
úÁ�ÉÓËÉ ÎÁÕÞÎÙÈÓÅÍÉÎÁÒÏ× ðïíé�ÏÍ 432, 2015 Ç.V. Gerdt, A. Khvedelidze, Y. PaliiCONSTRUCTING SU(2)×U(1) ORBIT SPACE FORQUTRIT MIXED STATESAbstrat. The orbit spae P(R8)=G of the groupG := SU(2) × U(1) ⊂ U(3)ating adjointly on the state spae P(R8) of a 3-level quantum sys-tem is disussed. The semi-algebrai struture of P(R8)=G is de-termined within the Proesi{Shwarz method. Using the integritybasis for the ring of G-invariant polynomials R[P(R8)℄G ; the setof onstraints on the Casimir invariants of the group U(3) omingfrom the positivity requirement for Proesi{Shwarz gradient ma-trix, Grad(z) > 0; is analyzed in detail.
§1. IntrodutionSine a very beginning of quantum mehanis, a highly nontrivial in-terplay between the quantities desribing a omposite quantum system asa \single whole" and \loal harateristis" of its onstituents beame thesubjet of intensive studies (holisti v.s. redutionism views). The presentnote aims to disuss a mathematial aspet of \the whole and the parts"problem in quantum theory onsidering a model of 3-dimensional quantumsystem, qutrit. Skipping aside the physial motivation, these mathematialissues an be formulated as follows.Consider the ompat Lie group G ating on a real n-dimensional spaeV and let H ⊂ G is its ompat subgroup. Assume that the orrespondingorbit spaes V=G and V=H admit a realization as semi-algebrai subsets,Z(V=G) and Z(V=H) of Rq for a ertain q. The mathematial version of\the whole and the parts" dilemma an be formulated as the problem ofdetermination of orrespondene between sets Z(V=H) and Z(V=G).In appliations to the quantum theory the role of spae V plays thespae of mixed states of n-dimensional binary quantum system, P(Rn2−1).Key words and phrases: theory of invariants, orbit spae, semi-algebrai sets, qutrit,entanglement spae.The work is supported in part by the Ministry of Eduation and Siene of theRussian Federation (grant 3003.2014.2) and the Russian Foundation for Basi Researh(grant 13-01-0068). 111



112 V. GERDT, A. KHVEDELIDZE, Y. PALIIThe groups G and H are assoiated with the unitary group U(n) and itssubgroup, U(n1)× U(n2) ⊂ U(n), 1 ating in adjoint mannerAd (g) % = g%g−1 g ∈ U(n) (1)on the density matries % ∈ P(Rn2−1). The ation (1) determines the\global orbit spae",P(Rn2−1) |U(n), and the so-alled entanglement spae
P(Rn2−1) |U(n1)×U(n2) of a binary n1 × n2 system.The semi-algebrai struture of both orbit spaes admits desriptionin terms of the orresponding ring of G-invariant polynomials, R[P℄U(n)and R[P℄U(n1)×U(n2). Aording to the Proesi and Shwarz method [1, 2℄these semi-algebrai varieties in Rq are de�ned by the syzygy ideal forthe orresponding integrity basis and the semi-positivity of the so-alledgradient matrix, Grad(z) > 0. As it was disussed reently in [3℄, theorbit spae P(Rn2−1) |U(n) representation in terms of the integrity ba-sis for U(n)-invariant polynomial ring is ompletely determined from thephysial requirements formulated as the semi-positivity and Hermiity ofdensity matries. The onditions Grad(z) > 0 do not bring any new re-strition on the elements in the integrity basis for R[P℄U(n). In ontrastto that ase, the algebrai and geometri properties of the entanglementspae, are more subtle. It turns that in order to determine the loal orbitspae P(Rn2−1) |U(n1)×U(n2) the additional onstraints arising from thesemi-positivity of Grad-matrix should be taken into aount. Moreover ad-ditional inequalities in elements of the integrity basis for R[P℄U(n1)×U(n2)provide onstraints on the U(n)-invariants. Below, aiming to exemplify thisstatement the toy model, whih mimiry a generi ase of a binary ompos-ite system will be studied. Namely, we onsider the 3-dimensional quantumsystem, de�ned by the state spae P(R8) ; whih is a lous in quo of theation of the symmetry group U(3) and its U(2) subgroup SU(2)×U(1).

§2. Qutrit
• The qutrit state parametrization • Consider a quantum 3-levelsystem, named the qutrit. Its state, the semi-positive Hermitian, of trae1The subgroup H is determined by a �xed deomposition of system onto the n1-and n2- dimensional subsystems, suh that n = n1 × n2.



