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SHADOWING IN LINEAR SKEW PRODUCTS

ABSTRACT. We consider a linear skew product with the full shift
in the base and nonzero Lyapunov exponent in the fiber. We pro-
vide a sharp estimate for the precision of shadowing for a typical
pseudotrajectory of finite length. This result indicates that the high-
dimensional analog of the Hammel-Yorke—-Grebogi conjecture con-
cerning the interval of shadowability for a typical pseudotrajectory
is not correct. The main technique is the reduction of the shadowing
problem to the ruin problem for a simple random walk.

§1. INTRODUCTION

The theory of shadowing of approximate trajectories (pseudotrajecto-
ries) of dynamical systems is now a well-developed part of the global theory
of dynamical systems (see the monographs [3,4] and [5] for a survey of mod-
ern results). The shadowing problem is related to the following question:
under which conditions, for any pseudotrajectory of f does there exist a
close trajectory?

Let us consider a metric space (G, dist) and a continuous map f : G —
G, d > 0. For an interval I = (a,b), where a € ZU {—o0}, b € Z U {+0o0},
a sequence of points {yg }rer is called a d-pseudotrajectory if the following
inequalities hold:

dist(ygs1, f(yr)) <d, keZ, kk+1el.

Definition 1. We say that f has the shadowing property if for any € > 0
there exists d > 0 such that for any d-pseudotrajectory {yi}rez there
exists a trajectory {z }rez such that

dist(zg,yr) <e, k€ Z. (1)

In this case, we say that the pseudotrajectory {yx} is -shadowed by {x}}.
The study of this problem was originated by Anosov [6] and Bowen [7].
This theory is closely related to the classical theory of structural stability.

Key words and phrases: shadowing, skew product, random walk, large deviation
principle.
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Let GG be a smooth compact Riemannian manifold of class C*° without
boundary with metric dist and let f € Diff'(G). It is well known that a
diffeomorphism has the shadowing property in a neighborhood of a hyper-
bolic set [6,7] and a structurally stable diffeomorphism has the shadowing
property on the whole manifold [8,9]. At the same time, it is easy to give
an example of a diffeomorphism that is not structurally stable but has
shadowing property (see [10], for instance). Thus, structural stability is
not equivalent to shadowing.

Relation between shadowing and structural stability was studied in sev-
eral contexts. It is known that the C!-interior of the set of diffeomorphisms
having the shadowing property coincides with the set of structurally stable
diffeomorphisms [11] (see [12] for a similar result for the orbital shadow-
ing property). Abdenur and Diaz conjectured that a C!-generic diffeomor-
phism with the shadowing property is structurally stable; they have proved
this conjecture for the so-called tame diffeomorphisms [13].

Analyzing the proofs of the first shadowing results by Anosov [6] and
Bowen [7], it is easy to see that, in a neighborhood of a hyperbolic set,
the shadowing property is Lipschitz (and the same holds in the case of a
structurally stable diffeomorphism [4]).

Definition 2. We say that f has the Lipschitz shadowing property if there
exist €g, Ly > 0 such that for any ¢ < g9 and d-pseudotrajectory {yi ez
with d = ¢/ Ly there exists a trajectory {x}rez such that inequalities (1)
hold.

Recently [14] it was proved that a diffeomorphism f € C! has Lipschitz
shadowing property if and only if it is structurally stable (see [10, 15] for
a similar results for periodic and variational shadowing properties).

In the present paper, we are interested which type of shadowing is pos-
sible for non-hyperbolic diffeomorphisms. The following notion will be im-
portant for us [16]:

Definition 3. We say that f has the finite Hélder shadowing property
with exponents 8 € (0,1),w > 0 (FinHolSh(#,w)) if there exist dy, L, C > 0
such that for any d < dy and d-pseudotrajectory {y }rejo,c4-«] there exists
a trajectory {@y}refo,cq-+] such that

dist(zy,yr) < Ld?, k€ [0,Cd™“].

S. Hammel, J. Yorke, and C. Grebogi made the following conjecture
based on results of numerical experiments [1, 2]:
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Conjecture 1. A typical dissipative map f : R?> — R? with positive
Lyapunov exponent satisfies FinHolSh(1/2,1/2).

In [1,2], the precise mathematical meaning of word “typical” was not
provided.

There are plenty of not structurally stable examples satisfying
FinHolSh(1/2,1/2), for instance [16, Example 1] and the identity map.

In the present paper, we study this conjecture for a model example: a
linear skew product (see the definition in Section 2). We give lower and
upper bounds for the precision of shadowing of finite length pseudotra-
jectories. These bounds show that, depending on parameters of the skew
product diffeomorphism, it might satisfy and not satisfy analog of Conjec-
ture 1.

