
úÁ�ÉÓËÉ ÎÁÕÞÎÙÈÓÅÍÉÎÁÒÏ× ðïíé�ÏÍ 432, 2015 Ç.A. Khvedelidze, I. RogojinON THE GEOMETRIC PROBABILITY OFENTANGLED MIXED STATESAbstrat. The state spae of a omposite quantum system, theset of density matries P+, is deomposable into the spae of sepa-rable states S+ and its omplement, the spae of entangled states.An expliit onstrution of suh a deomposition onstitutes theso-alled separability problem. If the spae P+ is endowed with aertain Riemannian metri, then the separability problem admits ameasurement-theoretial formulation. In partiular, one an de�nethe \geometri probability of separability" as the relative volume ofthe spae of separable states S+ with respet to the volume of allstates. In the present note, based on the Peres{Horodeki positivepartial transposition riterion, the measurement theoretial aspetsof the separability problem are disussed for bipartite systems om-posed either of two qubits or of qubit-qutrit pairs. The neessaryand suÆient onditions for the 2-qubit state separability are for-mulated in terms of loal SU(2)⊗SU(2) invariant polynomials, thedeterminant of the orrelation matrix, and the determinant of theShlienz{Mahler matrix. Using the projetive method of generationof random density matries distributed aording to the Hilbert{Shmidt or Bures measure, the separability (inluding the abso-lute separability) probabilities of 2-qubit and qubit-qutrit pairs havebeen alulated.
§1. IntrodutionThe word \entanglement", the \vershr�ankung", in the original Aus-trian phrasing, was introdued in a glossary of quantum mehanis byErvin Shr�odinger at the Thirties of last entury. The name owes its ap-pearane to a strange type of orrelations in omposite systems preditedby newly reated quantum theory [1℄. The existene of \entangled" statesin quantum theory seemed very problemati and mysterious sine its inep-tion, but at present it is experimentally veri�ed and, moreover, pratiallyused in a variety of quantum engineering appliations. Undoubtedly, nowa-days the entanglement found its own plae among the fundamental notionsKey words and phrases: geometri probability, qubit, entanglement spae.274



ON THE GEOMETRIC PROBABILITY 275of quantum physis and gains the popularity similar words \energy" and\fore" had in XIX-th entury.Being highly ounter intuitive and strange ourrene, the entangle-ment has a transparent mathematial formulation. Mathematis ertainlydispels the aura of mystery, reduing the understanding of orrelations be-tween parts of omposed system to the analysis of a set orretly statedalgebrai problems. One of the primary importane, the so-alled \sep-arability problem" is formulated as follows. Consider a system omposedfrom two dA and dB { dimensional subsystems with the Hilbert spaesHdAand HdB respetively. Aording to the axioms of quantum mehanis anystate of the omposed system is given by the density matrix % ∈ P+, thatats on the Hilbert spae of the tensor produt form:
HdA dB = HdA ⊗HdB :For a given HdA ⊗ HdB fatorization an element %sep ∈ P+ belongs tothe subset of separable states %sep ∈ S+ if and only if %sep admits theonvex deomposition of r tensor produt states with some probabilitydistribution !k [2℄: %sep = r∑k=1!k %Ak ⊗ %Bk : (1)The operators %Ak and %Bk in (1) denote the density operators of subsystemsA and B respetively. The states omplementary to the separable ones arenamed the entangled.1The de�nition (1) is an impliit and therefore the question of whethera given state is separable or entangled is worthy of further attention. Evenfrom the �rst glane beomes lear that the \separability" question ishighly intriate. Moreover, as it was shown by Gurvits (f. [4, 5℄) even fora bipartite system the separability problem is ategorized omputationallyas NP-hard.1Note that the representation (1) is not unique and even knowing that state isseparable to �nd its deomposition is not an easy task. Furthermore, speaking aboutthe separability, one has always have in mind that a �xed fatorization HdA ⊗HdB hasbeen piked out. Via the global unitary transformation U ating on the total spae, onean swith to another fatorization, U (HdA ⊗HdB )U+ . As result, a former separablestate an appear as entangled one and vie versa (f. disussion in [3℄).



