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132 R. VIDUNAS, A. V. KITAEV+ y(y − 1)(y − t)t2(t− 1)2 (�+ � ty2 +  t− 1(y − 1)2 + Æ t(t− 1)(y − t)2) ; (1.1)where �; �; ; Æ ∈ C are parameters. As well-known [11℄, its solutionsde�ne isomonodromi deformations (with respet to t) of the 2× 2 matrixFuhsian equation with 4 singular points (� = 0; 1; t, and ∞):ddz	 = (A0z + A1z − 1 + Atz − t)	; ddzAk = 0 for k ∈ {0; 1; t}:(1.2)The standard orrespondene is due to Jimbo and Miwa [11℄. We hoosethe traeless normalization of (1.2), so we assume that the eigenvalues ofA0, A1, At are, respetively, ±�0=2, ±�1=2, ±�t=2, and that the matrixA∞ := −A1−A2 −A3 is diagonal with the diagonal entries ±�∞=2. Thenthe orresponding Painlev�e equation has the parameters� = (�∞ − 1)22 ; � = −�202 ;  = �212 ; Æ = 1− �2t2 : (1.3)We refer to the numbers �0, �1, �t and �∞ as loal monodromy di�erenes.For any numbers �1; �2; �t; �∞, let us denote by PV I(�0; �1; �t; �∞; t)the Painlev�e VI equation for the loal monodromy di�erenes �i = �i fori ∈ {0; 1; t;∞}, via (1.3). Note that hanging the sign of �0; �1; �t or 1−�∞does not hange the Painlev�e equation. Frational-linear transformationsfor the Painlev�e VI equation permute the 4 singular points and the numbers�0; �1; �t; 1− �∞.Similarly, for any numbers �1; �2; �t; �∞ and a solution y(t) ofPV I (�0; �1; �t; �∞; t), let us denote by E(�0; �1; �t; �∞; y(t); z) a Fuhsianequation (1.2) orresponding to y(t) by the Jimbo-Miwa orrespondene.The Fuhsian equation is determined uniquely up to onjugation of A0, A1,At by a diagonal matrix (dependent on t only). In partiular, y(t) = t anbe onsidered as a solution of PV I (e0; e1; 0; e∞; t). The equationE(e0; e1; 0; e∞; t; z) is a Fuhsian equation with 3 singular points, atu-ally without the parameter t. Its solutions an be expressed in terms ofGauss hypergeometri funtion see [11℄ or the Appendix in [23℄. We referto E(e0; e1; 0; e∞; t; z) as a matrix hypergeometri equation, and see it as amatrix form of Euler's ordinary hypergeometri equation.We onsider pullbak transformations of 2 × 2 Fuhsian systemsd	(z)=dz =M(z)	(z). They have the following general form:z 7→ R(x); 	(z) 7→ S(x)	(R(x)); (1.4)



RS-PULLBACK TRANSFORMATIONS 133where R(x) is a rational funtion of x, and S(x) is a Shlesinger transfor-mation, usually designed to remove apparent singularities. For transforma-tions to parametri isomonodromi equations, R(x) and S(x) may dependalgebraially on parameter(s) as well. The transformed equation isd	(x)dx = (dR(x)dx S−1(x)M(R(x))S(x) − S−1(x)dS(x)dx )	(x): (1.5)In [12, 13℄, these pullbak transformations are alled RS-transformations,meaning that they are ompositions of a rational hange of the indepen-dent variable z 7→ R(x) and the Shlesinger transformation S(x). TheShlesinger transformation S(x) is analogous here to projetive equiva-lene transformations y(x) → �(x)y(x) of ordinary di�erential equations.To merge terminology, we refer to these pullbak transformations as RS-pullbaks, or RS-pullbak transformations. If S(x) is the identity transfor-mation, we have a diret pullbak of a Fuhsian equation.The subjet of this artile is onstrution of RS-pullbak transforma-tions of matrix hypergeometri equations to isomonodromi Fuhsian sys-tems with 4 singular points. To have so few singular points of the trans-formed equation, we usually have to start with a matrix hypergeometriequation with restrited loal monodromy di�erenes, and the R-part R(x)must de�ne a speially rami�ed overing of P1. In partiular, the overingusually may ramify only above the 3 singular points of the hypergeometriequation, exept that there is one additional simple (i.e., order 2) rami�-ation point is allowed. Coverings rami�ed over 4 points of P1 in this wayare alled here almost Belyi overings. Reall that a Belyi funtion is arational funtion on an algebrai urve with at most 3 ritial values; therespetive overing of P1 by the algebrai urve is rami�ed above a set of3 points only.Suitable starting hypergeometri equations and rami�ation patterns ofalmost Belyi overings an be lassi�ed rather easily [7, 13℄. This is simi-lar to lassi�ation of algebrai transformations of Gauss hypergeometrifuntions [24,25℄, where Belyi funtions typially our. The omputation-ally hard problem is onstrution of almost Belyi overings from a priorisuitable rami�ation patterns. This leads us towards Grothendiek's theoryof dessins d'enfant. In partiular, Hurwitz spaes for almost Belyi over-ings with a �xed rami�ation pattern de�ne isomonodromy parameters forthe pullbaked Fuhsian equations. E�etive omputations of high degree



134 R. VIDUNAS, A. V. KITAEValmost Belyi overings are presented in [22℄. In this paper, we use threeoverings omputed in [13℄.Computation of S-parts of suitable RS-transformations does not lookhard in priniple. However, this problem is not as straightforward as �nd-ing suitable projetive equivalene transformations for salar di�erentialequations. General Shlesinger transformations an be onstruted by om-posing several simple Shlesinger transformations (eah shifting just twoloal monodromy di�erenes), as was done in [1,2,11℄. More e�etively, themethod in [23℄ onstruts Shlesinger transformations in one go, avoidingfatorization of high degree polynomials when shifting loal monodromydi�erenes at all onjugate roots by the same integer. In the ontext ofisomonodromy problems, this approah is adopted in [9℄ as well.RS-pullbak transformations to isomonodromi Fuhsian systems with4 singular points gives solutions of the sixth Painlev�e equations that arealgebrai, beause those solutions are determined algebraially by matrixentries of pullbaked equations (1.5) while those entries are algebrai fun-tions in x and the isomonodromy parameter. The seond author onje-tured in [13℄ that all algebrai solutions of the sixth Painlev�e equationan be obtained by RS-pullbak transformations of matrix hypergeometriequations, up to Okamoto transformations [19℄. This onjeture is ertainlytrue if the monodromy group of the Fuhsian systems is �nite, due to ele-brated Klein's theorem [15℄. Rihard Fuhs [10℄ soon onsidered extensionof Klein's theorem to algebrai solutions of Painlev�e equations. Reently,Ohyama and Okumura [18℄ showed that algebrai solutions of Painlev�eequations from the �rst to the �fth do arise from pull-bak transforma-tions of onuent hypergeometri equations, aÆrming the formulation ofR. Fuhs.The pullbak method for omputation of algebrai Painlev�e VI solu-tions was previously suggested in [2, 7, 12, 13℄. This method is substan-tially di�erent from the representation-theoreti approah of Dubrovin{Mazzoo [8℄ and Boalh [4, 5℄. Reently, Lisovyy and Tykhyy [16℄ usedthe representation-theoreti method to omplete lassi�ation of algebraiPainlev�e VI solutions. The mentioned onjeture in [13℄ is still interestingas a generalization of Klein's theorem. There is a similar situation withlassi�ation of algebrai solutions of the Lam�e equation, where represen-tation-theoreti methods (as in [3℄) ompete with Klein's pullbak method(as in [17℄).



