
úÁ�ÉÓËÉ ÎÁÕÞÎÙÈÓÅÍÉÎÁÒÏ× ðïíé�ÏÍ 433, 2015 Ç.,Th. Ashton, A. MudrovREPRESENTATIONS OF QUANTUM CONJUGACYCLASSES OF ORTHOSYMPLECTIC GROUPSAbstrat. Let G be the omplex sympleti or speial orthogonalgroup and g its Lie algebra. With every point x of the maximal torusT ⊂ G we assoiate a highest weight module Mx over the Drinfeld-Jimbo quantum group Uq(g) and a quantization of the onjugaylass of x by operators in End(Mx). These quantizations are iso-morphi for x lying on the same orbit of the Weyl group, and Mxsupport di�erent representations of the same quantum onjugaylass. Dediated to P. P. Kulishon the oasion of his 70th birthday
§1. IntrodutionThis paper is a sequel of a series of works on quantization of semisimpleonjugay lasses of a non-exeptional simple Poisson group G, [1{5℄. It isdone in the spirit of [6℄ devoted to G = SL(n) and an be viewed as a uni-form approah to quantization that inludes the results of [1{5℄ as a speialase. The earlier onstruted quantum onjugay lasses were realized byoperators on ertain modules of the quantized universal enveloping algebraUq(g) of the Lie algebra g of the group G. For a large number of examples,this theory is parallel to the U(g)-equivariant quantization of semisimpleadjoint orbit in g ≃ g∗, [1, 7, 8℄. In both ases, G and g, the quantizedalgebra of polynomial funtions is represented on paraboli Verma mod-ules, respetively, over Uq(g) and U(g). However, adjoint orbits in G arein a greater supply than in g. Quantization of some of them requires moregeneral modules, whih annot be obtained by indution from a haraterof the paraboli extension of the stabilizer, [3, 4℄. Moreover, the latter it-self disappears as a natural subalgebra in Uq(g). This observation makesus take a more general look at already onstruted quantum homogeneousKey words and phrases: Quantum groups, deformation quantization, onjugaylasses. 20



REPRESENTATIONS OF QUANTUM CONJUGACY CLASSES 21spaes and onlude that they were obtained through a very speial hoieof the initial point. Suh points are distinguished by their isotropy sub-groups, whose triangular deomposition perfetly mathes the triangulardeomposition of G. All they are of Levi type, as for semisimple orbits in g,and their basis of simple positive roots of is a part of the basis of the totalgroup. That is violated for stabilizers of non-Levi type appearing amongonjugay lasses in G. At the same time, one an apply a generi Weylgroup transformation to the initial point in g and break the nie inlusionof root bases even in the Levi ase. In this respet, a generi initial pointwhose stabilizer is isomorphi to a Levi subgroup has muh similarity withessentially non-Levi one. It makes sense therefore to extend the originalapproah to quantization and onsider all points on the maximal torus (theCartan subalgebra) for initial. They belong to the same onjugay lass ifand only if they lie on the same orbit of the Weyl group. We assoiate amodule of highest weight with every suh point and realize the quantiza-tion of its ojugay lass by linear operators on that module. Points on thesame Weyl group orbit give rise to isomorphi quantizations, whih an beregarded as di�erent representations of the same quantum homogeneousspae. They an also be thought of as di�erent polarizations of the samealgebra.There are other interesting problems related to quantum homogeneousspaes, suh as quantization of assoiated vetor bundles, star produtformulation et. That is well understood for lasses with Levi isotropysubgroups, through the mehanism of paraboli indution, [10{14℄. At thesame time, the di�erene between Levi and non-Levi onjugay lassesis qualitative, and alternative representations of Levi lasses ould be abridge between the two ases. A uniform approah to quantization mayhelp to understand the non-Levi ase too.1.1. Preliminaries. Let G be the omplex orthogonal or sympleti on-neted algebrai group of N × N -matries preserving a non-degenerateskew-diagonal symmetri or, respetively, sympleti form on CN . Given abasis {wi}Ni=1 ∈ CN , we �x the triangular deomposition g = g−⊕h⊕g+ sothat the Cartan subalgebra is represented by diagonal matries, while thenilpotent subalgebras g± by stritly upper (+) and lower (−) triangularmatries. The basis elements wi arry weights "i ∈ h∗ satisfying "i′ = −"i,where i′ = N +1− i. Fix the inner produt (:; :) on h∗ so that the weightswith i 6 N2 form an orthogonal basis. Let n designate the rank of g. Wehoose a basis �+ of simple roots in h∗ as �i = "i − "i+1, i < n, and



