
úÁ�ÉÓËÉ ÎÁÕÞÎÙÈÓÅÍÉÎÁÒÏ× ðïíé�ÏÍ 432, 2015 Ç.A. Khvedelidze, I. RogojinON THE GEOMETRIC PROBABILITY OFENTANGLED MIXED STATESAbstra
t. The state spa
e of a 
omposite quantum system, theset of density matri
es P+, is de
omposable into the spa
e of sepa-rable states S+ and its 
omplement, the spa
e of entangled states.An expli
it 
onstru
tion of su
h a de
omposition 
onstitutes theso-
alled separability problem. If the spa
e P+ is endowed with a
ertain Riemannian metri
, then the separability problem admits ameasurement-theoreti
al formulation. In parti
ular, one 
an de�nethe \geometri
 probability of separability" as the relative volume ofthe spa
e of separable states S+ with respe
t to the volume of allstates. In the present note, based on the Peres{Horode
ki positivepartial transposition 
riterion, the measurement theoreti
al aspe
tsof the separability problem are dis
ussed for bipartite systems 
om-posed either of two qubits or of qubit-qutrit pairs. The ne
essaryand suÆ
ient 
onditions for the 2-qubit state separability are for-mulated in terms of lo
al SU(2)⊗SU(2) invariant polynomials, thedeterminant of the 
orrelation matrix, and the determinant of theS
hlienz{Mahler matrix. Using the proje
tive method of generationof random density matri
es distributed a

ording to the Hilbert{S
hmidt or Bures measure, the separability (in
luding the abso-lute separability) probabilities of 2-qubit and qubit-qutrit pairs havebeen 
al
ulated.
§1. Introdu
tionThe word \entanglement", the \vers
hr�ankung", in the original Aus-trian phrasing, was introdu
ed in a glossary of quantum me
hani
s byErvin S
hr�odinger at the Thirties of last 
entury. The name owes its ap-pearan
e to a strange type of 
orrelations in 
omposite systems predi
tedby newly 
reated quantum theory [1℄. The existen
e of \entangled" statesin quantum theory seemed very problemati
 and mysterious sin
e its in
ep-tion, but at present it is experimentally veri�ed and, moreover, pra
ti
allyused in a variety of quantum engineering appli
ations. Undoubtedly, nowa-days the entanglement found its own pla
e among the fundamental notionsKey words and phrases: geometri
 probability, qubit, entanglement spa
e.274



ON THE GEOMETRIC PROBABILITY 275of quantum physi
s and gains the popularity similar words \energy" and\for
e" had in XIX-th 
entury.Being highly 
ounter intuitive and strange o

urren
e, the entangle-ment has a transparent mathemati
al formulation. Mathemati
s 
ertainlydispels the aura of mystery, redu
ing the understanding of 
orrelations be-tween parts of 
omposed system to the analysis of a set 
orre
tly statedalgebrai
 problems. One of the primary importan
e, the so-
alled \sep-arability problem" is formulated as follows. Consider a system 
omposedfrom two dA and dB { dimensional subsystems with the Hilbert spa
esHdAand HdB respe
tively. A

ording to the axioms of quantum me
hani
s anystate of the 
omposed system is given by the density matrix % ∈ P+, thata
ts on the Hilbert spa
e of the tensor produ
t form:
HdA dB = HdA ⊗HdB :For a given HdA ⊗ HdB fa
torization an element %sep ∈ P+ belongs tothe subset of separable states %sep ∈ S+ if and only if %sep admits the
onvex de
omposition of r tensor produ
t states with some probabilitydistribution !k [2℄: %sep = r∑k=1!k %Ak ⊗ %Bk : (1)The operators %Ak and %Bk in (1) denote the density operators of subsystemsA and B respe
tively. The states 
omplementary to the separable ones arenamed the entangled.1The de�nition (1) is an impli
it and therefore the question of whethera given state is separable or entangled is worthy of further attention. Evenfrom the �rst glan
e be
omes 
lear that the \separability" question ishighly intri
ate. Moreover, as it was shown by Gurvits (
f. [4, 5℄) even fora bipartite system the separability problem is 
ategorized 
omputationallyas NP-hard.1Note that the representation (1) is not unique and even knowing that state isseparable to �nd its de
omposition is not an easy task. Furthermore, speaking aboutthe separability, one has always have in mind that a �xed fa
torization HdA ⊗HdB hasbeen pi
ked out. Via the global unitary transformation U a
ting on the total spa
e, one
an swit
h to another fa
torization, U (HdA ⊗HdB )U+ . As result, a former separablestate 
an appear as entangled one and vi
e versa (
f. dis
ussion in [3℄).



