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ON THE GEOMETRIC PROBABILITY OF
ENTANGLED MIXED STATES

ABSTRACT. The state space of a composite quantum system, the
set of density matrices PB4, is decomposable into the space of sepa-
rable states &4 and its complement, the space of entangled states.
An explicit construction of such a decomposition constitutes the
so-called separability problem. If the space P4+ is endowed with a
certain Riemannian metric, then the separability problem admits a
measurement-theoretical formulation. In particular, one can define
the “geometric probability of separability” as the relative volume of
the space of separable states G4 with respect to the volume of all
states. In the present note, based on the Peres—Horodecki positive
partial transposition criterion, the measurement theoretical aspects
of the separability problem are discussed for bipartite systems com-
posed either of two qubits or of qubit-qutrit pairs. The necessary
and sufficient conditions for the 2-qubit state separability are for-
mulated in terms of local SU(2)®SU(2) invariant polynomials, the
determinant of the correlation matrix, and the determinant of the
Schlienz—Mahler matrix. Using the projective method of generation
of random density matrices distributed according to the Hilbert—
Schmidt or Bures measure, the separability (including the abso-
lute separability) probabilities of 2-qubit and qubit-qutrit pairs have
been calculated.

§1. INTRODUCTION

The word “entanglement”, the “verschrinkung”, in the original Aus-
trian phrasing, was introduced in a glossary of quantum mechanics by
Ervin Schrodinger at the Thirties of last century. The name owes its ap-
pearance to a strange type of correlations in composite systems predicted
by newly created quantum theory [1]. The existence of “entangled” states
in quantum theory seemed very problematic and mysterious since its incep-
tion, but at present it is experimentally verified and, moreover, practically
used in a variety of quantum engineering applications. Undoubtedly, nowa-
days the entanglement found its own place among the fundamental notions
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” and

of quantum physics and gains the popularity similar words “energy’
“force” had in XIX-th century.

Being highly counter intuitive and strange occurrence, the entangle-
ment has a transparent mathematical formulation. Mathematics certainly
dispels the aura of mystery, reducing the understanding of correlations be-
tween parts of composed system to the analysis of a set correctly stated
algebraic problems. One of the primary importance, the so-called “sep-
arability problem” is formulated as follows. Consider a system composed
from two d4 and dp — dimensional subsystems with the Hilbert spaces H?4
and H?® respectively. According to the axioms of quantum mechanics any
state of the composed system is given by the density matrix o € B, that
acts on the Hilbert space of the tensor product form:

R e = Hir @ HiE

For a given H% ® H?# factorization an element gs, € P belongs to
the subset of separable states gsep € G4 if and only if psp admits the
convex decomposition of r tensor product states with some probability
distribution wy, [2]:

T
Osep = Zwk Q? & QE- (1)
k=1

The operators ;! and oP in (1) denote the density operators of subsystems
A and B respectively. The states complementary to the separable ones are
named the entangled.!

The definition (1) is an implicit and therefore the question of whether
a given state is separable or entangled is worthy of further attention. Even
from the first glance becomes clear that the “separability” question is
highly intricate. Moreover, as it was shown by Gurvits (cf. [4,5]) even for
a bipartite system the separability problem is categorized computationally
as NP-hard.

INote that the representation (1) is not unique and even knowing that state is
separable to find its decomposition is not an easy task. Furthermore, speaking about
the separability, one has always have in mind that a fixed factorization H%4 @ H%B has
been picked out. Via the global unitary transformation U acting on the total space, one
can switch to another factorization, U (H94 ® H98) UT . As result, a former separable
state can appear as entangled one and vice versa (cf. discussion in [3]).
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Complexity of the problem brings into play alternative approaches. Par-
ticularly, considering the state space of quantum mechanical system as ob-
ject with measure (cf. [6,7]), the “separability problem” can be reshaped
into the probability issue [8,9].

Below adopting the above approach we consider in details a bipartite
systems consisted from 2 and 3-level subsystems. Equipping the state space
with a certain measure the relative volume of entangled states with respect
to the all possible states will be computed

P — Vol(Space of entangled states) 2)
B Vol(Space of all states)

This number defines the geometric probability of entanglement, which can
be treated as a certain measure for “capacity of quantumness” of the sys-
tem.