276 A. KHVEDELIDZE, I. ROGOJINComplexity of the problem brings into play alternative approahes. Par-tiularly, onsidering the state spae of quantum mehanial system as ob-jet with measure (f. [6, 7℄), the \separability problem" an be reshapedinto the probability issue [8, 9℄.Below adopting the above approah we onsider in details a bipartitesystems onsisted from 2 and 3-level subsystems. Equipping the state spaewith a ertain measure the relative volume of entangled states with respetto the all possible states will be omputed
PE = Vol(Spae of entangled states)Vol(Spae of all states) : (2)This number de�nes the geometri probability of entanglement, whih anbe treated as a ertain measure for \apaity of quantumness" of the sys-tem.The artile is organized as follows. In setions 2 and 3 the basi elementsfrom mathematial desription of �nite-dimensional quantum systems aregiven. Latter, using this bakground, the notion of the separability proba-bility of states is introdued. Based on the Peres{Horodeki positive partialtransposition riterion, the neessary and suÆient onditions for 2-qubitstate separability are formulated in terms of the loal SU(2)⊗SU(2) salars,determinants of orrelation matrix and Shlienz{Mahler matrix [10℄. In thesetion 3, adopting the projetive method of generation of random densitymatrix the probability aspets of the separability harateristis of 2-qubitand qubit-qutrit pairs are studied. The later inlude determination of theseparability and absolute separability probability, as well as the numeri-al evaluation of distributions of separable matries with respet to thedeterminants of the orrelation and the Shlienz-Mahler matries.

§2. SettingsBelow the relevant de�nitions and notions, inluding the basi algebraiand geometri harateristis of a omposite quantum systems are given ina from suitable for the introdution of the probability of quantum states.Note that only a �nite dimensional quantum systems are onsidered.2.1. State spae. At the beginning of the \Golden Era" of quantummehanis John von Neuman and Lev Landau, beame aware of limitationsfor appliability of the Shr�odinger's 	-funtion, introdue the notion of a\mixed quantum state" [11, 12℄. The mixed state is haraterized by theself-adjoint, positive semi de�nite \density operator" ating on the Hilbert



ON THE GEOMETRIC PROBABILITY 277spae of quantum system. For the non-relativisti n-dimensional systemthe Hilbert spae H is Cn and the density operator an be identi�edwith n × n Hermitian, unit trae, positive semi-de�nite matrix %. Thismatrix, termed the density matrix, ompletely spei�es the state of n-levelquantum system. All possible density matries form the set P+ { the statespae of n-dimensional quantum system.2.1.1. State spae as a semi-algebrai variety. The spae of Hermitianmatries is topologially isomorphi to Rn2 . Due to the positive semi-de�niteness any density matrix % represents a point of semi-algebrai va-riety, P+(Rn2−1) of aÆne subspae, de�ned by a unit trae equationTr% = 1. Nevertheless of a long story of studies of �nite dimensional sys-tems it is very little known about P+(Rn2−1) for arbitrary n. It turns outthat even for small n the struture of P+(Rn2−1) is quite umbersome.2
•Density matries and universal enveloping algebra U(su(n))• Thestate spae has useful algebrai desription in terms of the universal en-veloping algebra U(su(n)) of the Lie algebra su(n). Let e1; e2; : : : ; en2−1form the basis for su(n)

su(n) = n2−1∑i=1 �i ei: (3)Consider elements from U(su(n)) of the following form:% = 1n  In×n + {√n(n− 1)2 n2−1∑i=1 �i ei ; (4)with a real (n2 − 1)-dimensional vetor � = (�1; �2; : : : ; �n2−1) : As it wasmentioned above, expression (4) represents an element of the spae ofstates P+ if the vetor � is subjet to a �nite set of polynomial inequalities:f�(�) > 0: (5)Moreover, it turns that the semi-algebrai set desribed by (5) admitsrepresentation with the polynomial funtions f� that are invariant under2The neighbourhood of a generi point of P+(Rn2−1) is loally isometri to(SU(n)=U(1)n−1) × Dn−1, where the omponent Dn−1 is (n − 1)-dimensional dis(f. [13℄).



278 A. KHVEDELIDZE, I. ROGOJINthe adjoint ation of the unitary group SU(n) on P+(Rn2−1) . More pre-isely, onsider SU(n)-invariant polynomial ring R[P+℄SU(n) and a set ofhomogeneous polynomials P = (t1; t2; : : : ; tn), that form its integrity basis
R[�1; �2; : : : ; �n2−1℄SU(n) = R[t1; t2; : : : ; tn℄: (6)Then the spae of states P+(Rn2−1) for arbitrary n is semi-algebrai sub-set given by inequalities of the following typepi(t1; t2; : : : ; tn) > 0 ; i = 1; 2; : : : ; s (7)where pi ∈ R[P+℄SU(n). Below, analysing requirements of the Hermiityand semi-positivity for density matries, the expliit form of inequalities (7)will be given. With this aim a brief digression, devoted to the onstrutionof the integrity basis P = (t1; t2; : : : ; tn) from elements of the universalalgebra enter Z(su(n)) is in order. DIGRESSION-1