22 TH. ASHTON, A. MUDROV�i = "n, �i = 2"n, �i = "n−1 + "n for, respetively, g = so(2n + 1),
g = sp(2n), and g = so(2n). Denote by R and R+ the sets of all andpositive roots of g. When we need to distinguish the roots systems of asubgroup, we mark it with the orresponding subsript.Denote by T the maximal torus of G exponentiating the Cartan subalge-bra h ⊂ g. Given a point x ∈ T , denote by K ⊂ G its entralizer subgroupwith the Lie algebra k, whih is a redutive subalgebra of maximal rankin g. The triangular deomposition of g indues a triangular deomposi-tion k = k+ ⊕ h ⊕ k−. There are inlusions Rk ⊂ Rg and R+

k ⊂ R+
g , butnot �+

k ⊂ �+
g in general. If the latter holds, K is said to be a regularLevi subgroup of G. If K is not isomorphi to a Levi subgroup, we all itpseudo-Levi. We all it regular if a maximal Levi subgroup among thoseontained in K is regular. Similar terminology is used for its Lie algebra k.Colletively we all K and k generalized Levi subgroups and subalgebras.The anonial inner produt (:; :) on the dual vetor spae h∗ identi�esit with h. Let h� ∈ h denote the image of � ∈ h∗ under this isomorphism.Fix a generalized Levi subalgebra k ⊂ g. By c∗k we denote the set of weights� ∈ h∗ suh that (�; �) = 0 for all � ∈ Rk and by c∗k;reg ⊂ c∗k the set ofweights suh that (�; �) = 0 ⇔ � ∈ Rk. For eah � ∈ c∗k the elemente2h� ∈ G ommutes with K, and k is exatly the entralizer Lie algebra ofx = e2h� one � ∈ c∗k;reg.Denote by Ox the onjugay lass of x. The oordinate ring C[Ox℄ isa quotient of C[G℄ by a ertain G-invariant ideal. To desribe this ideal,observe that x determines a 1-dimensional representation �x of the sub-algebra of invariants in C[G℄ (under the onjugation ation). Apart fromSO(2n), it is generated by traes of the matrix powers of (Xij), where Xijare the oordinate funtions on G. In the speial ase of SO(2n) one hasto add one more invariant that is sensible to the ip of the Dynkin dia-gram, in order to separate two SO(2n)-lasses within a O(2n)-lass whoseeigenvalues are all distint from ±1. Furthermore, the matrix X , whenrestrited to Ox, satis�es an equation p(X) = 0 with a polynomial p inone variable. The entries of the matrix p(X) are polynomial funtions inXij . The de�ning ideal of Ox is generated by the entries of p(X) over thekernel of �x, provided p is the minimal polynomial for x.A pseudo-Levi subgroupK ontains a Cartesian produt of two bloks ofthe same type asG. They orrespond to the eigenvalues±1 of the matrix x,whih are simultaneously present in its spetrum. For the sympleti group,it is SP (2m)× SP (2p), where m; p > 1. For the odd orthogonal group, it



REPRESENTATIONS OF QUANTUM CONJUGACY CLASSES 23is SO(2m) × SO(2p + 1), where m > 2, p > 0. For the even orthogonalgroup, one has SO(2m) × SO(2p), where m; p > 2. The lower bounds onm; p ome from the isomorphism SO(2) ≃ GL(1): if the multipliities of
±1 are small, then the isotropy subgroup stays within the Levi type. Wedistinguished suh onjugay lasses as borderline Levi beause they sharesome properties of both types, [5℄.The quantized polynomial algebra C~[Ox℄, ~ = log q, is desribed asfollows. The algebra C[G℄ is replaed with C~[G℄, whih is an equivariantquantization of a speial Poisson braket on G, [9℄. This braket makes Ga Poisson{Lie homogeneous spae over the Poisson group G equipped withthe Drinfeld{Sklyanin braket [15℄, with respet to the onjugation ation.The algebra C~[G℄ admits an equivariant embedding into the orrespond-ing quantum group U~(g) ⊃ Uq(g). As a subalgebra in U~(g), it is generatedby the entries of the matrix Q = (� ⊗ id)(R21R), where R is the univer-sal R-matrix of U~(g) and � stands for the representation homomorphismU~(g) → End(CN ). The fator R21 is obtained by ip of the tensor legs of
R. This embedding makes a U~(g)-module into a C~[G℄-module and therepresentation homomorphism of C~[G℄ automatially U~(g)-equivariant.The subalgebra of invariants in C~[G℄ oinides with its entre, whihis generated by q-traes of the matrix powers of Q (apart from the spe-ial ase of SO(2n), as mentioned above). The \quantum initial points"an be desribed as follows. Let �k = 12 ∑�∈R+

k

� be the Weyl vetor of theisotropy subalgebra k. Let c∗k be the orthogonal omplement to C�+
k . De-note C∗

k;reg = 1
~
c∗k;reg+c∗k+�k−� and C∗

k = 1
~
c∗k+c∗k+�k−�. By onstrution,all � ∈ C∗

k ⊂ 1
~
h∗ ⊕ h∗ satisfy q2(�+�;�) = q(�;�) for all q if � ∈ �+

k while� ∈ C∗
k;reg ⊂ C∗

k satis�es this ondition only if � ∈ �+
k .With � ∈ C∗

k;reg we assoiate a module M� of highest weight �, so thatthe image of C~[G℄ in End(M�) is a quantization of C~[Ox℄. It is a paraboliVerma module if and only if k is a regular Levi subalgebra. Irregular Levisubgroups also appear as stabilizers of initial points in g, so our approahis as well appliable to the U(g)-equivariant quantization of adjoint orbitsin g.The highest weight of M� de�nes a entral harater of C~[G℄, whosekernel is expressed through q-traes of the matrix powers Qk. The matrix
Q yields an invariant operator on CN ⊗M�, and its minimal polynomialis determined by module struture of the tensor produt. The annihilatorofM� is then generated by the entries of the minimal polynomial over the