276 A. KHVEDELIDZE, I. ROGOJINComplexity of the problem brings into play alternative approa
hes. Par-ti
ularly, 
onsidering the state spa
e of quantum me
hani
al system as ob-je
t with measure (
f. [6, 7℄), the \separability problem" 
an be reshapedinto the probability issue [8, 9℄.Below adopting the above approa
h we 
onsider in details a bipartitesystems 
onsisted from 2 and 3-level subsystems. Equipping the state spa
ewith a 
ertain measure the relative volume of entangled states with respe
tto the all possible states will be 
omputed
PE = Vol(Spa
e of entangled states)Vol(Spa
e of all states) : (2)This number de�nes the geometri
 probability of entanglement, whi
h 
anbe treated as a 
ertain measure for \
apa
ity of quantumness" of the sys-tem.The arti
le is organized as follows. In se
tions 2 and 3 the basi
 elementsfrom mathemati
al des
ription of �nite-dimensional quantum systems aregiven. Latter, using this ba
kground, the notion of the separability proba-bility of states is introdu
ed. Based on the Peres{Horode
ki positive partialtransposition 
riterion, the ne
essary and suÆ
ient 
onditions for 2-qubitstate separability are formulated in terms of the lo
al SU(2)⊗SU(2) s
alars,determinants of 
orrelation matrix and S
hlienz{Mahler matrix [10℄. In these
tion 3, adopting the proje
tive method of generation of random densitymatrix the probability aspe
ts of the separability 
hara
teristi
s of 2-qubitand qubit-qutrit pairs are studied. The later in
lude determination of theseparability and absolute separability probability, as well as the numeri-
al evaluation of distributions of separable matri
es with respe
t to thedeterminants of the 
orrelation and the S
hlienz-Mahler matri
es.

§2. SettingsBelow the relevant de�nitions and notions, in
luding the basi
 algebrai
and geometri
 
hara
teristi
s of a 
omposite quantum systems are given ina from suitable for the introdu
tion of the probability of quantum states.Note that only a �nite dimensional quantum systems are 
onsidered.2.1. State spa
e. At the beginning of the \Golden Era" of quantumme
hani
s John von Neuman and Lev Landau, be
ame aware of limitationsfor appli
ability of the S
hr�odinger's 	-fun
tion, introdu
e the notion of a\mixed quantum state" [11, 12℄. The mixed state is 
hara
terized by theself-adjoint, positive semi de�nite \density operator" a
ting on the Hilbert
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e of quantum system. For the non-relativisti
 n-dimensional systemthe Hilbert spa
e H is Cn and the density operator 
an be identi�edwith n × n Hermitian, unit tra
e, positive semi-de�nite matrix %. Thismatrix, termed the density matrix, 
ompletely spe
i�es the state of n-levelquantum system. All possible density matri
es form the set P+ { the statespa
e of n-dimensional quantum system.2.1.1. State spa
e as a semi-algebrai
 variety. The spa
e of Hermitianmatri
es is topologi
ally isomorphi
 to Rn2 . Due to the positive semi-de�niteness any density matrix % represents a point of semi-algebrai
 va-riety, P+(Rn2−1) of aÆne subspa
e, de�ned by a unit tra
e equationTr% = 1. Nevertheless of a long story of studies of �nite dimensional sys-tems it is very little known about P+(Rn2−1) for arbitrary n. It turns outthat even for small n the stru
ture of P+(Rn2−1) is quite 
umbersome.2
•Density matri
es and universal enveloping algebra U(su(n))• Thestate spa
e has useful algebrai
 des
ription in terms of the universal en-veloping algebra U(su(n)) of the Lie algebra su(n). Let e1; e2; : : : ; en2−1form the basis for su(n)

su(n) = n2−1∑i=1 �i ei: (3)Consider elements from U(su(n)) of the following form:% = 1n  In×n + {√n(n− 1)2 n2−1∑i=1 �i ei ; (4)with a real (n2 − 1)-dimensional ve
tor � = (�1; �2; : : : ; �n2−1) : As it wasmentioned above, expression (4) represents an element of the spa
e ofstates P+ if the ve
tor � is subje
t to a �nite set of polynomial inequalities:f�(�) > 0: (5)Moreover, it turns that the semi-algebrai
 set des
ribed by (5) admitsrepresentation with the polynomial fun
tions f� that are invariant under2The neighbourhood of a generi
 point of P+(Rn2−1) is lo
ally isometri
 to(SU(n)=U(1)n−1) × Dn−1, where the 
omponent Dn−1 is (n − 1)-dimensional dis
(
f. [13℄).



278 A. KHVEDELIDZE, I. ROGOJINthe adjoint a
tion of the unitary group SU(n) on P+(Rn2−1) . More pre-
isely, 
onsider SU(n)-invariant polynomial ring R[P+℄SU(n) and a set ofhomogeneous polynomials P = (t1; t2; : : : ; tn), that form its integrity basis
R[�1; �2; : : : ; �n2−1℄SU(n) = R[t1; t2; : : : ; tn℄: (6)Then the spa
e of states P+(Rn2−1) for arbitrary n is semi-algebrai
 sub-set given by inequalities of the following typepi(t1; t2; : : : ; tn) > 0 ; i = 1; 2; : : : ; s (7)where pi ∈ R[P+℄SU(n). Below, analysing requirements of the Hermi
ityand semi-positivity for density matri
es, the expli
it form of inequalities (7)will be given. With this aim a brief digression, devoted to the 
onstru
tionof the integrity basis P = (t1; t2; : : : ; tn) from elements of the universalalgebra 
enter Z(su(n)) is in order. DIGRESSION-1