• SU(n)-invariane • Constrution of the adjoint SU(n)-invariantsfrom the elements of Z(su(n)) is well known proedure. Referring to theliterature on this subjet (see e.g., [14℄) we briey state the results anddisuss onstraints on these invariants due to the Hermiity and positivesemi-de�niteness of density matries. We are looking for polynomials in�1; �2; : : : ; �n2−1 variables�(�) =∑ i1···ir �i1�i2 : : : �ir ; (8)whih are invariant under the adjoint ation�(�) = �((Adg)T �) ; (9)where (Adg)T is the transpose matrix of adjoint operator alulated in thebasis ei1 ; ei2 ; : : : ; en2−1:g ei g−1 = (Adg )ijej ; g ∈ SU(n) : (10)These polynomials are in one to one orrespondene with the elements ofenter Z(su(n))
Cr =∑ 1r! i1···ir ∑�∈Sr ei�(1)ei�(2) : : : ei�(r) ; (11)where Sr is the group of permutations of 1; 2; : : : r.Furthermore, the n− 1 independent Casimir operators Cr in (11) serveas a resoure for the integrity basis of the polynomial ring R[P+℄SU(n).



ON THE GEOMETRIC PROBABILITY 279The salars appeared from above isomorphism are ommonly referred asCasimir invariants. The �rst Casimir invariants up to six order in � aregiven:
C2 = (n− 1) � · � (12)
C3 = (n− 1) (� ∨ � ) · � (13)
C4 = (n− 1) (� ∨ � ) · (� ∨ � ) (14)
C5 = (n− 1)((� ∨ � ) ∨ (� ∨ � )) · � (15)
C6 = (n− 1) (� ∨ � ∨ � )2 (16): : : : : : ;where (U ∨ V )a := � dabUaVb ;dab are symmetri struture onstants for su(n) and � = √n(n− 1)=2is normalization onstant. Another, an equivalent set of invariants, usefulfrom a omputational point of view, is given by the so-alled trae in-variants, power series in eigenvalues, {�} = �1; �2; : : : ; �n. of the densitymatrix tk := tr(%k) = �k1 + �k2 + · · ·+ �kn ; k = 1; 2; : : : ; n: (17)Below we formulate requirements of Hermiity and semi-positivity of den-sity matrix diretly in terms of (17).

•Hermiity of % in terms of the SU(n)-invariants • Sine % is a Her-mitian matrix all solutions (eigenvalues {�} ) of the harateristi equationdet ‖�− %‖ = �n − S1�n−1 + S2�n−2 − · · ·+ (−1)n Sn = 0 ; (18)are real numbers. In aordane with the lassial result a ertain infor-mation on the properties of the roots an be extrated from the so-alledB�ezoutian, the matrix B = �T�, onstruted from the Vandermonde ma-trix � =  1 �1 �21 : : : �n−111 �2 �22 : : : �n−121 �3 �23 : : : �n−13... ... ... ... ... ...1 �n �2n : : : �n−1n



: (19)The entries of the B�ezoutian are simply the trae invariants:Bij = ti+j−2 : (20)



280 A. KHVEDELIDZE, I. ROGOJINThe B�ezoutian aommodate information on number of distint roots (viaits rank), numbers of real roots (via its signature), as well as the Hermiityondition. A real harateristi polynomial has all its roots real and distintif and only if the B�ezoutian is positive de�nite. Here we are interesting onlyin situation of a generi density matries (the spae of degenerate matrieswith oiniding roots are measure zero sets). For this ase the positivityof B�ezoutian redues to the requirement,det ‖B‖ > 0 : (21)Sine det ‖B‖ = (det ‖�‖)2 ; the determinant of the B�ezoutian is nothingelse as the disriminant of the harateristi equation (18)Dis =∏i>j (�i − �j)2 ; (22)rewritten in terms of the trae polynomialsDis(t1; t2; : : : ; tn) := det ‖B‖: (23)Dependene of disriminant on trae invariants only up to order n pointedin left side of (23) assumes that all higher trae invariants tk with k > n in(20) are expressed via polynomials in t1; t2; : : : ; tn, (the Cayley{HamiltonTheorem).
•Semi-positivity of % in terms of the SU(n)-invariants• Positivesemi-de�niteness implies the non-negativity of roots of (18):�k > 0 ; k = 1; 2; : : : ; n: (24)Inequalities (24) are not omputationally eÆient, the eigenvalues {�}are non-polynomial SU(n)-invariants. Fortunately, it it is known (see e.g.[15, 16℄ and referenes therein), that instead of (24) the equivalent set ofinequalities an be formulated in terms the �rst n-symmetri polynomialsin eigenvalues of % : Sk > 0 ; k = 1; 2; : : : ; n: (25)Opposite to eigenvalues, the oeÆients Sk are SU(n)-invariant polynomialfuntions of density matrix elements and thus are expressible in terms ofthe trae invariants. An elegant expression for Sk is given by the following



