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t. Let G be the 
omplex symple
ti
 or spe
ial orthogonalgroup and g its Lie algebra. With every point x of the maximal torusT ⊂ G we asso
iate a highest weight module Mx over the Drinfeld-Jimbo quantum group Uq(g) and a quantization of the 
onjuga
y
lass of x by operators in End(Mx). These quantizations are iso-morphi
 for x lying on the same orbit of the Weyl group, and Mxsupport di�erent representations of the same quantum 
onjuga
y
lass. Dedi
ated to P. P. Kulishon the o

asion of his 70th birthday
§1. Introdu
tionThis paper is a sequel of a series of works on quantization of semisimple
onjuga
y 
lasses of a non-ex
eptional simple Poisson group G, [1{5℄. It isdone in the spirit of [6℄ devoted to G = SL(n) and 
an be viewed as a uni-form approa
h to quantization that in
ludes the results of [1{5℄ as a spe
ial
ase. The earlier 
onstru
ted quantum 
onjuga
y 
lasses were realized byoperators on 
ertain modules of the quantized universal enveloping algebraUq(g) of the Lie algebra g of the group G. For a large number of examples,this theory is parallel to the U(g)-equivariant quantization of semisimpleadjoint orbit in g ≃ g∗, [1, 7, 8℄. In both 
ases, G and g, the quantizedalgebra of polynomial fun
tions is represented on paraboli
 Verma mod-ules, respe
tively, over Uq(g) and U(g). However, adjoint orbits in G arein a greater supply than in g. Quantization of some of them requires moregeneral modules, whi
h 
annot be obtained by indu
tion from a 
hara
terof the paraboli
 extension of the stabilizer, [3, 4℄. Moreover, the latter it-self disappears as a natural subalgebra in Uq(g). This observation makesus take a more general look at already 
onstru
ted quantum homogeneousKey words and phrases: Quantum groups, deformation quantization, 
onjuga
y
lasses. 20



REPRESENTATIONS OF QUANTUM CONJUGACY CLASSES 21spa
es and 
on
lude that they were obtained through a very spe
ial 
hoi
eof the initial point. Su
h points are distinguished by their isotropy sub-groups, whose triangular de
omposition perfe
tly mat
hes the triangularde
omposition of G. All they are of Levi type, as for semisimple orbits in g,and their basis of simple positive roots of is a part of the basis of the totalgroup. That is violated for stabilizers of non-Levi type appearing among
onjuga
y 
lasses in G. At the same time, one 
an apply a generi
 Weylgroup transformation to the initial point in g and break the ni
e in
lusionof root bases even in the Levi 
ase. In this respe
t, a generi
 initial pointwhose stabilizer is isomorphi
 to a Levi subgroup has mu
h similarity withessentially non-Levi one. It makes sense therefore to extend the originalapproa
h to quantization and 
onsider all points on the maximal torus (theCartan subalgebra) for initial. They belong to the same 
onjuga
y 
lass ifand only if they lie on the same orbit of the Weyl group. We asso
iate amodule of highest weight with every su
h point and realize the quantiza-tion of its 
ojuga
y 
lass by linear operators on that module. Points on thesame Weyl group orbit give rise to isomorphi
 quantizations, whi
h 
an beregarded as di�erent representations of the same quantum homogeneousspa
e. They 
an also be thought of as di�erent polarizations of the samealgebra.There are other interesting problems related to quantum homogeneousspa
es, su
h as quantization of asso
iated ve
tor bundles, star produ
tformulation et
. That is well understood for 
lasses with Levi isotropysubgroups, through the me
hanism of paraboli
 indu
tion, [10{14℄. At thesame time, the di�eren
e between Levi and non-Levi 
onjuga
y 
lassesis qualitative, and alternative representations of Levi 
lasses 
ould be abridge between the two 
ases. A uniform approa
h to quantization mayhelp to understand the non-Levi 
ase too.1.1. Preliminaries. Let G be the 
omplex orthogonal or symple
ti
 
on-ne
ted algebrai
 group of N × N -matri
es preserving a non-degenerateskew-diagonal symmetri
 or, respe
tively, symple
ti
 form on CN . Given abasis {wi}Ni=1 ∈ CN , we �x the triangular de
omposition g = g−⊕h⊕g+ sothat the Cartan subalgebra is represented by diagonal matri
es, while thenilpotent subalgebras g± by stri
tly upper (+) and lower (−) triangularmatri
es. The basis elements wi 
arry weights "i ∈ h∗ satisfying "i′ = −"i,where i′ = N +1− i. Fix the inner produ
t (:; :) on h∗ so that the weightswith i 6 N2 form an orthogonal basis. Let n designate the rank of g. We
hoose a basis �+ of simple roots in h∗ as �i = "i − "i+1, i < n, and