24 TH. ASHTON, A. MUDROVkernel of the entral harater. The struture of CN ⊗M� is the key pointof this approah, and its analysis takes a great part of this exposition. Ourapproah makes use of some results on the Mikelsson algebras and Shapo-valov inverse [16, 17℄ and is based on the study of the standard �ltrationof C
N ⊗M� in what follows.1.2. Quantized universal enveloping algebra. Throughout the pa-per, g is a omplex simple Lie algebra of type B, C or D (the A-ase hasbeen onsidered in [6℄). We assume that q ∈ C is not a root of unity. De-note by Uq(g±) the C-algebra generated by e±�, � ∈ �+, subjet to theq-Serre relations, [18℄. Denote by Uq(h) the ommutative C-algebra gener-ated by q±h� , � ∈ �+. The quantum group Uq(g) is a C-algebra generatedby Uq(g±) and Uq(h) subjet to the relationsqh�e±�q−h� = q±(�;�)e±�; [e�; e−�℄ = Æ�;� [h�℄q[ (�;�)2 ℄q ;were [z℄q = qz−q−zq−q−1 . We work with the opposite omultipliation as in [18℄:�(e�) = e� ⊗ 1 + qh� ⊗ e�; �(e−�) = e−� ⊗ q−h� + 1⊗ e−�;�(q±h�) = q±h� ⊗ q±h� ;for all � ∈ �+. The quantized Borel subalgebras Uq(b±) ⊂ Uq(g), b± =

g± + h, are generated by Uq(g±) over Uq(h). The universal R-matrix is�xed to be an element of an extended tensor produt of Uq(b−)⊗Uq(b+).Its transposed version due to the opposite omultipliation an be takenfrom [18℄, Theorem 8.3.9.We use the notation ei = e�i , and fi = e−�i for �i ∈ �+ in all asesapart from i = n, g = so(2n + 1), where we set fn = [ 12 ℄qe−�n . Theorresponding ommutation relation translates to [en; fn℄ = [h�n ℄q : Withthis normalization of generators, the natural representation of Uq(g) onthe vetor spae CN is independent of q, see the next setion.
§2. Natural representation of Uq(g)By � we denote the root lattie � = Z�+ with �+ = Z+�+. Let Idesignate the set of integers {1; : : : ; N}. For � ∈ �+ we de�ne P (�) tobe the set of all pairs i; j ∈ I suh that "i − "j = �. Let eij ∈ End(CN ),i; j ∈ I , denote the standard matrix units. The following assignment de�nes



REPRESENTATIONS OF QUANTUM CONJUGACY CLASSES 25a representation of g, whih is equivalent to the natural representation:�(e�) = ∑(l;r)∈P (�) elr; �(f�) = ∑(l;r)∈P (�) erl; �(h"i) = eii − ei′i′ :The ation of the Chevalley generators an be onveniently visualized bythe diagrams
g = so(2n+ 1)

b � : : :w1′ b� wn′

� bwn+1� bwn� � bw1: : :f�1 f�n−1 f�n f�n f�n−1 f�1
g = sp(2n)

b : : :�w1′ b� wn′

� bwn� : : : � bw1f�1 f�n−1 f�n f�n−1 f�1
g = so(2n)

b � : : : �w1′ bwn′+1� bwn′

� �
bwn� bwn−1 : : :� � bw1f�1 f�n−2 f�n−1f�n f�n−1 f�n−2f�n f�1Reverting the arrows one gets the diagrams for positive Chevalley gen-erators of g.We introdue a partial ordering on the integer interval I by settingi 4 j if and only if there is a (moni) Chevalley monomial  ∈ Uq(g−)suh that wj is equal to  wi up to an invertible salar multiplier, wj = wi. This monomial, if exists, represents a path from wi to wj in therepresentation diagram, whih beomes the Hasse diagram of the poset.Suh  is unique, whih is obvious for the series B and C and still truefor D. Indeed, two di�erent paths from wn−1 to wn+2 yield the produtsf�nf�n−1 and f�n−1f�n , whih are the same due to Serre relations. Wedenote this monomial by  ji. The relation ≺ is onsistent with the naturalordering on Z, and oinides with it unless g = so(2n). In the latter asen and n′ are inomparable.