ON THE GEOMETRIC PROBABILITY 281determinant Sk = 1k! det t1 1 0 · · · 0t2 t1 2 · · · 1t3 t2 t1 · · ·... ... ... ... ... ... k − 1tk tk−1 tk−2 · · · t1



: (26)Summarizing, the algebrai set of inequalities in SU(n)-invariants de-sribing the state spae P+(Rn2−1), as the semi-algebrai variety of theaÆne subspae Tr% = 1 ; read:Dis > 0 ; Hermiity ; (27)Sk > 0 ; Semi-positivity : (28)Now we are in position to pose the following question: Is the spae ofseparable states S+ the semi-algebrai set as well? Nevertheless, of manye�orts performed during last deades, a omplete answer for a generi aseis unknown yet. But, for a simplest bipartite system 2⊗ 2, omposed frompair of 2-dimensional subsystems, qubits, the spae of separable states
S2⊗2 admits nie desription as a basi semi-algebrai variety. Next para-graph is devoted to the detailed demonstration of this partiular result.2.1.2. Deomposing state spae: separable vs. entangled. As it was men-tioned in the Introdution, due to the quantum superposition priniple,an arbitrary state of a omposite system is desribed by the element of thetensor produts of density operators of its subsystems. For a given fator-ization of system into the parts, the state spae P+(Rn2−1) deomposesinto the separable S+ and entangled omponents. Further more, sine theproperty of separability is independent of the hoie of basis in eah subsys-tem, it was onjetured that S+ (see disussion in Chen and Dokovi [17℄)represents the so-alled basi losed semi-algebrai set, whih is de�ned bypolynomial inequalities in variables, that are invariant under independentation of the unitary transformations of eah subsystems. Below, startingwith the neessary de�nitions, the desription of S+ for a pair of qubitswill be given.A generi 15-parameter density matrix for omposite 2⊗ 2 system on-sistent from 2-qubits reads% = 14 [I4 + a · � ⊗ I2 + I2 ⊗ � · b+ ij �i ⊗ �j ℄ : (29)



282 A. KHVEDELIDZE, I. ROGOJINRepresentation (29) is often named as Fano [18℄ deomposition of 2-qubitsstate with parameters a and b assigned to the Bloh vetors of the redueddensity matries %A and %B extrated from % by taking the partial traesover seond and �rst qubit respetively:%A = TrB %; %B = TrA %: (30)Nine real oeÆients ij are usually olleted in the \orrelation matrix",
‖C‖ij = ij . As follows from its name, the C-matrix ontains informationon interations between parts of the omposed system.
•The separability riterion • Perhaps the most useful tool for qualify-ing separability is the famous Peres-Horodeki riterion [19{21℄, whih isbased on the idea of the partial transposition. The partial transpose %TBof 2-qubits density matrix is de�ned as%TB = I ⊗ T%; (31)where T is the standard transposition operation. Under the transpositionthe Pauli matries hange as T (�1; �2; �3) → (�1;−�2; �3) .The states whose partial transposition preserves its positivity are termedas Positive Partial Transpose (PPT)-states. It is easy to verify that anyseparable state is PPT. The opposite is not true, even for low dimensionalbipartite systems. The ounterexamples for 3× 3 shows that there are en-tangled states with a positive partial transpose. However, for ompositebinary systems of type 2×2 and 2×3 the Peres-Horodeki riterion assertsthat the state % is separable if and only if its partial transposition %TB ispositive as well.3Intuitively it is lear that entanglement in omposite systems is funtionof the \relative orientation" of its subsystems only, any \loal harater-istis" of subsystems are unessential for the separability property. To givea rigorous sense to this view the seond digression on the so-alled loalinvariane possessing by omposite systems is in order.3More generally, onsider a family of bipartite so-alled k × l-states %, i.e., stateswhose partial traes are matries with rank%A = k and rank%A = l respetively. For suhk× l-states it is was proved that % is separable if it is PPT and (k−1)(l−1) 6 2 [19,20℄.