RS-PULLBACK TRANSFORMATIONS 135One important observation is that the same rational overing R(x) anbe used in several RS-pullbak transformations. For example, here weapply the same degree 10 overing to pullbak three di�erent matrix hy-pergeometri equations E(1=7; 1=2; 0; 1=3; t; z),E(2=7; 1=2; 0; 1=3; t; z) andE(3=7; 1=2; 0; 1=3; t; z). We obtain Painlev�e solutions of, respetively,PV I(1=7; 1=7; 1=7; 2=3; t);PV I(2=7; 2=7; 2=7; 1=3; t)and PV I(3=7; 3=7; 3=7; 2=3; t);unrelated by frational-linear or Okamoto transformations. The �rst Pain-lev�e solution is a frational-linear version of solution [14, (3.16){(3.17)℄.The seond Painlev�e solution is the same as in [6, page 106℄. The thirdPainlev�e solution is new.The artile is organized as follows. Setion 2 presents the overing ofdegree 10 for our exmaples; it was previously used in [14℄. There we alsomention how some Painlev�e VI solutions an be omputed from the ratio-nal overings alone, without omputation of full RS-transformations. Thiskind of possibility is notied in [7, 13℄, and is summarized in Theorem 3.1below. In Setion 4 a more general Theorem 4.1 from [23℄ is ited. Therebya diret formula for algebrai Painlev�e VI solutions is given, with min-imum information from full RS-transformations. In Setion 5, represen-tative RS-pullbak transformations of \hyperboli" hypergeometri equa-tions E(1=2; 1=3; 0; 1=7; t; z) and E(1=2; 1=3; 0; 1=8; t; z) to isomonodromiFuhsian systems with 4 singularities are sumarized, and the orrespond-ing Painlev�e VI solutions are presented (hereby omplementing [14℄). TheAppendix presents a formula for omposition of two quadrati transfor-mations of Painlev�e VI solutions; a general degree formula for the almostBelyi overings relevant to algebrai Painlev�e VI solutions; and geometriinterpretation of the latter formula.The authors prepared Maple 9.5 worksheets supplementing this artileand [22,23℄, with the formulas in Maple input format, and demonstrationof key omputations. To aess the worksheet, readers may ontat theauthors, or searh a urrent website of the �rst author on the internet.



136 R. VIDUNAS, A. V. KITAEV
§2. The working overing and RS-transformationsFirst we introdue notation for rami�ation patterns, and later for RS-transformations. A rami�ation pattern for an almost Belyi overing ofdegree n is denoted by R4(P1|P2|P3), where P1; P2; P3 are three partitionsof n speifying the rami�ation orders above three points. The rami�ationpattern above the fourth rami�ation lous is assumed to be 2 + 1 + 1 +: : :+1. By the extra rami�ation point we refer to the simple rami�ationpoint in the fourth �ber. The Hurwitz spae for suh a rami�ation patternis generally one-dimensional [26, Proposition 3.1℄.We use only genus 0 almost Belyi overings, and write them as P1x → P1z,meaning that the projetive line with the projetive oordinate x is mappedto the projetive line with the oordinate z. Then the total number of partsin P1, P2, P3 must be equal to n + 3, aording to [13, Proposition 2.1℄;this is a onsequene of Riemann-Hurwitz formula.The similar notation for a rami�ation pattern for a Belyi funtion isR3(P1|P2|P3), as in [1℄, [14℄. The total number of parts in P1, P2, P3 mustbe equal to n+ 2, as stated in [24, Lemma 2.4℄ or [13, Proposition 2.1℄.Our working almost Belyi overing has the following rami�ation pat-tern: R4(7 + 1 + 1 + 1 | 2 + 2 + 2 + 2 + 2 | 3 + 3 + 3 + 1): (2.6)The overing has degree 10. The three spei�ed �bers with rami�ed pointsan be brought to any three distint loations by a frational-linear trans-formation of P1z. We assign the �rst partition to z = 0, and the next twopartitions | to z = 1 and z = ∞ respetively. Similarly, by a frational-linear transformation of P1x we may hoose any three x-points1 as x = 0,x = 1, x = ∞.All overings with rami�ation pattern (2.6) an be omputed on mod-ern omputers either using the most straightforward method, or an im-proved method [22℄ that uses di�erentiation. Up to frational-linear trans-formations and reparametrization, there is one general suh overing given1Stritly speaking, the x-points in our settings are urves, or branhes, parametrizedby an isomonodromy parameter t or other parameter, sine the Hurwitz spaes for al-most Belyi maps are one-dimensional. For simpliity, we ignore the dimensions intro-dued by suh parameters, and onsider a one-dimensional Hurwitz spae as a generipoint.



RS-PULLBACK TRANSFORMATIONS 137by '10(x) = x7 F104G310 ; or '10(x) − 1 = P 2104G310 ; (2.7)whereF10 =9s2x3−2(2s3+6s2+15s−16)x2+3(8s2+8s−13)x−36(s−1);G10 =2(s+ 1)x3 − (s2 + 4s+ 10)x2 + 6(s+ 2)x− 9; (2.8)P10 =3sx5 − 3(2s2 + 6s+ 7)x4 + 2(s3 + 6s2 + 30s+ 35)x3
− 18(s2 + 4s+ 7)x2 + 54(s+ 2)x− 54:The extra rami�ation point is x = 7(s− 1)=s(s+ 1).For diret appliations to the Painlev�e VI equation, it is required tonormalize the point above z = ∞ with the deviating rami�ation order 1and the three nonrami�ed points above {0; 1;∞} ⊂ P1z as x = 0, x = 1, x =