• SU(n)-invarian
e • Constru
tion of the adjoint SU(n)-invariantsfrom the elements of Z(su(n)) is well known pro
edure. Referring to theliterature on this subje
t (see e.g., [14℄) we brie
y state the results anddis
uss 
onstraints on these invariants due to the Hermi
ity and positivesemi-de�niteness of density matri
es. We are looking for polynomials in�1; �2; : : : ; �n2−1 variables�(�) =∑ 
i1···ir �i1�i2 : : : �ir ; (8)whi
h are invariant under the adjoint a
tion�(�) = �((Adg)T �) ; (9)where (Adg)T is the transpose matrix of adjoint operator 
al
ulated in thebasis ei1 ; ei2 ; : : : ; en2−1:g ei g−1 = (Adg )ijej ; g ∈ SU(n) : (10)These polynomials are in one to one 
orresponden
e with the elements of
enter Z(su(n))
Cr =∑ 1r! 
i1···ir ∑�∈Sr ei�(1)ei�(2) : : : ei�(r) ; (11)where Sr is the group of permutations of 1; 2; : : : r.Furthermore, the n− 1 independent Casimir operators Cr in (11) serveas a resour
e for the integrity basis of the polynomial ring R[P+℄SU(n).



ON THE GEOMETRIC PROBABILITY 279The s
alars appeared from above isomorphism are 
ommonly referred asCasimir invariants. The �rst Casimir invariants up to six order in � aregiven:
C2 = (n− 1) � · � (12)
C3 = (n− 1) (� ∨ � ) · � (13)
C4 = (n− 1) (� ∨ � ) · (� ∨ � ) (14)
C5 = (n− 1)((� ∨ � ) ∨ (� ∨ � )) · � (15)
C6 = (n− 1) (� ∨ � ∨ � )2 (16): : : : : : ;where (U ∨ V )a := � dab
UaVb ;dab
 are symmetri
 stru
ture 
onstants for su(n) and � = √n(n− 1)=2is normalization 
onstant. Another, an equivalent set of invariants, usefulfrom a 
omputational point of view, is given by the so-
alled tra
e in-variants, power series in eigenvalues, {�} = �1; �2; : : : ; �n. of the densitymatrix tk := tr(%k) = �k1 + �k2 + · · ·+ �kn ; k = 1; 2; : : : ; n: (17)Below we formulate requirements of Hermi
ity and semi-positivity of den-sity matrix dire
tly in terms of (17).

•Hermi
ity of % in terms of the SU(n)-invariants • Sin
e % is a Her-mitian matrix all solutions (eigenvalues {�} ) of the 
hara
teristi
 equationdet ‖�− %‖ = �n − S1�n−1 + S2�n−2 − · · ·+ (−1)n Sn = 0 ; (18)are real numbers. In a

ordan
e with the 
lassi
al result a 
ertain infor-mation on the properties of the roots 
an be extra
ted from the so-
alledB�ezoutian, the matrix B = �T�, 
onstru
ted from the Vandermonde ma-trix � =  1 �1 �21 : : : �n−111 �2 �22 : : : �n−121 �3 �23 : : : �n−13... ... ... ... ... ...1 �n �2n : : : �n−1n



: (19)The entries of the B�ezoutian are simply the tra
e invariants:Bij = ti+j−2 : (20)



280 A. KHVEDELIDZE, I. ROGOJINThe B�ezoutian a

ommodate information on number of distin
t roots (viaits rank), numbers of real roots (via its signature), as well as the Hermi
ity
ondition. A real 
hara
teristi
 polynomial has all its roots real and distin
tif and only if the B�ezoutian is positive de�nite. Here we are interesting onlyin situation of a generi
 density matri
es (the spa
e of degenerate matri
eswith 
oin
iding roots are measure zero sets). For this 
ase the positivityof B�ezoutian redu
es to the requirement,det ‖B‖ > 0 : (21)Sin
e det ‖B‖ = (det ‖�‖)2 ; the determinant of the B�ezoutian is nothingelse as the dis
riminant of the 
hara
teristi
 equation (18)Dis
 =∏i>j (�i − �j)2 ; (22)rewritten in terms of the tra
e polynomialsDis
(t1; t2; : : : ; tn) := det ‖B‖: (23)Dependen
e of dis
riminant on tra
e invariants only up to order n pointedin left side of (23) assumes that all higher tra
e invariants tk with k > n in(20) are expressed via polynomials in t1; t2; : : : ; tn, (the Cayley{HamiltonTheorem).
•Semi-positivity of % in terms of the SU(n)-invariants• Positivesemi-de�niteness implies the non-negativity of roots of (18):�k > 0 ; k = 1; 2; : : : ; n: (24)Inequalities (24) are not 
omputationally eÆ
ient, the eigenvalues {�}are non-polynomial SU(n)-invariants. Fortunately, it it is known (see e.g.[15, 16℄ and referen
es therein), that instead of (24) the equivalent set ofinequalities 
an be formulated in terms the �rst n-symmetri
 polynomialsin eigenvalues of % : Sk > 0 ; k = 1; 2; : : : ; n: (25)Opposite to eigenvalues, the 
oeÆ
ients Sk are SU(n)-invariant polynomialfun
tions of density matrix elements and thus are expressible in terms ofthe tra
e invariants. An elegant expression for Sk is given by the following



