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t. The orbit spa
e P(R8)=G of the groupG := SU(2) × U(1) ⊂ U(3)a
ting adjointly on the state spa
e P(R8) of a 3-level quantum sys-tem is dis
ussed. The semi-algebrai
 stru
ture of P(R8)=G is de-termined within the Pro
esi{S
hwarz method. Using the integritybasis for the ring of G-invariant polynomials R[P(R8)℄G ; the setof 
onstraints on the Casimir invariants of the group U(3) 
omingfrom the positivity requirement for Pro
esi{S
hwarz gradient ma-trix, Grad(z) > 0; is analyzed in detail.
§1. Introdu
tionSin
e a very beginning of quantum me
hani
s, a highly nontrivial in-terplay between the quantities des
ribing a 
omposite quantum system asa \single whole" and \lo
al 
hara
teristi
s" of its 
onstituents be
ame thesubje
t of intensive studies (holisti
 v.s. redu
tionism views). The presentnote aims to dis
uss a mathemati
al aspe
t of \the whole and the parts"problem in quantum theory 
onsidering a model of 3-dimensional quantumsystem, qutrit. Skipping aside the physi
al motivation, these mathemati
alissues 
an be formulated as follows.Consider the 
ompa
t Lie group G a
ting on a real n-dimensional spa
eV and let H ⊂ G is its 
ompa
t subgroup. Assume that the 
orrespondingorbit spa
es V=G and V=H admit a realization as semi-algebrai
 subsets,Z(V=G) and Z(V=H) of Rq for a 
ertain q. The mathemati
al version of\the whole and the parts" dilemma 
an be formulated as the problem ofdetermination of 
orresponden
e between sets Z(V=H) and Z(V=G).In appli
ations to the quantum theory the role of spa
e V plays thespa
e of mixed states of n-dimensional binary quantum system, P(Rn2−1).Key words and phrases: theory of invariants, orbit spa
e, semi-algebrai
 sets, qutrit,entanglement spa
e.The work is supported in part by the Ministry of Edu
ation and S
ien
e of theRussian Federation (grant 3003.2014.2) and the Russian Foundation for Basi
 Resear
h(grant 13-01-0068). 111



112 V. GERDT, A. KHVEDELIDZE, Y. PALIIThe groups G and H are asso
iated with the unitary group U(n) and itssubgroup, U(n1)× U(n2) ⊂ U(n), 1 a
ting in adjoint mannerAd (g) % = g%g−1 g ∈ U(n) (1)on the density matri
es % ∈ P(Rn2−1). The a
tion (1) determines the\global orbit spa
e",P(Rn2−1) |U(n), and the so-
alled entanglement spa
e
P(Rn2−1) |U(n1)×U(n2) of a binary n1 × n2 system.The semi-algebrai
 stru
ture of both orbit spa
es admits des
riptionin terms of the 
orresponding ring of G-invariant polynomials, R[P℄U(n)and R[P℄U(n1)×U(n2). A

ording to the Pro
esi and S
hwarz method [1, 2℄these semi-algebrai
 varieties in Rq are de�ned by the syzygy ideal forthe 
orresponding integrity basis and the semi-positivity of the so-
alledgradient matrix, Grad(z) > 0. As it was dis
ussed re
ently in [3℄, theorbit spa
e P(Rn2−1) |U(n) representation in terms of the integrity ba-sis for U(n)-invariant polynomial ring is 
ompletely determined from thephysi
al requirements formulated as the semi-positivity and Hermi
ity ofdensity matri
es. The 
onditions Grad(z) > 0 do not bring any new re-stri
tion on the elements in the integrity basis for R[P℄U(n). In 
ontrastto that 
ase, the algebrai
 and geometri
 properties of the entanglementspa
e, are more subtle. It turns that in order to determine the lo
al orbitspa
e P(Rn2−1) |U(n1)×U(n2) the additional 
onstraints arising from thesemi-positivity of Grad-matrix should be taken into a

ount. Moreover ad-ditional inequalities in elements of the integrity basis for R[P℄U(n1)×U(n2)provide 
onstraints on the U(n)-invariants. Below, aiming to exemplify thisstatement the toy model, whi
h mimi
ry a generi
 
ase of a binary 
ompos-ite system will be studied. Namely, we 
onsider the 3-dimensional quantumsystem, de�ned by the state spa
e P(R8) ; whi
h is a lo
us in quo of thea
tion of the symmetry group U(3) and its U(2) subgroup SU(2)×U(1).