22 TH. ASHTON, A. MUDROV�i = "n, �i = 2"n, �i = "n−1 + "n for, respe
tively, g = so(2n + 1),
g = sp(2n), and g = so(2n). Denote by R and R+ the sets of all andpositive roots of g. When we need to distinguish the roots systems of asubgroup, we mark it with the 
orresponding subs
ript.Denote by T the maximal torus of G exponentiating the Cartan subalge-bra h ⊂ g. Given a point x ∈ T , denote by K ⊂ G its 
entralizer subgroupwith the Lie algebra k, whi
h is a redu
tive subalgebra of maximal rankin g. The triangular de
omposition of g indu
es a triangular de
omposi-tion k = k+ ⊕ h ⊕ k−. There are in
lusions Rk ⊂ Rg and R+

k ⊂ R+
g , butnot �+

k ⊂ �+
g in general. If the latter holds, K is said to be a regularLevi subgroup of G. If K is not isomorphi
 to a Levi subgroup, we 
all itpseudo-Levi. We 
all it regular if a maximal Levi subgroup among those
ontained in K is regular. Similar terminology is used for its Lie algebra k.Colle
tively we 
all K and k generalized Levi subgroups and subalgebras.The 
anoni
al inner produ
t (:; :) on the dual ve
tor spa
e h∗ identi�esit with h. Let h� ∈ h denote the image of � ∈ h∗ under this isomorphism.Fix a generalized Levi subalgebra k ⊂ g. By c∗k we denote the set of weights� ∈ h∗ su
h that (�; �) = 0 for all � ∈ Rk and by c∗k;reg ⊂ c∗k the set ofweights su
h that (�; �) = 0 ⇔ � ∈ Rk. For ea
h � ∈ c∗k the elemente2h� ∈ G 
ommutes with K, and k is exa
tly the 
entralizer Lie algebra ofx = e2h� on
e � ∈ c∗k;reg.Denote by Ox the 
onjuga
y 
lass of x. The 
oordinate ring C[Ox℄ isa quotient of C[G℄ by a 
ertain G-invariant ideal. To des
ribe this ideal,observe that x determines a 1-dimensional representation �x of the sub-algebra of invariants in C[G℄ (under the 
onjugation a
tion). Apart fromSO(2n), it is generated by tra
es of the matrix powers of (Xij), where Xijare the 
oordinate fun
tions on G. In the spe
ial 
ase of SO(2n) one hasto add one more invariant that is sensible to the 
ip of the Dynkin dia-gram, in order to separate two SO(2n)-
lasses within a O(2n)-
lass whoseeigenvalues are all distin
t from ±1. Furthermore, the matrix X , whenrestri
ted to Ox, satis�es an equation p(X) = 0 with a polynomial p inone variable. The entries of the matrix p(X) are polynomial fun
tions inXij . The de�ning ideal of Ox is generated by the entries of p(X) over thekernel of �x, provided p is the minimal polynomial for x.A pseudo-Levi subgroupK 
ontains a Cartesian produ
t of two blo
ks ofthe same type asG. They 
orrespond to the eigenvalues±1 of the matrix x,whi
h are simultaneously present in its spe
trum. For the symple
ti
 group,it is SP (2m)× SP (2p), where m; p > 1. For the odd orthogonal group, it



REPRESENTATIONS OF QUANTUM CONJUGACY CLASSES 23is SO(2m) × SO(2p + 1), where m > 2, p > 0. For the even orthogonalgroup, one has SO(2m) × SO(2p), where m; p > 2. The lower bounds onm; p 
ome from the isomorphism SO(2) ≃ GL(1): if the multipli
ities of
±1 are small, then the isotropy subgroup stays within the Levi type. Wedistinguished su
h 
onjuga
y 
lasses as borderline Levi be
ause they sharesome properties of both types, [5℄.The quantized polynomial algebra C~[Ox℄, ~ = log q, is des
ribed asfollows. The algebra C[G℄ is repla
ed with C~[G℄, whi
h is an equivariantquantization of a spe
ial Poisson bra
ket on G, [9℄. This bra
ket makes Ga Poisson{Lie homogeneous spa
e over the Poisson group G equipped withthe Drinfeld{Sklyanin bra
ket [15℄, with respe
t to the 
onjugation a
tion.The algebra C~[G℄ admits an equivariant embedding into the 
orrespond-ing quantum group U~(g) ⊃ Uq(g). As a subalgebra in U~(g), it is generatedby the entries of the matrix Q = (� ⊗ id)(R21R), where R is the univer-sal R-matrix of U~(g) and � stands for the representation homomorphismU~(g) → End(CN ). The fa
tor R21 is obtained by 
ip of the tensor legs of
R. This embedding makes a U~(g)-module into a C~[G℄-module and therepresentation homomorphism of C~[G℄ automati
ally U~(g)-equivariant.The subalgebra of invariants in C~[G℄ 
oin
ides with its 
entre, whi
his generated by q-tra
es of the matrix powers of Q (apart from the spe-
ial 
ase of SO(2n), as mentioned above). The \quantum initial points"
an be des
ribed as follows. Let �k = 12 ∑�∈R+

k

� be the Weyl ve
tor of theisotropy subalgebra k. Let c∗k be the orthogonal 
omplement to C�+
k . De-note C∗

k;reg = 1
~
c∗k;reg+c∗k+�k−� and C∗

k = 1
~
c∗k+c∗k+�k−�. By 
onstru
tion,all � ∈ C∗

k ⊂ 1
~
h∗ ⊕ h∗ satisfy q2(�+�;�) = q(�;�) for all q if � ∈ �+

k while� ∈ C∗
k;reg ⊂ C∗

k satis�es this 
ondition only if � ∈ �+
k .With � ∈ C∗

k;reg we asso
iate a module M� of highest weight �, so thatthe image of C~[G℄ in End(M�) is a quantization of C~[Ox℄. It is a paraboli
Verma module if and only if k is a regular Levi subalgebra. Irregular Levisubgroups also appear as stabilizers of initial points in g, so our approa
his as well appli
able to the U(g)-equivariant quantization of adjoint orbitsin g.The highest weight of M� de�nes a 
entral 
hara
ter of C~[G℄, whosekernel is expressed through q-tra
es of the matrix powers Qk. The matrix
Q yields an invariant operator on CN ⊗M�, and its minimal polynomialis determined by module stru
ture of the tensor produ
t. The annihilatorofM� is then generated by the entries of the minimal polynomial over the