ON THE GEOMETRIC PROBABILITY 281determinant Sk = 1k! det t1 1 0 · · · 0t2 t1 2 · · · 1t3 t2 t1 · · ·... ... ... ... ... ... k − 1tk tk−1 tk−2 · · · t1



: (26)Summarizing, the algebrai
 set of inequalities in SU(n)-invariants de-s
ribing the state spa
e P+(Rn2−1), as the semi-algebrai
 variety of theaÆne subspa
e Tr% = 1 ; read:Dis
 > 0 ; Hermi
ity ; (27)Sk > 0 ; Semi-positivity : (28)Now we are in position to pose the following question: Is the spa
e ofseparable states S+ the semi-algebrai
 set as well? Nevertheless, of manye�orts performed during last de
ades, a 
omplete answer for a generi
 
aseis unknown yet. But, for a simplest bipartite system 2⊗ 2, 
omposed frompair of 2-dimensional subsystems, qubits, the spa
e of separable states
S2⊗2 admits ni
e des
ription as a basi
 semi-algebrai
 variety. Next para-graph is devoted to the detailed demonstration of this parti
ular result.2.1.2. De
omposing state spa
e: separable vs. entangled. As it was men-tioned in the Introdu
tion, due to the quantum superposition prin
iple,an arbitrary state of a 
omposite system is des
ribed by the element of thetensor produ
ts of density operators of its subsystems. For a given fa
tor-ization of system into the parts, the state spa
e P+(Rn2−1) de
omposesinto the separable S+ and entangled 
omponents. Further more, sin
e theproperty of separability is independent of the 
hoi
e of basis in ea
h subsys-tem, it was 
onje
tured that S+ (see dis
ussion in Chen and Dokovi
 [17℄)represents the so-
alled basi
 
losed semi-algebrai
 set, whi
h is de�ned bypolynomial inequalities in variables, that are invariant under independenta
tion of the unitary transformations of ea
h subsystems. Below, startingwith the ne
essary de�nitions, the des
ription of S+ for a pair of qubitswill be given.A generi
 15-parameter density matrix for 
omposite 2⊗ 2 system 
on-sistent from 2-qubits reads% = 14 [I4 + a · � ⊗ I2 + I2 ⊗ � · b+ 
ij �i ⊗ �j ℄ : (29)



282 A. KHVEDELIDZE, I. ROGOJINRepresentation (29) is often named as Fano [18℄ de
omposition of 2-qubitsstate with parameters a and b assigned to the Blo
h ve
tors of the redu
eddensity matri
es %A and %B extra
ted from % by taking the partial tra
esover se
ond and �rst qubit respe
tively:%A = TrB %; %B = TrA %: (30)Nine real 
oeÆ
ients 
ij are usually 
olle
ted in the \
orrelation matrix",
‖C‖ij = 
ij . As follows from its name, the C-matrix 
ontains informationon intera
tions between parts of the 
omposed system.
•The separability 
riterion • Perhaps the most useful tool for qualify-ing separability is the famous Peres-Horode
ki 
riterion [19{21℄, whi
h isbased on the idea of the partial transposition. The partial transpose %TBof 2-qubits density matrix is de�ned as%TB = I ⊗ T%; (31)where T is the standard transposition operation. Under the transpositionthe Pauli matri
es 
hange as T (�1; �2; �3) → (�1;−�2; �3) .The states whose partial transposition preserves its positivity are termedas Positive Partial Transpose (PPT)-states. It is easy to verify that anyseparable state is PPT. The opposite is not true, even for low dimensionalbipartite systems. The 
ounterexamples for 3× 3 shows that there are en-tangled states with a positive partial transpose. However, for 
ompositebinary systems of type 2×2 and 2×3 the Peres-Horode
ki 
riterion assertsthat the state % is separable if and only if its partial transposition %TB ispositive as well.3Intuitively it is 
lear that entanglement in 
omposite systems is fun
tionof the \relative orientation" of its subsystems only, any \lo
al 
hara
ter-isti
s" of subsystems are unessential for the separability property. To givea rigorous sense to this view the se
ond digression on the so-
alled lo
alinvarian
e possessing by 
omposite systems is in order.3More generally, 
onsider a family of bipartite so-
alled k × l-states %, i.e., stateswhose partial tra
es are matri
es with rank%A = k and rank%A = l respe
tively. For su
hk× l-states it is was proved that % is separable if it is PPT and (k−1)(l−1) 6 2 [19,20℄.
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• The lo
al unitary invarian
e • The 
hara
terization of entan-glement for 2-qubits, as well as more general multipartite systems, admitformulation in terms of invariants of the so-
alled lo
al groups [22℄. To in-trodu
e this notion 
onsider a generi
 multipartite system 
omposed fromr-subsystems ea
h with d1; d2; : : : ; dr levels respe
tively. The spe
ial sub-group of the unitary group SU(n) with n = d1 × d2 × · · · × dr:SU(d1)⊗ SU(d2)⊗ · · · ⊗ SU(dr); (32)a
ting on the state spa
e, is termed as the group of lo
al unitary trans-formations (LUT). This a
tion introdu
es the equivalen
e relations on