ON THE GEOMETRIC PROBABILITY 283DIGRESSION-2
• The loal unitary invariane • The haraterization of entan-glement for 2-qubits, as well as more general multipartite systems, admitformulation in terms of invariants of the so-alled loal groups [22℄. To in-trodue this notion onsider a generi multipartite system omposed fromr-subsystems eah with d1; d2; : : : ; dr levels respetively. The speial sub-group of the unitary group SU(n) with n = d1 × d2 × · · · × dr:SU(d1)⊗ SU(d2)⊗ · · · ⊗ SU(dr); (32)ating on the state spae, is termed as the group of loal unitary trans-formations (LUT). This ation introdues the equivalene relations on

P+(Rn2−1) and de�nes its orbital deomposition. Two states of ompos-ite system onneted by the LUT transformations (32) have the samenon-loal properties. Any harateristis of entanglement is a funtion ofthe LUT-invariants. Partiularly, the separability riterion in terms of theorresponding polynomial LUT-invariants an be given. Before presentingan algebrai formulation of the separability riterion, we pass to a basidesription of LUT-invariants (see e.g. [22{26℄.
• SU(2)⊗ SU(2) invariants • The LUT-invariants of the mixed two-qubit system are those polynomials in the elements of state whih areonstant under the adjoint SU(2)⊗ SU(2) group ation. These invariantsand the orresponding ring RSU(2)⊗SU(2) have been subjet of intensivestudies . In this general setting, RSU(2)⊗SU(2) neessarily has the Cohen-Maaulay property, i.e., there exists a homogeneous system of parametersK1;K2; : : : ;Kn, for some n, suh that RSU(2)⊗SU(2) is �nitely generated asa free module over C[K1;K2; : : : ;Kn℄. It is known that the polynomial ringof SU(2)⊗ SU(2) invariants admits the Hironaka deomposition, namely[24℄

RSU(2)⊗SU(2) = 15⊕k=0 Jk C[K1;K2; : : : ;K10℄; (33)where ten primary algebraially independent polynomials Kr have de-grees degK = (1; 2; 2; 2; 3; 3; 4; 4; 4; 6); and �fteen seondary linearly in-dependent invariants Jk; k = 0; 1; 2; : : : ; 15 are polynomials of degreesdegJ = (4; 5; 6; 6; 6; 7; 7; 8; 8; 9; 9; 9; 10; 11; 15) with J0 = 1 .



284 A. KHVEDELIDZE, I. ROGOJINThe integrity basis SU(2)⊗ SU(2) invariants in the enveloping algebra
U(su(n)) is known [24, 27℄. Following the Quesne's notations, the invari-ants (up to fourth order), neessary for our analysis, are listed below inassumption of summation over all repeated indies from one to three:3 invariants of seond degreeC(200) = aiai ; C(020) = bibi ; C(002) = ijij ; (34)2 invariants of third degreeC(003) = 13!�ijk���i�j�k ; C(111) = aiijbj ; (35)4 invariants of fourth degreeC(004) = i�i�j�j� ; (36)C(202) = aiaji�j� ; (37)C(022) = b�b�i�i� ; (38)C(112) = �ijk���aib�j�k ; (39)Now we will show that two LUT-invariants, namely, C(003) and C(112)play espeial role in an algebrai form of the Peres{Horodeki separabilityriterion.
• Separability in terms of loal invariants • As it follows from thePeres{Horodeki, the density matries % for 2-qubits are separable if theoeÆients STBk of harateristi equation for the orresponding partiallytransposed matries %TB are non-negative:STBk > 0 ; k = 2; 3; 4: (40)As alulations show the seond oeÆient of harateristi equation isinvariant under the partial transposition (31):STB2 = S2; (41)while higher oeÆients hange as followsSTB3 = S3 + det ‖C‖; (42)STB4 = S4 + det ‖M‖; (43)where M stands for the Shlienz{Mahler matrix [10℄:Mij := ij − aibj : (44)Comparing with (35) one an easily verify that both determinants det ‖C‖and det ‖M‖ are invariant under the loal group SU(2) ⊗ SU(2):



ON THE GEOMETRIC PROBABILITY 285det ‖C‖ = C003; det ‖M‖ = C003 − 12C112: (45)It is interesting that the equations (42) and (43) allow to formulatesuÆient onditions for 2-qubits entanglement.
• SuÆient onditions for 2-qubits entanglement • Consider apair of qubits in a generi mixed state (29). Then from (41){(43) it followsthat: Any density matrix �, obeying the inequalitiesdet2‖M‖ > 1; det2‖C‖ > 1; (46)with neessity is the entangled matrix. The density matries from the om-plementary domain

−1 6 det ‖M‖ 6 1; −1 6 det ‖C‖ 6 1; (47)are separable as well as entangled ones.The above desribed separability vs. entanglement onditions are invari-ant under LUT-group ation, but an be hanged under generi unitarytransformations. However, noting the maximally mixed state %0 ∼ In×nremains the separable one under an arbitrary U(n) transformations, onean expet an existene of states in its neighbourhoods that posses theseparability properties independent of hosen basis. Below a short reviewof suh states haraterization is given.
• Absolute separability • The property of separability vs. entangle-ment is sensitive to the way of how the system is deomposed into parts.Being generially depended on a �xed fatorization, it has exeptions tothe rule. M. Ku�s and K. Zyzkowski in [28℄ drew attention to the states ofn-dimensional quantum system, that are absolute separable, i.e., that thereis U(n)-invariant subspae AS+ ⊂ S+