The article is organized as follows. In sections 2 and 3 the basic elements
from mathematical description of finite-dimensional quantum systems are
given. Latter, using this background, the notion of the separability proba-
bility of states is introduced. Based on the Peres—Horodecki positive partial
transposition criterion, the necessary and sufficient conditions for 2-qubit
state separability are formulated in terms of the local SU(2)®SU(2) scalars,
determinants of correlation matrix and Schlienz—Mahler matrix [10]. In the
section 3, adopting the projective method of generation of random density
matrix the probability aspects of the separability characteristics of 2-qubit
and qubit-qutrit pairs are studied. The later include determination of the
separability and absolute separability probability, as well as the numeri-
cal evaluation of distributions of separable matrices with respect to the
determinants of the correlation and the Schlienz-Mahler matrices.

§2. SETTINGS

Below the relevant definitions and notions, including the basic algebraic
and geometric characteristics of a composite quantum systems are given in
a from suitable for the introduction of the probability of quantum states.
Note that only a finite dimensional quantum systems are considered.

2.1. State space. At the beginning of the “Golden Era” of quantum
mechanics John von Neuman and Lev Landau, became aware of limitations
for applicability of the Schrédinger’s ¥-function, introduce the notion of a
“mized quantum state” [11,12]. The mixed state is characterized by the
self-adjoint, positive semi definite “density operator” acting on the Hilbert
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space of quantum system. For the non-relativistic n-dimensional system
the Hilbert space H is C™ and the density operator can be identified
with n x n Hermitian, unit trace, positive semi-definite matrix ¢. This
matrix, termed the density matriz, completely specifies the state of n-level
quantum system. All possible density matrices form the set 3 — the state
space of n-dimensional quantum system.

2.1.1. State space as a semi-algebraic variety. The space of Hermitian
matrices is topologically isomorphic to R™. Due to the positive semi-
definiteness any density matrix g represents a point of semi-algebraic va-
riety, ‘I?+(R”2_1) of affine subspace, defined by a unit trace equation
Trp = 1. Nevertheless of a long story of studies of finite dimensional sys-
tems it is very little known about P4 (R""~1) for arbitrary n. It turns out
that even for small n the structure of P (R"2*1) is quite cumbersome.?
eDensity matrices and universal enveloping algebra {(su(n))e The
state space has useful algebraic description in terms of the universal en-
veloping algebra U(su(n)) of the Lie algebra su(n). Let e, ea,...,e,2_
form the basis for su(n)

nZ—-1

= Z gie (3)

Consider elements from (su(n)) of the following form:

nZ—-1
Q:_ nxn"'”/ Z Siei |, (4)

with a real (n? — 1)-dimensional vector £ = (&1,&,...,&p2—1) . As it was
mentioned above, expression (4) represents an element of the space of
states P if the vector & is subject to a finite set of polynomial inequalities:

fa(§) 2 0. (5)

Moreover, it turns that the semi-algebraic set described by (5) admits
representation with the polynomial functions f, that are invariant under

2The neighbourhood of a generic point of %+(R”2*1) is locally isometric to
(SU(n)/U(1)"=1) x D*=1, where the component D"~! is (n — 1)-dimensional disc

(cf. [13]).
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the adjoint action of the unitary group SU(n) on P4 (R™ ~1). More pre-

cisely, consider SU(n)-invariant polynomial ring R[]5V™ and a set of
homogeneous polynomials P = (t1, o, ..., ,), that form its integrity basis
R[&, &, s b2 ]PV™ = Rty b, -t (6)

Then the space of states P (R”Q_l) for arbitrary n is semi-algebraic sub-
set given by inequalities of the following type

pi(t17t27-"7tn)>oa i:1727"'78 (7)

where p; € R[$+]SU(“). Below, analysing requirements of the Hermicity
and semi-positivity for density matrices, the explicit form of inequalities (7)
will be given. With this aim a brief digression, devoted to the construction
of the integrity basis P = (t1,t2,...,t,) from elements of the universal
algebra center Z(su(n)) is in order.