§2. Qutrit
• The qutrit state parametrization • Consider a quantum 3-levelsystem, named the qutrit. Its state, the semi-positive Hermitian, of tra
e1The subgroup H is determined by a �xed de
omposition of system onto the n1-and n2- dimensional subsystems, su
h that n = n1 × n2.



CONSTRUCTING THE SU(2) ×U(1) 113one, matrix % 
an be parameterized as follows:% = 13 (I3 +√3 8
∑a=1 �a�a) : (2)Here the real parameters {�a}a=1;:::;8 are 
omponents of the 8-dimensionalBlo
h ve
tor � and {�a}a=1;:::;8 are the Gell-Mann matri
es generatingthe Hermitian basis of the Lie algebra su(3) :�1 = 0 1 01 0 00 0 0  �2 = 0 −i 0i 0 00 0 0  �3 = 1 0 00 −1 00 0 0 �4 = 0 0 10 0 01 0 0  �5 = 0 0 −i0 0 0i 0 0  �6 = 0 0 00 0 10 1 0 �7 = 0 0 00 0 −i0 i 0  �8 = 1√3 1 0 00 1 00 0 −2 The produ
t of pairs of Gell-Man matri
es involves two basi
 sets of su(3)algebra 
onstants: �a�b = 23Æab + (dab
 + ifab
)�
; (3)where dab
 and fab
 denote 
omponents of the 
ompletely symmetri
 andskew-symmetri
 symbols de�ned via the anti-
ommutators {; } and 
om-mutators [; ℄ of the Gell-Mann matri
es:dab
 = 14Tr({�a; �b}�
); fab
 = 14Tr([�a; �b℄�
):The matrix % from (2) represents a physi
al state of qutrit i� the Blo
hve
tor � is subje
t to the following polynomial 
onstraints: 2�a�a 6 1 ; (4)0 6 �a�a − 2√3dab
�a�b�
 6

13 : (5)2The inequalities (4) and (5) re
e
t the semi-positivity of qutrit's density matri
es,% > 0 :
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• The unitary symmetry of qutrit • As it was mentioned above theunitary group U(3) a
ts on P(R8) in adjoint manner. The Blo
h ve
tor �transforms under Ad-a
tion as 8-dimensional ve
tor�′a = Oab�b; O ∈ SO(8);with the spe
ial 8-parametri
 subgroup of SO(8). 3
• The \lo
al symmetry" SU(2) × U(1) • Consider the U(2) subgroupof U(3) identi�ed (up to 
onjugation) by the 
onventional embedding:U(2) = 











g(u) = 




u (detu)−1  | u ∈ U(2)










⊂ SU(3): (6)A

ording to the embedding (6) and to the Gell-Mann basis 
hoi
e, theU(2) subgroup is generated by �1; �2; �3 ( generators of SU(2) subgroup )and �8 ( generator of U(1) subgroup ). An element of U(2) subgroup 
anbe written as g = exp(i�1�) exp(i�2�) exp(i�3
) exp(i��8); (7)where the Euler angles �; �; 
 parametrize the SU(2) group and angle �
orresponds to the U(1) subgroup phase, det u = exp(i 2√3�).
§3. Sket
h of the Pro
esi-S
hwarz methodThe Classi
al theory of Invariants represents the 
ornerstone in des
rip-tion of orbit spa
es. Based on this theory (see .e.g. [6℄) the basi
 ingredientsof the des
ription 
an be formulated as follows.Consider the 
ompa
t Lie group G a
ting linearly on the real d-dimensi-onal ve
tor spa
e V . Let R[V ℄G is the 
orresponding ring of the G-invariantpolynomials on V . Assume P = (p1; p2; : : : ; pq) is a set of homogeneouspolynomials that form the integrity basis,

R[x1; x2; : : : ; xd℄G = R[p1; p2; : : : ; pq℄:Elements of the integrity basis de�ne the polynomial mapping:p : V → R
q ; (x1; x2; : : : ; xd) → (p1; p2; : : : ; pq): (8)3More details on the algebrai
 and geometri
 stru
tures of the SU(3) group 
an befound in the 
lassi
al paper [8℄.



