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REPRESENTATIONS AND USE OF SYMBOLIC
COMPUTATIONS IN THE THEORY OF HEUN
EQUATIONS

ABSTRACT. A first-order 2 X 2 system equivalent to the Heun equa-
tion is obtained. A deformed Heun equation in symmetric form is
presented. Series solutions of this equation are presented. A four-
parameter subfamily of deformed confluent Heun equation whose
solutions have integral representations is found.

As a preamble to this publication one of the authors (S.Yu.S) wants to
say a couple of words about his contacts with Prof. A. M. Vershik who
recently had celebrated his 80-years jubilee. We met each other in the
city Syktyvkar where a new university was organized. We both gave there
lectures for 4th year students. Our host was Ya. Eliashberg a very nice and
talented young mathematician. We got separate rooms in a flat belonging
to university. Living in the same flat allowed us to talk in the evenings.
These talks in which we found common friends were very informative to me.
In many cases we shared common ideas. Anatolii Moiseevich invited once
Revolt Pimenov who had been ousted from Leningrad being a dissident. I
remember our stay in Syktyvkar with great warmth and I am proud that
A. M. Vershik is addressing me after “Seryozha.”

Heun class equations as equations with four fuchsian singularities are
a key instrument in many problems of mathematical and theoretical phy-
sics [1]. On the other hand a fuchsian 2 x 2 system also with four fuchsian
singularities are widely used in the theory of Painleve equation [2,3]. Is
there a direct relation between these two objects? Unfortunately there is a
negative answer to this question. It is needed in general case to introduce
an intermediate equation called in our previous papers as Heunl equa-
tion [4]. Heunl equation is associated with Heun equation and contains
one additional Fuchsian singularity with particular properties. Therefore

Key words and phrases: Heun equation, deformed Heun equation, confluent Heun
equation, apparent singularity, integral representations.
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it is needed to study the scheme: Heun equation — Heunl equation —
Fuchsian system. The corresponding relations: 1) are not unique, 2) give
raise to additional symmetries between equations. We need to regret that
the corresponding calculations are very complicated and various CAS are
needed to perform them. We used Maple for this purpose.

in this publication we present three topics which seems to be eclectic
but they shaw different aspects of the theory of Heun equation.

1. Linear 2 x 2 system related to Heun equation.

2. A new representation of Heunl equation and series for its solution.

3. Four-parametric subfamily of confluent Heun equation with added
apparent singularity is constructed whose solutions have integral
representations.

§1. HEUN EQUATION AND CORRESPONDING 2 X 2 SYSTEM

Here we find a particular 2x 2 system which is generic for Heun equation.
For this purpose we use “polynomial rotation” with matrix R which adds
one needed parameter. Assume that we take matrix R as

[ (1) pz
= ( 0 (z —1) ) M

Then the inverse matrix to R is

R z—1 0
= (pz z(zl)) @)

Let vector w be the solution of the 2 x 2 system
W =0 'RT'SW = T, (3)
where o(z) = szl(z —z;) and

S:<az+61 €2>. (4)
es3z 8
Values z1 = 0, 20 = 1, z3 = t are locations of finite singularities of the
system under consideration. Parameters a, 3, e1, e2, e3 obey a particular
relation (Fuchs relation) which will be written below.
As a result matrix T takes the form

R (z —t)(az +e1) eax(z —t)
T=o ( —z(prz + per +e3(z — 1)) 2(B(z — 1) — pe2) ) - )
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Solving system for w; we obtain the second order equation
w” (2) — (0T + T, TRDw' (2) + (det T — T, T Ty — T )w(z) = 0. (6)
Calculation of included in (6) coefficients gives

1
z—1

1
T1/2T1_21 = ; +

€1 pes 1 pes 1
tr]l = —— — —_
3 z+<a+el+t—l>z—l+<6 t—1>z—t

detT =o' (afz + e1 8 + ezes)
T, T Ty — Ty = —afz — t).

Then second order equation (6) takes the form

W' (2) + (1—61 +(1-‘r€1 +Oé—ﬁ€2) +ﬁ+'5€2)w'(z)

z z—1 z—1
+o HaBz —a(z —t) + €18 + esez)w(z) = 0,

where for simplicity we denoted

p=p(l—t).
One can see that equation (7) coincides with standard Heun equation up
to redefining the parameters
3

@+ e (A e =0 ®

Z—Zj

j=1

where parameters «, 3, e1, e2, p are related to characteristic exponents
at fuchsian singularities and parameter es is related to accessory parame-
ter H.