AS+ = {% ∈ S+ | U%U+ ∈ S+; ∀U ∈ U(n)}: (48)What is ondition for state to be an absolute separable one ? The answerto this question 2-qubit system was found by Verstraete et al. [29℄, whoshowed that a neessary and suÆient ondition is given by a quadratiinequality on the eigenvalues of density matrix. Later, for the ase of abipartite system formed from qudits, the similar system of inequalities inthe eigenvalues of density matrix has been derived by R.Hildebrand [30℄.Partiularly, for 2⊗ 2 and 2⊗ 3 the inequalities read�1 − �3 6 2√�2�4; (49)�1 − �5 6 2√�4�6: (50)



286 A. KHVEDELIDZE, I. ROGOJINThe algebrai desription of state spae and partiularly the separa-ble states presented here is well adapted for an extration of quantitativeharateristis of the entanglement. Now few appliations exemplifying thisthesis will be given.
§3. Probabilisti view on entanglementHere probabilisti aspets of the entanglement is disussed within thesemi-algebrai desription given previous setions. Adopting the probabil-ity approah [8,9,31{33℄. the probabilisti harateristis for 2-qubits andqubit-qutrit system will be presented. Sine a standard methods from thetheory of probability require existene of measure, below we start with theintrodution Riemannian strutures on P+(Rn2−1) .3.1. The Riemannian geometry of states. There is no way to singleout a unique measure in state spae. Various physial and mathematialargumentation have been drawn for introdution of di�erent metris on

P+(Rn2−1). Few popular distanes between two density matries %1 and%2, ommonly used in the literature, are
• the trae distaneDtr(%1; %2) = tr(√(%1 − %2)2) ; (51)
• the Hilbert{Shmidt distaneDHS(%1; %2) =√tr [(%1 − %2)2℄ ; (52)
• the Bures distaneDB(%1; %2) =√2(1− tr [(%1=21 %2%1=21 )1=2]) ; (53)These distanes naturally appear in di�erent approahes, e.g., the Bu-res distane [34℄ originates from the statistial distane between quantumstates [35℄ and quantum �delity [36℄. Eah of them possesses ertain ad-vantages as well drawbaks and often the derived results strongly dependon made hoie. Below, in order to analyse this type dependene we usethe measures orresponding two of them, (52) and (53). The derivation ofthe orresponding measures on P+(Rn2−1) an be done as follows.

• The Hilbert{Shmidt measure• Considering the distane (52)between two in�nitesimally lose points % and %+d% we get the at metrigHS = tr (d%⊗ d%) ; (54)



ON THE GEOMETRIC PROBABILITY 287whih in the Bloh oordinates (4) for system of 2-qubits takes (up to salefator) the standard Eulidean form in R15:gHS = d�1 ⊗ d�1 + d�2 ⊗ d�2 + · · ·+ d�15 ⊗ d�15: (55)The measure orresponding to (55)d�HS := d�1 ∧ d�2 ∧ · · · ∧ d�15 ; (56)admits the following deompositiond�HS = d�?�4 × d�U(4)=U(1)4 ; (57)where d�?�4 is the measure on the ordered 3-dimensional simplex4 in R4and d�U(4)=U(1)4 is the measure on the oset U(4)=U(1)4, indued fromthe onventional Haar measure on the unitary group U(4). Note, that thedeomposition (57) follows from the prinipal axis transformation appliedto the density matries. Sine density matries are Hermitian, for eah %there exist a unitary matrix U ∈ U(4), suh that% = U�U†: (58)Beause the adjoint ation on the diagonal matrix � has a stability groupH� ; the matrix U is not unique, U belongs to the oset homeomorphito U(4)=H�. To make the representation (58) one to one the diagonalelements of matrix � � =  �1 0 0 00 �2 0 00 0 �3 00 0 0 �4  : (59)are restrited to the ordered simplex ?�4 by �xation of the desendingorder 1 > �1 > �2 > �3 > �4 > 0:The stability group H� ; depends on the matrix � and all possible typesof H� are listed in the Table 1.From the Table 1 on an onlude that the measure is determined fromthe ase with minimal isotropy group, U(1)4. Thus, passing to a new o-ordinates via transformation (58) the measure gets the form (57)d�?�4 =∏i>j (�i − �j)2 d�1 ∧ · · · ∧ d�4; (60)4The ordered simplex ?�4 is the standard simplex �4 fatorized by the ation ofpermutation group S4:



288 A. KHVEDELIDZE, I. ROGOJINEigenvalues Stability group H� dim(U(4)H� ) dim(�)�1 > �2 > �3 > �4 > 0 U(1)4 12 3�1 = �2 > �3 > �4 > 0 U(2)⊗ U(1)2 10 2�1 > �2 = �3 > �4 > 0 U(1)⊗ U(2)⊗ U(1) 10 2�1 > �2 > �3 = �4 > 0 U(1)2 ⊗ U(2) 10 2�1 > �2 = �3 = �4 > 0 U(1)⊗ U(3) 6 1�1 = �2 > �3 = �4 > 0 U(2)⊗ U(2) 8 1�1 = �2 = �3 > �4 > 0 U(3)⊗ U(1) 6 1�1 = �2 = �3 = �4 > 0 U(4) 0 0Table 1. Stability groups and dimensions of U(4)=H� osets.with the disriminant of the harateristi equation for % as the Jaobianand the measure on the oset SU(4)=U(1)4; depending on 42 − 4 angles:d�SU(4)=U(1)4 = !1 ∧ !2 ∧ · · · ∧ !12; (61)where !1 ; : : : ; !12 are the left-invariant 1-forms on U(4) projeted to theoset SU(4)=U(1)4. As a result, the Hilbert{Shmidt measure (56) induesthe following joint distribution funtion in the simplex of the density ma-trix eigenvalues:PHS(�) = CHSn Æ(1− n∑i=1 �i) n∏i=1�(�i)∏i>j (�i − �j)2 ; (62)where the normalization onstant Cn readsCHSn := �(n2)n−1∏j=0 �(n− j)�(n− j + 1) :It is important to note that the distribution (62) may be onsidered asa speial ase of the family of measures indued by the partial traing[31{33℄. Below, we will use this observation for the numerial analysis ofthe geometri probability.
• The Bures measure• The in�nitesimal form of Bures distane (53)lead to the metri: gBures = 12 Tr (Gd%) ; (63)



ON THE GEOMETRIC PROBABILITY 289where G is de�ned from the equation d% = G%+ %G [37, 38℄.It is known (see e.g., [36,39℄) that the Bures probability distribution inthe simplex of eigenvalues readsPBures(�) = CBuresn Æ(1− n∑i=1 �i) ∏�(�i) d�i√�i ∏i<j (�i − �j)2�i + �j ; (64)where CBuresn = 2n2−n �(n2=2)�n=2∏nj=1 �(j + 1) :is a normalization onstant.3.2. Probability of separability. Now, introduing the measure on thespae of states, we are in position to de�ne the probability harateristisof entanglement. The simplest one is the probability of �nding the sepa-rable states among all possible states, distributed in aordane with theintrodued measure on the state spae.
• Geometri probability of separability • Consider a bipartite sys-tem onsistent from the pair of qubits or qubit-qutrit. Taking into aountthe semi-algebrai struture of state spae one an de�ne the separabilityprobability as

Psep = ∫
P+∩ P̃+ d�∫

P+ d� : (65)The denominator in (65) represents the volume of total state spae P+,while integral in nominator expresses the volume of separable states overthe intersetion P+ ∩ P̃+ of P+ and its image P̃+ under the partialtransposition map. The set P+∩ P̃+ represents the subset of P+ invariantunder the partial transposition map:
P+ ∩ P̃+ = {� ∈ P+ | I⊗ T� ∈ P+} ;Below in our omputations the measure d� in integrals (65) is assumedto either the Hilbert{Shmidt or the Bures form. Sine the volume ofstate spae is known for both metris, the Hilbert{Shmidt [40℄ and theBures [36℄, the problem of determination of separability probability reduesto the evaluation of the integral over the set P+ ∩ P̃+.Postponing for a future studies of generi properties of (65), we willdisuss how to evaluate the separability probability for pairs of qubitsand qubit-qutrit. The straightforward numerial alulation of the multi-dimensional integral over the set P+ ∩ P̃+ represents hard omputational