∞, x = t. We refer to expliit almost Belyi overings normalized this wayas properly normalized. A properly normalized overing with rami�ationpattern (2.6) was �rst omputed in [13℄. To get a properly normalizedexpression, we reparametrizes = − (u+ 2)(u2 − u+ 2)2(u− 1) ; (2.9)and make the frational-linear transformationx 7→ (u− 1)2(u2 + 3)w9(u2 − u+ 2)2 (2x− 1)
− (u− 1)(u5 + u4 − 2u3 + 18u2 − 9u+ 27)9(u2 − u+ 2)2 ; (2.10)where w =√(u− 1)(u+ 5)(u2 + 3). The obtained expression is'̂10(x) = − (u− 1)2(u+ 2)2w38(u+5)(u3+u2−2u+6)3
× x (x− 1) (x− t10) (x− t∗10)7((x2 − x) (x− 12 − L3)− L4(x− 12 ) + L5)3 ; (2.11)



138 R. VIDUNAS, A. V. KITAEVwheret10 = 12+ u9 + 3u8 − 3u7 + 7u6 − 21u5 + 21u4 − 161u3 − 27u2 − 144u− 1082(u− 1)3(u+ 2)2(u2 + 3)√(u− 1)(u+ 5)(u2 + 3) ;t∗10 = 12+ u5 + u4 − 2u3 + 18u2 − 9u+ 272(u− 1)(u2 + 3)√(u− 1)(u+ 5)(u2 + 3) ; (2.12)andL3= (u5+4u4+u3+18u2+24u+36)(u7+14u4−21u3+42u2+36)8(u−1)2(u+5)(u2+3)3(u3+u2−2u+6) ;L4= 3(u10−6u8+28u7−99u6+252u5−668u4+1008u3−1212u2+672u−408)8w(u−1)3(u2+3)(u3+u2−2u+6) ;L5=u15+5u14+28u12+98u11−126u10+616u9−184u8+333u7+1785u6−1512u5+3276u4+6048u2+3888u+129616w(u−1)3(u+5)(u2+3)3(u3+u2−2u+6) :The Hurwitz spae parametrising this properly normalized almost Belyiovering has still genus 0. To get the rational overing �1(�) in [14℄, onehas to onsider t10/'̂10(x), and substitute x 7→ t10=x, u 7→ 2=s− 1.In [13℄, the following symbol is introdued to denote RS-pullbak trans-formations of E(e0; e1; 0; e∞; t; z) with respet to a overing with rami�-ation pattern R4(P0|P1|P∞):RS24 ( e0P0 ∣∣∣∣ e1P1 ∣∣∣∣ e∞P∞

) ; (2.13)where the subsripts 2 and 4 indiate a seond order Fuhsian system with4 singular points after the pullbak. We assume the same assignment ofthe �bers z = 0, z = 1, z = ∞ as for the R4-notation. Loation of thex-branhes 0; 1; t;∞ does not have to be normalized. As was notied in [13℄and [7℄, some algebrai Painlev�e VI solutions determined by RS-pullbaktransformations RS24 ( 1=k0P0 ∣∣∣ 1=k1P1 ∣∣∣ 1=k∞P∞

), with k0; k1; k∞ ∈ Z, an be al-ulated from the rational overing alone, without atual omputation ofthe full RS-pullbaks. We disuss this possibility in Setion 3. Our overing'̂10(x) immediately gives a solution of PV I(1=7; 1=7; 1=7; 2=3; t). In Setion4 we formulate a diret way to obtain algebrai Painlev�e VI solutions viaomputation of suitable syzygies between x2 (or x3), P10, G10. We obtainalgebrai solutions ofPV I(2=7; 2=7; 2=7; 1=3; t) and PV I(3=7; 3=7; 3=7; 2=3; t)



RS-PULLBACK TRANSFORMATIONS 139by impliitly using RS-pullbak transformationsRS24 ( 2=77 + 1 + 1 + 1 ∣∣∣∣ 1=22 + 2 + 2 + 2 + 2 ∣∣∣∣ 1=33 + 3 + 3 + 1)and RS24 ( 3=77 + 1 + 1 + 1 ∣∣∣∣ 1=22 + 2 + 2 + 2 + 2 ∣∣∣∣ 1=33 + 3 + 3 + 1) ;respetively.
§3. Pullbak overings and algebrai Painlev�e VIsolutionsAs notied in [13℄ and [7℄, some algebrai Painlev�e VI solutions anbe omputed knowing just a pullbak overing, without omputation ofpullbaked Fuhsian equations of full RS-transformations removing all ap-parent singularities of a diret pullbak. Here we formulate the most in-teresting general situation.Theorem 3.1. Let k0; k1; k∞ denote three integers, all ≥ 2. Let ' : P1x →

P1z denote an almost Belyi map, dependent on a parameter t. Suppose thatthe following onditions are satis�ed:(i) The overing z = '(x) is rami�ed above the points z = 0, z = 1,z = ∞; there is one simply rami�ed point x = y above P1z \
{0; 1;∞}; and there are no other rami�ed points.(ii) The points x = 0, x = 1, x = ∞, x = t lie above the set
{0; 1;∞} ⊂ P1z.(iii) The points in '−1(0) \ {0; 1; t;∞} are all rami�ed with the orderk0. The points in '−1(1) \ {0; 1; t;∞} are all rami�ed with theorder k1. The points in '−1(∞)\ {0; 1; t;∞} are all rami�ed withthe order k∞.Let a0; a1; at; a∞ denote the rami�ation orders at x = 0; 1; t;∞, respe-tively. Then the point x = y, as a funtion of x = t, is an algebrai solutionof PV I ( a0k'(0) ; a1k'(1) ; atk'(t) ; 1− a∞k'(∞) ; t) : (3.14)Proof. Let R4(P0|P1|P∞) denote the rami�ation pattern of the overingz = '(x). We aim for an RS-pullbak transformationRS24 ( 1=k0P0 ∣∣∣∣

1=k1P1 ∣∣∣∣
1 + 1=k∞P∞

)