CONSTRUCTING THE SU(2) ×U(1) 115Sin
e p is 
onstant on the orbits of G, it indu
es a homeomorphism of theorbit spa
e V=G and the image X of p-mapping; V=G ≃ X [7℄. In order todes
ribe X in terms of P uniquely, it is ne
essary to take into a

ount thesyzygy ideal :IP = {h ∈ R[y1; y2; : : : ; yq℄ : h(p1; p2; : : : ; pq) = 0 ; in R[V ℄ }:Let Z ⊆ Rq denote the lo
us of 
ommon zeros of all elements of IP . Then Zis algebrai
 subset of Rq su
h thatX ⊆ Z. Denoting by R[Z℄ the restri
tionof R[y1; y2; : : : ; yq℄ to Z one 
an easily verify that R[Z℄ is isomorphi
 tothe quotient R[y1; y2; : : : ; yq℄=IP and thus R[Z℄ ≃ R[V ℄G : Therefore thesubset Z essentially is determined by R[V ℄G, but to des
ribe X the furthersteps are required. A

ording to [1, 2℄ the ne
essary information on X isen
oded in the stru
ture of q × q matrix with elements given by the innerprodu
ts of gradients, grad(pi) :
||Grad||ij = (grad (pi) ; grad (pj)) : (9)Thus, summarizing all above observations, the orbit spa
e 
an be iden-ti�ed with the semi-algebrai
 variety, de�ned as points, satisfying two 
on-ditions:a) z ∈ Z, where Z is the surfa
e de�ned by the syzygy ideal for theintegrity basis in R[V ℄G;b) Grad(z) > 0.

§4. Constru
ting the G-invariant polynomialsLet GL(n;C) be the general linear group of degree n over the �eld C.Assume that GL(n;C) ; operates with the polynomials p(x1; x2; : : : ; xn) ∈
C[x1; x2; : : : ; xn℄ as follows:(gp) (x1; x2; : : : ; xn) := p (x′1; x′2; : : : ; x′n) ; g ∈ GL(n;C); (10)where x′i = g−1ij xj : (11)The polynomials p(x1; x2; : : : ; xn) are 
alled G-invariant if they representthe �xed points of the transformation (10):(gp) (x1; x2; : : : ; xn) := p (x1; x2; : : : ; xn) : (12)Here we are 
on
erned with the polynomials in n2 
omplex entries of thedensity matri
es p(%) = p(%11, %12; : : : ; %nn). To redu
e the adjoint a
tion(1) to a linear transformation of the type (11) one 
an identify the Hermit-ian density matrix % with the 
omplex ve
tor V of length n2 and 
onsider



116 V. GERDT, A. KHVEDELIDZE, Y. PALIIthe linear representation of the subgroup L ⊂ GL(n;C) de�ned via tensorprodu
t of unitary matrix with its 
omplex 
onjugated oneL := U(n) ⊗U(n): (13)The invariant polynomials (12) form an algebra over the C, and any su
hinvariant 
an be expressed as a polynomial of the so-
alled fundamentalinvariants, the homogeneous polynomials of �xed degrees. Sin
e the homo-geneous invariants of a �xed degree form a ve
tor spa
e, it is suÆ
ient to�nd a maximal, linearly independent set of homogeneous invariants, i.e., abasis for that ve
tor spa
e. The dimension of this ve
tor spa
e 
an be ex-tra
ted from the power series (Poin
are series [4℄) expansion of the Molienfun
tion [5℄. In fa
t, given a 
ompa
t Lie group G and its representation�, the Molien fun
tion 
an be dire
tly de�ned by the power series (
f. [5℄)M�(C[V ℄G; q) = ∞
∑k=0 
k(�)qk: (14)Here 
k(�) is the number of linearly independent G-invariant polynomialsof degree k on V .4.1. The Molien fun
tion. The Molien fun
tion (14) asso
iated to therepresentation �(g) of a 
ompa
t Lie group G on V admits integral rep-resentation [5, 6℄ (Molien's formula):M�(C[V ℄G; q) = ∫G d�(g)det(I − q�(g)) ; |q| < 1; (15)where d�(g) is the Haar measure for Lie group G. A

ording to the Weyl'sIntegration Formula [6℄, an integral over a 
ompa
t Lie group G 
an bede
omposed into a double integral over a maximal torus T and over thequotient of the group by this torus G=T . If the integrand is a fun
tioninvariant under 
onjugation in the group, then the latter integral is \q-independent" and the total integral redu
es to an integral over the maximaltorus with 
oordinates x and the additional Weyl fa
tor A(x):M�(C[V ℄G; q) = ∫T d�[x℄A(x)det(I − q�(x)) : (16)The resulting integral is transformed into a 
omplex path integral that 
anbe evaluated by residue theorem.