DIGRESSION-1

e SU(n)-invariance e  Construction of the adjoint SU(n)-invariants
from the elements of Z(su(n)) is well known procedure. Referring to the
literature on this subject (see e.g., [14]) we briefly state the results and
discuss constraints on these invariants due to the Hermicity and positive
semi-definiteness of density matrices. We are looking for polynomials in
&,6, ..., &2 variables

$&) = Ciroiy b - - & (8)
which are invariant under the adjoint action
$(€) = ¢((Adg)"€), (9)

where (Adg)” is the transpose matrix of adjoint operator calculated in the
basis €;, , €45 ... y€p2_1:

geig~ " = (Adg)ije;, g € SU(n). (10)

These polynomials are in one to one correspondence with the elements of
center Z(su(n))

1
Q:T = Z F Ciy iy Z 61*6(1)61'0(2) N eio(”, (11)

c€S,
where S, is the group of permutations of 1,2,...7.
Furthermore, the n — 1 independent Casimir operators €, in

11) serve
as a resource for the integrity basis of the polynomial ring R[B]

SU(n).
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The scalars appeared from above isomorphism are commonly referred as
Casimir invariants. The first Casimir invariants up to six order in £ are
given:

£-€ 12
Eve)-¢ 13
(

-1 (12)
nl) (13)
—-1)(EVvE)-(EVvE) (14)
) (15)
) (16)

n—1)(EvVe)VEVE))-€ 15

n—1)(EVEVE)? 16

where
UVV), :=kduwU, Vs,

dape are symmetric structure constants for su(n) and k£ = y/n(n —1)/2
is normalization constant. Another, an equivalent set of invariants, useful
from a computational point of view, is given by the so-called trace in-
variants, power series in eigenvalues, {A} = Ay, A2,..., A,. of the density
matrix

ty = tr(o) = AP+ A8 4 AR k=1,2,...,n. (17)

Below we formulate requirements of Hermicity and semi-positivity of den-
sity matrix directly in terms of (17).

e Hermicity of ¢ in terms of the SU(n)-invariants e Since p is a Her-
mitian matrix all solutions (eigenvalues {A} ) of the characteristic equation

det [[A— o = A" = SIA" L+ SoA 2 — 4 (=1)" S, =0, (18)
are real numbers. In accordance with the classical result a certain infor-
mation on the properties of the roots can be extracted from the so-called

Bézoutian, the matrix B = AT A, constructed from the Vandermonde ma-
trix

D VR VAU Vi
1L X A3 ..ot

A = 1 A3 )\g .- )\gfl ) (19)
LA A2 An—t

The entries of the Bézoutian are simply the trace invariants:

Bij = ti+j,2 . (20)
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The Bézoutian accommodate information on number of distinct roots (via
its rank), numbers of real roots (via its signature), as well as the Hermicity
condition. A real characteristic polynomial has all its roots real and distinct
if and only if the Bézoutian is positive definite. Here we are interesting only
in situation of a generic density matrices (the space of degenerate matrices
with coinciding roots are measure zero sets). For this case the positivity
of Bézoutian reduces to the requirement,

det ||B|| > 0. (21)

Since det ||B|| = (det ||A]])?, the determinant of the Bézoutian is nothing
else as the discriminant of the characteristic equation (18)

Disc = H ()\2 — )\j)Q 5 (22)

i>j
rewritten in terms of the trace polynomials
Disc(ty,ta, ..., t,) := det ||B]|. (23)

Dependence of discriminant on trace invariants only up to order n pointed
in left side of (23) assumes that all higher trace invariants t; with & > n in
(20) are expressed via polynomials in t1,%s,...,t,, (the Cayley—Hamilton
Theorem).

eSemi-positivity of ¢ in terms of the SU(n)-invariantse Positive
semi-definiteness implies the non-negativity of roots of (18):

Ao >0,  k=1,2,....n (24)

Inequalities (24) are not computationally efficient, the eigenvalues {A}
are non-polynomial SU(n)-invariants. Fortunately, it it is known (see e.g.
[15,16] and references therein), that instead of (24) the equivalent set of
inequalities can be formulated in terms the first n-symmetric polynomials
in eigenvalues of o:

S, >0, k=1,2...n. (25)

Opposite to eigenvalues, the coefficients Sy, are SU(n)-invariant polynomial
functions of density matrix elements and thus are expressible in terms of
the trace invariants. An elegant expression for Sy is given by the following
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determinant
tq 1 0 e 0
to t1 2 e 1
Sp = %det ts 2t o . (26)
: k—1
te th—1 tp—2 - i1

Summarizing, the algebraic set of inequalities in SU(n)-invariants de-
scribing the state space P (R”Q_l), as the semi-algebraic variety of the
affine subspace Trp = 1, read:

Disc > 0, Hermicity , (27)
Si =0, Semi-positivity . (28)

Now we are in position to pose the following question: Is the space of
separable states S the semi-algebraic set as well? Nevertheless, of many
efforts performed during last decades, a complete answer for a generic case
is unknown yet. But, for a simplest bipartite system 2 ® 2, composed from
pair of 2-dimensional subsystems, qubits, the space of separable states
G292 admits nice description as a basic semi-algebraic variety. Next para-
graph is devoted to the detailed demonstration of this particular result.