140 R. VIDUNAS, A. V. KITAEVwith respet to '(x). Let d denote the degree of '(x). For time being, weassume that the point x = ∞ lies above z = ∞.The diret pullbak of the hypergeometri equation E(1=k0; 1=k1; 0; 1+1=k∞; t; z) with respet to '(x) has apparent singularities at the pointsmentioned in part (iii) above. Nonapparent singularities are possibly x = 0,x = 1, x = t and x = ∞. The lower-left entry of the diret pullbak is equal,up to a fator independent of x, to '′='(1− '), whih is the logarithmiderivative of '=(' − 1). The poles of this rational funtion are simple,and they are preisely the points above z = 0 and z = 1. The zeroes ofthe rational funtion are the following: the extra rami�ation point of '(a simple zero); and the points above z = ∞, with multipliities one lessthan the respetive rami�ation orders.Notie that if we apply a Shlesinger transformation of the upper tri-angular form S = 1√(x−�1)(x−�2)(x−�1 �30 x−�2 ), where �1, �2, �3 are in-dependent of x, then the lower-left entry of the matrix di�erential equa-tion hanges by the fator (x − �1)=(x − �2) and a fator independentof x. If the point x = �2 is above z = ∞, this Shlesinger transfor-mation (with appropriate �3) dereases the loal monodromy di�erenesat x = �1 and x = �2 by 1. Similarly, the Shlesinger transformationS = 1√x−�1 (x−�1 00 1 ) hanges the loal monodromy di�erenes at x = �1and x = ∞ by 1, and it multiplies the lower-left entry by the fator x−�1(and a fator independent of x).Let h denote the number of distint apparent singularities above z = ∞.There are in total (d + 3)− 4− h apparent singularities above z = 0 andz = 1. We an onstrut d−1−h simple Shlesinger transformations of theforms presented just above, so that �1 runs through the set of apparentsingularities above z = 0 and z = 1, and eah point x = �2 or x = ∞above z = ∞ is hosen nx times, wherenx =  the rami�ation order at x, minus 1; if x = ∞ oran apparent singularity;the rami�ation order at x; otherwise:The omposite e�et of these d − 1 − h transformations is removal of allapparent singularities above z = 0, z = 1, z = ∞; and reduing the loalmonodromy di�erene at x = ∞ from a∞+a∞=k∞ to 1+a∞=k∞. The lo-al monodromy di�erenes at the other singularities are a0=k'(0), a1=k'(1),



RS-PULLBACK TRANSFORMATIONS 141at=k'(t) after the omposite transformation. Hene the transformed equa-tion has (at most) four singularities. The transformed equation isE ( a0k'(0) ; a1k'(1) ; atk'(t) ; 1 + a∞k∞ ; ỹ(t);x) ; (3.15)where the Painlev�e VI solution ỹ(t) is determined by lower-left entry of thetransformed equation. The lower-left entry is hanged from '′='(1 − ')to a rational funtion whose numerator has only one root. The single rootmust be the extra rami�ation point of '(x). Hene ỹ(t) an be identi�edwith the branh x = y. It is a solution ofPV I(a0=k'(0); a1=k'(1); at=k'(t); 1 + a∞=k∞; t)whih is the same equation as (3.14).If the point x = ∞ does not lie above z = ∞, we an move the pointz = ∞ by the frational-linear transformations. That would only permutethe three �bers, and hange the rational funtion ' to 1=', 1=(1 − '),1− 1=' or '=('− 1) . Ation of frational-linear transformations on loalmonodromy di�erenes is ompatible with the form (3.14). �The above theorem is a speial ase of [13, Theorem 2.1℄, with all kij 'sequal to 1, and with orret parameters in (3.14). Theorem 4.5 in [7℄ isa more general statement, but without identi�ation of transformed loalmonodromy di�erenes.In [13℄, it is regularly implied that the Painlev�e VI solutions obtainedwith Theorem 3.1 arise from RS-pullbak transformations of the typeRS24 ( 1=k0P0 ∣∣∣ 1=k1P1 ∣∣∣ 1=k∞P∞

). However, the above proof atually uses trans-formation RS24 ( 1=k0P0 ∣∣∣ 1=k1P1 ∣∣∣ 1+1=k∞P∞

). On the other hand, it is apparentfrom lassi�ation [14℄ of rational overings for RS24 -pullbak transfor-mations relevant to the sixth Painlev�e equation that either k0 = 2 ork1 = 2 or k∞ = 2. One we assume k∞ = 2, the transformations typesRS24 ( 1=k0P0 ∣∣∣ 1=k1P1 ∣∣∣ 1=k∞P∞

) and RS24 ( 1=k0P0 ∣∣∣ 1=k1P1 ∣∣∣ 1+1=k∞P∞

) are the same orrelated by extra Shlesinger transformations. If k0 = 2 or k1 = 2, we stillan relate the two transformation types via Shlesinger transformations.Hene, the RS-pullbak transformation implied in Theorem 3.1 an berealized as RS24 ( 1=k0P0 ∣∣∣ 1=k1P1 ∣∣∣ 1=k∞P∞

) as well.Appliation of Theorem 3.1 to '̂10(x) gives this solution ofPV I(1=7; 1=7; 1=7; 2=3; t10) :



142 R. VIDUNAS, A. V. KITAEVy71 = 12+ (u+ 5)(u6 − u5 + 3u4 − 13u3 + 4u2 − 18u− 12)2(u− 1)(u+ 2)(u3 + u2 − 2u+ 6)√(u− 1)(u+ 5)(u2 + 3) : (3.16)A parametrization of t10 is given in (2.12). To get the solution ofPV I(1=3; 1=7; 1=7; 6=7; t10)in [14, (3.6){(3.7)℄, one has to onsider the funtion t10=y71 and substituteu 7→ 2=s− 1. Our implied RS-transformation isRS24 ( 1=77 + 1 + 1 + 1 ∣∣∣∣ 1=22 + 2 + 2 + 2 + 2 ∣∣∣∣ 1=33 + 3 + 3 + 1) :
§4. Painlev�e solutions from more general RS-pullbaktransformationsBy the Jimbo-Miwa orrespondene, a Painlev�e VI solution is deter-mined by the lower-left entry of a pullbaked Fuhsian system. By theresults in [23, Setion 4℄, that lower-left entry is determined by a syzygy(U2; V2;W2) between F , G, H ; that is, a polynomial solution of FU2 +GV2 +HW2 = 0. If the shift Æ of loal monodromy di�erenes at x = ∞is small, that syzygy is determined by degree bounds of its omponents.The following theorem summarizes the situation.Theorem 4.1. Let z = '(x) denote a rational overing, and let F (x),G(x), H(x) denote polynomials in x. Let k denote the order of the poleof '(x) at x = ∞. Suppose that the diret pullbak of E(e0; e1; 0; e∞; t; z)with respet to '(x) is a Fuhsian equation with the following singularities:

• Four singularities are x = 0, x = 1, x = ∞ and x = t, withthe loal monodromy di�erenes d0, d1, dt, d∞, respetively. Thepoint x = ∞ lies above z = ∞.
• All other singularities in P1x \ {0; 1; t;∞} are apparent singular-ities. The apparent singularities above z = 0 (respetively, abovez = 1, z = ∞) are the roots of F (x) = 0 (respetively, ofG(x) = 0, H(x) = 0). Their loal monodromy di�erenes areequal to the multipliities of those roots.Let us denote � = degF +degG+degH, and let Æ ≤ max(2; k) denote anon-negative integer suh that �+ Æ is even. Suppose that (U2; V2;W2) is