The Fuchs relation for characteristic exponents in (7) reads

a—1+8+e—eg—a+pes+1—0—pes=1

is satisfied automatically.
Hence, we found fuchsian system 2 x 2 equivalent to Heun equation.
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§2. SOLUTIONS OF THE DEFORMED HEUN EQUATION

Here we focus on equations which are denoted as deformed Heun equa-
tions and on its solutions.

Beyond routine computation the symmetrized presentation of a de-
formed Heun equation is given (to our knowledge a new one).

If an apparent singularity at the point zg = ¢ is added to the four
regular singularities z; = 0, 20 = 1, z3 = t, 24 = oo in Heun equation, we
obtain a deformed Heun equation [4,5] and will use the notation Heun! for
such an equation. We assume that all finite singularities are real and that
0 < q<1/2,t > 1. With a proper normalization of parameters Heunl
equation reads

3

U(z)w/’+{z;9jaj(z)—a(z) L }w’

Z—q

+ {aﬁ(z —t)—o3(t)H + %(th)}w =0,

9)

where 0(z) = z(z — 1)(z — t), 0j(2) = 0(2)/(z — z;). Whenever a Heun
equation depends on 6 parameters, a Heun! equation (15) depends on 8
parameters with parameters g, 1 added to the list. Parameters «, 3, 0;
must satisfy the Fuchs condition

3
Y bi—a-p=2 (10)
j=1

Further on we assume that
6, > 1. (11)

In addition the following necessary condition (absence of logarithmic
terms) holds

o3(t)H = a(q)u” + (o3(q) + 7(q))p + aB(q — t), (12)

3
where 7(q) = > 0;0;(q). Hence, the actual number of parameters is di-
j=1

minished by one while accessory parameter H can be excluded resulting
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in
3

o(2) (w” v > + <; ejaj(z))w’ +afzw

2—q

. (13)
- {U(Q) </~L2 ~ 3 ﬁ q) + (ZQ;’U;’(Q))M + aﬂq}w = 0.
j=1
If we introduce the operator
d
T dz
equation (13) can be presented in a symmetrical way
P(D,z) — P(p,q) = 0. (14)

Our purpose would be to study solutions of equation (13) as series in the
vicinity of apparent singularity z = q.

In order to study solutions at the point z = ¢ it is convenient to sub-
stitute z = x + ¢ with following mapping of singularities 1 = —q, zg =
0,z =1—¢q, z3 =t — g and obtain

/

@t sa o)’ b fu@stt v o

ad
z

(15)
+aB(z +q) — (c(q)(1® — =) + p7(q) + aBg)w =0,

where
3

3
s@=>_o0i(@), r@=> ¢, ©1=0,¢=1,g=t
j=1 j=1

wlg) =305, Tla) = 605(0), vla) =3 0

The local solution at apparent singularity 2 = 0 is sought in the form
[ee]
w(z) = Z apzh. (16)
k=0

The first equation arising at equating the terms after substituting series
(16) into equation (15) would be
a1 = [ao.

Two linearly independent solutions w; and ws can be introduced.
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Either A:
ap=0, a1=0, aa=1 —w(zr)
or B:
ap=1, ar=p, a =0, — wy(zr).
In case A the system for coefficients a; reads
o(q)(k + )(k + 3)arys + ((k +2)(ks(q) + 7(q)) + o(@)p)ar2
+((k + D((k = Dr(q) +v(q)) — ola)u® — T(@)warsr  (17)
+(k(k — 2+ ulq)) + aB)ay, = 0.
In particular
3o(q)as + (27(q) + o(q)p)az =0
8a(q)as + (3(s(q) + 7(q)) + o(g)p)as + 2v(q) — T(q)p — o(q)p*)as = 0.

Fourth-term recursive relation (17) may be considered as a Pouincare-
Perron type difference equation. Its characteristic equation reads

o)X + A +rA+1=0. (18)
Characteristic exponents \; are
-1 -1 -1
)\:_7 )\‘:—7 Ao = —. 19
Ty P11 T gt (19)
Hence, the radius of convergence R of series (16) would be
R = min{q,1,t} =q.

In the same way other solutions in vicinities of singularities is constructed.
The corresponding four-term recurrent systems for coefficients is found
similar to that for ay.