2.1.2. Decomposing state space: separable vs. entangled. As it was men-
tioned in the Introduction, due to the quantum superposition principle,
an arbitrary state of a composite system is described by the element of the
tensor products of density operators of its subsystems. For a given factor-
ization of system into the parts, the state space P (R”Q_l) decomposes
into the separable G and entangled components. Further more, since the
property of separability is independent of the choice of basis in each subsys-
tem, it was conjectured that & (see discussion in Chen and Dokovic [17])
represents the so-called basic closed semi-algebraic set, which is defined by
polynomial inequalities in variables, that are invariant under independent
action of the unitary transformations of each subsystems. Below, starting
with the necessary definitions, the description of & for a pair of qubits
will be given.

A generic 15-parameter density matrix for composite 2 ® 2 system con-
sistent from 2-qubits reads

1
‘Q:Z[]I4+(1~0'®H2+]I2®0"b+cij0'i®0'j]. (29)
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Representation (29) is often named as Fano [18] decomposition of 2-qubits
state with parameters a and b assigned to the Bloch vectors of the reduced
density matrices p4 and pp extracted from p by taking the partial traces
over second and first qubit respectively:

04 =Trpo, o =Tryo. (30)

Nine real coefficients ¢;; are usually collected in the “correlation matriz”,
[IC|l;j = cij. As follows from its name, the C-matrix contains information
on interactions between parts of the composed system.

e The separability criterion e Perhaps the most useful tool for qualify-
ing separability is the famous Peres-Horodecki criterion [19-21], which is
based on the idea of the partial transposition. The partial transpose 0B
of 2-qubits density matrix is defined as

0™ =1®To, (31)

where T is the standard transposition operation. Under the transposition
the Pauli matrices change as T'(o1,02,03) — (01, —02,03) .

The states whose partial transposition preserves its positivity are termed
as Positive Partial Transpose (PPT)-states. It is easy to verify that any
separable state is PPT. The opposite is not true, even for low dimensional
bipartite systems. The counterexamples for 3 x 3 shows that there are en-
tangled states with a positive partial transpose. However, for composite
binary systems of type 2 x 2 and 2 x 3 the Peres-Horodecki criterion asserts
that the state g is separable if and only if its partial transposition o7& is
positive as well.?

Intuitively it is clear that entanglement in composite systems is function
of the “relative orientation” of its subsystems only, any “local character-
istics” of subsystems are unessential for the separability property. To give
a rigorous sense to this view the second digression on the so-called local
invariance possessing by composite systems is in order.

3More generally, consider a family of bipartite so-called k x [-states p, i.e., states
whose partial traces are matrices with rankp4 = k and rankp4 = [ respectively. For such
k x [-states it is was proved that g is separable if it is PPT and (k—1)(I—1) < 2 [19,20].
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DIGRESSION-2

e The local unitary invariance e The characterization of entan-
glement for 2-qubits, as well as more general multipartite systems, admit
formulation in terms of invariants of the so-called local groups [22]. To in-
troduce this notion consider a generic multipartite system composed from
r-subsystems each with dy,ds, ..., d, levels respectively. The special sub-
group of the unitary group SU(n) with n =d; x dy x -+ X d;::