We expect that similarly to works [17, 18], such a skew product can
be embedded into a diffeomorphism of a manifold of dimension 4. This
would allow us to construct an open set of diffeomorphisms violating a
high-dimensional analog of Conjecture 1. Similarly, we can construct an
open set of diffeomorphisms satisfying this conjecture. However, we did
not implement such a construction and leave it out of the scope of the
present paper.

Note that in [16] it was shown that Conjecture 1 cannot be improved
(see also [19] for the discussion on Holder shadowing for 1-dimensional
maps):

Theorem 1. If a diffeomorphism f € C? satisfies FinHolSh(6,w) with
0>1/2,0+w>1, then f is structurally stable.

The paper is organized as follows. In Section 2, we formulate exact
statements of the results. In Section 3, we formulate a particular problem
for random walks and prove its equivalence to the shadowing property. In
Section 4, we give a proof of the main result.

§2. MAIN REsuULT
Let ¥ = {0,1}%. Endow X with the standard probability measure v and
the following metric:
dist({w'}, {®'}) = 1/2%, where k = min{|i| : w* # &'}.
For a sequence w = {w'} € ¥ denote by t(w) the Oth element of the

sequence: t(w) = w’. Define the “shift map” ¢ : ¥ — X as follows:
(0(w))" = witl.
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Consider the space ) = ¥ x R. Endow () with the product measure
1= v x Leb and the maximum metric:

dist((w, ), (@, #)) = max(dist(w, ®), dist(z, &)).

For ¢ € @ and a > 0 denote by B(a,q) the open ball of radius a centered
at q.
Fix Ao, A1 € R satisfying the following conditions

0< A <1< Ay, )\0)\1#1. (2)
Consider the map f: Q — @Q defined as follows:

f(w,:z:) = (U(w)7 )‘t(w)x)

Forge @Q,d >0, N € N let Qg 4.~ be the set of d-pseudotrajectories of
length N starting at gy = ¢. If we consider g1 being chosen at random in
B(d, f(qx)) uniformly with respect to the measure p, then Q, 4 x forms a
finite time Markov chain. This naturally endows €, 4 & with a probability
measure P. See also [20] for a similar concept for infinite pseudotrajecto-
ries.

For ¢ > 0 let p(q,d, N,e) be the probability of a pseudotrajectory in
14,q,8 to be e-shadowable. Note that this event is measurable since it
forms an open subset of {0, 4 -

Lemma 1. Let ¢ = (w,z), § = (w,0). For any d,e > 0, N € NN, the
following equality holds:

p(q,d,N,e) = p(G,d, N,e).

Proof. Consider {qx = (wi,71)} € Qqan. Put rp := zp41 — Ny, ) T
Consider a sequence {§y = (wg, &1)}, where

To =0, Zpp = /\t(wk)xk + rg.

The following holds:

(1) the correspondence {gy} < {Gr} is one-to-one and preserves the
probability measure;

(2) for any € > 0 pseudotrajectory {q} is e-shadowed by a trajectory
of a point (w,x) if and only if {G} is e-shadowed by a trajectory
of a point (w,x — xp).

These statements complete the proof of the lemma. O
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For d,e > 0, N € IN define

p(d,N,e) = / p((w,0),d, N, £)dv.
WEY

Note that the integral exists since for fixed d, N, €, the value p((w, 0),d, N, &)
depends only on a finite number of entries of w. The quantity p(d, N,¢)
can be interpreted as the probability of a d-pseudotrajectory of length N
to be e-shadowed.

The main result of the paper is the following:

Theorem 2. For any Ao, \1 € R satisfying (2) there exist 9 > 0, 0 <
co < 00 such that for any € < g¢, the following holds:

(1) If ¢ < ¢, then limy_o p(e/N¢,N,e) = 0;

(2) if ¢ > co, then limy_oo p(e/N°, N,e) = 1.
Remark 1. Later (Lemma 2) we prove that for any N € N, L > 0,

e1,€2 € (0,€0), the equality p(e1/L,N,e1) = p(e2/L, N,e2) holds. Hence
the result of Theorem 2 actually does not depend on the value of €.

Remark 2. Due to Remark 1 analog of the Hammel-Grebogi-Yorke con-
jecture for map f suggests that p(¢/N, N, ¢) is close to 1. Hence, if ¢g > 1,
then Hammel-Grebogi-Yorke conjecture is not satisfied. For an example of
such parameters see Remark 3.