P+(Rn2−1) and de�nes its orbital de
omposition. Two states of 
ompos-ite system 
onne
ted by the LUT transformations (32) have the samenon-lo
al properties. Any 
hara
teristi
s of entanglement is a fun
tion ofthe LUT-invariants. Parti
ularly, the separability 
riterion in terms of the
orresponding polynomial LUT-invariants 
an be given. Before presentingan algebrai
 formulation of the separability 
riterion, we pass to a basi
des
ription of LUT-invariants (see e.g. [22{26℄.
• SU(2)⊗ SU(2) invariants • The LUT-invariants of the mixed two-qubit system are those polynomials in the elements of state whi
h are
onstant under the adjoint SU(2)⊗ SU(2) group a
tion. These invariantsand the 
orresponding ring RSU(2)⊗SU(2) have been subje
t of intensivestudies . In this general setting, RSU(2)⊗SU(2) ne
essarily has the Cohen-Ma
aulay property, i.e., there exists a homogeneous system of parametersK1;K2; : : : ;Kn, for some n, su
h that RSU(2)⊗SU(2) is �nitely generated asa free module over C[K1;K2; : : : ;Kn℄. It is known that the polynomial ringof SU(2)⊗ SU(2) invariants admits the Hironaka de
omposition, namely[24℄

RSU(2)⊗SU(2) = 15⊕k=0 Jk C[K1;K2; : : : ;K10℄; (33)where ten primary algebrai
ally independent polynomials Kr have de-grees degK = (1; 2; 2; 2; 3; 3; 4; 4; 4; 6); and �fteen se
ondary linearly in-dependent invariants Jk; k = 0; 1; 2; : : : ; 15 are polynomials of degreesdegJ = (4; 5; 6; 6; 6; 7; 7; 8; 8; 9; 9; 9; 10; 11; 15) with J0 = 1 .



284 A. KHVEDELIDZE, I. ROGOJINThe integrity basis SU(2)⊗ SU(2) invariants in the enveloping algebra
U(su(n)) is known [24, 27℄. Following the Quesne's notations, the invari-ants (up to fourth order), ne
essary for our analysis, are listed below inassumption of summation over all repeated indi
es from one to three:3 invariants of se
ond degreeC(200) = aiai ; C(020) = bibi ; C(002) = 
ij
ij ; (34)2 invariants of third degreeC(003) = 13!�ijk���

i�
j�
k
 ; C(111) = ai
ijbj ; (35)4 invariants of fourth degreeC(004) = 
i�
i�
j�
j� ; (36)C(202) = aiaj
i�
j� ; (37)C(022) = b�b�
i�
i� ; (38)C(112) = �ijk���
aib�
j�
k
 ; (39)Now we will show that two LUT-invariants, namely, C(003) and C(112)play espe
ial role in an algebrai
 form of the Peres{Horode
ki separability
riterion.
• Separability in terms of lo
al invariants • As it follows from thePeres{Horode
ki, the density matri
es % for 2-qubits are separable if the
oeÆ
ients STBk of 
hara
teristi
 equation for the 
orresponding partiallytransposed matri
es %TB are non-negative:STBk > 0 ; k = 2; 3; 4: (40)As 
al
ulations show the se
ond 
oeÆ
ient of 
hara
teristi
 equation isinvariant under the partial transposition (31):STB2 = S2; (41)while higher 
oeÆ
ients 
hange as followsSTB3 = S3 + det ‖C‖; (42)STB4 = S4 + det ‖M‖; (43)where M stands for the S
hlienz{Mahler matrix [10℄:Mij := 
ij − aibj : (44)Comparing with (35) one 
an easily verify that both determinants det ‖C‖and det ‖M‖ are invariant under the lo
al group SU(2) ⊗ SU(2):



ON THE GEOMETRIC PROBABILITY 285det ‖C‖ = C003; det ‖M‖ = C003 − 12C112: (45)It is interesting that the equations (42) and (43) allow to formulatesuÆ
ient 
onditions for 2-qubits entanglement.
• SuÆ
ient 
onditions for 2-qubits entanglement • Consider apair of qubits in a generi
 mixed state (29). Then from (41){(43) it followsthat: Any density matrix �, obeying the inequalitiesdet2‖M‖ > 1; det2‖C‖ > 1; (46)with ne
essity is the entangled matrix. The density matri
es from the 
om-plementary domain

−1 6 det ‖M‖ 6 1; −1 6 det ‖C‖ 6 1; (47)are separable as well as entangled ones.The above des
ribed separability vs. entanglement 
onditions are invari-ant under LUT-group a
tion, but 
an be 
hanged under generi
 unitarytransformations. However, noting the maximally mixed state %0 ∼ In×nremains the separable one under an arbitrary U(n) transformations, one
an expe
t an existen
e of states in its neighbourhoods that posses theseparability properties independent of 
hosen basis. Below a short reviewof su
h states 
hara
terization is given.
• Absolute separability • The property of separability vs. entangle-ment is sensitive to the way of how the system is de
omposed into parts.Being generi
ally depended on a �xed fa
torization, it has ex
eptions tothe rule. M. Ku�s and K. Zy
zkowski in [28℄ drew attention to the states ofn-dimensional quantum system, that are absolute separable, i.e., that thereis U(n)-invariant subspa
e AS+ ⊂ S+

