in formulas (5.17){(5.22) in [23℄. For greater Æ, formula (4.19) is still valid for a suitablesyzygy (U2; V2;W2), but that syzygy depends on initial 
oeÆ
ients of lo-
al solutions at z = 0 of the original hypergeometri
 equation. Takingonly small shifts Æ < max(2; k) at x = ∞ seems to be enough to generateinteresting \seed" solutions of the sixth Painlev�e equation.We 
an apply this theorem to obtain algebrai
 solutions ofPV I(1=7; 1=7; 1=7; 2=3; t); PV I(2=7; 2=7; 2=7; 1=3; t)and PV I(3=7; 3=7; 3=7; 2=3; t):Impli
itly, we apply pullba
k transformationsRS24 ( 1=77 + 1 + 1 + 1 ∣∣∣∣ 1=22 + 2 + 2 + 2 + 2 ∣∣∣∣ 1=33 + 3 + 3 + 1) ;RS24 ( 2=77 + 1 + 1 + 1 ∣∣∣∣ 1=22 + 2 + 2 + 2 + 2 ∣∣∣∣ 1=33 + 3 + 3 + 1)and RS24 ( 3=77 + 1 + 1 + 1 ∣∣∣∣ 1=22 + 2 + 2 + 2 + 2 ∣∣∣∣ 1=33 + 3 + 3 + 1) ;



144 R. VIDUNAS, A. V. KITAEVrespe
tively. Like in Se
tion 3, we work with the 
overing z = '10(x)rather than with the normalized 
overing z = '̂10(x) while 
omputingsyzygies, and apply reparametrization (2.9) and normalizing fra
tional-linear transformation (2.10) at the latest stage. We have k = 1. Thereforere
all the de�nition of F10, G10 and P10 in (2.8). We take Æ = 0 for these
ond RS-transformation, or Æ = 1 for the other two. We have to 
omputesyzygies between F = x (or, respe
tively, F = x2, or F = x3) and G = P10,H = G10.The syzygy for a solution of PV I(1=7; 1=7; 1=7; 2=3; t) is (G10; 0;−x),up to a s
alar multiple. With this trivial syzygy, the solution is the same'10(t10) as in (3.16). In fa
t, Theorem 4.1 redu
es to Theorem 3.1 wheneverone of syzygy 
omponents is zero; see [23, Remark 5.2℄.The full RS-pullba
k RS24 ( 1=77+1+1+1 ∣∣∣ 1=22+2+2+2+2 ∣∣∣ 1=33+3+3+1) would givea solution ỹ71(t70) of PV I(1=7; 1=7; 1=7;−2=3; t10) as well. The equationPV I (1=7; 1=7; 1=7; 8=3; t10) is identi
al. It turns out that the same Painlev�esolution 
an be obtained by applying Theorem 4.1 with Æ = 3. (Have a lookat the se
ond part of [23, Remark 5.3℄.) However, sin
e Æ = 3 > max(2; 1)we are not given restri
tions on the syzygy (U2; V2;W2), and additionalknowledge of the normalized solutions of E(1=7; 1=2; 0; 1=3; t; z) at z = ∞is needed. The syzygy 
an be eventually 
omputed to be
(
− 63s2x4 + (74s3 + 222s2 + 285s− 52)x3

− 2(8s4 + 48s3 + 257s2 + 297s− 130)x2 + 6(16s3 + 64s2 + 101s− 52)x
− 144s2 − 288s+ 234; 21s; 26(s+ 1)2x− 126s):The numerator of simpli�ed expression (4.19) is then indeed linear in x.The solution ỹ71(t10) is rather stupendous:12+ (u+5)(65u18+195u17−195u16+325u15−1104u14+: : :−248931u2−299835u + 222534)10(u+2)√(u−1)3(u+5)(u2+3)(13u15+65u14+42u11−1050u10+: : :−37611u2+63927u−783) :On the other hand, this solution 
an be obtained by applying a series ofOkamoto transformations to y71(t10).To get a solution of PV I (2=7; 2=7; 2=7; 1=3; t) we apply Theorem 4.1 with(F;G;H) = (x2; P10; G10). With Æ = 0, the degree spe
i�
ations in (4.17)are degU2 = 3; deg V2 = 0; degW2 < 2: (4.20)



