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t. We 
onsider a linear skew produ
t with the full shiftin the base and nonzero Lyapunov exponent in the �ber. We pro-vide a sharp estimate for the pre
ision of shadowing for a typi
alpseudotraje
tory of �nite length. This result indi
ates that the high-dimensional analog of the Hammel{Yorke{Grebogi 
onje
ture 
on-
erning the interval of shadowability for a typi
al pseudotraje
toryis not 
orre
t. The main te
hnique is the redu
tion of the shadowingproblem to the ruin problem for a simple random walk.
§1. Introdu
tionThe theory of shadowing of approximate traje
tories (pseudotraje
to-ries) of dynami
al systems is now a well-developed part of the global theoryof dynami
al systems (see the monographs [3,4℄ and [5℄ for a survey of mod-ern results). The shadowing problem is related to the following question:under whi
h 
onditions, for any pseudotraje
tory of f does there exist a
lose traje
tory?Let us 
onsider a metri
 spa
e (G; dist) and a 
ontinuous map f : G →G, d > 0. For an interval I = (a; b), where a ∈ Z ∪ {−∞}, b ∈ Z ∪ {+∞},a sequen
e of points {yk}k∈I is 
alled a d-pseudotraje
tory if the followinginequalities hold:dist(yk+1; f(yk)) < d; k ∈ Z; k; k + 1 ∈ I:De�nition 1. We say that f has the shadowing property if for any " > 0there exists d > 0 su
h that for any d-pseudotraje
tory {yk}k∈Z thereexists a traje
tory {xk}k∈Z su
h thatdist(xk; yk) < "; k ∈ Z: (1)In this 
ase, we say that the pseudotraje
tory {yk} is "-shadowed by {xk}.The study of this problem was originated by Anosov [6℄ and Bowen [7℄.This theory is 
losely related to the 
lassi
al theory of stru
tural stability.Key words and phrases: shadowing, skew produ
t, random walk, large deviationprin
iple. 261



262 S. TIKHOMIROVLet G be a smooth 
ompa
t Riemannian manifold of 
lass C∞ withoutboundary with metri
 dist and let f ∈ Di�1(G). It is well known that adi�eomorphism has the shadowing property in a neighborhood of a hyper-boli
 set [6,7℄ and a stru
turally stable di�eomorphism has the shadowingproperty on the whole manifold [8, 9℄. At the same time, it is easy to givean example of a di�eomorphism that is not stru
turally stable but hasshadowing property (see [10℄, for instan
e). Thus, stru
tural stability isnot equivalent to shadowing.Relation between shadowing and stru
tural stability was studied in sev-eral 
ontexts. It is known that the C1-interior of the set of di�eomorphismshaving the shadowing property 
oin
ides with the set of stru
turally stabledi�eomorphisms [11℄ (see [12℄ for a similar result for the orbital shadow-ing property). Abdenur and Diaz 
onje
tured that a C1-generi
 di�eomor-phism with the shadowing property is stru
turally stable; they have provedthis 
onje
ture for the so-
alled tame di�eomorphisms [13℄.Analyzing the proofs of the �rst shadowing results by Anosov [6℄ andBowen [7℄, it is easy to see that, in a neighborhood of a hyperboli
 set,the shadowing property is Lips
hitz (and the same holds in the 
ase of astru
turally stable di�eomorphism [4℄).De�nition 2. We say that f has the Lips
hitz shadowing property if thereexist "0; L0 > 0 su
h that for any " < "0 and d-pseudotraje
tory {yk}k∈Zwith d = "=L0 there exists a traje
tory {xk}k∈Z su
h that inequalities (1)hold.Re
ently [14℄ it was proved that a di�eomorphism f ∈ C1 has Lips
hitzshadowing property if and only if it is stru
turally stable (see [10, 15℄ fora similar results for periodi
 and variational shadowing properties).In the present paper, we are interested whi
h type of shadowing is pos-sible for non-hyperboli
 di�eomorphisms. The following notion will be im-portant for us [16℄:De�nition 3. We say that f has the �nite H�older shadowing propertywith exponents � ∈ (0; 1), ! > 0 (FinHolSh(�; !)) if there exist d0; L; C > 0su
h that for any d < d0 and d-pseudotraje
tory {yk}k∈[0;Cd−!℄ there existsa traje
tory {xk}k∈[0;Cd−!℄ su
h thatdist(xk ; yk) < Ld�; k ∈ [0; Cd−!℄:S. Hammel, J. Yorke, and C. Grebogi made the following 
onje
turebased on results of numeri
al experiments [1, 2℄:



SHADOWING IN LINEAR SKEW PRODUCTS 263Conje
ture 1. A typi
al dissipative map f : R2 → R2 with positiveLyapunov exponent satis�es FinHolSh(1=2; 1=2).In [1, 2℄, the pre
ise mathemati
al meaning of word \typi
al" was notprovided.There are plenty of not stru
turally stable examples satisfyingFinHolSh(1=2; 1=2), for instan
e [16, Example 1℄ and the identity map.In the present paper, we study this 
onje
ture for a model example: alinear skew produ
t (see the de�nition in Se
tion 2). We give lower andupper bounds for the pre
ision of shadowing of �nite length pseudotra-je
tories. These bounds show that, depending on parameters of the skewprodu
t di�eomorphism, it might satisfy and not satisfy analog of Conje
-ture 1.We expe
t that similarly to works [17, 18℄, su
h a skew produ
t 
anbe embedded into a di�eomorphism of a manifold of dimension 4. Thiswould allow us to 
onstru
t an open set of di�eomorphisms violating ahigh-dimensional analog of Conje
ture 1. Similarly, we 
an 
onstru
t anopen set of di�eomorphisms satisfying this 
onje
ture. However, we didnot implement su
h a 
onstru
tion and leave it out of the s
ope of thepresent paper.Note that in [16℄ it was shown that Conje
ture 1 
annot be improved(see also [19℄ for the dis
ussion on H�older shadowing for 1-dimensionalmaps):Theorem 1. If a di�eomorphism f ∈ C2 satis�es FinHolSh(�; !) with� > 1=2, � + ! > 1, then f is stru
turally stable.The paper is organized as follows. In Se
tion 2, we formulate exa
tstatements of the results. In Se
tion 3, we formulate a parti
ular problemfor random walks and prove its equivalen
e to the shadowing property. InSe
tion 4, we give a proof of the main result.
§2. Main ResultLet � = {0; 1}Z. Endow � with the standard probability measure � andthe following metri
:dist({!i}; {~!i}) = 1=2k; where k = min{|i| : !i 6= ~!i}:For a sequen
e ! = {!i} ∈ � denote by t(!) the 0th element of thesequen
e: t(!) = !0. De�ne the \shift map" � : � → � as follows:(�(!))i = !i+1:



264 S. TIKHOMIROVConsider the spa
e Q = � × R. Endow Q with the produ
t measure� = � × Leb and the maximum metri
:dist((!; x); (~!; ~x)) = max(dist(!; ~!); dist(x; ~x)):For q ∈ Q and a > 0 denote by B(a; q) the open ball of radius a 
enteredat q.Fix �0; �1 ∈ R satisfying the following 
onditions0 < �0 < 1 < �1; �0�1 6= 1: (2)Consider the map f : Q → Q de�ned as follows:f(!; x) = (�(!); �t(!)x):For q ∈ Q, d > 0, N ∈ N let 
q;d;N be the set of d-pseudotraje
tories oflength N starting at q0 = q. If we 
onsider qk+1 being 
hosen at random inB(d; f(qk)) uniformly with respe
t to the measure �, then 
q;d;N forms a�nite time Markov 
hain. This naturally endows 
q;d;N with a probabilitymeasure P . See also [20℄ for a similar 
on
ept for in�nite pseudotraje
to-ries.For " > 0 let p(q; d;N; ") be the probability of a pseudotraje
tory in
q;d;N to be "-shadowable. Note that this event is measurable sin
e itforms an open subset of 
q;d;N .Lemma 1. Let q = (!; x), ~q = (!; 0). For any d; " > 0, N ∈ N, thefollowing equality holds:p(q; d;N; ") = p(~q; d;N; "):Proof. Consider {qk = (!k; xk)} ∈ 
q;d;N . Put rk := xk+1 − �t(!k)xk.Consider a sequen
e {~qk = (!k; ~xk)}, where~x0 = 0; ~xk+1 = �t(wk)xk + rk :The following holds:(1) the 
orresponden
e {qk} ↔ {~qk} is one-to-one and preserves theprobability measure;(2) for any " > 0 pseudotraje
tory {qk} is "-shadowed by a traje
toryof a point (!; x) if and only if {~qk} is "-shadowed by a traje
toryof a point (!; x− x0).These statements 
omplete the proof of the lemma. �



SHADOWING IN LINEAR SKEW PRODUCTS 265For d; " > 0, N ∈ N de�nep(d;N; ") := ∫!∈� p((!; 0); d;N; ")d�:Note that the integral exists sin
e for �xed d,N , ", the value p((!; 0); d;N; ")depends only on a �nite number of entries of !. The quantity p(d;N; ")
an be interpreted as the probability of a d-pseudotraje
tory of length Nto be "-shadowed.The main result of the paper is the following:Theorem 2. For any �0; �1 ∈ R satisfying (2) there exist "0 > 0, 0 <
0 <∞ su
h that for any " < "0, the following holds:(1) If 
 < 
0, then limN→∞ p("=N
; N; ") = 0;(2) if 
 > 
0, then limN→∞ p("=N
; N; ") = 1.Remark 1. Later (Lemma 2) we prove that for any N ∈ N, L > 0,"1; "2 ∈ (0; "0), the equality p("1=L;N; "1) = p("2=L;N; "2) holds. Hen
ethe result of Theorem 2 a
tually does not depend on the value of ".Remark 2. Due to Remark 1 analog of the Hammel-Grebogi-Yorke 
on-je
ture for map f suggests that p("=N;N; ") is 
lose to 1. Hen
e, if 
0 > 1,then Hammel-Grebogi-Yorke 
onje
ture is not satis�ed. For an example ofsu
h parameters see Remark 3.
§3. Equivalent FormulationLet a0 = ln�0, a1 = ln�1. Consider the following random variable:
 = {a0 with probability 1/2;a1 with probability 1/2:Fix N > 0. Consider the random walk {Ai}i∈[0;∞) generated by 
 andindependent uniformly distributed in [−1; 1℄ variables {ri}i∈[0;∞). De�nea sequen
e {zi}i∈[0;N ℄ as follows:z0 = 0; zi+1 = zi + ri+1eAi+1 : (3)For given sequen
es ({Ai}i∈[0;N ℄; {ri}i∈[0;N ℄) de�neB(k; n) := eAk+AneAk + eAn |zn − zk| = eAneAk + eAn ∣∣eAkzn − eAkzk∣∣ ;K({Ai}; {ri}) := max06k<n6N B(k; n);



266 S. TIKHOMIROVs(N;L) := P (K({Ai}i∈[0;N ℄; {ri}i∈[0;N ℄) < L);where P (·) is the probability of a 
ertain event.Below we prove the following lemma.Lemma 2. There exist "0 > 0, L0 > 0 su
h that for any d > 0, L > L0,N ∈ N satisfying Ld < "0 the following equality holds:p(d;N;Ld) = s(N;L):Proof. Let us 
hoose "0; L0 > 0 su
h that if dist(!; ~!) < "0, then t(!) =t(~!) and the map � satis�es the Lips
hitz shadowing property with 
on-stants "0; L0.Fix d < d0, N > 0 and L > L0 satisfying Ld < "0. Let us 
hoose ! ∈ �at random a

ording to the probability measure � and a pseudotaje
tory
{qk} = {(!k; xk)} ∈ 
(!;0);d;N a

ording to the measure P (see Se
tion 2).Consider the sequen
es
k = at(!k); Ak = k

∑i=0 
i; rk = 1d (xk − �t(!k−1)xk−1):Note that rk are independent uniformly distributed in [−1; 1℄ and 
k areindependent and distributed a

ording to 
.Below we prove that the sequen
e {qk} 
an be Ld-shadowed if and onlyif L > K({Ai}; {ri}): (4)Assume that the pseudotraje
tory (!k; xk) is Ld-shadowed by an exa
ttraje
tory (�k; yk). By the 
hoi
e of "0, the following equality holds:t(!k) = t(�k): (5)Now let us study the behavior of the se
ond 
oordinate. Note thatyk+1 = �t(�k)yk = e
kyk; yn = eAn−Akyk; (6)xn = eAn−Akxk + eAk(zn − zk);where zk are de�ned by (3). Hen
e,(yn − xn) = eAn−Ak(yk − xk) + eAk(zn − zk):From this equality it is easy to dedu
e thatmax(|yk − xk|; |yn − xn|) > B(k; n)and the equality holds if (yk − xk) = −(yn − xn). Hen
e, inequality (4)holds.