§3. INTEGRAL REPRESENTATIONS FOR SOLUTIONS OF THE
CONFLUENT HEUN CLASS EQUATION

This section is devoted to the confluent Heun equation with single added
apparent singularity. This equation can be written as

1
w//(z)-|- |:a+§+zjlz—)\]wl(z)

+ aaz—i—L—i—L} w(z) =0.
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We shall call it cHeun1 in what follows. Here parameter L takes a special
value,

(a(c—x)(N* =N =X+ Bx A=) +x 7 A+ x?—2x A +x

b=- A1) !

(21)

which guarantees that point z = A is an apparent singular point of the
equation. The residue of the coefficient at w’(z) at the point z = A equals
to the negative integer (here it is -1), this value defines the order of the
apparent singular point (here it equals to 1). Note, that apparent singu-
larity is determined by the following condition: equation has singularity at
this point, but all its solutions are holomorphic near this point. Comparing
equation (20) and confluent Heun equation

w"(2) + [a + g N L} W)+ %

po w(z) =0, (22)
one can conclude, that if z = X coincides with regular singularity of the
equation (namely, z = 0 or z = 1), equation (20) can be reduced to the
equation (22) by substitution w(z) = (z — )¢ -u(z) at suitable value ¢. So,
studying solutions and monodromy of equation (20) we get simultaneously
information about corresponding objects related to the equation (22).

Solutions of the Heun class equations have not integral representations
in general situation, this fact greatly complicates their analytic study. Ev-
idently, if coefficients of the equation contain a small or large parameter
one can use corresponding asymptotical technique in order to describe
monodromy properties of the equation. Moreover, there are some special
situations when monodromy of the equation can be described in details.
For instance, if one of the regular singularity is the apparent one for the
equation (7) or (22), the analytic description of theirs monodromy was
obtained in [6,7]. Note, that equation can be identified in these situations
as an hypergeometric class equation, in particular there are integral rep-
resentations of solutions [8,9]. The aim of the present paper is search of
situations, when confluent Heun equation with single added apparent sin-
gularity has solutions expressed by contour integrals. Equation (20 ) has 6
free parameters a, 3, 7, o, A, X, we shall find 4-parameter situations, when
solutions have integral representations. Note, that our results correspond
to the arbitrary values of the characteristic parameters a, 5, v and acces-
sory parameter Y, so the “genuine” singularities of the equation will be in
general situation.
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3.1. Auxiliary system of equations and its integral symmetry.
So, we look for equation (20) whose solutions can be expressed by contour
integrals. Let consider the next system of equations

(zA+ B)W'(z) = CW (2), (23)

where A, B, C — are constants 3 x 3 matrices, W (2) = (w1 (2), wa (), w3 )T
let

is 3-vector function. If matrix C' has zero column (let it be the third col-
umn), the system (23) is rewritten as

W'(z) = (zA+ B)"1CW (2), (24)

and it can be decomposed into a system for functions wq(z), w2(z), and
separate equation for ws(z). So, the function ws(z) can be expressed in
terms of wy(z), wa(z). The system for functions wq(z), wa(z) can be re-
duced to the scalar differential equation of the second order for function
ws(2), and suitable choice of the matrix coefficients A, B, C' generates
equation (20). Then one component of the vector-function W(z) will be
a solution of the equation (20), and other components will be expressed
through it.

The following statement can be proven by integration by parts, (see
details in [15]).

Theorem. Let Y (¢) be a solution of the system

(tA+ B)Y'(t) = (C + pA)Y (t), (25)

branching in a vicinity of the regular singular point, L be a Pochhammer
contour, embracing point ¢ = z and this regular singularity, then vector-
function

Wi(z) = /(z — )" IRY (1) dt, (26)
L

is a solution of the system (23), branching in a vicinity of the same regular
singularity on complex plane z.

The matrix C' + pA has in general situation nonzero third column,
therefore the system (25) can not be reduced to the scalar differential
equation of the second order. Let U be a constant 3 x 3 - matrix. Consider
gauge transform

Y(t)=UV(@®). (27)

Then 3-vector-function V() = (vy(t),v2(t),vs3(t))T is a solution of the
system

V'(t) = U(tA+ B) " C + pAU'V (). (28)
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Assume that the next relations hold,
[U(tA+B) " (C+ pAU ] ,=[UtA+B) " (C+ pA)U'],,=0. (29)

Then system (28) can be split into the system for the functions vy (t), v2 (%)
and equation for the function vs(t). Respectively, system for the functions
v1(t), v2(t) can be reduced to the scalar differential equation of the second
order for the function vs(t). Then function v3(t) can be expressed in terms
of function vz (t) by integration. We consider this situation in what follows.