RS-PULLBACK TRANSFORMATIONS 145As expe
ted, there is one syzygy satisfying these bounds, up to a 
onstantmultiple:
(3sx3 − (2s2 + 6s+ 13)x2 + 6(2s+ 3)x− 18;−1;−2(s+ 2)x+ 6) :(4.21)With this syzygy, expression (4.19) is equal to4 (s(2s2 + 4s− 19)x− 3(2s2 − 12s+ 7))7F10 : (4.22)The form is as expe
ted: the numerator has degree 1 in x, while the de-nominator is a 
ubi
 polynomial in x. After reparametrization (2.9) andnormalizing fra
tional-linear transformation (2.10) the denominator poly-nomial surely fa
tors as x(x − 1)(x − t10), with t10 given in (2.12). Thex-root of the transformed numerator gives the following solution y72(t10)of PV I(2=7; 2=7; 2=7; 1=3; t10):y72 = 12+ (u+ 5)(u8 + u7 + u6 − u5 + 8u4 − 82u3 − 54u2 − 90u− 108)2(u+2)(u6+2u5−3u4+8u3−26u2+60u−6)√(u−1)(u+5)(u2+3) :(4.23)To relate to Boal
h's parametrization in [6, page 106℄ for the same solution,we have to substitute u 7→ (s+5)=(s−1) into the expressions for y72 and t10.A solution ỹ72(t10) of PV I(2=7; 2=7; 2=7;−1=3; t10) 
an be 
omputedwithout extra knowledge of the normalized solutions at z = ∞. The identi-
al Painlev�e equation is PV I(2=7; 2=7; 2=7; 7=3; t10), and Theorem 4.1 
anbe applied with Æ = 2. The following syzygy �ts into formula (4.19):
(
− 69s(s+ 1)x3 + (32s3 + 128s2 + 325s− 65)x2

− 6(32s2 + 59s− 15)x+ 288s− 90;
− 5s− 5; 42sx2 − 10(s+ 1)(s+ 2)x+ 30 + 30s):Appli
ation of Theorem 4.1 with (F;G;H) = (x3; P10; G10) and Æ =1 gives a solution of PV I(3=7; 3=7; 3=7; 2=3; t). The degree bounds aredegU2 < 3, deg V2 < 1, degW2 = 2. An appropriate syzygy is

(
−(s+ 4)x2 + (2s+ 7)x− 6;−1; 2x2 − 2(s+ 2)x+ 6) (4.24)