SHADOWING IN LINEAR SKEW PRODUCTS 267Now let us assume that (4) holds and prove that (wk; xk) 
an be Ld-shadowed. Let us 
hoose a sequen
e {�k} whi
h Ld-shadows {wk}, thenequalities (5) hold.For y0 ∈ R de�ne yk by relations (6) and 
onsider fun
tion F : R→ Rde�ned as follows: F (y0) = max06k6N |yk − xk |:Sin
e the fun
tion F is 
ontinuous, it is easy to show that it attains aminimum for some y0. Denote L′ := miny0∈R F (y0) and let y0 be su
hthat L′ = F (y0). Let D = {k ∈ [0; N ℄ : |yk−xk| = F (y0)}. Let us 
onsidertwo 
ases.Case 1. For all k ∈ D the value yk−xk has the same sign. Without lossof generality, we 
an assume that these values are positive. Then for smallenough Æ > 0, the inequality F (y0 − Æ) < F (y0) holds, whi
h 
ontradi
tsthe 
hoi
e of y0.Case 2. There exists indi
es k; n ∈ D su
h that the values yk − xk andyn − xn have di�erent signs. Then (yk − xk) = −(yn − xn), and hen
eL′ = B(k; n) 6 K({Ai}; {zi}). �

§4. Proof of Theorem 2Note that shadowing problems for the maps f and f−1 are equiva-lent (up to a 
onstant multiplier at d). In what follows, we assume that�0�1 > 1. Putv := E(
) = (a0 + a1)=2 > 0; M := (lnN)2; w := v=2:In the proof of Theorem 2, we use the following statements.Lemma 3 (Large Deviation Prin
iple, [22, Se
ion 3℄). There exists anin
reasing fun
tion h : (0;∞) → (0;∞) su
h that for any " > 0 and Æ > 0and for large enough n, the following inequalities hold:P (Ann − E(
) < −") < e−(h(")−Æ)n:P (Ann − E(
) < −") > e−(h(")+Æ)n:Lemma 4 (Ruin Problem, [21, Chapter XII, §4, 5℄). Let b be the uniquepositive root of the equation12 (e−ba0 + e−ba1) = 1:



268 S. TIKHOMIROVFor any Æ > 0 and for large enough C > 0, the following inequalities hold:P (∃i > 0 : Ai 6 −C) 6 e−C(b−Æ); (7)P (∃i > 0 : Ai 6 −C) > e−C(b+Æ); (8)Put 
0 = 1=b. Due to Lemma 2, it is enough to prove the following:(S1) If 
 < 
0, then limN→∞ s(N;N
) = 0.(S2) If 
 > 
0, then limN→∞ s(N;N
) = 1.Remark 3. For �0 = 1=2, �1 = 3 the inequalities b < 1, 
0 > 1 hold, andhen
e by Remark 2 the statement of Conje
ture 1 does not hold. Similarly,
0 > 1 for �0 = 1=3, �1 = 2.Below we prove items (S1) and (S2).4.1. Proof of (S1). Assume that 
 < 1=b. Let us 
hoose 
1 ∈ (
; 1=b)and Æ > 0 satisfying 
1(b+ Æ) < 1: (9)Consider the following events:I = {∃i ∈ [0;M ℄ : Ai 6 −
1 lnN ; and A2M > 0} ;I1 = {∃i ∈ [0;M ℄ : Ai 6 −
1 lnN} ;I2 = {∃i ∈ [0;M ℄ : Ai 6 −wM} ;I3 = {A2M −AM 6 wM} :The following holds: P (I) > P (I1)− P (I2)− P (I3): (10)Lemmas 3, 4 imply the followingP (I1) > P (∃i > 0 : Ai 6 −
1 lnN)− P (∃i > M : Ai 6 −
1 lnN)
> e−
1 lnN(b+Æ) − N

∑i=M+1P (Ai 6 0) > N−
1(b+Æ) − N
∑i=M+1 e−ih(v)