§3. EQUIVALENT FORMULATION

Let ag = In Ag, a; = In \;. Consider the following random variable:

_ Jao with probability 1/2,
7= a; with probability 1/2.
Fix N > 0. Consider the random walk {A;}ic[0,00) generated by v and

independent uniformly distributed in [—1, 1] variables {r;};c[0,00). Define
a sequence {z;}icjo,n7 as follows:

Tit+1
20=0, zip1 =2+ e‘j‘i-%—l . (3)
For given sequences ({A;}ic[o,n], {7 }icjo,n]) define
eArtAn eAn

A A
eAk—i-eAn |Zn*2k|: eAk—l—eAn ‘6 kzn*e kzk|7

K({A}{r}) = _max  B(kn),

B(k,n) :=
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s(N, L) := P(K({Ai}icpo,n)> {ri}icpo,ny) < L),
where P(-) is the probability of a certain event.
Below we prove the following lemma.

Lemma 2. There exist g > 0, Lo > 0 such that for any d > 0, L > Ly,
N € NN satisfying Ld < €qg the following equality holds:

p(d, N, Ld) = s(N, L).

Proof. Let us choose €y, Ly > 0 such that if dist(w,®) < €p, then t(w) =
t(@) and the map o satisfies the Lipschitz shadowing property with con-
stants g, Lg-

Fix d < dy, N >0 and L > Lg satisfying Ld < &g. Let us choose w € ¥
at random according to the probability measure v and a pseudotajectory
{ar} = {(wr, 21)} € Q(u,0),a,n according to the measure P (see Section 2).
Consider the sequences

k
1
Ve = Qy(wy), Ak = E Yi» Tk = E(l'k — M(wp_1)Th—1)-
=0

Note that r; are independent uniformly distributed in [—1,1] and -~ are
independent and distributed according to .
Below we prove that the sequence {gi} can be Ld-shadowed if and only
if
L> KA} {m)). (4)
Assume that the pseudotrajectory (wg,zx) is Ld-shadowed by an exact
trajectory (&g, yx). By the choice of g¢, the following equality holds:

t(wr) = t(&k)- (5)

Now let us study the behavior of the second coordinate. Note that

Ynt1 = M(en) Uk = €Yk, Yo =My, (6)

Ty = e Ak 4 e (2, — 21),
where z;, are defined by (3). Hence,
(yn - xn) = eAniAk (yk - xk) + eAk (Zn - Zk)'
From this equality it is easy to deduce that
max(|yx — k|, |yn — zal) = B(k,n)

and the equality holds if (y» — 2x) = —(yn — 2»). Hence, inequality (4)
holds.
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Now let us assume that (4) holds and prove that (wy,z) can be Ld-
shadowed. Let us choose a sequence {{} which Ld-shadows {wy}, then
equalities (5) hold.

For yo € R define y;, by relations (6) and consider function F': R — R
defined as follows:

F(yo) = max |yp — xy].

0<k<N
Since the function F' is continuous, it is easy to show that it attains a
minimum for some yo. Denote L' := miny cr F(yo) and let yo be such

that L' = F(yo). Let D = {k € [0, N] : |yx — x| = F(yo)}. Let us consider
two cases.

Case 1. For all k € D the value yj, — x, has the same sign. Without loss
of generality, we can assume that these values are positive. Then for small
enough § > 0, the inequality F(yo — §) < F'(yo) holds, which contradicts
the choice of yp.

Case 2. There exists indices k,n € D such that the values y; — z; and

Yn — Ty have different signs. Then (yx — ) = —(yn — ,), and hence

§4. PROOF OF THEOREM 2

Note that shadowing problems for the maps f and f~! are equiva-
lent (up to a constant multiplier at d). In what follows, we assume that
XA > 1. Put

v:i=FE(y) =(ap+a1)/2>0, M:=(InN)? w:=0v/2.

In the proof of Theorem 2, we use the following statements.

Lemma 3 (Large Deviation Principle, [22, Secion 3]). There exists an
increasing function h : (0,00) — (0,00) such that for any e >0 and § >0
and for large enough n, the following inequalities hold:

P (ﬂ —E(v) < 6) < em(hE)=0)m,
n

P <ﬂ —E(y) < 6) > e~ (hE)Fo)m,
n

Lemma 4 (Ruin Problem, [21, Chapter XII, §4, 5]). Let b be the unique
positive root of the equation

% (e*bao + e*b‘“) =1



268 S. TIKHOMIROV

For any 6 > 0 and for large enough C > 0, the following inequalities hold:
P(3i>0:4;<—0)<e 079, (7)
P(Ei>0:4;<—C)>e ¢+ (8)

Put ¢y = 1/b. Due to Lemma 2, it is enough to prove the following:

(S1) If ¢ < ¢, then limy_,o0 S(N,N¢) = 0.
(52) If ¢ > ¢, then limy_,o0 s(N,N¢) = 1.