146 R. VIDUNAS, A. V. KITAEVSimpli�ed expression (4.19) has the unique x-root x = −(2s − 5)(4s −7)=s(10s− 11). After reparametrization (2.9) and normalizing fra
tional-linear transformation (2.10) we derive the following solution y73(t10) ofPV I (3=7; 3=7; 3=7; 2=3; t10):y73 = 12+ (u+ 5)(5u7 − 10u6 + 5u5 − 20u4 + 13u3 − 68u2 − 3u− 30)2(u− 1)2(u+ 2)(5u3 + 5u2 + 11u+ 9)√(u−1)(u+5)(u2+3) : (4.25)This solution 
annot be obtained by Okamoto, fra
tional-linear and qua-drati
 transformations from previously know solutions.
§5. Pull-ba
ks of hyperboli
 hypergeometri
 equationsHere we survey RS24 -pullba
k transformations of hyperboli
 hypergeo-metri
 equations E(e0; e1; 0; e∞; t; z); these are de�ned by the propertiesthat 1=e0; 1=e1; 1=e∞ are positive integers and e0+e1+e∞ < 1. These pull-ba
k 
overings (and 
orresponding Okamoto orbits of algebrai
 Painlev�e VIsolutions) are 
lassi�ed in [14℄ and [7℄. The following rami�
ation patternsare possible:R4(7 + 1 + 1 + 1 | 2 + 2 + 2 + 2 + 2 | 3 + 3 + 3 + 1); (5.26)R4(3 + 3 + 3 + 3 | 2 + 2 + 2 + 2 + 2 + 2 | 7 + 2 + 1 + 1 + 1); (5.27)R4(3 + 3 + 3 + 3 | 2 + 2 + 2 + 2 + 2 + 2 | 8 + 1 + 1 + 1 + 1); (5.28)R4(3+3+3+3+3+3 | 2+2+2+2+2+2+2+2+2 | 7+7+1+1+1+1):(5.29)The 
overings have degree 10, 12, 12, 18, respe
tively.The generi
 degree 10 
overing is our '10(x), up to reparametrization.We already 
onsidered the solutions y71(t10), y72(t10), y73(t10) representingthree possible Okamoto orbits.The generi
 degree 12 
overing with rami�
ation (5.27) is�12(x) = 4 (x4 + 2s(3s+ 1)x3 + 2s(5s+ 2)x2 + 4s2x+ s2)327s(s+ 1)3x7 (4x3 + 4s(8s+ 5)x2 + s(13s+ 1)x+ 4s2) : (5.30)



RS-PULLBACK TRANSFORMATIONS 147It 
an be normalized with the substitutionss 7→ − (u+ 1)2(u− 1)2(u2 + 7)(u2 + u+ 2)(u2 − u+ 2) ; (5.31)x 7→ (u+ 1)(u− 1)22(u2 − u+ 2)2 − u3(u+ 1)(u− 1)(u2 + 3)x(u2 + u+ 2)2(u2 − u+ 2)2 : (5.32)A normalized expression for 1/�12(x) is presented in [13℄, reparametrizedwith u 7→ 1=s. Similarly as with '10(x), we 
an pullba
kE(1=3; 1=2; 0; 1=7; t; z); E(1=3; 1=2; 0; 2=7; t; z)and E(1=3; 1=2; 0; 3=7; t; z)with respe
t to a properly normalized �12(x) and derive2 algebrai
 so-lutions of, respe
tively, PV I(1=7; 1=7; 1=7; 5=7; t), PV I(2=7; 2=7; 2=7; 4=7; t)and PV I(3=7; 3=7; 3=7; 1=7; t). However, the three solutions are related byOkamoto transformations. A solution y74(t70) of PV I(1=7; 1=7; 1=7; 5=7; t)
an be obtained using Theorem 3.1. Here is a parametrization:t70= (u−3)3(u2+u+2)22u3(u2 + 7)2 ; y74= (u−1)(u−3)2(u2+u+2)2u(u2 + 3)(u2 + 7) : (5.33)It is related to the parametrization in [13℄ via u 7→ 1=s. Solutions y75(t70),y76(t70) of, respe
tively, PV I(2=7; 2=7; 2=7; 4=7; t),PV I(3=7; 3=7; 3=7; 1=7; t),
an be obtained using Theorem 4.1. The same solutions 
an be obtained2The implied RS-pullba
k transformations are, respe
tively,RS24 ( 1=33 + 3 + 3 + 3 ∣∣∣∣ 1=22 + 2 + 2 + 2 + 2 + 2 ∣∣∣∣ 1=77 + 2 + 1 + 1 + 1) ;RS24 ( 1=33 + 3 + 3 + 3 ∣∣∣∣ 1=22 + 2 + 2 + 2 + 2 + 2 ∣∣∣∣ 2=77 + 2 + 1 + 1 + 1)and RS24 ( 1=33 + 3 + 3 + 3 ∣∣∣∣ 1=22 + 2 + 2 + 2 + 2 + 2 ∣∣∣∣ 3=77 + 2 + 1 + 1 + 1) :As indi
ated in [14℄, one may also 
onsider RS-pullba
k transformationsRS24 ( 1=33+3+3+3 ∣∣∣ 1=22+2+2+2+2+2 ∣∣∣ 1=27+2+1+1+1) of E(1=3; 1=2; 0; 1=2; t; z) and de-rive solutions of, say, PV I(1=2; 1=2; 1=2;−5=2; t), PV I(1=2; 1=2; 1=2;−1=2; t),PV I(1=2; 1=2; 1=2; 1=2; t). For this, other proper normalization of �12(x) has tobe used, similarly as other proper normalization of '12(x) was used in [23, Se
tion 6℄to 
ompute solutions y63(t60), y62(t60), y64(t60) of the same equations (respe
tively).In
identally, pullba
ks with respe
t to �12(x) give exa
tly the same solutions y63(t60),y62(t60), y64(t60) in [23℄ of the same three Painlev�e equations, up to reparametrizationu 7→ (u+ 3)=(1 − u).