SU(d;) ® SU(dp) ® - - - ® SU(d,), (32)

acting on the state space, is termed as the group of local unitary trans-
formations (LUT). This action introduces the equivalence relations on
P (R”z_l) and defines its orbital decomposition. Two states of compos-
ite system connected by the LUT transformations (32) have the same
non-local properties. Any characteristics of entanglement is a function of
the LUT-invariants. Particularly, the separability criterion in terms of the
corresponding polynomial LUT-invariants can be given. Before presenting
an algebraic formulation of the separability criterion, we pass to a basic
description of LUT-invariants (see e.g. [22-26].
e SU(2)® SU(2) invariants ¢ The LUT-invariants of the mixed two-
qubit system are those polynomials in the elements of state which are
constant under the adjoint SU(2)® SU(2) group action. These invariants
and the corresponding ring RSU)®SUR) have been subject of intensive
studies . In this general setting, RSU(2®SU(2) necessarily has the Cohen-
Macaulay property, i.e., there exists a homogeneous system of parameters
K1, Ks,...,K,, for some n, such that RSU()®SUR) is finitely generated as
a free module over C[K, Ko, ..., K,]. It is known that the polynomial ring
of SU(2) ® SU(2) invariants admits the Hironaka decomposition, namely
[24]
15
RSVZ)@SUR) — @ Jp C[K1, K>, ..., K9], (33)
k=0

where ten primary algebraically independent polynomials K, have de-
grees degK = (1,2,2,2,3,3,4,4,4,6); and fifteen secondary linearly in-
dependent invariants Jg, k& = 0,1,2,...,15 are polynomials of degrees
degJ = (4,5,6,6,6,7,7,8,8,9,9,9,10,11,15) with Jo =1 .
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The integrity basis SU(2)® SU(2) invariants in the enveloping algebra
$U(su(n)) is known [24,27]. Following the Quesne’s notations, the invari-
ants (up to fourth order), necessary for our analysis, are listed below in
assumption of summation over all repeated indices from one to three:

3 invariants of second degree

C%0 = ga;, CO0 =pb;, OO =¢ei;, (34)
2 invariants of third degree

C(003) — %eijkeamcmcﬁcm, CMY = qcib5, (35)

4 invariants (;f fourth degree
((004) CiaCiBCjaCja, (36)
o202 — A;iGjCiaCja (37)
CO2) = pbscincis, (38)
o) = €ijk€aByibaCiaChy, (39)
Now we will show that two LUT-invariants, namely, C(°%3) and C(112)

play especial role in an algebraic form of the Peres—Horodecki separability
criterion.

e Separability in terms of local invariants e As it follows from the
Peres—Horodecki, the density matrices o for 2-qubits are separable if the
coefficients SkTB of characteristic equation for the corresponding partially
transposed matrices QTB are non-negative:

STs >0, k=234 40
k

As calculations show the second coefficient of characteristic equation is
invariant under the partial transposition (31):

SiP = S,, (41)
while higher coefficients change as follows
S35 = S +det|C|, (42)
Si® = Sy+det|M], (43)
where M stands for the Schlienz-Mahler matrix [10]:
M;; == ¢i5 — asb;. (44)

Comparing with (35) one can easily verify that both determinants det ||C||
and det ||[M|| are invariant under the local group SU(2) ® SU(2):
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1 .
det ]| = €™, det | M]| = C°% — ZC*12. (45)

It is interesting that the equations (42) and (43) allow to formulate
sufficient conditions for 2-qubits entanglement.
e Sufficient conditions for 2-qubits entanglement e Consider a
pair of qubits in a generic mixed state (29). Then from (41)—(43) it follows
that: Any density matriz p, obeying the inequalities

det?|M|| > 1,  det?||C|| > 1, (46)

with necessity is the entangled matriz. The density matrices from the com-
plementary domain

~1<det M| <1, —1<det]C]| <1, (47)

are separable as well as entangled ones.

The above described separability vs. entanglement conditions are invari-
ant under LUT-group action, but can be changed under generic unitary
transformations. However, noting the maximally mixed state gy ~ I xp
remains the separable one under an arbitrary U(n) transformations, one
can expect an existence of states in its neighbourhoods that posses the
separability properties independent of chosen basis. Below a short review
of such states characterization is given.

e Absolute separability e The property of separability vs. entangle-
ment is sensitive to the way of how the system is decomposed into parts.
Being generically depended on a fixed factorization, it has exceptions to
the rule. M. Kus and K. Zyczkowski in [28] drew attention to the states of
n-dimensional quantum system, that are absolute separable, i.e., that there
is U(n)-invariant subspace A&, C &4

AG, ={pe &, | UpgUt €&y, VU € U(n)}. (48)

What is condition for state to be an absolute separable one ¢ The answer
to this question 2-qubit system was found by Verstraete et al. [29], who
showed that a necessary and sufficient condition is given by a quadratic
inequality on the eigenvalues of density matrix. Later, for the case of a
bipartite system formed from qudits, the similar system of inequalities in
the eigenvalues of density matrix has been derived by R.Hildebrand [30].
Particularly, for 2 ® 2 and 2 ® 3 the inequalities read

A=A <200, (49)
A=A <20 Ak, (50)
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The algebraic description of state space and particularly the separa-
ble states presented here is well adapted for an extraction of quantitative
characteristics of the entanglement. Now few applications exemplifying this
thesis will be given.