24 TH. ASHTON, A. MUDROVkernel of the 
entral 
hara
ter. The stru
ture of CN ⊗M� is the key pointof this approa
h, and its analysis takes a great part of this exposition. Ourapproa
h makes use of some results on the Mi
kelsson algebras and Shapo-valov inverse [16, 17℄ and is based on the study of the standard �ltrationof C
N ⊗M� in what follows.1.2. Quantized universal enveloping algebra. Throughout the pa-per, g is a 
omplex simple Lie algebra of type B, C or D (the A-
ase hasbeen 
onsidered in [6℄). We assume that q ∈ C is not a root of unity. De-note by Uq(g±) the C-algebra generated by e±�, � ∈ �+, subje
t to theq-Serre relations, [18℄. Denote by Uq(h) the 
ommutative C-algebra gener-ated by q±h� , � ∈ �+. The quantum group Uq(g) is a C-algebra generatedby Uq(g±) and Uq(h) subje
t to the relationsqh�e±�q−h� = q±(�;�)e±�; [e�; e−�℄ = Æ�;� [h�℄q[ (�;�)2 ℄q ;were [z℄q = qz−q−zq−q−1 . We work with the opposite 
omultipli
ation as in [18℄:�(e�) = e� ⊗ 1 + qh� ⊗ e�; �(e−�) = e−� ⊗ q−h� + 1⊗ e−�;�(q±h�) = q±h� ⊗ q±h� ;for all � ∈ �+. The quantized Borel subalgebras Uq(b±) ⊂ Uq(g), b± =

g± + h, are generated by Uq(g±) over Uq(h). The universal R-matrix is�xed to be an element of an extended tensor produ
t of Uq(b−)⊗Uq(b+).Its transposed version due to the opposite 
omultipli
ation 
an be takenfrom [18℄, Theorem 8.3.9.We use the notation ei = e�i , and fi = e−�i for �i ∈ �+ in all 
asesapart from i = n, g = so(2n + 1), where we set fn = [ 12 ℄qe−�n . The
orresponding 
ommutation relation translates to [en; fn℄ = [h�n ℄q : Withthis normalization of generators, the natural representation of Uq(g) onthe ve
tor spa
e CN is independent of q, see the next se
tion.
§2. Natural representation of Uq(g)By � we denote the root latti
e � = Z�+ with �+ = Z+�+. Let Idesignate the set of integers {1; : : : ; N}. For � ∈ �+ we de�ne P (�) tobe the set of all pairs i; j ∈ I su
h that "i − "j = �. Let eij ∈ End(CN ),i; j ∈ I , denote the standard matrix units. The following assignment de�nes



REPRESENTATIONS OF QUANTUM CONJUGACY CLASSES 25a representation of g, whi
h is equivalent to the natural representation:�(e�) = ∑(l;r)∈P (�) elr; �(f�) = ∑(l;r)∈P (�) erl; �(h"i) = eii − ei′i′ :The a
tion of the Chevalley generators 
an be 
onveniently visualized bythe diagrams
g = so(2n+ 1)

b � : : :w1′ b� wn′

� bwn+1� bwn� � bw1: : :f�1 f�n−1 f�n f�n f�n−1 f�1
g = sp(2n)

b : : :�w1′ b� wn′

� bwn� : : : � bw1f�1 f�n−1 f�n f�n−1 f�1
g = so(2n)

b � : : : �w1′ bwn′+1� bwn′

� �
bwn� bwn−1 : : :� � bw1f�1 f�n−2 f�n−1f�n f�n−1 f�n−2f�n f�1Reverting the arrows one gets the diagrams for positive Chevalley gen-erators of g.We introdu
e a partial ordering on the integer interval I by settingi 4 j if and only if there is a (moni
) Chevalley monomial  ∈ Uq(g−)su
h that wj is equal to  wi up to an invertible s
alar multiplier, wj = wi. This monomial, if exists, represents a path from wi to wj in therepresentation diagram, whi
h be
omes the Hasse diagram of the poset.Su
h  is unique, whi
h is obvious for the series B and C and still truefor D. Indeed, two di�erent paths from wn−1 to wn+2 yield the produ
tsf�nf�n−1 and f�n−1f�n , whi
h are the same due to Serre relations. Wedenote this monomial by  ji. The relation ≺ is 
onsistent with the naturalordering on Z, and 
oin
ides with it unless g = so(2n). In the latter 
asen and n′ are in
omparable.



26 TH. ASHTON, A. MUDROVIn what follows, we also use the monomials  ij obtained from  ji byreverting the order of fa
tors. It is 
lear that  ij =  im mj for any msu
h that i 4 m 4 j.De�nition 2.1. We 
all  ij the prin
ipal monomial of the pair i 4 j.Their signi�
an
e will be 
lear later in the se
tion devoted to the standard�ltration of tensor produ
t modules.Remark that all Chevalley monomials of weight "j − "i are obtainedfrom  ij by permutation of fa
tors.We will also need another partial ordering on I that is relative to k:write i ⋖ j if wi and wj ∈ Uq(k−)k−wi. Clearly i ⋖ j if and only if i ≺ jand wi; wj belong to an irredu
ible k-submodule in CN . Let Ik ⊂ I bethe set of all minimal elements with respe
t to this ordering and �Ik be its
omplement in I . Elements of Ik label the highest weight ve
tors of theirredu
ible k-submodules in CN .2.1. Redu
ed Shapovalov inverse. In this se
tion, we re
all a 
on-stru
tion of Shapovalov inverse redu
ed to End(CN )⊗ Uq(b−). It is givenin [16℄ for the general linear and orthosymple
ti
 quantum groups (seealso [17℄ for the general 
ase). Note with 
are that [16,17℄ deal with a dif-ferent version of the quantum group. To adapt those results to the 
urrentsetting, one has to twist the 
oprodu
t by q n
∑i=1hi⊗hi and repla
e q with q−1.Given � ∈ 1