RS-PULLBACK TRANSFORMATIONS 143a syzygy between the three polynomials F , G, H, satisfying, if Æ = 0,degU2 = �2 − degF; deg V2 = �2 − degG; degW2 < �2 − degH;(4.17)or, if Æ > 0,degU2 < �+Æ2 −degF; deg V2 < �+Æ2 −degG; degW2 = �−Æ2 −degH:(4.18)Then the numerator of the (simpli�ed) rational funtionU2W2G ((e0 − e1 + e∞)2 '′' − (FU2)′FU2 + (HW2)′HW2 )+ (e0 − e1 − e∞)2 V2W2F '′'− 1 + (e0 + e1 − e∞)2 U2V2H '′' (' − 1) ; (4.19)has degree 1 in x, and the x-root of it is an algebrai solution ofPV I(d0; d1; dt; d∞ + Æ; t):Proof. See Theorem 5.1 in [23℄. �Alternative forms of expression (4.19) are given in formulas (5.17){(5.22) in [23℄. For greater Æ, formula (4.19) is still valid for a suitablesyzygy (U2; V2;W2), but that syzygy depends on initial oeÆients of lo-al solutions at z = 0 of the original hypergeometri equation. Takingonly small shifts Æ < max(2; k) at x = ∞ seems to be enough to generateinteresting \seed" solutions of the sixth Painlev�e equation.We an apply this theorem to obtain algebrai solutions ofPV I(1=7; 1=7; 1=7; 2=3; t); PV I(2=7; 2=7; 2=7; 1=3; t)and PV I(3=7; 3=7; 3=7; 2=3; t):Impliitly, we apply pullbak transformationsRS24 ( 1=77 + 1 + 1 + 1 ∣∣∣∣ 1=22 + 2 + 2 + 2 + 2 ∣∣∣∣ 1=33 + 3 + 3 + 1) ;RS24 ( 2=77 + 1 + 1 + 1 ∣∣∣∣ 1=22 + 2 + 2 + 2 + 2 ∣∣∣∣ 1=33 + 3 + 3 + 1)and RS24 ( 3=77 + 1 + 1 + 1 ∣∣∣∣ 1=22 + 2 + 2 + 2 + 2 ∣∣∣∣ 1=33 + 3 + 3 + 1) ;



144 R. VIDUNAS, A. V. KITAEVrespetively. Like in Setion 3, we work with the overing z = '10(x)rather than with the normalized overing z = '̂10(x) while omputingsyzygies, and apply reparametrization (2.9) and normalizing frational-linear transformation (2.10) at the latest stage. We have k = 1. Thereforereall the de�nition of F10, G10 and P10 in (2.8). We take Æ = 0 for theseond RS-transformation, or Æ = 1 for the other two. We have to omputesyzygies between F = x (or, respetively, F = x2, or F = x3) and G = P10,H = G10.The syzygy for a solution of PV I(1=7; 1=7; 1=7; 2=3; t) is (G10; 0;−x),up to a salar multiple. With this trivial syzygy, the solution is the same'10(t10) as in (3.16). In fat, Theorem 4.1 redues to Theorem 3.1 wheneverone of syzygy omponents is zero; see [23, Remark 5.2℄.The full RS-pullbak RS24 ( 1=77+1+1+1 ∣∣∣ 1=22+2+2+2+2 ∣∣∣ 1=33+3+3+1) would givea solution ỹ71(t70) of PV I(1=7; 1=7; 1=7;−2=3; t10) as well. The equationPV I (1=7; 1=7; 1=7; 8=3; t10) is idential. It turns out that the same Painlev�esolution an be obtained by applying Theorem 4.1 with Æ = 3. (Have a lookat the seond part of [23, Remark 5.3℄.) However, sine Æ = 3 > max(2; 1)we are not given restritions on the syzygy (U2; V2;W2), and additionalknowledge of the normalized solutions of E(1=7; 1=2; 0; 1=3; t; z) at z = ∞is needed. The syzygy an be eventually omputed to be
(
− 63s2x4 + (74s3 + 222s2 + 285s− 52)x3

− 2(8s4 + 48s3 + 257s2 + 297s− 130)x2 + 6(16s3 + 64s2 + 101s− 52)x
− 144s2 − 288s+ 234; 21s; 26(s+ 1)2x− 126s):The numerator of simpli�ed expression (4.19) is then indeed linear in x.The solution ỹ71(t10) is rather stupendous:12+ (u+5)(65u18+195u17−195u16+325u15−1104u14+: : :−248931u2−299835u + 222534)10(u+2)√(u−1)3(u+5)(u2+3)(13u15+65u14+42u11−1050u10+: : :−37611u2+63927u−783) :On the other hand, this solution an be obtained by applying a series ofOkamoto transformations to y71(t10).To get a solution of PV I (2=7; 2=7; 2=7; 1=3; t) we apply Theorem 4.1 with(F;G;H) = (x2; P10; G10). With Æ = 0, the degree spei�ations in (4.17)are degU2 = 3; deg V2 = 0; degW2 < 2: (4.20)



RS-PULLBACK TRANSFORMATIONS 145As expeted, there is one syzygy satisfying these bounds, up to a onstantmultiple:
(3sx3 − (2s2 + 6s+ 13)x2 + 6(2s+ 3)x− 18;−1;−2(s+ 2)x+ 6) :(4.21)With this syzygy, expression (4.19) is equal to4 (s(2s2 + 4s− 19)x− 3(2s2 − 12s+ 7))7F10 : (4.22)The form is as expeted: the numerator has degree 1 in x, while the de-nominator is a ubi polynomial in x. After reparametrization (2.9) andnormalizing frational-linear transformation (2.10) the denominator poly-nomial surely fators as x(x − 1)(x − t10), with t10 given in (2.12). Thex-root of the transformed numerator gives the following solution y72(t10)of PV I(2=7; 2=7; 2=7; 1=3; t10):y72 = 12+ (u+ 5)(u8 + u7 + u6 − u5 + 8u4 − 82u3 − 54u2 − 90u− 108)2(u+2)(u6+2u5−3u4+8u3−26u2+60u−6)√(u−1)(u+5)(u2+3) :(4.23)To relate to Boalh's parametrization in [6, page 106℄ for the same solution,we have to substitute u 7→ (s+5)=(s−1) into the expressions for y72 and t10.A solution ỹ72(t10) of PV I(2=7; 2=7; 2=7;−1=3; t10) an be omputedwithout extra knowledge of the normalized solutions at z = ∞. The identi-al Painlev�e equation is PV I(2=7; 2=7; 2=7; 7=3; t10), and Theorem 4.1 anbe applied with Æ = 2. The following syzygy �ts into formula (4.19):
(
− 69s(s+ 1)x3 + (32s3 + 128s2 + 325s− 65)x2