26 TH. ASHTON, A. MUDROVIn what follows, we also use the monomials  ij obtained from  ji byreverting the order of fators. It is lear that  ij =  im mj for any msuh that i 4 m 4 j.De�nition 2.1. We all  ij the prinipal monomial of the pair i 4 j.Their signi�ane will be lear later in the setion devoted to the standard�ltration of tensor produt modules.Remark that all Chevalley monomials of weight "j − "i are obtainedfrom  ij by permutation of fators.We will also need another partial ordering on I that is relative to k:write i ⋖ j if wi and wj ∈ Uq(k−)k−wi. Clearly i ⋖ j if and only if i ≺ jand wi; wj belong to an irreduible k-submodule in CN . Let Ik ⊂ I bethe set of all minimal elements with respet to this ordering and �Ik be itsomplement in I . Elements of Ik label the highest weight vetors of theirreduible k-submodules in CN .2.1. Redued Shapovalov inverse. In this setion, we reall a on-strution of Shapovalov inverse redued to End(CN )⊗ Uq(b−). It is givenin [16℄ for the general linear and orthosympleti quantum groups (seealso [17℄ for the general ase). Note with are that [16,17℄ deal with a dif-ferent version of the quantum group. To adapt those results to the urrentsetting, one has to twist the oprodut by q n
∑i=1hi⊗hi and replae q with q−1.Given � ∈ 1

~
h∗ ⊕ h∗ onsider a 1-dimensional Uq(b±)-module C� withthe representation de�ned by the assignment q±h� 7→ q±(�;�), e� 7→ 0 for� ∈ �+. Denote by M� the Verma module Uq(g) ⊗Uq(b+) C� with theanonial generator v�, [19℄. Let M∗� denote the opposite Verma moduleUq(g)⊗Uq(b−) C−� of the lowest weight −�. There is an invariant pairingM�⊗M∗� → C, whih is equivalent to the ontravariant Shapovalov form onM�, upon an identi�ationM∗� ∼M� through an anti-algebra isomorphismUq(g−) ≃ Uq(g+), [20℄. We also all it Shapovalov form.Reall that a vetor v 6= 0 in a Uq(g)-module V is alled singular if e�v =0 for all � ∈ �+. Singular vetors are de�ned up to a salar multiplier.Redued Shapovalov inverse is a matrix F̂ = j

∑i=1 eij ⊗ f̂ij ∈ End(CN ) ⊗Ûq(b−), where the roof means extension over the �eld of frations of Uq(h).This matrix yields a singular vetor F̂ (wj ⊗ v�) in CN ⊗M� for all j ∈ I .For generi � the matrix F̂ is a homomorphi image of the Shapovalovinverse lifted to Ûq(g+)⊗ Ûq(b−).



REPRESENTATIONS OF QUANTUM CONJUGACY CLASSES 27The entries f̂ij an be expressed through the Chevalley generators asfollows. First introdue fij ∈ Uq(g−) for all i < j, whih are losely relatedto the R-matrix of Uq(g), [16℄. Put fij = fj′i′ = fi for i − 1 = j < N+12andfij = [fj−1; : : : [fi+1; fi℄q : : :℄q; fj′i′ = [: : : [fi; fi+1℄q ; : : : fj−1℄q ; (2.1)for i+ 1 < j 6 N+12 and all g. Furthermore,fnn′ = (q−1 − 1)f2n; fi;n+1 = [fn; fin℄q ; fn+1;i′ = [fn′i′ ; fn℄q ;i < n; g = so(2n+ 1);fnn′ = [2℄qfn; fin′ = [fn; fin℄q2 ; fni′ = [fn′i′ ; fn℄q2 ;i < n; g = sp(2n);fnn′ = 0; fin′ = [fn; fi;n−1℄q ; fni′ = [fn′+1;i′ ; fn℄q ;i < n− 2; g = so(2n);and �nally, for i; j < n,fij′ = q−Æij [fn+1;j′ ; fi;n+1℄qÆij ; N = 2n+ 1fij′ = q−Æij [fnj′ ; fin℄q1+Æij ; N = 2n:There exists an analog of Poinare{Birgho�{Witt (PBW) basis in Uq(g−)generated by ertain elements labeled by R+, whih an be presented asdeformed ommutators of the Chevalley generators, [18℄. The presene ofPBW bases allows to identify Uq(g−) with U(g−) as vetor spaes (andUq(h)-modules). This identi�ation makes Uq(g−) a deformation of U(g−).It follows that fij are deformations of root vetors from g−.Put �i = (�; "i) for i ∈ I and introdue �ij = hi−hj+�i−�j− ||"i−"j ||22 ∈

h + C, Aji = − q−q−1q2�ij−1 ; for all i; j ∈ I suh that i ≺ j. We all a sequene~m = (m1; : : : ;mk) a route from m1 to mk if m1 ≺ : : : ≺ mk. To everyroute ~m we assign the produtsf~m = fm1;m2 : : : fmk−1;mk ; Aj~m = Ajm1 : : : Ajmk ;where mk ≺ j. Given another route, ~l = (l1; : : : ; ls) with ~m ≺ ~l mean-ing mk ≺ l1, there is a route (~m;~l) = (m1; : : : ;mk; l1; : : : ; ls). De�ne~�i = �i + ||"i||22 for all i ∈ I . Then f̂ij = 0 if i > j, f̂ii = 1 andf̂ij = ∑i4~m≺j f~m;jAj~mq�ij−~�i+~�j for i < j, where the summation is done



28 TH. ASHTON, A. MUDROVover all routes (~m; j) from i to j. Note that the fator q�ij−~�i+~�j omesfrom a di�erent version of the quantum group adopted in [6, 17℄.Lemma 2.2. Suppose that � ∈ �+
k ⊂ R+

g and (i; j) ∈ P (�). For all� ∈ C∗
k;reg, the speialization f̂ij [�ij ℄q at weight � is a deformation of alassial root vetor, −f� ∈ g−.Proof. Present � as � = 1