AS+ = {% ∈ S+ | U%U+ ∈ S+; ∀U ∈ U(n)}: (48)What is 
ondition for state to be an absolute separable one ? The answerto this question 2-qubit system was found by Verstraete et al. [29℄, whoshowed that a ne
essary and suÆ
ient 
ondition is given by a quadrati
inequality on the eigenvalues of density matrix. Later, for the 
ase of abipartite system formed from qudits, the similar system of inequalities inthe eigenvalues of density matrix has been derived by R.Hildebrand [30℄.Parti
ularly, for 2⊗ 2 and 2⊗ 3 the inequalities read�1 − �3 6 2√�2�4; (49)�1 − �5 6 2√�4�6: (50)



286 A. KHVEDELIDZE, I. ROGOJINThe algebrai
 des
ription of state spa
e and parti
ularly the separa-ble states presented here is well adapted for an extra
tion of quantitative
hara
teristi
s of the entanglement. Now few appli
ations exemplifying thisthesis will be given.
§3. Probabilisti
 view on entanglementHere probabilisti
 aspe
ts of the entanglement is dis
ussed within thesemi-algebrai
 des
ription given previous se
tions. Adopting the probabil-ity approa
h [8,9,31{33℄. the probabilisti
 
hara
teristi
s for 2-qubits andqubit-qutrit system will be presented. Sin
e a standard methods from thetheory of probability require existen
e of measure, below we start with theintrodu
tion Riemannian stru
tures on P+(Rn2−1) .3.1. The Riemannian geometry of states. There is no way to singleout a unique measure in state spa
e. Various physi
al and mathemati
alargumentation have been drawn for introdu
tion of di�erent metri
s on

P+(Rn2−1). Few popular distan
es between two density matri
es %1 and%2, 
ommonly used in the literature, are
• the tra
e distan
eDtr(%1; %2) = tr(√(%1 − %2)2) ; (51)
• the Hilbert{S
hmidt distan
eDHS(%1; %2) =√tr [(%1 − %2)2℄ ; (52)
• the Bures distan
eDB(%1; %2) =√2(1− tr [(%1=21 %2%1=21 )1=2]) ; (53)These distan
es naturally appear in di�erent approa
hes, e.g., the Bu-res distan
e [34℄ originates from the statisti
al distan
e between quantumstates [35℄ and quantum �delity [36℄. Ea
h of them possesses 
ertain ad-vantages as well drawba
ks and often the derived results strongly dependon made 
hoi
e. Below, in order to analyse this type dependen
e we usethe measures 
orresponding two of them, (52) and (53). The derivation ofthe 
orresponding measures on P+(Rn2−1) 
an be done as follows.

• The Hilbert{S
hmidt measure• Considering the distan
e (52)between two in�nitesimally 
lose points % and %+d% we get the 
at metri
gHS = tr (d%⊗ d%) ; (54)
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h in the Blo
h 
oordinates (4) for system of 2-qubits takes (up to s
alefa
tor) the standard Eu
lidean form in R15:gHS = d�1 ⊗ d�1 + d�2 ⊗ d�2 + · · ·+ d�15 ⊗ d�15: (55)The measure 
orresponding to (55)d�HS := d�1 ∧ d�2 ∧ · · · ∧ d�15 ; (56)admits the following de
ompositiond�HS = d�?�4 × d�U(4)=U(1)4 ; (57)where d�?�4 is the measure on the ordered 3-dimensional simplex4 in R4and d�U(4)=U(1)4 is the measure on the 
oset U(4)=U(1)4, indu
ed fromthe 
onventional Haar measure on the unitary group U(4). Note, that thede
omposition (57) follows from the prin
ipal axis transformation appliedto the density matri
es. Sin
e density matri
es are Hermitian, for ea
h %there exist a unitary matrix U ∈ U(4), su
h that% = U�U†: (58)Be
ause the adjoint a
tion on the diagonal matrix � has a stability groupH� ; the matrix U is not unique, U belongs to the 
oset homeomorphi
to U(4)=H�. To make the representation (58) one to one the diagonalelements of matrix � � =  �1 0 0 00 �2 0 00 0 �3 00 0 0 �4  : (59)are restri
ted to the ordered simplex ?�4 by �xation of the des
endingorder 1 > �1 > �2 > �3 > �4 > 0:The stability group H� ; depends on the matrix � and all possible typesof H� are listed in the Table 1.From the Table 1 on 
an 
on
lude that the measure is determined fromthe 
ase with minimal isotropy group, U(1)4. Thus, passing to a new 
o-ordinates via transformation (58) the measure gets the form (57)d�?�4 =∏i>j (�i − �j)2 d�1 ∧ · · · ∧ d�4; (60)4The ordered simplex ?�4 is the standard simplex �4 fa
torized by the a
tion ofpermutation group S4:



288 A. KHVEDELIDZE, I. ROGOJINEigenvalues Stability group H� dim(U(4)H� ) dim(�)�1 > �2 > �3 > �4 > 0 U(1)4 12 3�1 = �2 > �3 > �4 > 0 U(2)⊗ U(1)2 10 2�1 > �2 = �3 > �4 > 0 U(1)⊗ U(2)⊗ U(1) 10 2�1 > �2 > �3 = �4 > 0 U(1)2 ⊗ U(2) 10 2�1 > �2 = �3 = �4 > 0 U(1)⊗ U(3) 6 1�1 = �2 > �3 = �4 > 0 U(2)⊗ U(2) 8 1�1 = �2 = �3 > �4 > 0 U(3)⊗ U(1) 6 1�1 = �2 = �3 = �4 > 0 U(4) 0 0Table 1. Stability groups and dimensions of U(4)=H� 
osets.with the dis
riminant of the 
hara
teristi
 equation for % as the Ja
obianand the measure on the 
oset SU(4)=U(1)4; depending on 42 − 4 angles:d�SU(4)=U(1)4 = !1 ∧ !2 ∧ · · · ∧ !12; (61)where !1 ; : : : ; !12 are the left-invariant 1-forms on U(4) proje
ted to the
oset SU(4)=U(1)4. As a result, the Hilbert{S
hmidt measure (56) indu
esthe following joint distribution fun
tion in the simplex of the density ma-trix eigenvalues:PHS(�) = CHSn Æ(1− n∑i=1 �i) n∏i=1�(�i)∏i>j (�i − �j)2 ; (62)where the normalization 
onstant Cn readsCHSn := �(n2)n−1∏j=0 �(n− j)�(n− j + 1) :It is important to note that the distribution (62) may be 
onsidered asa spe
ial 
ase of the family of measures indu
ed by the partial tra
ing[31{33℄. Below, we will use this observation for the numeri
al analysis ofthe geometri
 probability.
• The Bures measure• The in�nitesimal form of Bures distan
e (53)lead to the metri
: gBures = 12 Tr (Gd%) ; (63)



ON THE GEOMETRIC PROBABILITY 289where G is de�ned from the equation d% = G%+ %G [37, 38℄.It is known (see e.g., [36,39℄) that the Bures probability distribution inthe simplex of eigenvalues readsPBures(�) = CBuresn Æ(1− n∑i=1 �i) ∏�(�i) d�i√�i ∏i<j (�i − �j)2�i + �j ; (64)where CBuresn = 2n2−n �(n2=2)�n=2∏nj=1 �(j + 1) :is a normalization 
onstant.3.2. Probability of separability. Now, introdu
ing the measure on thespa
e of states, we are in position to de�ne the probability 
hara
teristi
sof entanglement. The simplest one is the probability of �nding the sepa-rable states among all possible states, distributed in a

ordan
e with theintrodu
ed measure on the state spa
e.
• Geometri
 probability of separability • Consider a bipartite sys-tem 
onsistent from the pair of qubits or qubit-qutrit. Taking into a

ountthe semi-algebrai
 stru
ture of state spa
e one 
an de�ne the separabilityprobability as

Psep = ∫
P+∩ P̃+ d�∫

P+ d� : (65)The denominator in (65) represents the volume of total state spa
e P+,while integral in nominator expresses the volume of separable states overthe interse
tion P+ ∩ P̃+ of P+ and its image P̃+ under the partialtransposition map. The set P+∩ P̃+ represents the subset of P+ invariantunder the partial transposition map:
P+ ∩ P̃+ = {� ∈ P+ | I⊗ T� ∈ P+} ;Below in our 
omputations the measure d� in integrals (65) is assumedto either the Hilbert{S
hmidt or the Bures form. Sin
e the volume ofstate spa
e is known for both metri
s, the Hilbert{S
hmidt [40℄ and theBures [36℄, the problem of determination of separability probability redu
esto the evaluation of the integral over the set P+ ∩ P̃+.Postponing for a future studies of generi
 properties of (65), we willdis
uss how to evaluate the separability probability for pairs of qubitsand qubit-qutrit. The straightforward numeri
al 
al
ulation of the multi-dimensional integral over the set P+ ∩ P̃+ represents hard 
omputational
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umbersome 
omputations one 
an use a reliableremedy, the Monte-Carlo method.3.3. Generation of density matri
es ensembles. The basi
 ingredi-ent of the Monte-Carlo approa
h is the generation of a spe
i�
 random vari-able. To generate the random density matri
es from the Hilbert{S
hmidtand and Bures ensemble the ideology of the method of indu
ed measures(
f. [31{33℄ and [41{43℄) 
an be used. To pro
eed let us start at �rst withthe generation of the so-
alled Ginibre ensemble [44℄, i.e., the set of 
om-plex matri
es whose elements have real and imaginary parts distributed asindependent normal random variables.
• The Ginibre ensemble • Let M(C; n) is the spa
e of n×n matri
eswhose entries are 
omplex numbers. Assume that the elements of Z ∈M(C; n) are independent identi
ally distributed standard normal 
omplexrandom variablesp(zij) = 1� exp(−|zij |); i; j = 1; 2; : : : ; n:The joint probability distributionP (Z) = n∏i;j=1 p(zij) = 1�n2 exp (−Tr (Z†Z)) (66)and linear measure on M(C; n) determines the Ginibre's measure of prob-ability distribution: d�G(Z) = P (z)Tr (dZ†dZ) : (67)Having the random Ginibre matri
es one 
an use a simple pres
riptionsfor generation of elements from both, the Hilbert{S
hmidt and the Buresensembles.
•The Hilbert{S
hmidt ensemble • In order to generate the Hilbert{S
hmidt states P (%)HS ≈ �(%)Æ(1− %); (68)
onsider a square n × n 
omplex random matrix Z from the Ginibre en-semble. Then it is easy to 
onvin
ed that the matrix%HS = Z†ZTr (Z†Z) ; (69)is by 
onstru
tion the Hermitian, semi-positive, unit norm matrix andbelongs to the Hilbert{S
hmidt ensemble (68).