− 6(32s2 + 59s− 15)x+ 288s− 90;
− 5s− 5; 42sx2 − 10(s+ 1)(s+ 2)x+ 30 + 30s):Appliation of Theorem 4.1 with (F;G;H) = (x3; P10; G10) and Æ =1 gives a solution of PV I(3=7; 3=7; 3=7; 2=3; t). The degree bounds aredegU2 < 3, deg V2 < 1, degW2 = 2. An appropriate syzygy is

(
−(s+ 4)x2 + (2s+ 7)x− 6;−1; 2x2 − 2(s+ 2)x+ 6) (4.24)



146 R. VIDUNAS, A. V. KITAEVSimpli�ed expression (4.19) has the unique x-root x = −(2s − 5)(4s −7)=s(10s− 11). After reparametrization (2.9) and normalizing frational-linear transformation (2.10) we derive the following solution y73(t10) ofPV I (3=7; 3=7; 3=7; 2=3; t10):y73 = 12+ (u+ 5)(5u7 − 10u6 + 5u5 − 20u4 + 13u3 − 68u2 − 3u− 30)2(u− 1)2(u+ 2)(5u3 + 5u2 + 11u+ 9)√(u−1)(u+5)(u2+3) : (4.25)This solution annot be obtained by Okamoto, frational-linear and qua-drati transformations from previously know solutions.
§5. Pull-baks of hyperboli hypergeometri equationsHere we survey RS24 -pullbak transformations of hyperboli hypergeo-metri equations E(e0; e1; 0; e∞; t; z); these are de�ned by the propertiesthat 1=e0; 1=e1; 1=e∞ are positive integers and e0+e1+e∞ < 1. These pull-bak overings (and orresponding Okamoto orbits of algebrai Painlev�e VIsolutions) are lassi�ed in [14℄ and [7℄. The following rami�ation patternsare possible:R4(7 + 1 + 1 + 1 | 2 + 2 + 2 + 2 + 2 | 3 + 3 + 3 + 1); (5.26)R4(3 + 3 + 3 + 3 | 2 + 2 + 2 + 2 + 2 + 2 | 7 + 2 + 1 + 1 + 1); (5.27)R4(3 + 3 + 3 + 3 | 2 + 2 + 2 + 2 + 2 + 2 | 8 + 1 + 1 + 1 + 1); (5.28)R4(3+3+3+3+3+3 | 2+2+2+2+2+2+2+2+2 | 7+7+1+1+1+1):(5.29)The overings have degree 10, 12, 12, 18, respetively.The generi degree 10 overing is our '10(x), up to reparametrization.We already onsidered the solutions y71(t10), y72(t10), y73(t10) representingthree possible Okamoto orbits.The generi degree 12 overing with rami�ation (5.27) is�12(x) = 4 (x4 + 2s(3s+ 1)x3 + 2s(5s+ 2)x2 + 4s2x+ s2)327s(s+ 1)3x7 (4x3 + 4s(8s+ 5)x2 + s(13s+ 1)x+ 4s2) : (5.30)



RS-PULLBACK TRANSFORMATIONS 147It an be normalized with the substitutionss 7→ − (u+ 1)2(u− 1)2(u2 + 7)(u2 + u+ 2)(u2 − u+ 2) ; (5.31)x 7→ (u+ 1)(u− 1)22(u2 − u+ 2)2 − u3(u+ 1)(u− 1)(u2 + 3)x(u2 + u+ 2)2(u2 − u+ 2)2 : (5.32)A normalized expression for 1/�12(x) is presented in [13℄, reparametrizedwith u 7→ 1=s. Similarly as with '10(x), we an pullbakE(1=3; 1=2; 0; 1=7; t; z); E(1=3; 1=2; 0; 2=7; t; z)and E(1=3; 1=2; 0; 3=7; t; z)with respet to a properly normalized �12(x) and derive2 algebrai so-lutions of, respetively, PV I(1=7; 1=7; 1=7; 5=7; t), PV I(2=7; 2=7; 2=7; 4=7; t)and PV I(3=7; 3=7; 3=7; 1=7; t). However, the three solutions are related byOkamoto transformations. A solution y74(t70) of PV I(1=7; 1=7; 1=7; 5=7; t)an be obtained using Theorem 3.1. Here is a parametrization:t70= (u−3)3(u2+u+2)22u3(u2 + 7)2 ; y74= (u−1)(u−3)2(u2+u+2)2u(u2 + 3)(u2 + 7) : (5.33)It is related to the parametrization in [13℄ via u 7→ 1=s. Solutions y75(t70),y76(t70) of, respetively, PV I(2=7; 2=7; 2=7; 4=7; t),PV I(3=7; 3=7; 3=7; 1=7; t),an be obtained using Theorem 4.1. The same solutions an be obtained2The implied RS-pullbak transformations are, respetively,RS24 ( 1=33 + 3 + 3 + 3 ∣∣∣∣ 1=22 + 2 + 2 + 2 + 2 + 2 ∣∣∣∣ 1=77 + 2 + 1 + 1 + 1) ;RS24 ( 1=33 + 3 + 3 + 3 ∣∣∣∣ 1=22 + 2 + 2 + 2 + 2 + 2 ∣∣∣∣ 2=77 + 2 + 1 + 1 + 1)and RS24 ( 1=33 + 3 + 3 + 3 ∣∣∣∣ 1=22 + 2 + 2 + 2 + 2 + 2 ∣∣∣∣ 3=77 + 2 + 1 + 1 + 1) :As indiated in [14℄, one may also onsider RS-pullbak transformationsRS24 ( 1=33+3+3+3 ∣∣∣ 1=22+2+2+2+2+2 ∣∣∣ 1=27+2+1+1+1) of E(1=3; 1=2; 0; 1=2; t; z) and de-rive solutions of, say, PV I(1=2; 1=2; 1=2;−5=2; t), PV I(1=2; 1=2; 1=2;−1=2; t),PV I(1=2; 1=2; 1=2; 1=2; t). For this, other proper normalization of �12(x) has tobe used, similarly as other proper normalization of '12(x) was used in [23, Setion 6℄to ompute solutions y63(t60), y62(t60), y64(t60) of the same equations (respetively).Inidentally, pullbaks with respet to �12(x) give exatly the same solutions y63(t60),y62(t60), y64(t60) in [23℄ of the same three Painlev�e equations, up to reparametrizationu 7→ (u+ 3)=(1 − u).