~
h∗ ⊕ h∗ 
onsider a 1-dimensional Uq(b±)-module C� withthe representation de�ned by the assignment q±h� 7→ q±(�;�), e� 7→ 0 for� ∈ �+. Denote by M� the Verma module Uq(g) ⊗Uq(b+) C� with the
anoni
al generator v�, [19℄. Let M∗� denote the opposite Verma moduleUq(g)⊗Uq(b−) C−� of the lowest weight −�. There is an invariant pairingM�⊗M∗� → C, whi
h is equivalent to the 
ontravariant Shapovalov form onM�, upon an identi�
ationM∗� ∼M� through an anti-algebra isomorphismUq(g−) ≃ Uq(g+), [20℄. We also 
all it Shapovalov form.Re
all that a ve
tor v 6= 0 in a Uq(g)-module V is 
alled singular if e�v =0 for all � ∈ �+. Singular ve
tors are de�ned up to a s
alar multiplier.Redu
ed Shapovalov inverse is a matrix F̂ = j

∑i=1 eij ⊗ f̂ij ∈ End(CN ) ⊗Ûq(b−), where the roof means extension over the �eld of fra
tions of Uq(h).This matrix yields a singular ve
tor F̂ (wj ⊗ v�) in CN ⊗M� for all j ∈ I .For generi
 � the matrix F̂ is a homomorphi
 image of the Shapovalovinverse lifted to Ûq(g+)⊗ Ûq(b−).



REPRESENTATIONS OF QUANTUM CONJUGACY CLASSES 27The entries f̂ij 
an be expressed through the Chevalley generators asfollows. First introdu
e fij ∈ Uq(g−) for all i < j, whi
h are 
losely relatedto the R-matrix of Uq(g), [16℄. Put fij = fj′i′ = fi for i − 1 = j < N+12andfij = [fj−1; : : : [fi+1; fi℄q : : :℄q; fj′i′ = [: : : [fi; fi+1℄q ; : : : fj−1℄q ; (2.1)for i+ 1 < j 6 N+12 and all g. Furthermore,fnn′ = (q−1 − 1)f2n; fi;n+1 = [fn; fin℄q ; fn+1;i′ = [fn′i′ ; fn℄q ;i < n; g = so(2n+ 1);fnn′ = [2℄qfn; fin′ = [fn; fin℄q2 ; fni′ = [fn′i′ ; fn℄q2 ;i < n; g = sp(2n);fnn′ = 0; fin′ = [fn; fi;n−1℄q ; fni′ = [fn′+1;i′ ; fn℄q ;i < n− 2; g = so(2n);and �nally, for i; j < n,fij′ = q−Æij [fn+1;j′ ; fi;n+1℄qÆij ; N = 2n+ 1fij′ = q−Æij [fnj′ ; fin℄q1+Æij ; N = 2n:There exists an analog of Poin
are{Birgho�{Witt (PBW) basis in Uq(g−)generated by 
ertain elements labeled by R+, whi
h 
an be presented asdeformed 
ommutators of the Chevalley generators, [18℄. The presen
e ofPBW bases allows to identify Uq(g−) with U(g−) as ve
tor spa
es (andUq(h)-modules). This identi�
ation makes Uq(g−) a deformation of U(g−).It follows that fij are deformations of root ve
tors from g−.Put �i = (�; "i) for i ∈ I and introdu
e �ij = hi−hj+�i−�j− ||"i−"j ||22 ∈

h + C, Aji = − q−q−1q2�ij−1 ; for all i; j ∈ I su
h that i ≺ j. We 
all a sequen
e~m = (m1; : : : ;mk) a route from m1 to mk if m1 ≺ : : : ≺ mk. To everyroute ~m we assign the produ
tsf~m = fm1;m2 : : : fmk−1;mk ; Aj~m = Ajm1 : : : Ajmk ;where mk ≺ j. Given another route, ~l = (l1; : : : ; ls) with ~m ≺ ~l mean-ing mk ≺ l1, there is a route (~m;~l) = (m1; : : : ;mk; l1; : : : ; ls). De�ne~�i = �i + ||"i||22 for all i ∈ I . Then f̂ij = 0 if i > j, f̂ii = 1 andf̂ij = ∑i4~m≺j f~m;jAj~mq�ij−~�i+~�j for i < j, where the summation is done



28 TH. ASHTON, A. MUDROVover all routes (~m; j) from i to j. Note that the fa
tor q�ij−~�i+~�j 
omesfrom a di�erent version of the quantum group adopted in [6, 17℄.Lemma 2.2. Suppose that � ∈ �+
k ⊂ R+

g and (i; j) ∈ P (�). For all� ∈ C∗
k;reg, the spe
ialization f̂ij [�ij ℄q at weight � is a deformation of a
lassi
al root ve
tor, −f� ∈ g−.Proof. Present � as � = 1