> N−
1(b+Æ) − 11− e−h(v) e−(M+1)h(v) > N−
1(b+Æ) + o(N−2): (11)Similarly P (I2) 6

∞
∑i=M+1P (Ai 6 0) = o(N−2); (12)



SHADOWING IN LINEAR SKEW PRODUCTS 269P (I3) 6 e−Mh(v−w) = o(N−2): (13)From inequalities (10)-(13) we 
on
lude thatP (I) > N−
1(b+Æ) + o(N−2): (14)Assume that the event I has happened and let i ∈ [0;M ℄ be one of theindi
es satisfying the inequality Ai < −
1 lnN . Note that the followingevents are independent:J1 = {ri ∈ [1=2; 1℄}; J2 = {z2M − z0 >
rieAi } :Hen
e, P (z2M − z0 >

12eAi) > P (J1)P (J2) = 1=4 · 1=2 = 1=8and P (B(0; 2M) > N
1=4) >
18P (I) = 18N−
1(b+Æ) + o(N−2):Note that for large enough N , the inequality N
 < N
1=4 holds, and hen
eP (B(0; 2M) > N
) >

18N−
1(b+Æ) + o(N−2):Similarly, for any k ∈ [0; N − 2M ℄,P (B(k; k + 2M) > N
) >
18N−
1(b+Æ) + o(N−2):Note that the events in the last expression for k = 0; 2M; 2 · 2M; : : : ;([N=(2M)℄− 1)2M are independent, and hen
eP (∃k ∈ [0; N − 2M ℄ : B(k; k + 2M) > N
)

> 1− (1− (18N−
1(b+Æ) + o(N−2)))[N=(2M)℄ : (15)Using (9), we 
on
lude that
(18N−
1(b+Æ) + o(N−2)) [N=(2M)℄

>

(18N−
1(b+Æ) + o(N−2))( N2(lnN)2 − 1)= 116(lnN)2N1−
1(b+Æ) + o(N−1) −−−−→N→∞

∞



270 S. TIKHOMIROVand hen
e
(1− (18N−
1(b+Æ) + o(N−2)))[N=(2M)℄

−−−−→N→∞

0: (16)Relations (15), (16) imply thatP (K({Ai}i∈[0;N ℄; {ri}i∈[0;N ℄) > N
) −−−−→N→∞

1:Hen
e, limN→∞

s(N;N
) = 0:4.2. Proof of (S2). Let 
 > 1=b. Let us 
hoose 
1 ∈ (1=b; 
) and Æ > 0satisfying 
1(b− Æ) > 1.Note that for any n > k the following inequalities hold:eAk |zn − zk| 6

n
∑i=k e−(Ai−Ak);eAneAk + eAn 6 1:Hen
e, K({Ai}; {ri}) 6 max06k<n6N n
∑i=k e−(Ai−Ak)

6 max06k6N N
∑i=k e−(Ai−Ak) =: D({Ai}): (17)The following holds:P (D({Ai}) < N
) > 1− P (∃k ∈ [0; N ℄ : N

∑i=k e−(Ai−Ak) > N
)
> 1−NP ( N

∑i=0 e−(Ai−Ak) > N
) :Note that if∑Ni=0 e−(Ai−Ak) > N
, then one of the following inequalitiesholds:
∃i ∈ [0;M ℄ : e−Ai > N
2M ;

∃i ∈ [M;N ℄ : e−Ai > N
−12 :



SHADOWING IN LINEAR SKEW PRODUCTS 271Note that for large enough N , the following inequalities hold:N
2M > N
1 ; N
−1=2 > e−wM ;and hen
e (arguing similarly to the previous se
tion), for large enough N ,P ( N
∑i=0 e−(Ai−Ak) > N
1) 6 P (∃i ∈ [0;M ℄ : Ai < −
1 lnN)+ P (∃i ∈ [M;N ℄ : Ai < wM)

6 e−(b−Æ)
1 lnN + o(N−2)= N−(b−Æ)
1 + o(N−2):Finally,P (D({Ai}) 6 N
) > 1−N(N−(b−Æ)
1 + o(N−2)) −−−−→N→∞

1;and hen
e relations (17) imply thatlimN→∞

s(N;N
) = 1:
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