148 R. VIDUNAS, A. V. KITAEVas Okamoto transformations of y74(t70). In the notation of [21, (2.3)℄, wehave:y75=K[−1=7;−1=7;−1=7; 5=7; t70℄ y74; y76=K[1=7; 1=7; 1=7; 5=7; t70℄ y74: (5.34)Here are parametrizations of y75(t70) and y76(t70):y75 = − (u− 3)2(u2 + u+ 2)2(u2 + 2u+ 5)6u(u+ 1)(u− 1)(u2 + 7) ; (5.35)y76 = (u− 1)(u− 3)2(u2 + u+ 2)(u4 − 4u3 − 6u2 − 28u− 11)2u(u2 + 7)(u6 + 21u4 + 3u2 + 39) : (5.36)The solution y75(t70) is the Kleinian solution of [4℄, reparametrized withu 7→ 3s=(s− 2).As notied in [14℄, there are two omposite overings with rami�ationpatterns (5.28) or (5.29). They are ompositions of Belyi overings with aquadrati almost Belyi overing:R4(2 | 1 + 1 | 1 + 1) ◦R3( 2̂ | 2 | 1 + 1 ) ◦R3( 2̂ + 1 | 2 + 1̂ | 3 ); (5.37)R4(1 + 1 | 2 | 1 + 1) ◦R3(3 + 3 + 3 | 2 + 2 + 2 + 2 + 1̂ | 7 + 1 + 1):(5.38)Here the ompositions are from right to left, and the order 2 rami�ationpoints of a subsequent quadrati overing are indiated by the hat sym-bol. The algebrai Painlev�e VI solutions are determined by the quadratialmost Belyi overings. The solutions are related (via frational-linear orOkamoto transformations) to the solution y(t) = √t of the general equa-tion PV I(a; b; b; 1−a; t). We spei�ally have a = b = 1=8 or a = b = 1=7 ifwe apply Theorem 3.1 to the two omposite overings. The Belyi overingsare known from algebrai transformations of Gauss hypergeometri fun-tions [25℄. In partiular, an expliit degree 9 overing is given in [25, (24)℄.Beside the indiated overings, there is exatly one overing (up tofrational-linear transformations) to pullbak hyperboli hypergeometriequations. It has rami�ation pattern (5.28): 12(x)=−4 (9x4 + 18x3 + 3(2s+ 5)x2 − 2(s− 2)x+ s(s− 2)))3(4s+ 1)3(9x4 + 14x3 + 3(2s+ 3)x2 − 6sx+ s2) ; (5.39)To get a proper normalization or apply Theorem 4.1, we need to hoosethe point x = ∞ appropriately; hene �rst a transformations 7→ −14v2(3v2 + 8v + 6); x 7→ 1x − 12v2: (5.40)



RS-PULLBACK TRANSFORMATIONS 149For a proper normalization, we still need to fator the remaining degree3 fator polynomial in the denominator, and loalize the points x = 0,x = 1, x = t properly. This is ahieved with the substitutionsv 7→ (u2 − 2)(u4 − 4u3 + 8u2 + 8u+ 4)6u(u2 − 2u+ 2)(u2 + 2u+ 2) ;x 7→ 36u2(u4 + 4)(u2+2u−2)(u4+8u2+4)
×
(8iu(u2−2u−2)(u2+ 2)3x(u4−4u3+8u2+8u+4)3 + (u2+2i)(u2+2iu+2)(u2+2(i−1)u+2i)3 ) :Theorem 3.1 eventually gives the following solution y81(t80) ofPV I(1=8; 1=8; 1=8; 7=8; t80) :t80 = i (u+ i − 1)2 (u− i+ 1)2 (u2 + 2(i+1)u− 2i)3 (u2 − 2(i+1)u − 2i)364u2 (u2 − 2)3 (u2 + 2)3 ; (5.41)y81 = −i (u+i−1)(u−i+1)(u2+2iu+2)(u2 + 2(i+1)u− 2i)2(u2 − 2(i+1)u− 2i)8u (u2 − 2)2 (u2 + 2) (u2 − 2u − 2) : (5.42)The numerator of t80 an also be written as i (u2 + 2i)2 (u4 − 12iu2 − 4)3,for instane. The substitution u 7→ −(1 + i)=u gives the parametrization[14, (4.12){(4.13)℄.With the same proper normalization of  12(x), one may onsider RS-transformationsRS24 ( 1=33 + 3 + 3 + 3 ∣∣∣∣ 1=22 + 2 + 2 + 2 + 2 + 2 ∣∣∣∣ 3=88 + 1 + 1 + 1 + 1) ;RS24 ( 1=33 + 3 + 3 + 3 ∣∣∣∣ 1=22 + 2 + 2 + 2 + 2 + 2 ∣∣∣∣ 1=48 + 1 + 1 + 1 + 1)and RS24 ( 1=33 + 3 + 3 + 3 ∣∣∣∣ 1=22 + 2 + 2 + 2 + 2 + 2 ∣∣∣∣ 1=28 + 1 + 1 + 1 + 1)to derive solutions of PV I(3=8; 3=8; 3=8; 5=8; t80); PV I (1=4; 1=4; 1=4; 1=4; t80)and PV I(1=2; 1=2; 1=2; 1=2; t80), respetively. The last two equations turnout to be the same as y62(t60) and y64(t60), respetively; Theorem 4.1 givesexpressions reparametrized byu→ −u4 + 12iu2 − 4u4 − 4iu2 − 4 : (5.43)



150 R. VIDUNAS, A. V. KITAEVThe solution of PV I(3=8; 3=8; 3=8; 5=8; t80) isy83 = i (u+i−1)(u−i+1) (u2 + 2(i+1)u− 2i)2 (u2 − 2(i+1)u− 2i)8u (u2 − 2)2 (u2 + 2) (u6 + 6u5 + 6u4 + 16u3 − 12u2 + 24u− 8)
×
(u6 − 6iu5 − 6u4 + 16iu3 − 12u2 − 24iu+ 8) : (5.44)This solution is presented in [6, pg. 102℄, reparametrized with u 7→ (i−1)s.The same solution an be obtained by an Okamoto transformation: y83 =K[−1=8;−1=8;−1=8; 7=8; t80℄ y81.As was suspeted in [14℄, the solutions y62(t60) ofPV I(1=4; 1=4; 1=4; 1=4; t80)and y81(t80) of PV I(1=8; 1=8; 1=8; 7=8; t80)are related by a sequene of two quadrati transformations. Indeed, afrational-linear transformation ofK[−1=4;−1=4;−1=4; 1=4; t60℄ y62solves PV I(0; 0; 1=2; 1; t80), and then we an apply the following result onomposition of two quadrati transformations. After substitution (5.43)the square roots are extratable; see Lemma 6.1.