§3. PROBABILISTIC VIEW ON ENTANGLEMENT

Here probabilistic aspects of the entanglement is discussed within the
semi-algebraic description given previous sections. Adopting the probabil-
ity approach [8,9,31-33]. the probabilistic characteristics for 2-qubits and
qubit-qutrit system will be presented. Since a standard methods from the
theory of probability require existence of measure, below we start with the
introduction Riemannian structures on ‘P (R”z_l) .

3.1. The Riemannian geometry of states. There is no way to single
out a unique measure in state space. Various physical and mathematical
argumentation have been drawn for introduction of different metrics on
P (R”Q’l). Few popular distances between two density matrices o1 and
02, commonly used in the literature, are

e the trace distance

Dy (01, 02) = tf( (01 — 92)2) ; (51)
e the Hilbert—Schmidt distance

Dus(01,00) = Vtr[(e1 — 02)°], (52)

e the Bures distance

Dg(01,00) = \/2 (1 — tr {(Q}/292Q}/2)1/2D ) (53)

These distances naturally appear in different approaches, e.g., the Bu-
res distance [34] originates from the statistical distance between quantum
states [35] and quantum fidelity [36]. Each of them possesses certain ad-
vantages as well drawbacks and often the derived results strongly depend
on made choice. Below, in order to analyse this type dependence we use
the measures corresponding two of them, (52) and (53). The derivation of

the corresponding measures on ‘B (R"2’1) can be done as follows.
e The Hilbert—Schmidt measuree Considering the distance (52)
between two infinitesimally close points ¢ and o+ dp we get the flat metric

8us = tr(do® do) , (54)
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which in the Bloch coordinates (4) for system of 2-qubits takes (up to scale
factor) the standard Euclidean form in R!5:

s = d& ®d&G +dé @ dé + -+ + dés @ déys. (55)
The measure corresponding to (55)
Aptygs := dEL AdEy A -+ AdEys (56)

admits the following decomposition

dptys = dpa. o, % dv (57)

U@)/U)*”?
where dgp, A is the measure on the ordered 3-dimensional simplex4 in R*
and dvg(a)ju(1)s is the measure on the coset U(4)/U(1)*, induced from
the conventional Haar measure on the unitary group U(4). Note, that the
decomposition (57) follows from the principal axis transformation applied
to the density matrices. Since density matrices are Hermitian, for each p
there exist a unitary matrix U € U(4), such that

o=UAUT. (58)

Because the adjoint action on the diagonal matrix A has a stability group
H, , the matrix U is not unique, U belongs to the coset homeomorphic
to U(4)/Ha. To make the representation (58) one to one the diagonal
elements of matrix A

A 0 0 0
o x 0 o0

A=l 0 0 an o0 (59)
0 0 0 X\

are restricted to the ordered simplex *Ay by fixation of the descending
order
122232020

The stability group Hjp , depends on the matrix A and all possible types
of Hy are listed in the Table 1.

From the Table 1 on can conclude that the measure is determined from
the case with minimal isotropy group, U(1)*. Thus, passing to a new co-
ordinates via transformation (58) the measure gets the form (57)

g, =[] i = 2)% dh A= AdA, (60)
>3

4The ordered simplex *Ay is the standard simplex Ay factorized by the action of
permutation group Sy.
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Eigenvalues Stability group Ha dim(%%l) dim(A)
A >A>A3> >0 U(1)4 12 3
AM=X>A3> >0 U(Q)@U(l)z 10 2
M>h=M>M>0|U0)eUReU1L)]| 10 2
AM>X>A3=XM>0 U)o U(2) 10 2
M>h=M=A>0| UL)U®B) 6 1
AM =X >A3=X>0 U(2)®U(2) 8 1
)\1:)\2:)\3>)\4>O U(3)®U(1) 6 1
A =X == A =0 U(4) 0 0