~
�0 + �1 ∈ C∗

k;reg, �i ∈ h∗. Observe that a)e2�0i = e2�0j for all � = "i − "j ∈ �+
k one �0 ∈ c∗k and b) there is no ksuh that i ≺ k ≺ j and e2�0i = e2�0k = e2�0j if �0 ∈ c∗k;reg. Furthermore,write f̂ij [�ij ℄q = −fij − ∑i≺~m~≺j fi;~m;jAj~m;jq~�j−~�i , where the sum is takenover non-empty routes ~m. For all k subjet to i ≺ k ≺ j, the denominatorin Ajk|� = − q−q−1q2�kj |�−1 tends to e2�0k−2�0j − 1 6= 0 as q → 1. Therefore, thesum vanishes modulo ~, and fij tends to a lassial root vetor. �De�ne elements �fij = f̂ij ∏i4k≺j[�kj ℄q ∈ Uq(b−) for all i ≺ j. They satisfythe identitye� �fij = −

∑(l;r)∈P (�) Æl;iq−(�;"l) �fr;j [�ij ℄q mod Uq(g)g−; ∀� ∈ �+; (2.2)Fix (i; j) ∈ P (�) for � ∈ R+ and suppose that � = 1
~
�0 + �1 with �i ∈ h∗satis�es the ondition [�ij |�℄q = 0 = [�j′i′ |�℄q . Then there is a singularvetor v�−� of weight � − � in the Verma module M�. One an takev�−� = �fijv� provided it is not zero, sine e� �fijv� = 0 for all � ∈ �+ by(2.2). If �fijv� = 0 at some �, one still an obtain v�−� from �fijv� (whih ispolynomial in e±2(�0;�), � ∈ �+, for �xed �1 and q) via renormalization,sine singular vetors are de�ned up to a salar multiplier. In partiular, if� ∈ k for some generalized Levi subalgebra k and � ∈ C∗

k;reg, then v�−� ≃f�v� mod ~, by Lemma 2.2. Note that �fijv� ≃ �fj′i′v� if i 6= j′, as followsfrom the theory of Mikelsson algebras for quantum groups, [21℄.
§3. Standard filtration on CN ⊗M�In what follows, we work out a tool for our analysis of CN ⊗M�, whereM� is a generalized paraboli Verma module of weight �. In this setion,we do it for the ordinary Verma module M� = Uq(g) ⊗Uq(b+) C� with� ∈ 1

~
h∗ ⊕ h∗. An essential part of our tehnique is a diagram language,



REPRESENTATIONS OF QUANTUM CONJUGACY CLASSES 29whose elements already appeared in [2, 4℄ and whih is given a systematitreatment here. The ase of gl(N) was already studied in [6℄, so we doit for orthogonal and sympleti g. We onsider the standard �ltrationV• = (Vi)Ni=1, {0} = V0 ⊂ V1 ⊂ : : : ⊂ VN = CN ⊗ M�, where Vi isgenerated by {ej ⊗ v�}, j 6 i. Its graded module grV• is a diret sum ofVj=Vj−1, whih are isomorphi to the Verma modules M�+"j (the proofof [22℄, Lemma 5, readily adapts to quantum groups).Given � ∈ Z+�+ we de�ne 	� ⊂ Uq(g−) to be the subset of Chevalleymonomials of weight �. We assume that a pair (i; j) ∈ P (�) is hosen forthis setion. Having �xed an order of elementary fators in  , we regardit a as path from v� to  v�. We assoiate with  v� a graph H withnodes {vk} ∈M�, vj = v�, vi =  v�, and arrows being negative Chevalleygenerators ating on M�. For  =  ij , this path is unique in almost allases (exept for type D, where we eliminate the ambiguity by �xing theorder as f�n−1f�n). For prinipal  , we are onerned not just with theterminating node  v�, but also in all intermediate nodes. On the ontrary,for non-prinipal  , only  v� is important for us, while the spei� pathis immaterial.We say that f� has length 2 if � = �n and g = so(2n). All othergenerators are assigned with length 1. If all fators in  have length 1, wewrite  = �i : : : �j−1 with �k ∈ {f�}�∈�+ , and we set vk = �kvk+1. Thenthe diagram H is set to bevib � b : : :�vi+1 b� vj−1� bvj�i ��i+1 �j−2 �j−1Now suppose that  has (exatly one) fator of length 2. Write  =�i : : : �k�k+2 : : : �j−1, where �k = f�n (there are j − i− 1 fators). Thenthe graph H isvib � : : : � bvk� ×�vk+1 bvk+2 : : :� � bvj�i �k−1 �k+2�k = f�n �j−1Here we distinguish two ases. If  =  ij , then �k−1 = f�n−1 , and thedashed arrow f�n−1 is inluded in H . The node vk+1 is set to f�n−1vk+2.For non-prinipal  , the node vk+1 is arbitrary (immaterial) and there isno arrow from vk+2 to vk+1.