Relations (29) generate a rather complicated system of algebraic equa-
tions for the parameters of matrices A, B, C, U and for the parameters of
the initial equation (20). This system can be analyzed with help of com-
puter algebraic system like Maple or Mathematica, its particular solution
generates the equation (20) which solutions have integral representations.

3.2. Equation which solutions have integral representations. The
full description of needed calculations is too cumbersome. They can be
restored from the script in Maple, which can be found in Appendix. This
script does not contain results of step by step calculations, the results of
calculations are given for some strings only, where coefficients of equations
are calculated.

In accordance with results of the script, coefficients of initial equation
are given by the following relations. Function w(z) = wa(z) is a solution
of the equation

w”(2) + My (2)w' (2) + N1(2)w(z) = 0, (30)

O R -t (31)
1 Abs

Nl(z) = m —abyz + 60165 + o (32)

This equation is a special case of equation (20). It has 4 free parameters
a, 01, 62, A, which define the behavior of solutions in vicinities of singular
points, and accessory parameter equals to Af». Position of the apparent
singularity z = A and another parameter of equation can be expressed in
terms of these free parameters.
Further, script contains the coefficients of equation for the function
v(t) = v2(t),
v (t) + Ma(t)v'(t) + N2(t)v(t) =0, (33)
1—91—/1_ IN’ (34)
t t— A

Mz(t) =a+
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No(t) = % [au + %] , (35)

where
_ wo (aX+ aby —6y)

XZCLO’A-’-O&O'Hl*‘U,/\*O'el*AHQ’

A= [aX (o (aX+aby) —A(u+60)> + 002X +ab) —ob; (u + 62))] -
xo(a® X0 + 2arof(a—1)+08(a—1)> —aX (u+61)(n + 62) (37)
70&A,U/291 — OéAOl(‘Uﬂl + ,[1492 + 9192) + /\Gl(u + 91)(‘[14 + 92))

As it follows from these relations, equation (33) is a confluent hypergeo-
metric equation with added apparent singularity of the first order. This
equation was discussed recently in [7], where its monodromy was calcu-
lated. In particular, it was shown, that solutions of this equation can be
expressed by contour integrals.

Equation for the function v3(t) can be written as

t(t — 1)%”3’@) = S1(t)or(t) + S2(t)v2(t) + (02 + p)vs(t),

where Si 2(t) are polynomials of the second degree in ¢. We omit theirs ex-
plicit expressions for the brevity. Taking into account relations (26), (27),
we conclude, that solutions of the equation (30) have integral representa-
tions.

Remark 1. Equation (33) has single regular singularity ¢ = 0. But the
equation for the function vz(#) has regular singularity ¢ = 1, therefore
in accordance with (26), (27) solution wy(z) has two branching points
z2=0,2=1.

Remark 2. Parameters o, u, included in the relations (36), (37), are not
connected with parameters of equation (30). Parameter o defines matrix
elements of matrix U. Parameter p defines the kernel of integral transform
(26) and coefficients of the equation (33).

3.3. Summary and concluding remarks. Existence of ntegral repre-
sentations of solutions of equation (30) means that its monodromy can be
expressed in explicit terms.

Equation (20) has rich set of symmetries, which connect solutions of the
equations with different parameters.

1. There are elementary symmetries, which arise at simple transforms
of the equation (20). Firstly, they appear at substitution of variables
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z = 1 — s, which interchanges singular points. Evidently, such substitu-
tion changes the coefficients of the equation(20), but its structure stays
unchanged. Further, there are s-homotopic substitutions w(z) = z' ~#u(z),
w(z) = (1 — 2)177v(2). These substitutions transform solutions holomor-
phic at a singular point into solutions branching at this singularity and
vice versa. There is symmetry of the equation (20) connected with sub-
stitution w(z) = exp(—az)v(z), which transforms asymptotic behavior of
solutions in a vicinity of irregular singularity z = oo.

2. Equation (20) has integral symmetries. Euler integral symmetry was
studied in [10]. Another integral symmetry whose kernel is solution of the
confluent hypergeometric equation was obtained in [11].

3. There are gauge symmetries of the equation (20), see details in [12].

We emphasize that these symmetries connect solutions of the equations.
It means, that these symmetries can be expressed in terms of monodromy
of the corresponding equations, see details in [13,14]. Respectively, mon-
odromy can be explicitly calculated for the equations, which are results of
the application the described symmetries to equation (30).