~
�0 + �1 ∈ C∗

k;reg, �i ∈ h∗. Observe that a)e2�0i = e2�0j for all � = "i − "j ∈ �+
k on
e �0 ∈ c∗k and b) there is no ksu
h that i ≺ k ≺ j and e2�0i = e2�0k = e2�0j if �0 ∈ c∗k;reg. Furthermore,write f̂ij [�ij ℄q = −fij − ∑i≺~m~≺j fi;~m;jAj~m;jq~�j−~�i , where the sum is takenover non-empty routes ~m. For all k subje
t to i ≺ k ≺ j, the denominatorin Ajk|� = − q−q−1q2�kj |�−1 tends to e2�0k−2�0j − 1 6= 0 as q → 1. Therefore, thesum vanishes modulo ~, and fij tends to a 
lassi
al root ve
tor. �De�ne elements �fij = f̂ij ∏i4k≺j[�kj ℄q ∈ Uq(b−) for all i ≺ j. They satisfythe identitye� �fij = −

∑(l;r)∈P (�) Æl;iq−(�;"l) �fr;j [�ij ℄q mod Uq(g)g−; ∀� ∈ �+; (2.2)Fix (i; j) ∈ P (�) for � ∈ R+ and suppose that � = 1
~
�0 + �1 with �i ∈ h∗satis�es the 
ondition [�ij |�℄q = 0 = [�j′i′ |�℄q . Then there is a singularve
tor v�−� of weight � − � in the Verma module M�. One 
an takev�−� = �fijv� provided it is not zero, sin
e e� �fijv� = 0 for all � ∈ �+ by(2.2). If �fijv� = 0 at some �, one still 
an obtain v�−� from �fijv� (whi
h ispolynomial in e±2(�0;�), � ∈ �+, for �xed �1 and q) via renormalization,sin
e singular ve
tors are de�ned up to a s
alar multiplier. In parti
ular, if� ∈ k for some generalized Levi subalgebra k and � ∈ C∗

k;reg, then v�−� ≃f�v� mod ~, by Lemma 2.2. Note that �fijv� ≃ �fj′i′v� if i 6= j′, as followsfrom the theory of Mi
kelsson algebras for quantum groups, [21℄.
§3. Standard filtration on CN ⊗M�In what follows, we work out a tool for our analysis of CN ⊗M�, whereM� is a generalized paraboli
 Verma module of weight �. In this se
tion,we do it for the ordinary Verma module M� = Uq(g) ⊗Uq(b+) C� with� ∈ 1

~
h∗ ⊕ h∗. An essential part of our te
hnique is a diagram language,



REPRESENTATIONS OF QUANTUM CONJUGACY CLASSES 29whose elements already appeared in [2, 4℄ and whi
h is given a systemati
treatment here. The 
ase of gl(N) was already studied in [6℄, so we doit for orthogonal and symple
ti
 g. We 
onsider the standard �ltrationV• = (Vi)Ni=1, {0} = V0 ⊂ V1 ⊂ : : : ⊂ VN = CN ⊗ M�, where Vi isgenerated by {ej ⊗ v�}, j 6 i. Its graded module grV• is a dire
t sum ofVj=Vj−1, whi
h are isomorphi
 to the Verma modules M�+"j (the proofof [22℄, Lemma 5, readily adapts to quantum groups).Given � ∈ Z+�+ we de�ne 	� ⊂ Uq(g−) to be the subset of Chevalleymonomials of weight �. We assume that a pair (i; j) ∈ P (�) is 
hosen forthis se
tion. Having �xed an order of elementary fa
tors in  , we regardit a as path from v� to  v�. We asso
iate with  v� a graph H withnodes {vk} ∈M�, vj = v�, vi =  v�, and arrows being negative Chevalleygenerators a
ting on M�. For  =  ij , this path is unique in almost all
ases (ex
ept for type D, where we eliminate the ambiguity by �xing theorder as f�n−1f�n). For prin
ipal  , we are 
on
erned not just with theterminating node  v�, but also in all intermediate nodes. On the 
ontrary,for non-prin
ipal  , only  v� is important for us, while the spe
i�
 pathis immaterial.We say that f� has length 2 if � = �n and g = so(2n). All othergenerators are assigned with length 1. If all fa
tors in  have length 1, wewrite  = �i : : : �j−1 with �k ∈ {f�}�∈�+ , and we set vk = �kvk+1. Thenthe diagram H is set to bevib � b : : :�vi+1 b� vj−1� bvj�i ��i+1 �j−2 �j−1Now suppose that  has (exa
tly one) fa
tor of length 2. Write  =�i : : : �k�k+2 : : : �j−1, where �k = f�n (there are j − i− 1 fa
tors). Thenthe graph H isvib � : : : � bvk� ×�vk+1 bvk+2 : : :� � bvj�i �k−1 �k+2�k = f�n �j−1Here we distinguish two 
ases. If  =  ij , then �k−1 = f�n−1 , and thedashed arrow f�n−1 is in
luded in H . The node vk+1 is set to f�n−1vk+2.For non-prin
ipal  , the node vk+1 is arbitrary (immaterial) and there isno arrow from vk+2 to vk+1.