CONSTRUCTING THE SU(2) ×U(1) 117In what follows we present the Molien fun
tions for the U(3) and itsU(2) subgroup a
ting linearly (13) on 
omplex 9-dimensional spa
e.
•The Molien fun
tion for U(3) • For the group U(3) the Weyl fa
torA(x) is squire of Vandermonde determinant 
al
ulated for torus 
oordi-nates divided by the order of the 
orresponding Weyl group:ASU(3)(x1; x2; x3) = 13! 3

∏i<j(xi − xj)(xi − xj);and the Molien fun
tion is given byM (d=9)U(3) (q) = 1(1− q)(1− q2)(1− q3) (17)
• The Molien fun
tion for SU(2)×U(1) • For this 
ase � ⊗ �� repre-sentation for maximal torus reads� ⊗ �� = (x; x−1; y)⊗ (x−1; x; y−1)= (1; x2; xy−1; x−2; 1; x−1y−1; yx−1; xy; 1) ;where x is 
oordinate on SU(2) group torus and y is 
oordinate on U(1).The Weyl fa
tor for SU(2) groupASU(2)(x) := 1− x2 − x−22implies redu
tion of the integral in (16) to the double path integralM (d=9)SU(2)×U(1)(q) = ∫ d �SU(2)d �U(1)det |1− q � ⊗ ��|= 18�2 1(1−q)3 ∮

|x|=1 ∮

|y|=1 (1−x2)2 xdx ydy(1−qx2)(1−qxy)(y−qx)(x−qy)(xy−q)(x2−q) :Subsequent 
al
ulation of the residues of the integrand �rst with respe
t toy at poles Py = {qx; q=x} and then with respe
t to x variable at poles Px =
{±√q; ±q} gives �nally the rational expression for the Molien fun
tion:M (d=9)SU(2)×U(1)(q) = 1(1− q)2(1− q2)2(1− q3) : (18)



118 V. GERDT, A. KHVEDELIDZE, Y. PALII4.2. U(3) and SU(2)×U(1)-invariant polynomials. Expressions (17)and (18) for Molien fun
tions indi
ate that the set fundamental homoge-neous polynomials for rings C[x℄SU(3) 
onsists of three polynomials of de-gree 1, 2 and 3, while there are �ve SU(2)×U(1)-invariant homogeneouspolynomials forming the integrity basis for he ring C[x℄SU(2)×U(1). The lat-ter basis in
ludes one polynomial of degree 1, two polynomials of degree 2and one polynomial of degree 3.As the integrity basis for the ring C[x℄SU(3) 
an be 
omposed eitherof the tra
e invariants tk = tr (%k), k = 1; 2; 3 or of the SU(3) Casimirinvariants 
onstru
ted via 
orresponden
e with the elements of the 
enteruniversal enveloping algebra U(su(3)).
• Casimir invariants • Using the Blo
h parametrization for the densitymatrix (2) of qutrit, the quadrati
 and qubi
 Casimir invariants are thefollowing polynomials

C2 = �i�i ; (19)
C3 = √3 dijk�i�j�k ; (20)

• SU(2)×U(1)-invariants • Due to the graded stru
ture of the ring ofinvariants their 
onstru
tions redu
es to the 
onstru
tions of the basi
 ho-mogeneous invariant polynomials. These homogeneous G -invariant poly-nomials of a given degree are subje
t to the system of linear homogeneousequations (12). A
tually those equations are redu
ed to the in�nitesimalversion of the following form [4℄eif = 0 ; i = 1; : : : ;m ;gjf = f ; i = 1; : : : ; s ;where e1; : : : ; em form the basis of Borel subgroup B ⊂ G and g1; : : : ; gsis a system of representatives of 
onjugated 
lasses for the group G withrespe
t to its 
onne
ted subgroup G0. Applying this generi
 s
heme one
an derive the following set of SU(2)×U(1)-invariants:f1=�8 ; (21)f2=�21 + �22 + �23 ; (22)f3=�24 + �25 + �26 + �27 ; (23)f4=2(−�1(�4�6+�5�7)+�2(�4�7−�5�6))+�3(−�24−�25+�26+�27): (24)
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§5. Orbit spa
es of qutritBefore applying the above mentioned method by Pro
essi and S
hwarz[1, 2℄ to the orbit spa
e 
onstru
tion let us reformulate the semi-algebrai
des
ription of the qutrit state spa
e P(R8) in terms of the SU(3) Casimirinvariants. In doing so, we mainly follow the ideology presented in [9℄.5.1. The global orbit spa
e P(R8)=SU(3). Let us start with the semi-algebrai
 stru
ture of state spa
e P(R8)=SU(3) :