Here is the summary of our results. It is derivation Heun class equation,
confluent Heun equation with added apparent singularity, whose solutions
can be described by contour integrals. This equation has 4 free parameters,
which determine the characteristics of the singular points and accessory pa-
rameter. This fact is different from the situations discussed in articles [6-9],
where one of singular points was an apparent singularity. This is currently
the most general Heun class equation, whose solutions can be expressed
in terms of contour integrals. There were some other attempts to describe
Heun class equations with solutions expressed by contour integrals. First
of all, there are situations when Heun equation can be reduced to the hy-
pergeometric one [16]. This situation generates Heun equations with 2 free
parameters. Direct factorization of the Heun equation [17] generates Heun
equation with 3 free parameters.

Note, that gauge transforms discussed in [12] acting on solutions of
Heun equations with 2 added apparent singularities generate another free
parameter. It would be interesting to obtain an analogue of presented here
results for the Heun equations with two added apparent singularities.

3.4. Appendix. Here is enclosed a Maple script that implements the
calculations for the construction of the equation(30). It contains details
of calculation of the coeflicients of this equation, which is a special case
of the equation (20). Further, this script describes the calculation of the
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coefficients of the equation (33). In accordance with the script, solutions
of the equation (30) can be expressed as contour integrals.

> with(PolynomialTools); with(LinearAlgebra); with(DEtools);

a-?v(92+u) ah+a8 —6
> [ Y Ve S 0; G T s
ah+o- 61 791 A
a-Q by +u+6 +6
> C5 =Tl cg = O;C9 = 0; < ::*%;
3

(6, + a-Qby+u+8
> Cg == ( 2 H)( Ll B 1> ; #fixing the parameters of the matrix C
(aA+0-8 —8) b
> Cl={(L1)=c[1].(L2)=c[2]. (1,3) =c[3], (2.1) =c[4]. (2,2) =<[5].
> (2.3)=c[6].(3,1) =c[7].(3,2) =¢[8]. (3,3) =c[9]}; C = Matrix'(3,CI);

7(xu7»+0t7\,62+a7u+(x917}117192791.

>

b, = 1;b, = 0;b, == 1; b, := b, = ob,:

1 20 > 04 > Y5 > Y% 3:
ak+o8 —6 °
x(ez +u)
&= 5 #fixing the parameters of the matrix B
(a?» +a6 - 91) by
> Bl ={(1,1)=b},(1,2) =b,, (1,3) =b3, (2,1) =b,, (2,2) = b5, (2,3) = by,
= (3, 1)=eb +8&Db, (3,2) =0b, +E:b5,(3,3) =aby + §~b6}; B:=Matrix(3, Bl);
VoA (6, +1)u
> Huy = 0;u, ::-M;u3 =Vl Us = Oy
(a'l +a6, - 9]) by
b3(cu»l+00¢9 —60 —pu-A—Ar-0 )u

- 1 1 2) M . 3 -

U = ; #fixing the parameters of the matrix U

x-(ez + u)
> oy =
> *% av-h -ui ug +ove, ui g — v A ui u; —v-1-6, ui Uy
(92 + p.)'NV'u4
2
> — VO, uyug —a-h—uel +61)-b3;
> UL={(11) = (1,2) =ty (1,3) =ug, (2. 1) =2y (2.2) =g, (2.3) =g, (3,1) =,
> (3,2)=ug (3,3) = u()}; U == Matrix(3, Ul);
> AL={(1,1)=0,(1,2)=0,(1,3)=0,(2,1) =0,(2,2) = 1,(2,3) =0,
> (3,1)=0,(3,2)=0,(3,3) =1}; 4 := Matrix(3,A41); #fixing of the matrix A
> AZ = z:A + B; # calculation the parameters of the matrix z-A +B
> DI = Determinant(AZ); AI:=MatrixInverse(AZ); #its Determinant and Inverse
> AB = DI-AlI,
* T := MatrixMatrixMultiply[ Z)(AB, C); # calculation of the matrix T=Det (z-A+B)-(z-A+B)"
-C
> eql = DI-diff (w,(2),z) = T[1, 1]-w,(2) = T[1, 2]-wy(2);
= # first string for the first system: DI % w,(z) — (TI ywy(2) + le-wz(z))
. _ (D]'dzﬁ"(wz(:),z) —T[2, 2]-wz(:)) )
712,1] ’