Table 1. Stability groups and dimensions of U(4)/Hy cosets.

with the discriminant of the characteristic equation for ¢ as the Jacobian
and the measure on the coset SU(4)/U(1)*, depending on 4% — 4 angles:

d‘uSU(4)/U(1)4 =wi Awa A Awia, (61)

where w1 ,...,wi2 are the left-invariant 1-forms on U(4) projected to the
coset SU(4)/U(1)*. As a result, the Hilbert—Schmidt measure (56) induces
the following joint distribution function in the simplex of the density ma-
trix eigenvalues:

PN =C. 6 (1 - zn: /\i> ﬁ o) [T —A)*,  (62)

i>j
where the normalization constant C,, reads

CHS — F(n2)

n

1 T~ T —j+1)

j=0
It is important to note that the distribution (62) may be considered as
a special case of the family of measures induced by the partial tracing
[31-33]. Below, we will use this observation for the numerical analysis of
the geometric probability.
e The Bures measuree The infinitesimal form of Bures distance (53)
lead to the metric:

1
EBures — 5 Tr (GdQ) ) (63)
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where @ is defined from the equation dp = Go + oG [37,38].
It is known (see e.g., [36,39]) that the Bures probability distribution in
the simplex of eigenvalues reads

P ()‘):CBures(S ]-*i/\z H@(/\l)d/\l HM (64)
Bures n P \//\—l oy )\2 +)\j 9

where

I'(n2/2)
/2T TG +1)

2_
Crl?ures — gn°—n

is a normalization constant.

3.2. Probability of separability. Now, introducing the measure on the
space of states, we are in position to define the probability characteristics
of entanglement. The simplest one is the probability of finding the sepa-
rable states among all possible states, distributed in accordance with the
introduced measure on the state space.

e Geometric probability of separability e Consider a bipartite sys-
tem consistent from the pair of qubits or qubit-qutrit. Taking into account
the semi-algebraic structure of state space one can define the separability
probability as
Do = f B0 Py dps
sep — f du .

B+
The denominator in (65) represents the volume of total state space P,
while integral in nominator expresses the volume of separable states over
the intersection P4 N Py of P, and its image P4 under the partial
transposition map. The set BN ‘f3+ represents the subset of P invariant
under the partial transposition map:

BN Pr={peP;+[IaTpe Pi},
Below in our computations the measure du in integrals (65) is assumed
to either the Hilbert—Schmidt or the Bures form. Since the volume of
state space is known for both metrics, the Hilbert—Schmidt [40] and the
Bures [36], the problem of determination of separability probability reduces
to the evaluation of the integral over the set P N ‘ihr.

Postponing for a future studies of generic properties of (65), we will
discuss how to evaluate the separability probability for pairs of qubits
and qubit-qutrit. The straightforward numerical calculation of the multi-
dimensional integral over the set . N ‘1¥+ represents hard computational

(65)
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problem. To avoid very cumbersome computations one can use a reliable
remedy, the Monte-Carlo method.

3.3. Generation of density matrices ensembles. The basic ingredi-
ent of the Monte-Carlo approach is the generation of a specific random vari-
able. To generate the random density matrices from the Hilbert—Schmidt
and and Bures ensemble the ideology of the method of induced measures
(cf. [31-33] and [41-43]) can be used. To proceed let us start at first with
the generation of the so-called Ginibre ensemble [44], i.e., the set of com-
plex matrices whose elements have real and imaginary parts distributed as
independent normal random variables.

e The Ginibre ensemble o Let M(C,n) is the space of n x n matrices
whose entries are complex numbers. Assume that the elements of Z €
M(C, n) are independent identically distributed standard normal complex
random variables

1 .
Pley) = Zexp(—lzyl), id=12,...m.