30 TH. ASHTON, A. MUDROVWe also onsider a graph Vij , whih is a part of the natural representa-tion diagram of Uq(g−) that inludes all paths from wi to wj . We transposeit to make a vertial graph oriented from top wi to bottom wj .We denote by Arr(vk) the set of arrows originated at vk and similarlyArr(wm) the set of arrows from wk. By onstrution, an arrow from nodem to node k has length k −m.Finally, we de�ne tensor produt D = H ⊗ Vij as a graph on atwo-dimensional lattie whose nodes are wmk = wk ⊗ vm ∈ CN ⊗M� andarrows are Arr(wmk ) = Arr(wk)⊗id⋃ id⊗Arr(vm), The diagram is orientedso that H -arrows and Vij -arrows are direted, respetively, leftward anddownward; the origin wji is in the right upper orner. We need only thetriangular part of the diagram inluding the nodes vkm with k+m > i+ j.The set {wkk}jk=i is alled prinipal diagonal. With  =  ij , the node wkkon the prinipal diagonal is wk ⊗  kjv�, k = i; : : : ; j. Here is an exampleof diagram D with all arrows of length 1:wii wi+1i wi+2i wj−1i wji� � � : : : � �
�i �i+1 �i+2 �j−2 �j−1

? ? ? ?wi+1i+1 wi+2i+1 wj−1i+1 wji+1� � : : : � �

? ? ?wi+2i+2 wj−1i+2 wji+2� : : : � �

? ?... ...`

`

`

? ?

?

wj−1j−1 wjj−1� wjjFig. 1The arrows represent the ation of the Chevalley generators on the tensorfators CN (vertial) and M� (horizontal). The following property of thisation readily follows from the oprodut of the Chevalley generators: sup-pose that � ∈ Arr(vm) and � 6∈ Arr(wk). If vr = �vm, then �(wmk ) = vrk,



REPRESENTATIONS OF QUANTUM CONJUGACY CLASSES 31i.e., the horizontal arrow yields the ation of � on the entire tensor produt.In general, �(wmk ) = vrk mod Cvms , where ws = �wk .Suppose that nodes of a olumn segment BC (with C the bottom node)belong to a Uq(g)-submoduleM ⊂ CN⊗M�. Let � be a Chevalley genera-tor assigned to a horizontal arrow with the origin at this olumn. Considerthe following situations:(1) The length of � is 1.(a) There is no vertial �-arrow with the origin at C.(b) There is a vertial �-arrow with the origin at C.(2) The length of � is 2, and the size of BC is 2 or greater. Let C ′ andC ′′ be the nodes 1 and 2 steps up, respetively.(a) There is no vertial �-arrow with the origin at C and at C ′.(b) There is a vertial �-arrow with the origin either at C or atC ′.
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C′′D 2.b)De�nition 3.1. We all the transition from olumn BC to olumn ADan elementary move or simply move of the length equal to the length of �-arrow. The elementary moves 1.a) and 2.a) are alled left. The elementarymoves 1.b) and 2.b) are alled diagonal.Lemma 3.2 (Elementary moves). Under the onditions above, the olumnsegment AD lies in M .Proof. Clear. �We will use elementary moves to reah a node or olletion of nodes in thediagram starting from the rightmost olumn, whih is assumed to be in asubmodule M . That way we prove that the target nodes are in M .Let D′ ⊂ D denote the subgraph whose nodes form the triangle lyingabove the prinipal diagonal, i.e. {wmk }k+m>i+j .Lemma 3.3. Suppose that  =  ij is a prinipal monomial. Then thelinear span of D′ lies in Vj−1.