290 A. KHVEDELIDZE, I. ROGOJINproblem. To avoid very umbersome omputations one an use a reliableremedy, the Monte-Carlo method.3.3. Generation of density matries ensembles. The basi ingredi-ent of the Monte-Carlo approah is the generation of a spei� random vari-able. To generate the random density matries from the Hilbert{Shmidtand and Bures ensemble the ideology of the method of indued measures(f. [31{33℄ and [41{43℄) an be used. To proeed let us start at �rst withthe generation of the so-alled Ginibre ensemble [44℄, i.e., the set of om-plex matries whose elements have real and imaginary parts distributed asindependent normal random variables.
• The Ginibre ensemble • Let M(C; n) is the spae of n×n matrieswhose entries are omplex numbers. Assume that the elements of Z ∈M(C; n) are independent identially distributed standard normal omplexrandom variablesp(zij) = 1� exp(−|zij |); i; j = 1; 2; : : : ; n:The joint probability distributionP (Z) = n∏i;j=1 p(zij) = 1�n2 exp (−Tr (Z†Z)) (66)and linear measure on M(C; n) determines the Ginibre's measure of prob-ability distribution: d�G(Z) = P (z)Tr (dZ†dZ) : (67)Having the random Ginibre matries one an use a simple presriptionsfor generation of elements from both, the Hilbert{Shmidt and the Buresensembles.
•The Hilbert{Shmidt ensemble • In order to generate the Hilbert{Shmidt states P (%)HS ≈ �(%)Æ(1− %); (68)onsider a square n × n omplex random matrix Z from the Ginibre en-semble. Then it is easy to onvined that the matrix%HS = Z†ZTr (Z†Z) ; (69)is by onstrution the Hermitian, semi-positive, unit norm matrix andbelongs to the Hilbert{Shmidt ensemble (68).
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Fig. 1. Distribution of separable states with respet tothe orrelation measure det ‖C‖ for 106 matries from theHilbert{Shmidt ensemble.
• The Bures ensemble • The density matrix distributed in aordanewith the Bure measure an be generated using the Ginibre ensemble aswell. Following [42℄ onsider the random matrix%B = (I + U)ZZ+(I + U+)Tr [(I + U)ZZ+(I + U+)℄ ; (70)where the omplex matrix Z belongs to the Ginibre ensemble, while U isa unitary matrix distributed aording to the Haar measure on unitarygroup U(N) : By straightforward alulation one an verify that matries%B are distributed in aordane with the Bures measure.3.4. Numerial results. • Distribution of separable matries •Now having algorithm for generation of the Hilbert{Shmidt and the Bu-res matries one an analyse the harater of distribution of separable ma-tries in both ensembles. Considering 2-qubits system, the distributionsof separable density matries with given entanglement harateristis, de-terminants of the orrelation and Shlienz-Mahler matries, det ‖C‖ anddet ‖M‖ have been found. The results of our alulations are given onFigure 1 and Figure 2.
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Fig. 2. Distribution of separable states with respet to theShlienz-Mahler entanglement measure det ‖M‖ for 106random Hilbert{Shmidt matries.
• Probabilities and onjetures • Finally we give the values of prob-abilities for 2-qubits and qubit-qutrit omposite systems, whose densitymatries are distributed aording to the the Hilbert{Shmidt and theBures measure.Generating the random density matries as it was desribed above andthen ounting the number of matries satisfying the PPT onditions:STBk > 0; k = 1; 2; : : : ; 6:the separability probability for two measures were found. The results areas follows. For the Hilbert{Shmidt measure the separability probabilitiesare

P2⊗2H−S = 0:2424; (71)
P2⊗3H−S = 0:0373; (72)while for the Bures measure omputations give
P2⊗2B = 0:073; (73)
P2⊗3B = 0:001: (74)



ON THE GEOMETRIC PROBABILITY 293Apart from this, the probabilities of absolute separable states for 2-qubits and qubit-qutrit system have been determined. The problem in thisase redues to the alulations of the integrals over the domain of orderedsimplex given by the inequalities (49) and (50)
P2⊗2Measure = ∫ PMeasure (�)�(2√�2�4 − �1 + �3); (75)
P2⊗3Measure = ∫ PMeasure (�)�(2√�4�6 − �1 + �5): (76)These integrals were evaluated using the MATHEMATICA pakage for theHilbert{Shmidt (62) and the Bures distributions (64). Summarizing, allresults, inluding the perentage of the absolute separable states, are ol-leted in the Table 2System Separable Abs. SepH-S metri2⊗ 2 24.24 % 23,874174 % 0.365826 %2⊗ 3 3.73 % 2,753321 % 0.976679 %Bures metri2⊗ 2 7.3 % 7,2838208 % 0.0161792 %2⊗ 3 0.1 % 0,1 % -Table 2. Probabilities for 2-qubits and qubit-qutrit.

§4. Conluding remarksIn the present note the algebrai desription of low-dimensional binaryomposite systems, pairs of qubits and qubit-qutrit has been given in a waywell adapted to a omputational purposes. Based on this formulations fewprobabilisti aspets of entanglement have been disussed. Here it is inorder a short omment on the results of our numerial experiments withseparability probability. Partiularly, onerning the separability proba-bility, for the ase of Hilbert{Shmidt measure, one an note existene of



294 A. KHVEDELIDZE, I. ROGOJINintriguing simple rational approximations:
P2⊗2H−S = 0:2424 ≈ 833 = 233 ∗ 11 ; (77)
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