The joint probability distribution
: 1
P(Z) = -H1 plzij) = —7 exD (-Tx (Z2'2)) (66)
2,]=
and linear measure on M(C, n) determines the Ginibre’s measure of prob-
ability distribution:
duc(Z) = P(2)Tx (dZ1dZ) . (67)

Having the random Ginibre matrices one can use a simple prescriptions
for generation of elements from both, the Hilbert—Schmidt and the Bures
ensembles.

eThe Hilbert—Schmidt ensemble e In order to generate the Hilbert—
Schmidt states

P(o)us = 6(0)4(1 — o), (68)
consider a square n X n complex random matrix Z from the Ginibre en-
semble. Then it is easy to convinced that the matrix

zZtz
Tr(Z17)’
is by construction the Hermitian, semi-positive, unit norm matrix and
belongs to the Hilbert—Schmidt ensemble (68).

oHS = (69)
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Fig. 1. Distribution of separable states with respect to
the correlation measure det ||C|| for 10° matrices from the
Hilbert—Schmidt ensemble.

e The Bures ensemble o The density matrix distributed in accordance
with the Bure measure can be generated using the Ginibre ensemble as
well. Following [42] consider the random matrix

_ (I+U)zzH1I4+UT)
T I+ )22 1+ U
where the complex matrix Z belongs to the Ginibre ensemble, while U is
a unitary matrix distributed according to the Haar measure on unitary
group U(N). By straightforward calculation one can verify that matrices
op are distributed in accordance with the Bures measure.

(70)

3.4. Numerical results. e Distribution of separable matrices e
Now having algorithm for generation of the Hilbert-Schmidt and the Bu-
res matrices one can analyse the character of distribution of separable ma-
trices in both ensembles. Considering 2-qubits system, the distributions
of separable density matrices with given entanglement characteristics, de-
terminants of the correlation and Schlienz-Mahler matrices, det ||C|| and
det ||M|| have been found. The results of our calculations are given on
Figure 1 and Figure 2.
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Fig. 2. Distribution of separable states with respect to the
Schlienz-Mahler entanglement measure det ||[M]|| for 105
random Hilbert—Schmidt matrices.

e Probabilities and conjectures e Finally we give the values of prob-
abilities for 2-qubits and qubit-qutrit composite systems, whose density
matrices are distributed according to the the Hilbert—Schmidt and the
Bures measure.

Generating the random density matrices as it was described above and
then counting the number of matrices satisfying the PPT conditions:

SiP >0, k=12,...,6.

the separability probability for two measures were found. The results are
as follows. For the Hilbert—Schmidt measure the separability probabilities
are

PP = 0.2424, (71)
PrE% = 0.0373, (72)

while for the Bures measure computations give
PEP? = 0.073, (73)
P83 = 0.001. (74)
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Apart from this, the probabilities of absolute separable states for 2-
qubits and qubit-qutrit system have been determined. The problem in this
case reduces to the calculations of the integrals over the domain of ordered
simplex given by the inequalities (49) and (50)

P22, = [ R MOV X+ ), (75)
Pree = / P MOV 2106 = A1 + As). (76)

These integrals were evaluated using the MATHEMATICA package for the
Hilbert—Schmidt (62) and the Bures distributions (64). Summarizing, all
results, including the percentage of the absolute separable states, are col-
lected in the Table 2

System Separable Abs. Sep
H-S metric
2®2 24.24 % | 23,874174 % | 0.365826 %
2®3 3.73 % 2,753321 % | 0.976679 %
Bures metric
2® 2 7.3 % 7,2838208 % | 0.0161792 %
2®3 0.1 % 0,1 % -

Table 2. Probabilities for 2-qubits and qubit-qutrit.

§4. CONCLUDING REMARKS

In the present note the algebraic description of low-dimensional binary
composite systems, pairs of qubits and qubit-qutrit has been given in a way
well adapted to a computational purposes. Based on this formulations few
probabilistic aspects of entanglement have been discussed. Here it is in
order a short comment on the results of our numerical experiments with
separability probability. Particularly, concerning the separability proba-
bility, for the case of Hilbert—Schmidt measure, one can note existence of
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intriguing simple rational approximations:

P22 2424~ S = 2 (77)
H=5 33 3«11
16 24

PrE% =00373= — = ———— (78)

429 3x11x13’

in agreement with results conjectured by P. B. Slater few years ago [45,46].
It is curious whether this observation has some deep background or it is
an accidental fact of a precise approximation of probabilities by simple
rational numbers.

Another interesting unclear feature found is a big value of absolute
separability probability for 223 system with the Hilbert—Schmidt measure,
comparing with a 2-qubit system. Finally, it is also to worth to mention a

strong dependence of entanglement characteristics on the choice of measure
(cf. [47]).
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