32 TH. ASHTON, A. MUDROVProof. Suppose that all horizontal arrows in D′ have length 1, as e.g. for
g = so(2n+1), and g = sp(2n). Consider the diagramD on Fig.3.a, whereD′ is the triangle ABC. The olumn BC belongs to Vj−1 by onstrution.All arrows have length 1. Applying elementary diagonal moves we provethat ABC is in Vj−1.Now suppose there is a horizontal arrows of length 2. Assuming i 6n − 1, n′ + 1 6 j, onsider the diagram D where the triangle D′ isdenoted by ABC (f. Fig.3.b). The rightmost olumn BC belongs to Vj−1by onstrution. For eah node in the trapezoid JBCL there is a horizontalarrow of length 1. Those arrows are distint from vertial arrows for allnodes in the line L′M ⊂ JBCL. Apply the orresponding left moves tothe olumns rested on L′M . This operation proves that trapezoid HBCIis in Vj−1. Then apply the diagonal move of length 2 to the olumn JL andget FG ⊂ Vj−1. All arrows in the triangle ADE have length 1, thereforeADE ⊂ Vj−1, via diagonal moves.The ase i = n, n′ + 1 6 j dysplayed on Fig.3.a is similar to alreadyonsidered: all horizontal arrows within D′ are of length 1. The ase i 6n − 1, n′ = j is displayed on Fig.3.b: Apply the diagonal move of length1 to the olumn BC ′ and get DE ⊂ Vj−1. Then apply the diagonal moveof length 2 to BC ′ and get EG ⊂ Vj−1. Thene the entire triangle AFGis in M . �Proposition 3.4. Suppose  ∈ 	�, (i; j) ∈ P (�), and  6=  ij . Thenwi ⊗  v� ∈ Vj−1.Proof. Consider a fatorization  =  ′ mj , where m is some integer sat-isfying i ≺ m � j and  ′ ∈ 	"i−"m . Choose m to be the smallest possible.In the fatorization  ij =  im mj let � be the rightmost Chevalley fatorin  im, while �′ the rightmost fator in  ′. Due to the hoie of m, � 6= �′.Further we onsider algebras of types B;C separately from D.In diagrams of types B and C, all arrows have length 1, Fig.3.a. Allnodes in the north-east retangle CDIH are the same as inD ij . ThereforeCDGF is in Vj−1, by Lemma 3.3. Sine �′ 6= �, the left move via �′maps CF onto BE, modulo CF ⊂ Vj−1, proving BE ⊂ Vj−1. Applyingdiagonal moves to BE we get the triangle ADE ⊂ Vj−1 inluding the nodeA, whih is wii = wi ⊗  v�. Now we look at the type D. We an assumethat i 6 n − 1; n′ + 1 6 j, sine otherwise this ase redues to alreadyonsidered. If the length of �′ is 1, the reasoning is the same as above.The only di�erene is that one may have to use a diagonal move of length
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REPRESENTATIONS OF QUANTUM CONJUGACY CLASSES 35Proposition 3.5. Suppose that i; j ∈ I are suh that i ≺ j. Thenwi ⊗  ijv� = (−1)||i−j||q−(�;#ij)wj ⊗ v� mod Vj−1: (3.3)Proof. Suppose that � ∈ �+ and (i; k) ∈ P (�). By Lemma 3.3, the nodewi ⊗  kjv� ∈ D′ lies in Vj−1 Applying �f� = f� ⊗ q−h� + 1 ⊗ f� towi ⊗  kjv� we getwi ⊗  ijv� = q−(�;�)−(�;"j−"k)wk ⊗  kjv�= q−(�;#ij−#kj)wj ⊗  kjv� mod Vj−1for all k 4 j. Here we used f�wi = wk and f� kj =  ij for all k 4j. Proeeding reursively along the path from i to j with the boundaryondition #jj = 0 we omplete the proof. �3.1. Generalized paraboli Verma modules. Fix a generalized Levisubalgebra k ⊂ g and a weight � ∈ C∗
k;reg. Let Mh� denote the Vermamodule of highest weight �. For eah � ∈ �+

k , there is a singular vetorv�−� ∈Mh� generating a submodule Mh�−� ⊂Mh� , f. Setion 2.1. Set M k�to be the quotient of Mh� by the submodule ∑�∈�+
k

Mh�−�.We denote by V k
• = (V ki )Ni=1 a �ltration of CN ⊗M k� by the modules V kigenerated by wk ⊗ v�, k = 1; : : : ; i. For k = h it is the standard �ltrationonsidered in the previous setions. Clearly V k

• is obtained from V h
• throughthe projetion CN ⊗ Mh� → CN ⊗ M k�. Further we show that V kj =V kj−1vanishes one j ∈ �Ik and q is lose to 1.Proposition 3.6. For eah � ∈ C∗

k;reg there is a neighborhood 
 of 1 in Csuh that the submodule V kj is generated by wi ⊗ v�, i 6 j, i ∈ Ik, for allq ∈ 
.Proof. For all j denote by V ′j ⊂ V kj the submodule generated by all wi⊗v�with i 6 j and i ∈ Ik. We aim to prove that V ′j = V kj .The statement is trivial for j = 1. Suppose it is true for all i < j. Ifj ∈ Ik, then V kj is generated by wj ⊗ v� and by V kj−1 = V ′j−1, hene theproof. Suppose that j ∈ �Ik. Choose the greatest i suh that i ⋖ j. Then(i; j) ∈ P (�) for some � ∈ �+
k . By Lemma 2.2 there exists an open set
 ⊂ C ontaining 1 suh that the prinipal term in �fijv� ≃ v�−� is not zerofor all q ∈ 
. Then wj⊗v� ≃ wi⊗ ijv� ≃ wi⊗ �fijv� = 0 modulo V kj−1, by



36 TH. ASHTON, A. MUDROVPropositions 3.5 and 3.4. By the indution assumption, we onlude thatwj ⊗ v� ∈ V ′j−1 and V kj = V ′j−1 = V ′j . �Corollary 3.7. The graded module grV k
• is isomorphi to the diret sum

⊕j∈Ik
V kj =V kj−1.Reall that the tensorR21R ommutes with �(x) for all x ∈ Uq(g), [15℄.Proposition 3.8. The invariant operator Q = (� ⊗ id)(R21R) preservesthe standard �ltration. It is salar on eah graded omponent V kj =V kj−1,j ∈ Ik, with the eigenvaluexj = q2(�+�;"j )−2(�;"1)+||"j ||2−||"1||2 ; (3.4)unless V kj =V kj−1 6= {0}.Proof. The operator Q an be presented as �(z)(z−1⊗z−1), for a ertainentral element z, [23℄. ThereforeQ is a salar multiple on every submoduleand fator module of highest weight of V hN . Now we do indution on j. Thesubmodule V h1 is of highest weight, thene it is Q-invariant. Suppose thatV hj−1 is Q-invariant for j > 1. Sine Q is salar on V hj =V hj−1, the submoduleV hj is Q-invariant.The eigenvalue of Q on V hj =V hj−1 is determined by its highest weightand equal to (3.4), for all j ∈ I , [2℄. So the proposition is proved for k = h.The general ase is obtained from this by taking projetion to CN ⊗M k�and applying Corollary 3.7. �It follows that Q satis�es the polynomial equation ∏j∈Ik

(Q− xj) = 0 on
CN ⊗M k�. We will not address the issue if V kj =V kj−1 survive for all j ∈ Ikas we bypass it in what follows.