ON THE GEOMETRIC PROBABILITY 291

Fig. 1. Distribution of separable states with respe
t tothe 
orrelation measure det ‖C‖ for 106 matri
es from theHilbert{S
hmidt ensemble.
• The Bures ensemble • The density matrix distributed in a

ordan
ewith the Bure measure 
an be generated using the Ginibre ensemble aswell. Following [42℄ 
onsider the random matrix%B = (I + U)ZZ+(I + U+)Tr [(I + U)ZZ+(I + U+)℄ ; (70)where the 
omplex matrix Z belongs to the Ginibre ensemble, while U isa unitary matrix distributed a

ording to the Haar measure on unitarygroup U(N) : By straightforward 
al
ulation one 
an verify that matri
es%B are distributed in a

ordan
e with the Bures measure.3.4. Numeri
al results. • Distribution of separable matri
es •Now having algorithm for generation of the Hilbert{S
hmidt and the Bu-res matri
es one 
an analyse the 
hara
ter of distribution of separable ma-tri
es in both ensembles. Considering 2-qubits system, the distributionsof separable density matri
es with given entanglement 
hara
teristi
s, de-terminants of the 
orrelation and S
hlienz-Mahler matri
es, det ‖C‖ anddet ‖M‖ have been found. The results of our 
al
ulations are given onFigure 1 and Figure 2.
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Fig. 2. Distribution of separable states with respe
t to theS
hlienz-Mahler entanglement measure det ‖M‖ for 106random Hilbert{S
hmidt matri
es.
• Probabilities and 
onje
tures • Finally we give the values of prob-abilities for 2-qubits and qubit-qutrit 
omposite systems, whose densitymatri
es are distributed a

ording to the the Hilbert{S
hmidt and theBures measure.Generating the random density matri
es as it was des
ribed above andthen 
ounting the number of matri
es satisfying the PPT 
onditions:STBk > 0; k = 1; 2; : : : ; 6:the separability probability for two measures were found. The results areas follows. For the Hilbert{S
hmidt measure the separability probabilitiesare

P2⊗2H−S = 0:2424; (71)
P2⊗3H−S = 0:0373; (72)while for the Bures measure 
omputations give
P2⊗2B = 0:073; (73)
P2⊗3B = 0:001: (74)



ON THE GEOMETRIC PROBABILITY 293Apart from this, the probabilities of absolute separable states for 2-qubits and qubit-qutrit system have been determined. The problem in this
ase redu
es to the 
al
ulations of the integrals over the domain of orderedsimplex given by the inequalities (49) and (50)
P2⊗2Measure = ∫ PMeasure (�)�(2√�2�4 − �1 + �3); (75)
P2⊗3Measure = ∫ PMeasure (�)�(2√�4�6 − �1 + �5): (76)These integrals were evaluated using the MATHEMATICA pa
kage for theHilbert{S
hmidt (62) and the Bures distributions (64). Summarizing, allresults, in
luding the per
entage of the absolute separable states, are 
ol-le
ted in the Table 2System Separable Abs. SepH-S metri
2⊗ 2 24.24 % 23,874174 % 0.365826 %2⊗ 3 3.73 % 2,753321 % 0.976679 %Bures metri
2⊗ 2 7.3 % 7,2838208 % 0.0161792 %2⊗ 3 0.1 % 0,1 % -Table 2. Probabilities for 2-qubits and qubit-qutrit.

§4. Con
luding remarksIn the present note the algebrai
 des
ription of low-dimensional binary
omposite systems, pairs of qubits and qubit-qutrit has been given in a waywell adapted to a 
omputational purposes. Based on this formulations fewprobabilisti
 aspe
ts of entanglement have been dis
ussed. Here it is inorder a short 
omment on the results of our numeri
al experiments withseparability probability. Parti
ularly, 
on
erning the separability proba-bility, for the 
ase of Hilbert{S
hmidt measure, one 
an note existen
e of



294 A. KHVEDELIDZE, I. ROGOJINintriguing simple rational approximations:
P2⊗2H−S = 0:2424 ≈ 833 = 233 ∗ 11 ; (77)
P2⊗3H−S = 0:0373 = 16429 = 243 ∗ 11 ∗ 13 ; (78)in agreement with results 
onje
tured by P. B. Slater few years ago [45,46℄.It is 
urious whether this observation has some deep ba
kground or it isan a

idental fa
t of a pre
ise approximation of probabilities by simplerational numbers.Another interesting un
lear feature found is a big value of absoluteseparability probability for 2⊗3 system with the Hilbert{S
hmidt measure,
omparing with a 2-qubit system. Finally, it is also to worth to mention astrong dependen
e of entanglement 
hara
teristi
s on the 
hoi
e of measure(
f. [47℄). A
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