§6. AppendixHere we briey reall or onsider the following topis:
• A formula for omposition of two subsequent quadrati transfor-mations of Painlev�e VI funtions; see Lemma 6.1.
• A general formula for the degree of almost Belyi overings relevantto algebrai Painlev�e VI solutions; see Lemma 6.2.
• A geometri interpretation of the degree formula.Lemma 6.1. Suppose that y(t) is a solution of PV I(0; 0; a; 1; t). Then thefollowing expression is a solution of PV I(a=4; a=4; a=4; 1− a=4; t):t √(y − 1)(t− 1) +√y t+ 1√y t+ t : (6.45)Proof. The result [20℄ of Ramani-Gramatikos-Tamizhmani states that ifY0(T0) is a solution of PV I(0; b; ; 1;T0), andY1 = (√Y0 + 1)(√T0 + 1)(√Y0 − 1)(√T0 − 1) ; T1 = (√T0 + 1)2(√T0 − 1)2 ; (6.46)



RS-PULLBACK TRANSFORMATIONS 151then Y1(T1) is a solution of PV I(b=2; =2; =2; 1− b=2;T1). We an trans-form y(t) to a solution of PV I(0; a=2; a=2; 1; : : :), and then apply the sametransformation to get the asserted solution. (Other branhes of the trans-formed solution an be obtained by ipping the sign of the square roots√(y − 1)(t− 1) and √y t.) �The following is a degree formula for pullbak overings generating al-gebrai Painlev�e VI solutions by Theorem 3.1. In partiular, it implies thatthe pullbak overing for an iosahedral [5℄ solution of PV I(�0; �1; �t; �∞; t)with �0; �1; �t; �∞ ∈ (0; 1) has the degree 30(�0 + �1 + �t − �∞).Lemma 6.2. In the situation of Theorem 3:1, we have, if 1k0+ 1k1+ 1k∞

6= 1:deg'=( a0k'(0)+ a1k'(1)+ atk'(t) + a∞k'(∞) − 1)/( 1k0+ 1k1+ 1k∞ − 1) :(6.47)Proof. Let d denote the degree of '. Let b0, b1 respetively b∞ denote thesums of those ax with x ∈ {0; 1; t;∞} suh that, respetively, '(x) = 0,'(x) = 1, '(x) = ∞. By the Hurwitz formula, we have2d− 2(k0 − 1)d− b0k0 + (k1 − 1)d− b1k1 + (k∞ − 1)d− b∞k∞+ (a0 − 1) + (a1 − 1) + (at − 1) + (a∞ − 1) + 1:The formula follows, sine b0 + b1 + b∞ = a0 + a1 + at + a∞. �Notie that this Lemma implies that it is not possible to obtain so-lutions like y72(t12) y75(t70) using Theorem 3.1: the degree of the ov-ering would be negative. In other words, we annot pullbak the hyper-boli hypergeometri equation E(1=3; 1=2; 0; 1=7; t; z) to the equations likeE(2=7; 2=7; 2=7; 1=3; y72; z) or E(2=7; 2=7; 2=7; 4=7; y75; z). As one an see,there are just a few pullbak overings for in�nitely many \hyperboli"Painlev�e VI solutions. This is in ontrast to iosahedral Painlev�e VI solu-tions (or more generally, solutions orresponding to Fuhsian systems witha �nite monodromy), whih an be obtained from a standard iosahedralhypergeometri equation thanks to Klein's theorem.There is a geometri interpretation of this degree formula. If 1k0 +1k1 + 1k∞

> 1, then the expression ( 1k0 + 1k1 + 1k∞

− 1)� is the area ofthe spherial triangle with the angles �=k0, �=k1, �=k∞ in the standardRiemannian metri on the sphere. The spherial triangle is the image of



152 R. VIDUNAS, A. V. KITAEVthe upper-half plane of a Shwarz map for a hypergeometri di�erentialequation with the loal exponent di�erenes 1=k0, 1=k1, 1=k∞. The imageof a Shwarz map for a salar Fuhsian equation assoiated with (3.15)is a degenerate pentagon, with four angles equal to a0�=k'(0), a1�=k'(1),at�=k'(t), � − a∞�=k'(∞), and one angles (orresponding to the extrarami�ation point) equal to 2�. The area of the degenerate pentagon isequal to ( a0k'(0) + a1k'(1) + atk'(t) + a∞k'(∞) − 1)�. If the overing z = '(x)an be de�ned over R, then the degenerate pentagon an be triangulatedinto the Shwarz triangles with the angles �=k0, �=k1, �=k∞, respetinganalyti ontinuation (between the two omplex half-planes) in the �ber(with respet to ') of the degenerate pentagon. If 1k0 + 1k1 + 1k∞

< 1then we have hyperboli triangles instead of spherial triangles, with thearea (1− 1k0 − 1k1 − 1k∞

)� with respet to a hyperboli metri, but otherfeatures are the same.Figures 1(a) and (b) depit Shwarz triangulations for the degree 8map '̂8(x) in [23, (2.7)℄. The ut for the �fth vertex in Figure 1(b) aneither inlude or do not reah the interior vertex. Two di�erent �guresorrespond to two onneted omponents over R of the Hurwitz urvew2 = s(s− 1)(s+ 3)(s+ 8). The two omponents an be distinguished bythe ut from a point above z = 0: in Figure 1(a) the ut goes towards apoint above z = ∞, while in Figure 1(b) it goes towards a point abovez = 1. One an evaluate '̂8(x) at the extra rami�ation point:'̂8(y26) = −3125(u+ 3)(u+ 2)4(2u+ 1)2u2(u− 1)34(u+ 8)(u3 + 4u2 + 2u+ 2)5(u− 2)2 : (6.48)The value '̂8(y26) osillates between z = 0 and z = 1 for u ∈ [−3; 0℄,and the value is negative or z = 0, z = ∞ when u ≥ 1 or u ≤ −8. Hene,Figure 1(b) orresponds to the real omponent with u ∈ [−3; 0℄, and Figure1(a) orresponds to the other real omponent. Notie that '̂8(y26), as afuntion of u, is a Belyi map.Figure 1(d) depits a Shwarz triangulation for the degree 12 map'̂12(x) in [23, (2.13)℄. Figure 1() depits a Shwarz triangulation for anormalization of �12(x) here; this is a hyperboli triangulation. Shwarztriangulations for our '̂10(x) and normalized omposite overings for (5.37)are modi�ations of two triangulations for Belyi overings in [25, Fig. 1℄:there has to be a ut from the verties with the angles 2�=7 and 2�=8.Figures 1(e), (f), (g) depit Shwarz triangulations for the degree 11, 12,
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a) b) )

d) e)
f) g)Fig. 1. Triangulations for Shwarz maps20 maps in [22℄. Note that the lens shaped �gures (d) and (g) orrespondpreisely to Dubrovin{Mazzoo solutions.Not all almost Belyi overings have Shwarz tringulations. If a overingis not de�ned over R, analyti ontinuations of Shwarz maps for the origi-nal and transformed equations do not math. For example, normalizationsof  12(x) an be de�ned only over Q(i). Normalized omposite overingsfor (5.37), or the omposite degree 20 map '4 ◦'5(x) in [22, Setion 5℄ arenot de�ned over R either; nor they have Shwarz triangulations.
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