Remark 3. For \g = 1/2, A; = 3 the inequalities b < 1, ¢y > 1 hold, and
hence by Remark 2 the statement of Conjecture 1 does not hold. Similarly,
co > 1 for Ay = 1/3, AL = 2.

Below we prove items (S1) and (S2).

4.1. Proof of (S1). Assume that ¢ < 1/b. Let us choose ¢; € (¢,1/b)
and 0 > 0 satisfying

a(b+0) < L 9)
Consider the following events:
I={3ie[0,M]: A; < —c1InN; and Asps > 0},
L ={3ie[0,M]:4 <—clnN},
L={3ie[0,M]: 4 <—-wM},
Is ={Aop — Ay S wM}.
The following holds:
P(I) 2 P(I) = P(I2) — P(I5). (10)

Lemmas 3, 4 imply the following
P(li)>2P(Fi>0:4;<—c1InN)—P(3Fi>M:A4; < —c¢1InN)

N N
>e O In N(b+4) _ Z P(Al < 0) > Nfcl(bJrB) _ Z efih(v)
i=M+1 i=M+1
1 ‘
—er(b+5) —(M+1)h(v) —e1(b46) 2
>N T oh) € >N +o(N7%).
(11)
Similarly
P(L)< > P(A;<0)=0o(N7?), (12)
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P(I3) < e~ Mhlvmw) — (N2, (13)
From inequalities (10)-(13) we conclude that
P(I) > N=a®+9) 4 5(N72), (14)

Assume that the event I has happened and let i € [0, M] be one of the
indices satisfying the inequality 4; < —e¢;In N. Note that the following
events are independent:

N
h={rie 21}, Ja={am-2> 1}

Hence,

P (ZQM — 2 > 27) > P(J)P(J)=1/4-1/2=1/8
and

P(B(0,2M) > N°1 /4) > éP(I) = %N*ﬁ(””) + o(N72).

Note that for large enough N, the inequality N¢ < N° /4 holds, and hence
P(B(0,2M) > N°¢) > %N*ﬁ(””) + o(N72).
Similarly, for any &k € [0, N — 2M],
P(B(k,k +2M) > N¢) > %N*Cl“’”) +o(N7?).

Note that the events in the last expression for & = 0,2M,2 - 2M, ...,
([N/(2M)] — 1)2M are independent, and hence

P(3k €[0,N —2M]: B(k,k +2M) > N°)

1 NG
>1- <1 - <§N“(b+5) + o(NZ))) . (15)

Using (9), we conclude that

(%Ncl(b+5) + 0(N2)> [N/(QM)]

(o) o

_ 1 1—c1 (b43) 1
= By Fo(NT) S0
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and hence

1 RNNLZE)
( (gN_Cl(b+‘5)+o(N_2))) — 0. (16)

1_
N—oo
Relations (15), (16) imply that
P(K({Ai}ico,nys {riicio,ny) > N°) N 1.
Hence,
lim s(N,N¢) =0.

N —o0

4.2. Proof of (S2). Let ¢ > 1/b. Let us choose ¢1 € (1/b,¢) and § > 0
satisfying ¢; (b — §) > 1.
Note that for any n > k the following inequalities hold:

n
A —(Ai—A
e |zy — 21| < g e ®),
i=k

eA"

edr 4+ eAn
Hence,

K({A;},{r:}) < max Ze (A —Aw)

0<k<n< N
N (17)
< —(Ai—Ay) =: it).
<  ax 2 e D({Ai})
The following holds:
P(D{4})<N9)>1-P <3k e Ze (A=) > NC>
i=k

N
>1- NP <Z e~ (Aim ) 5 NC> .
i=0
Note that if Zz’lio e~(Ai=4x) 5 N¢_ then one of the following inequalities

holds:

N©

oM’

chl
2

Jie[0,M]:e A >

Ji € [M,N]:e 4 >
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Note that for large enough N, the following inequalities hold:

Cc

2M
and hence (arguing similarly to the previous section), for large enough N,

> Ne, Nel/2> e wM

N
P (Z e~ (AimAr) 5 NCl) <PFiel0,M]: A < —¢;InN)
=0

+ P(Ji e [M,N]: A; < wM)
< e (=D N +o(N"2)
= N-(=9e 4 o(N72).
Finally,
P(D{A}) <K N) =1 - N(N~-C=9a 4 o(N72)) —— 1,

N—o0

and hence relations (17) imply that
lim s(N,N¢ =1.
N —o00
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