30 TH. ASHTON, A. MUDROVWe also 
onsider a graph Vij , whi
h is a part of the natural representa-tion diagram of Uq(g−) that in
ludes all paths from wi to wj . We transposeit to make a verti
al graph oriented from top wi to bottom wj .We denote by Arr(vk) the set of arrows originated at vk and similarlyArr(wm) the set of arrows from wk. By 
onstru
tion, an arrow from nodem to node k has length k −m.Finally, we de�ne tensor produ
t D = H ⊗ Vij as a graph on atwo-dimensional latti
e whose nodes are wmk = wk ⊗ vm ∈ CN ⊗M� andarrows are Arr(wmk ) = Arr(wk)⊗id⋃ id⊗Arr(vm), The diagram is orientedso that H -arrows and Vij -arrows are dire
ted, respe
tively, leftward anddownward; the origin wji is in the right upper 
orner. We need only thetriangular part of the diagram in
luding the nodes vkm with k+m > i+ j.The set {wkk}jk=i is 
alled prin
ipal diagonal. With  =  ij , the node wkkon the prin
ipal diagonal is wk ⊗  kjv�, k = i; : : : ; j. Here is an exampleof diagram D with all arrows of length 1:wii wi+1i wi+2i wj−1i wji� � � : : : � �
�i �i+1 �i+2 �j−2 �j−1

? ? ? ?wi+1i+1 wi+2i+1 wj−1i+1 wji+1� � : : : � �

? ? ?wi+2i+2 wj−1i+2 wji+2� : : : � �

? ?... ...`

`

`

? ?

?

wj−1j−1 wjj−1� wjjFig. 1The arrows represent the a
tion of the Chevalley generators on the tensorfa
tors CN (verti
al) and M� (horizontal). The following property of thisa
tion readily follows from the 
oprodu
t of the Chevalley generators: sup-pose that � ∈ Arr(vm) and � 6∈ Arr(wk). If vr = �vm, then �(wmk ) = vrk,



REPRESENTATIONS OF QUANTUM CONJUGACY CLASSES 31i.e., the horizontal arrow yields the a
tion of � on the entire tensor produ
t.In general, �(wmk ) = vrk mod Cvms , where ws = �wk .Suppose that nodes of a 
olumn segment BC (with C the bottom node)belong to a Uq(g)-submoduleM ⊂ CN⊗M�. Let � be a Chevalley genera-tor assigned to a horizontal arrow with the origin at this 
olumn. Considerthe following situations:(1) The length of � is 1.(a) There is no verti
al �-arrow with the origin at C.(b) There is a verti
al �-arrow with the origin at C.(2) The length of � is 2, and the size of BC is 2 or greater. Let C ′ andC ′′ be the nodes 1 and 2 steps up, respe
tively.(a) There is no verti
al �-arrow with the origin at C and at C ′.(b) There is a verti
al �-arrow with the origin either at C or atC ′.
�
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A BCC′

C′′D 2.b)De�nition 3.1. We 
all the transition from 
olumn BC to 
olumn ADan elementary move or simply move of the length equal to the length of �-arrow. The elementary moves 1.a) and 2.a) are 
alled left. The elementarymoves 1.b) and 2.b) are 
alled diagonal.Lemma 3.2 (Elementary moves). Under the 
onditions above, the 
olumnsegment AD lies in M .Proof. Clear. �We will use elementary moves to rea
h a node or 
olle
tion of nodes in thediagram starting from the rightmost 
olumn, whi
h is assumed to be in asubmodule M . That way we prove that the target nodes are in M .Let D′ ⊂ D denote the subgraph whose nodes form the triangle lyingabove the prin
ipal diagonal, i.e. {wmk }k+m>i+j .Lemma 3.3. Suppose that  =  ij is a prin
ipal monomial. Then thelinear span of D′ lies in Vj−1.



32 TH. ASHTON, A. MUDROVProof. Suppose that all horizontal arrows in D′ have length 1, as e.g. for
g = so(2n+1), and g = sp(2n). Consider the diagramD on Fig.3.a, whereD′ is the triangle ABC. The 
olumn BC belongs to Vj−1 by 
onstru
tion.All arrows have length 1. Applying elementary diagonal moves we provethat ABC is in Vj−1.Now suppose there is a horizontal arrows of length 2. Assuming i 6n − 1, n′ + 1 6 j, 
onsider the diagram D where the triangle D′ isdenoted by ABC (
f. Fig.3.b). The rightmost 
olumn BC belongs to Vj−1by 
onstru
tion. For ea
h node in the trapezoid JBCL there is a horizontalarrow of length 1. Those arrows are distin
t from verti
al arrows for allnodes in the line L′M ⊂ JBCL. Apply the 
orresponding left moves tothe 
olumns rested on L′M . This operation proves that trapezoid HBCIis in Vj−1. Then apply the diagonal move of length 2 to the 
olumn JL andget FG ⊂ Vj−1. All arrows in the triangle ADE have length 1, thereforeADE ⊂ Vj−1, via diagonal moves.The 
ase i = n, n′ + 1 6 j dysplayed on Fig.3.a is similar to already
onsidered: all horizontal arrows within D′ are of length 1. The 
ase i 6n − 1, n′ = j is displayed on Fig.3.b: Apply the diagonal move of length1 to the 
olumn BC ′ and get DE ⊂ Vj−1. Then apply the diagonal moveof length 2 to BC ′ and get EG ⊂ Vj−1. Then
e the entire triangle AFGis in M . �Proposition 3.4. Suppose  ∈ 	�, (i; j) ∈ P (�), and  6=  ij . Thenwi ⊗  v� ∈ Vj−1.Proof. Consider a fa
torization  =  ′ mj , where m is some integer sat-isfying i ≺ m � j and  ′ ∈ 	"i−"m . Choose m to be the smallest possible.In the fa
torization  ij =  im mj let � be the rightmost Chevalley fa
torin  im, while �′ the rightmost fa
tor in  ′. Due to the 
hoi
e of m, � 6= �′.Further we 
onsider algebras of types B;C separately from D.In diagrams of types B and C, all arrows have length 1, Fig.3.a. Allnodes in the north-east re
tangle CDIH are the same as inD ij . ThereforeCDGF is in Vj−1, by Lemma 3.3. Sin
e �′ 6= �, the left move via �′maps CF onto BE, modulo CF ⊂ Vj−1, proving BE ⊂ Vj−1. Applyingdiagonal moves to BE we get the triangle ADE ⊂ Vj−1 in
luding the nodeA, whi
h is wii = wi ⊗  v�. Now we look at the type D. We 
an assumethat i 6 n − 1; n′ + 1 6 j, sin
e otherwise this 
ase redu
es to already
onsidered. If the length of �′ is 1, the reasoning is the same as above.The only di�eren
e is that one may have to use a diagonal move of length
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A D F H J BE G′G L′′I L′L MCb)Fig. 22 in transition from BE to A, see Fig.3.b. If the length of �′ is 2, thenthe transition to BE is performed via �′ applied to CF ′ ⊂ Vj−1, as shownon Fig.3.
. This proves that BE ⊂ Vj−1. Further, all horizontal arrowsin the triangle ABE are of length 1 (the fa
tor f�n enters  only on
e).This situation is similar to the types B and C 
onsidered earlier. Thus,the node A = wii = wi ⊗  v�, belongs to Vj−1. �
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e (the number of arrows in a path)from i to j on the Hasse diagram of the natural representation of Uq(g−).