• The semi-positivity of density matrix• The equations (4) and (5)de�ning the semi-positivity of the qutrit density matrix in terms of theBlo
h ve
tor � 
an be rewritten via two SU(3) Casimir invariants C2 and
C3 as follows 0 6 C2 6 1 ; (25)0 6 3C2 − 2C3 6 1: (26)
• The Hermi
ity of density matrix• The inequalities (25) and (26)should be 
ompleted by the reality 
ondition of eigenvalues of the qutritdensity matrix. This 
ondition 
an be also expressed as polynomial in-equality in two Casimirs. This inequality is the non-negativity requirementfor the dis
riminant of the 
hara
teristi
 equation det (�− %) = 0 for thequtrit density matrix %: Dis
 := C32 − C23 > 0: (27)Thus the interse
tion of the strip determined by the linear inequalities(25) and (26) with the domain (27) de�nes the image of qutrit state spa
eunder the polynomial mapping. This interse
tion represents the 
urvilineartriangle ABC on the (C2;C3)-plane depi
ted on the Figure 1.Now we show the triangle ABC represents the 
oset spa
e P(R8)=SU(3)for the qutrit state spa
e. Indeed, sin
e the determinant of the Pro
esi{S
hwarz GradSU(3)-matrixGradSU(3) = ( 4C2 6C36C3 9C22 ) (28)is proportional to the dis
riminant (27)det ||GradSU(3)|| = 36(C32 − C23);the semi-positivity of Grad-matrix, that determines the orbit spa
e
P(R8)=SU(3) 
oin
ides with the Hermi
ity requirement of the qutrit den-sity matrix.
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Fig. 1. Triangle ABC as qutrit's global orbit spa
e on theCasimir's (C2 ;C3)-plane.5.2. The orbit spa
e P=SU(2)×U(1). Let us start with the observationthat the SU(3) Casimir invariants 
an be expressed in terms of the fourSU(2)×U(1)-invariants (21){(24) as
C2 = f21 + f2 + f3 ; C3 = f1(f2 − 12f3)− 3√34 f4 − f31 : (29)Be
ause we are interested in the proje
tion of orbit spa
e P=SU(2)×U(1)to the spa
e P(R8)=SU(3), it is 
onstru
tive to use relations (29) and tobuild the integrity basis that 
ontains C2 and C3 as its elements of these
ond and third degree,

PSU(2)×U(1) := {f1; f2; C2; C3} :Let us present the 4×4 Grad-matrix for the integrity basis {f1; f2;C2;C3},in the the blo
k formGradSU(2)×U(1) =  A; B
BT ; D



 : (30)
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Fig. 2. Domain GradSU(2)×U(1) > 0 and its proje
tion to(C2;C3)-plane for f1 = 0 .Here A := diag(1; 4f2) ; is the 2× 2 diagonal matrix D that 
oin
ides withthe Grad-matrix (28) and
B :=  2f1; 32 (3f2 − f21 − C2)4f2; 3f1(f2 + C2) + 2C3  : (31)It is easy to see that the semi-positivity of matrix (30) is redu
ed to thenon-negativity 
ondition of its determinant:det ||GradSU(2)×U(1)|| > 0 (32)Furthermore, from the expressiondet ||GradSU(2)×U(1)|| = 4 (C2 + 3f2 − f21 )

×
[

− 9f21 (C22 + 3f22 )− 12C3f1(C2 − 3f2) + 3f41 (2C2 + 3f2)+ 27f2(C2 − f2)2 − 4C23 + 4C3f31 − f61 ]: (33)it follows that domain of the Grad-matrix non-negativity is the 4-dimensi-onal body bounded by two 3-dimensional hypersurfa
es that we denote by�+ and �−. The expli
it parametrization of �± 
an be found by solving
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− 9f21 (C22 + 3f22 )− 12C3f1(C2 − 3f2 − 13f21 )+ 3f41 (2C2 + 3f2) + 27f2(C2 − f2)2 − 4C23 − f61 = 0 (34)with respe
t to C3. Thereby, the �± hypersurfa
es are given by equations:

C3 = 32 (f1(3f2 − C2) + f313 ∓
√3f2 (−C2 + f2 + f21 )) : (35)A

ording to (35), the �+ and �− interse
t if

√3f2 (f2 + f21 − C2) = 0: (36)Thus, �± hypersurfa
es interse
t along the following 2-dimensional sur-fa
es �1 and �2:(1) �1 surfa
e:f2 = 0 ; C3 = 32f1(f213 − C2) ; (37)(2) �2 surfa
e:f2 + f21 − C2 = 0 ; C3 = 3f1(C2 − 43f21) : (38)To make des
ription of orbit spa
e more transparent, 
onsider its 3-dimensional 
ross se
tions for di�erent values of the \lo
al" invariant f1:
• P=SU(2)×U(1) for f1 = 0 • The 3-dimensional sli
e of the \lo
al" orbitspa
e �xed by the lo
al invariant f1 = 0 is drawn on Figure 2. From thispi
ture one 
an see that the proje
tion of the \
one of semipositivity" of theGrad-matrix to the (C2;C3)-plane reprodu
es exa
tly the ABC triangle,the orbit spa
e P(R8)=SU(3) depi
ted on Figure 1.For non-vanishing values of f1 the attainable area of the Casmir in-variants (C2 ;C3) is shrinking. To illustrate this e�e
t, we give below the
orresponding pi
tures for positive, f1 = 2=5 and negative, f1 = −2=5values of invariant f1.
• P=SU(2)×U(1) for f1 = 2=5 • For this value the \
one of semiposi-tivity" is drawn on the Figure 3. For non-zero values of f1 the vertex of\
one of semipositivity" interse
ts the Casmir invariants (C2, C3)-plane atthe point D that di�ers from the point A. The line DE is proje
tion of thesurfa
e �2 with f1 = 2=5. With growing f1 the line DE moves towardsBC and for f1 = 1=2 it 
overs the last. To make more vivid illustration
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Fig. 3. Domain GradSU(2)×U(1) > 0 and its proje
tion to(C2;C3)-plane for f1 = 2=5.

Fig. 4. DCBE is the image of P=SU(2)×U(1) on SU(3)orbit spa
e for �xed f1 = 2=5.the shrinking area of the allowed SU(3) Casimirs invariants is shown onFigure 4.
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Fig. 5. Domain GradSU(2)×U(1) > 0 and its proje
tion to(C2;C3-plane for f1 = −2=5.

Fig. 6. DCBE is the image of P=SU(2)×U(1) on SU(3)orbit spa
e for f1 = −2=5.When the \lo
al" invariant f1 lies in the interval (0;−1℄; an alternativeme
hanism of shrinking of the triangle ABC triangle is realized:
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• P=SU(2)×U(1) for f1 = −2=5 • For this 
ase the the \
one of semi-positivity" is depi
ted on the Figure 5. When f1 takes negative values thepoints D and E move toward the point B and all 
oin
ide for f1 = −1.The Figure 6 exempli�es the e�e
t of shrinking of the allowed SU(3)Casimirs invariants domain for negative value f = −2=5.Finally, the 3-dimensional of sli
es of the orbit spa
e P=SU(2)×U(1)for di�erent values of f1 are presented on the Figure 7.
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Fig. 7. P=SU(2)×U(1) sli
es for f1 = 2=5 (top), f1 = 0and f1 = −2=5 (bottom).
§6. Con
lusionIn the present note we analyze the SU(2)×U(1)-orbit spa
e of qutrittreating it as simpli�ed analogue of the entanglement spa
e of a 
ompositesystem. The orbit spa
e is des
ribed as a semi-algebrai
 variety in R4, de-�ned by a set of polynomial inequalities in SU(2)×U(1) adjoint invariants.These inequalities follow from the simultaneous semi-positivity of two ma-tri
es, the qutrit density matrix and the Pro
esi{S
hwarz Grad-matrix,
onstru
ted with the aid of fundamental set of SU(2)× U(1)-invariants. Itwas dis
ussed in details how the semi-positivity of the Grad -matrix forSU(2)× U(1)-invariants provides new restri
tions on the geometry of orbitspa
e in 
ontrast to the 
ase of the SU(3) orbit spa
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