148 R. VIDUNAS, A. V. KITAEVas Okamoto transformations of y74(t70). In the notation of [21, (2.3)℄, wehave:y75=K[−1=7;−1=7;−1=7; 5=7; t70℄ y74; y76=K[1=7; 1=7; 1=7; 5=7; t70℄ y74: (5.34)Here are parametrizations of y75(t70) and y76(t70):y75 = − (u− 3)2(u2 + u+ 2)2(u2 + 2u+ 5)6u(u+ 1)(u− 1)(u2 + 7) ; (5.35)y76 = (u− 1)(u− 3)2(u2 + u+ 2)(u4 − 4u3 − 6u2 − 28u− 11)2u(u2 + 7)(u6 + 21u4 + 3u2 + 39) : (5.36)The solution y75(t70) is the Kleinian solution of [4℄, reparametrized withu 7→ 3s=(s− 2).As noti
ed in [14℄, there are two 
omposite 
overings with rami�
ationpatterns (5.28) or (5.29). They are 
ompositions of Belyi 
overings with aquadrati
 almost Belyi 
overing:R4(2 | 1 + 1 | 1 + 1) ◦R3( 2̂ | 2 | 1 + 1 ) ◦R3( 2̂ + 1 | 2 + 1̂ | 3 ); (5.37)R4(1 + 1 | 2 | 1 + 1) ◦R3(3 + 3 + 3 | 2 + 2 + 2 + 2 + 1̂ | 7 + 1 + 1):(5.38)Here the 
ompositions are from right to left, and the order 2 rami�
ationpoints of a subsequent quadrati
 
overing are indi
ated by the hat sym-bol. The algebrai
 Painlev�e VI solutions are determined by the quadrati
almost Belyi 
overings. The solutions are related (via fra
tional-linear orOkamoto transformations) to the solution y(t) = √t of the general equa-tion PV I(a; b; b; 1−a; t). We spe
i�
ally have a = b = 1=8 or a = b = 1=7 ifwe apply Theorem 3.1 to the two 
omposite 
overings. The Belyi 
overingsare known from algebrai
 transformations of Gauss hypergeometri
 fun
-tions [25℄. In parti
ular, an expli
it degree 9 
overing is given in [25, (24)℄.Beside the indi
ated 
overings, there is exa
tly one 
overing (up tofra
tional-linear transformations) to pullba
k hyperboli
 hypergeometri
equations. It has rami�
ation pattern (5.28): 12(x)=−4 (9x4 + 18x3 + 3(2s+ 5)x2 − 2(s− 2)x+ s(s− 2)))3(4s+ 1)3(9x4 + 14x3 + 3(2s+ 3)x2 − 6sx+ s2) ; (5.39)To get a proper normalization or apply Theorem 4.1, we need to 
hoosethe point x = ∞ appropriately; hen
e �rst a transformations 7→ −14v2(3v2 + 8v + 6); x 7→ 1x − 12v2: (5.40)