REPRESENTATIONS OF QUANTUM CONJUGACY CLASSES 35Proposition 3.5. Suppose that i; j ∈ I are su
h that i ≺ j. Thenwi ⊗  ijv� = (−1)||i−j||q−(�;#ij)wj ⊗ v� mod Vj−1: (3.3)Proof. Suppose that � ∈ �+ and (i; k) ∈ P (�). By Lemma 3.3, the nodewi ⊗  kjv� ∈ D′ lies in Vj−1 Applying �f� = f� ⊗ q−h� + 1 ⊗ f� towi ⊗  kjv� we getwi ⊗  ijv� = q−(�;�)−(�;"j−"k)wk ⊗  kjv�= q−(�;#ij−#kj)wj ⊗  kjv� mod Vj−1for all k 4 j. Here we used f�wi = wk and f� kj =  ij for all k 4j. Pro
eeding re
ursively along the path from i to j with the boundary
ondition #jj = 0 we 
omplete the proof. �3.1. Generalized paraboli
 Verma modules. Fix a generalized Levisubalgebra k ⊂ g and a weight � ∈ C∗
k;reg. Let Mh� denote the Vermamodule of highest weight �. For ea
h � ∈ �+

k , there is a singular ve
torv�−� ∈Mh� generating a submodule Mh�−� ⊂Mh� , 
f. Se
tion 2.1. Set M k�to be the quotient of Mh� by the submodule ∑�∈�+
k

Mh�−�.We denote by V k
• = (V ki )Ni=1 a �ltration of CN ⊗M k� by the modules V kigenerated by wk ⊗ v�, k = 1; : : : ; i. For k = h it is the standard �ltration
onsidered in the previous se
tions. Clearly V k

• is obtained from V h
• throughthe proje
tion CN ⊗ Mh� → CN ⊗ M k�. Further we show that V kj =V kj−1vanishes on
e j ∈ �Ik and q is 
lose to 1.Proposition 3.6. For ea
h � ∈ C∗

k;reg there is a neighborhood 
 of 1 in Csu
h that the submodule V kj is generated by wi ⊗ v�, i 6 j, i ∈ Ik, for allq ∈ 
.Proof. For all j denote by V ′j ⊂ V kj the submodule generated by all wi⊗v�with i 6 j and i ∈ Ik. We aim to prove that V ′j = V kj .The statement is trivial for j = 1. Suppose it is true for all i < j. Ifj ∈ Ik, then V kj is generated by wj ⊗ v� and by V kj−1 = V ′j−1, hen
e theproof. Suppose that j ∈ �Ik. Choose the greatest i su
h that i ⋖ j. Then(i; j) ∈ P (�) for some � ∈ �+
k . By Lemma 2.2 there exists an open set
 ⊂ C 
ontaining 1 su
h that the prin
ipal term in �fijv� ≃ v�−� is not zerofor all q ∈ 
. Then wj⊗v� ≃ wi⊗ ijv� ≃ wi⊗ �fijv� = 0 modulo V kj−1, by



36 TH. ASHTON, A. MUDROVPropositions 3.5 and 3.4. By the indu
tion assumption, we 
on
lude thatwj ⊗ v� ∈ V ′j−1 and V kj = V ′j−1 = V ′j . �Corollary 3.7. The graded module grV k
• is isomorphi
 to the dire
t sum

⊕j∈Ik
V kj =V kj−1.Re
all that the tensorR21R 
ommutes with �(x) for all x ∈ Uq(g), [15℄.Proposition 3.8. The invariant operator Q = (� ⊗ id)(R21R) preservesthe standard �ltration. It is s
alar on ea
h graded 
omponent V kj =V kj−1,j ∈ Ik, with the eigenvaluexj = q2(�+�;"j )−2(�;"1)+||"j ||2−||"1||2 ; (3.4)unless V kj =V kj−1 6= {0}.Proof. The operator Q 
an be presented as �(z)(z−1⊗z−1), for a 
ertain
entral element z, [23℄. ThereforeQ is a s
alar multiple on every submoduleand fa
tor module of highest weight of V hN . Now we do indu
tion on j. Thesubmodule V h1 is of highest weight, then
e it is Q-invariant. Suppose thatV hj−1 is Q-invariant for j > 1. Sin
e Q is s
alar on V hj =V hj−1, the submoduleV hj is Q-invariant.The eigenvalue of Q on V hj =V hj−1 is determined by its highest weightand equal to (3.4), for all j ∈ I , [2℄. So the proposition is proved for k = h.The general 
ase is obtained from this by taking proje
tion to CN ⊗M k�and applying Corollary 3.7. �It follows that Q satis�es the polynomial equation ∏j∈Ik

(Q− xj) = 0 on
CN ⊗M k�. We will not address the issue if V kj =V kj−1 survive for all j ∈ Ikas we bypass it in what follows.