(D]~% wy(z) — TZZ'WZ(Z)J
> #second string for the first system: w(z) =

> eql := factor(eql);
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sp = dcoefﬁs‘(eql, w,(2) );
#ealculation of the coefficients in the first string after substitution w, (z) =...
N o I d
M1 = factor(sp[2]/sp[ 1]); #first coefficient in equation: F w,(z) + MI-E w,(z) + NI
z
w,(z) =0
2

NI := factor(sp[3]/sp[1]); # second coefficient in equation: % w,(z) + MI-% w,(2)
z

+ Nl-w,(z) =0
M1 _exp = convert( M1, parfrac, z); #rational expansion of the M1

1 -6, +1 -0, +1
+ +——— Np:==z(z—1)-NI;

M1 _expl == a— Iy —— 2

NP _exp = convert(Np, parfrac, z); # rational expansion of the z+(z-1) -N1(z)
20,
NP exp :=-a0,z+0,0, + ——;
P > 12Ty

Cv = C + WwAd; AT := t-A + B; #calculation of the matrices (C+u-A) and (t-A+B)
D2 := Determinant(AT); #calculation of the det(t-A +B)
Al == MatrixInverse(AT); AB = D2-Al;, Z := MatrixInverse(U);

# calculation of the inverse matrices
Tv == MatrixMatrixMultiply[ Z](AB, Cv);

#calculation of the matrix Tm=det(t-A+B) -(t-A+B)"~ I (C+p4d)
Prodl = MatrixMatrixMultiply[ Z](U, Tv);

#ealculation of the matrix det(t-A+B)-U-(t-A+B) "-(C + p-A)
Tm = MatrixMatrixMultiply[ Z)(Prodl, Z);

Hcalculation of the matrix det(t-A+B)-U-(t-A+B)""-(C + n-4)-U™!
factor(Tm|[1,3]); factor(Tm[2,3]) # checking: Tm,y =0, Tm ,; =0
eq2 == D2~(dijf(v1(t),t)) = Tm[1,1]-v,(¢) — Tm[1,2]-v,(2);

#first string for the second system: D2~% v (1) — (Tm”‘vl(t) + Tmlz-vz(t))
B (DZ-di[f(vz(t),t) - Tm[2,2]-v2(t)) )
e Tm[2,1] ’

(D2~i vy () — Tmzz-vz(t))

dr 2
Tm21

#second string for the second system: v, (t) =

eq2 = factor(eq?2);# second equation afier substitution vl(l) =..
sp2 = dcoc[f&(eqz, vy (1) ); #coefficients of the second equation
2
M2 = factor(sp2[2]/sp2[1]); # first coefficient in the equation: % v(t) + M2~% v, (1)
r
+ N2, (1) =0

2
N2 = factor(sp2[3]/sp2[1]); # second coefficient in the equation: % v, (1) + MZ-% vy(t
t

+N2:wy (1) =0
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1

> M2_exp = convert(M2, parfrac, t); # rational expansion of the M2(t)
>

M2 _exp == a— ((akuo+a7»092 +oapcd +0c6, 6, *7\,}12 —2Aue, 77»92
—Hob —o6, ez)ak)/(azkzuctfazkzczel +a27»20192 +aolpotd,
72aakozef+aa7nctel 0, foczozei +a7x2},l2(5*a7»2].121f+a7\.2u691
+a7\.2].1692—2a7\.2ut92+a7\.209] 0, —a?»ztei —akuctd, +2a7»629?
—akot6, 6, +0(7\.},12691 +0L7»]J.69?+0(}»u69] 0, +(x7»66?62 +20c(529?
—7\.],1269] —Xucﬂ? —Apoo, 92—7»69?92 —029?) + 1%91“

> dent == faCtgr[M]

s #ealculation of the new apparent singularity

> eqr = dent=0; lambda_new := solve(eqr, t); # new apparent singularity

lambda_new = ((S (az}fcel +2a0()»(59? + (xch? —a?»zpz —a}fuel —07\.2].192
—an? 6,6, —2axcef - ocMLZ 0, — (x?»ue? —oAue, 6, — axefez —mcef
+M.126| + kuﬁ? +M.16| 0, + 7»9?92 + GG?))/(ak (aluo +ak062 +opoe,
+0066,6, — A’ —24n6, — 16, —nc6 — G, ez))

> NmP = factor(t-N2);

convert( NmP, parfrac, t); # rational expansion of the t-N2(t)
> chi_new = factor(residue(NmP, t = lambda_new)); # residue of the t-N2(t) at t=lambda_new

uc(ak+(x01 761)
aho +0.066 —Au—1A0,—06,

¥

> chi_new =
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