RS-PULLBACK TRANSFORMATIONS 149For a proper normalization, we still need to fa
tor the remaining degree3 fa
tor polynomial in the denominator, and lo
alize the points x = 0,x = 1, x = t properly. This is a
hieved with the substitutionsv 7→ (u2 − 2)(u4 − 4u3 + 8u2 + 8u+ 4)6u(u2 − 2u+ 2)(u2 + 2u+ 2) ;x 7→ 36u2(u4 + 4)(u2+2u−2)(u4+8u2+4)
×
(8iu(u2−2u−2)(u2+ 2)3x(u4−4u3+8u2+8u+4)3 + (u2+2i)(u2+2iu+2)(u2+2(i−1)u+2i)3 ) :Theorem 3.1 eventually gives the following solution y81(t80) ofPV I(1=8; 1=8; 1=8; 7=8; t80) :t80 = i (u+ i − 1)2 (u− i+ 1)2 (u2 + 2(i+1)u− 2i)3 (u2 − 2(i+1)u − 2i)364u2 (u2 − 2)3 (u2 + 2)3 ; (5.41)y81 = −i (u+i−1)(u−i+1)(u2+2iu+2)(u2 + 2(i+1)u− 2i)2(u2 − 2(i+1)u− 2i)8u (u2 − 2)2 (u2 + 2) (u2 − 2u − 2) : (5.42)The numerator of t80 
an also be written as i (u2 + 2i)2 (u4 − 12iu2 − 4)3,for instan
e. The substitution u 7→ −(1 + i)=u gives the parametrization[14, (4.12){(4.13)℄.With the same proper normalization of  12(x), one may 
onsider RS-transformationsRS24 ( 1=33 + 3 + 3 + 3 ∣∣∣∣ 1=22 + 2 + 2 + 2 + 2 + 2 ∣∣∣∣ 3=88 + 1 + 1 + 1 + 1) ;RS24 ( 1=33 + 3 + 3 + 3 ∣∣∣∣ 1=22 + 2 + 2 + 2 + 2 + 2 ∣∣∣∣ 1=48 + 1 + 1 + 1 + 1)and RS24 ( 1=33 + 3 + 3 + 3 ∣∣∣∣ 1=22 + 2 + 2 + 2 + 2 + 2 ∣∣∣∣ 1=28 + 1 + 1 + 1 + 1)to derive solutions of PV I(3=8; 3=8; 3=8; 5=8; t80); PV I (1=4; 1=4; 1=4; 1=4; t80)and PV I(1=2; 1=2; 1=2; 1=2; t80), respe
tively. The last two equations turnout to be the same as y62(t60) and y64(t60), respe
tively; Theorem 4.1 givesexpressions reparametrized byu→ −u4 + 12iu2 − 4u4 − 4iu2 − 4 : (5.43)



150 R. VIDUNAS, A. V. KITAEVThe solution of PV I(3=8; 3=8; 3=8; 5=8; t80) isy83 = i (u+i−1)(u−i+1) (u2 + 2(i+1)u− 2i)2 (u2 − 2(i+1)u− 2i)8u (u2 − 2)2 (u2 + 2) (u6 + 6u5 + 6u4 + 16u3 − 12u2 + 24u− 8)
×
(u6 − 6iu5 − 6u4 + 16iu3 − 12u2 − 24iu+ 8) : (5.44)This solution is presented in [6, pg. 102℄, reparametrized with u 7→ (i−1)s.The same solution 
an be obtained by an Okamoto transformation: y83 =K[−1=8;−1=8;−1=8; 7=8; t80℄ y81.As was suspe
ted in [14℄, the solutions y62(t60) ofPV I(1=4; 1=4; 1=4; 1=4; t80)and y81(t80) of PV I(1=8; 1=8; 1=8; 7=8; t80)are related by a sequen
e of two quadrati
 transformations. Indeed, afra
tional-linear transformation ofK[−1=4;−1=4;−1=4; 1=4; t60℄ y62solves PV I(0; 0; 1=2; 1; t80), and then we 
an apply the following result on
omposition of two quadrati
 transformations. After substitution (5.43)the square roots are extra
table; see Lemma 6.1.