§4. Representations of quantum onjugay lassesIn this setion we extend the ground �eld C to the loal ring C[[~℄℄ offormal power series in ~. The quantum group U~(g) is a ompletion of the
C[q; q−1℄-algebra Uq(g) in the ~-adi topology via the extension q = e~. ItsCartan subalgebra U~(h) an be generated by h� ∈ h instead of q±h� .Assuming that k is �xed, we suppress the orresponding supersriptsand write simply M� =M k� and V• = V k

• .Proposition 4.1. Suppose that � ∈ C∗
k;reg. Then M� is C[[~℄℄-free.



REPRESENTATIONS OF QUANTUM CONJUGACY CLASSES 37Proof. The proof is similar to [3℄, Proposition 6.2, where it is done for aregular pseudo-paraboli Verma module over Uq(sp(n)). The ruial ob-servation is that for all � ∈ �+
k and � ∈ C∗

k;reg the vetors f̂ij(�) with(i; j) ∈ P (�) an be inluded in a PBW basis in U~(g−) if the ring ofsalars is C[[~℄℄. This follows from Lemma 2.2. �Proposition 4.1 implies that the algebra End(M�) is also C[[~℄℄-free. We aregoing to realize a quantized onjugay lass of the point lim~→0 q2h� ∈ Tas a subalgebra in End(M�).Consider the image of the algebra C~[G℄ in End(M�) under the ompo-sition homomorphism
C~[G℄ → Uq(g) → End(M�):Here the algebra Uq(g) is extended over C[[~℄℄. This representation induesa harater, ��, of the enter of C~[G℄. It annihilates the ideal in C~[G℄generated by the kernel �� and by the entries of the minimal polynomialof Q as a linear operator on CN ⊗M�. The enter of C~[G℄ is generatedby �k = Trq(Qk) := Tr((�(q2h�)⊗ 1)Qk) ∈ U~(g); k = 1; 2; : : : ;�− = Trq(Q+)− Trq(Q−); for g = so(2n):Here Q± are the images of R21R in End(W±)⊗Uq(g), wereW± ⊂ ∧n(Cn)are �nite dimensional irreduible modules of highest weights n−1∑i=1 "i±"n. Inthe lassial limit, this invariant separates two SO(2n)-onjugay lasseswhose eigenvalues are all distint from ±1. They are ipped by any inver-sion xi ↔ x−1i , i = 1; : : : ; n, and amount to an O(2n)-onjugay lass. If

±1 is in the spetrum, the O(2n)-onjugay lass is also an SO(2n)-lass.In this ase, �− is redundant.Theorem 4.2. Let k ⊂ g be a generalized Levi subalgebra, � ∈ C∗
k;reg, andM� =M k� the orresponding generalized paraboli Verma module. Then



38 TH. ASHTON, A. MUDROVi) the annihilator of M� in C~[G℄ is generated by
(

∏i∈Ik

(Q− xi))ij ; i; j = 1; : : : ; N;��(�k)− N
∑i=1xki ∏�∈R+ q(�+�+"i;�) − q−(�+�+"i;�)q(�+�;�) − q−(�+�;�) ; k = 1; : : : ; N;��(�−)− n

∏i=1(q2(�+�;"i) − q−2(�+�;"i)); g = so(2n);where xi is given by (3.4),ii) the image of C~[G℄ in End(M�) is an equivariant quantization of
C~[Ox℄, x = lim~→0 q2h� ,iii) this quantization is independent of the hoie of initial point and isan exat representation of the unique quantum onjugay lass of x.Proof. The statements i) and ii) for all types of lasses are proved in [2{5℄,for ertain regular k = k0. For arbitrary k there is an element � of the Weylgroup suh that R+

k = �(R+
k0). The shifted ation �0 7→ �(�0 + �)− � = �takes C

∗
k0;reg to C

∗
k;reg. It preserves the entral haraters and takes the setof eigenvalues of Q on CN ⊗Mh�0 to eigenvalues on CN ⊗Mh� . Moreover,�{xi}i∈Ik0 = {xi}i∈Ik as � relates the orderings ⋖ relative to k0 and k.This implies that the annihilator of M k0� in C~[G℄ vanishes onM k�, that is,there is an equivariant homomorphism C~[G=K0℄ → End(M k�). In orderto omplete the proof, we need to show that this homomorphism is anembedding.Sine C~[G=K0℄ is a diret sum of C[[~℄℄-�nite isotypi U~(g)-omponentsand End(M k�) is C[[~℄℄-free, the image of C~[G=K0℄ is C[[~℄℄-free. The alge-bra C[G=K0℄ has no proper invariant ideals, hene the kernel of the map
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