§4. Representations of quantum 
onjuga
y 
lassesIn this se
tion we extend the ground �eld C to the lo
al ring C[[~℄℄ offormal power series in ~. The quantum group U~(g) is a 
ompletion of the
C[q; q−1℄-algebra Uq(g) in the ~-adi
 topology via the extension q = e~. ItsCartan subalgebra U~(h) 
an be generated by h� ∈ h instead of q±h� .Assuming that k is �xed, we suppress the 
orresponding supers
riptsand write simply M� =M k� and V• = V k

• .Proposition 4.1. Suppose that � ∈ C∗
k;reg. Then M� is C[[~℄℄-free.



REPRESENTATIONS OF QUANTUM CONJUGACY CLASSES 37Proof. The proof is similar to [3℄, Proposition 6.2, where it is done for aregular pseudo-paraboli
 Verma module over Uq(sp(n)). The 
ru
ial ob-servation is that for all � ∈ �+
k and � ∈ C∗

k;reg the ve
tors f̂ij(�) with(i; j) ∈ P (�) 
an be in
luded in a PBW basis in U~(g−) if the ring ofs
alars is C[[~℄℄. This follows from Lemma 2.2. �Proposition 4.1 implies that the algebra End(M�) is also C[[~℄℄-free. We aregoing to realize a quantized 
onjuga
y 
lass of the point lim~→0 q2h� ∈ Tas a subalgebra in End(M�).Consider the image of the algebra C~[G℄ in End(M�) under the 
ompo-sition homomorphism
C~[G℄ → Uq(g) → End(M�):Here the algebra Uq(g) is extended over C[[~℄℄. This representation indu
esa 
hara
ter, ��, of the 
enter of C~[G℄. It annihilates the ideal in C~[G℄generated by the kernel �� and by the entries of the minimal polynomialof Q as a linear operator on CN ⊗M�. The 
enter of C~[G℄ is generatedby �k = Trq(Qk) := Tr((�(q2h�)⊗ 1)Qk) ∈ U~(g); k = 1; 2; : : : ;�− = Trq(Q+)− Trq(Q−); for g = so(2n):Here Q± are the images of R21R in End(W±)⊗Uq(g), wereW± ⊂ ∧n(Cn)are �nite dimensional irredu
ible modules of highest weights n−1∑i=1 "i±"n. Inthe 
lassi
al limit, this invariant separates two SO(2n)-
onjuga
y 
lasseswhose eigenvalues are all distin
t from ±1. They are 
ipped by any inver-sion xi ↔ x−1i , i = 1; : : : ; n, and amount to an O(2n)-
onjuga
y 
lass. If

±1 is in the spe
trum, the O(2n)-
onjuga
y 
lass is also an SO(2n)-
lass.In this 
ase, �− is redundant.Theorem 4.2. Let k ⊂ g be a generalized Levi subalgebra, � ∈ C∗
k;reg, andM� =M k� the 
orresponding generalized paraboli
 Verma module. Then



38 TH. ASHTON, A. MUDROVi) the annihilator of M� in C~[G℄ is generated by
(

∏i∈Ik

(Q− xi))ij ; i; j = 1; : : : ; N;��(�k)− N
∑i=1xki ∏�∈R+ q(�+�+"i;�) − q−(�+�+"i;�)q(�+�;�) − q−(�+�;�) ; k = 1; : : : ; N;��(�−)− n

∏i=1(q2(�+�;"i) − q−2(�+�;"i)); g = so(2n);where xi is given by (3.4),ii) the image of C~[G℄ in End(M�) is an equivariant quantization of
C~[Ox℄, x = lim~→0 q2h� ,iii) this quantization is independent of the 
hoi
e of initial point and isan exa
t representation of the unique quantum 
onjuga
y 
lass of x.Proof. The statements i) and ii) for all types of 
lasses are proved in [2{5℄,for 
ertain regular k = k0. For arbitrary k there is an element � of the Weylgroup su
h that R+

k = �(R+
k0). The shifted a
tion �0 7→ �(�0 + �)− � = �takes C

∗
k0;reg to C

∗
k;reg. It preserves the 
entral 
hara
ters and takes the setof eigenvalues of Q on CN ⊗Mh�0 to eigenvalues on CN ⊗Mh� . Moreover,�{xi}i∈Ik0 = {xi}i∈Ik as � relates the orderings ⋖ relative to k0 and k.This implies that the annihilator of M k0� in C~[G℄ vanishes onM k�, that is,there is an equivariant homomorphism C~[G=K0℄ → End(M k�). In orderto 
omplete the proof, we need to show that this homomorphism is anembedding.Sin
e C~[G=K0℄ is a dire
t sum of C[[~℄℄-�nite isotypi
 U~(g)-
omponentsand End(M k�) is C[[~℄℄-free, the image of C~[G=K0℄ is C[[~℄℄-free. The alge-bra C[G=K0℄ has no proper invariant ideals, hen
e the kernel of the map

C~[G=K0℄ → End(M k�) is zero. This 
ompletes the proof. �A
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