§6. AppendixHere we brie
y re
all or 
onsider the following topi
s:
• A formula for 
omposition of two subsequent quadrati
 transfor-mations of Painlev�e VI fun
tions; see Lemma 6.1.
• A general formula for the degree of almost Belyi 
overings relevantto algebrai
 Painlev�e VI solutions; see Lemma 6.2.
• A geometri
 interpretation of the degree formula.Lemma 6.1. Suppose that y(t) is a solution of PV I(0; 0; a; 1; t). Then thefollowing expression is a solution of PV I(a=4; a=4; a=4; 1− a=4; t):t √(y − 1)(t− 1) +√y t+ 1√y t+ t : (6.45)Proof. The result [20℄ of Ramani-Gramatikos-Tamizhmani states that ifY0(T0) is a solution of PV I(0; b; 
; 1;T0), andY1 = (√Y0 + 1)(√T0 + 1)(√Y0 − 1)(√T0 − 1) ; T1 = (√T0 + 1)2(√T0 − 1)2 ; (6.46)



RS-PULLBACK TRANSFORMATIONS 151then Y1(T1) is a solution of PV I(b=2; 
=2; 
=2; 1− b=2;T1). We 
an trans-form y(t) to a solution of PV I(0; a=2; a=2; 1; : : :), and then apply the sametransformation to get the asserted solution. (Other bran
hes of the trans-formed solution 
an be obtained by 
ipping the sign of the square roots√(y − 1)(t− 1) and √y t.) �The following is a degree formula for pullba
k 
overings generating al-gebrai
 Painlev�e VI solutions by Theorem 3.1. In parti
ular, it implies thatthe pullba
k 
overing for an i
osahedral [5℄ solution of PV I(�0; �1; �t; �∞; t)with �0; �1; �t; �∞ ∈ (0; 1) has the degree 30(�0 + �1 + �t − �∞).Lemma 6.2. In the situation of Theorem 3:1, we have, if 1k0+ 1k1+ 1k∞

6= 1:deg'=( a0k'(0)+ a1k'(1)+ atk'(t) + a∞k'(∞) − 1)/( 1k0+ 1k1+ 1k∞ − 1) :(6.47)Proof. Let d denote the degree of '. Let b0, b1 respe
tively b∞ denote thesums of those ax with x ∈ {0; 1; t;∞} su
h that, respe
tively, '(x) = 0,'(x) = 1, '(x) = ∞. By the Hurwitz formula, we have2d− 2(k0 − 1)d− b0k0 + (k1 − 1)d− b1k1 + (k∞ − 1)d− b∞k∞+ (a0 − 1) + (a1 − 1) + (at − 1) + (a∞ − 1) + 1:The formula follows, sin
e b0 + b1 + b∞ = a0 + a1 + at + a∞. �Noti
e that this Lemma implies that it is not possible to obtain so-lutions like y72(t12) y75(t70) using Theorem 3.1: the degree of the 
ov-ering would be negative. In other words, we 
annot pullba
k the hyper-boli
 hypergeometri
 equation E(1=3; 1=2; 0; 1=7; t; z) to the equations likeE(2=7; 2=7; 2=7; 1=3; y72; z) or E(2=7; 2=7; 2=7; 4=7; y75; z). As one 
an see,there are just a few pullba
k 
overings for in�nitely many \hyperboli
"Painlev�e VI solutions. This is in 
ontrast to i
osahedral Painlev�e VI solu-tions (or more generally, solutions 
orresponding to Fu
hsian systems witha �nite monodromy), whi
h 
an be obtained from a standard i
osahedralhypergeometri
 equation thanks to Klein's theorem.There is a geometri
 interpretation of this degree formula. If 1k0 +1k1 + 1k∞

> 1, then the expression ( 1k0 + 1k1 + 1k∞

− 1)� is the area ofthe spheri
al triangle with the angles �=k0, �=k1, �=k∞ in the standardRiemannian metri
 on the sphere. The spheri
al triangle is the image of
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hwarz map for a hypergeometri
 di�erentialequation with the lo
al exponent di�eren
es 1=k0, 1=k1, 1=k∞. The imageof a S
hwarz map for a s
alar Fu
hsian equation asso
iated with (3.15)is a degenerate pentagon, with four angles equal to a0�=k'(0), a1�=k'(1),at�=k'(t), � − a∞�=k'(∞), and one angles (
orresponding to the extrarami�
ation point) equal to 2�. The area of the degenerate pentagon isequal to ( a0k'(0) + a1k'(1) + atk'(t) + a∞k'(∞) − 1)�. If the 
overing z = '(x)
an be de�ned over R, then the degenerate pentagon 
an be triangulatedinto the S
hwarz triangles with the angles �=k0, �=k1, �=k∞, respe
tinganalyti
 
ontinuation (between the two 
omplex half-planes) in the �ber(with respe
t to ') of the degenerate pentagon. If 1k0 + 1k1 + 1k∞

< 1then we have hyperboli
 triangles instead of spheri
al triangles, with thearea (1− 1k0 − 1k1 − 1k∞

)� with respe
t to a hyperboli
 metri
, but otherfeatures are the same.Figures 1(a) and (b) depi
t S
hwarz triangulations for the degree 8map '̂8(x) in [23, (2.7)℄. The 
ut for the �fth vertex in Figure 1(b) 
aneither in
lude or do not rea
h the interior vertex. Two di�erent �gures
orrespond to two 
onne
ted 
omponents over R of the Hurwitz 
urvew2 = s(s− 1)(s+ 3)(s+ 8). The two 
omponents 
an be distinguished bythe 
ut from a point above z = 0: in Figure 1(a) the 
ut goes towards apoint above z = ∞, while in Figure 1(b) it goes towards a point abovez = 1. One 
an evaluate '̂8(x) at the extra rami�
ation point:'̂8(y26) = −3125(u+ 3)(u+ 2)4(2u+ 1)2u2(u− 1)34(u+ 8)(u3 + 4u2 + 2u+ 2)5(u− 2)2 : (6.48)The value '̂8(y26) os
illates between z = 0 and z = 1 for u ∈ [−3; 0℄,and the value is negative or z = 0, z = ∞ when u ≥ 1 or u ≤ −8. Hen
e,Figure 1(b) 
orresponds to the real 
omponent with u ∈ [−3; 0℄, and Figure1(a) 
orresponds to the other real 
omponent. Noti
e that '̂8(y26), as afun
tion of u, is a Belyi map.Figure 1(d) depi
ts a S
hwarz triangulation for the degree 12 map'̂12(x) in [23, (2.13)℄. Figure 1(
) depi
ts a S
hwarz triangulation for anormalization of �12(x) here; this is a hyperboli
 triangulation. S
hwarztriangulations for our '̂10(x) and normalized 
omposite 
overings for (5.37)are modi�
ations of two triangulations for Belyi 
overings in [25, Fig. 1℄:there has to be a 
ut from the verti
es with the angles 2�=7 and 2�=8.Figures 1(e), (f), (g) depi
t S
hwarz triangulations for the degree 11, 12,
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a) b) 
)

d) e)
f) g)Fig. 1. Triangulations for S
hwarz maps20 maps in [22℄. Note that the lens shaped �gures (d) and (g) 
orrespondpre
isely to Dubrovin{Mazzo

o solutions.Not all almost Belyi 
overings have S
hwarz tringulations. If a 
overingis not de�ned over R, analyti
 
ontinuations of S
hwarz maps for the origi-nal and transformed equations do not mat
h. For example, normalizationsof  12(x) 
an be de�ned only over Q(i). Normalized 
omposite 
overingsfor (5.37), or the 
omposite degree 20 map '4 ◦'5(x) in [22, Se
tion 5℄ arenot de�ned over R either; nor they have S
hwarz triangulations.
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