CONSTRUCTING THE SU(2) ×U(1) 113one, matrix % an be parameterized as follows:% = 13 (I3 +√3 8
∑a=1 �a�a) : (2)Here the real parameters {�a}a=1;:::;8 are omponents of the 8-dimensionalBloh vetor � and {�a}a=1;:::;8 are the Gell-Mann matries generatingthe Hermitian basis of the Lie algebra su(3) :�1 = 0 1 01 0 00 0 0  �2 = 0 −i 0i 0 00 0 0  �3 = 1 0 00 −1 00 0 0 �4 = 0 0 10 0 01 0 0  �5 = 0 0 −i0 0 0i 0 0  �6 = 0 0 00 0 10 1 0 �7 = 0 0 00 0 −i0 i 0  �8 = 1√3 1 0 00 1 00 0 −2 The produt of pairs of Gell-Man matries involves two basi sets of su(3)algebra onstants: �a�b = 23Æab + (dab + ifab)�; (3)where dab and fab denote omponents of the ompletely symmetri andskew-symmetri symbols de�ned via the anti-ommutators {; } and om-mutators [; ℄ of the Gell-Mann matries:dab = 14Tr({�a; �b}�); fab = 14Tr([�a; �b℄�):The matrix % from (2) represents a physial state of qutrit i� the Blohvetor � is subjet to the following polynomial onstraints: 2�a�a 6 1 ; (4)0 6 �a�a − 2√3dab�a�b� 6

13 : (5)2The inequalities (4) and (5) reet the semi-positivity of qutrit's density matries,% > 0 :
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• The unitary symmetry of qutrit • As it was mentioned above theunitary group U(3) ats on P(R8) in adjoint manner. The Bloh vetor �transforms under Ad-ation as 8-dimensional vetor�′a = Oab�b; O ∈ SO(8);with the speial 8-parametri subgroup of SO(8). 3
• The \loal symmetry" SU(2) × U(1) • Consider the U(2) subgroupof U(3) identi�ed (up to onjugation) by the onventional embedding:U(2) = 











g(u) = 




u (detu)−1  | u ∈ U(2)










⊂ SU(3): (6)Aording to the embedding (6) and to the Gell-Mann basis hoie, theU(2) subgroup is generated by �1; �2; �3 ( generators of SU(2) subgroup )and �8 ( generator of U(1) subgroup ). An element of U(2) subgroup anbe written as g = exp(i�1�) exp(i�2�) exp(i�3) exp(i��8); (7)where the Euler angles �; �;  parametrize the SU(2) group and angle �orresponds to the U(1) subgroup phase, det u = exp(i 2√3�).
§3. Sketh of the Proesi-Shwarz methodThe Classial theory of Invariants represents the ornerstone in desrip-tion of orbit spaes. Based on this theory (see .e.g. [6℄) the basi ingredientsof the desription an be formulated as follows.Consider the ompat Lie group G ating linearly on the real d-dimensi-onal vetor spae V . Let R[V ℄G is the orresponding ring of the G-invariantpolynomials on V . Assume P = (p1; p2; : : : ; pq) is a set of homogeneouspolynomials that form the integrity basis,

R[x1; x2; : : : ; xd℄G = R[p1; p2; : : : ; pq℄:Elements of the integrity basis de�ne the polynomial mapping:p : V → R
q ; (x1; x2; : : : ; xd) → (p1; p2; : : : ; pq): (8)3More details on the algebrai and geometri strutures of the SU(3) group an befound in the lassial paper [8℄.



CONSTRUCTING THE SU(2) ×U(1) 115Sine p is onstant on the orbits of G, it indues a homeomorphism of theorbit spae V=G and the image X of p-mapping; V=G ≃ X [7℄. In order todesribe X in terms of P uniquely, it is neessary to take into aount thesyzygy ideal :IP = {h ∈ R[y1; y2; : : : ; yq℄ : h(p1; p2; : : : ; pq) = 0 ; in R[V ℄ }:Let Z ⊆ Rq denote the lous of ommon zeros of all elements of IP . Then Zis algebrai subset of Rq suh thatX ⊆ Z. Denoting by R[Z℄ the restritionof R[y1; y2; : : : ; yq℄ to Z one an easily verify that R[Z℄ is isomorphi tothe quotient R[y1; y2; : : : ; yq℄=IP and thus R[Z℄ ≃ R[V ℄G : Therefore thesubset Z essentially is determined by R[V ℄G, but to desribe X the furthersteps are required. Aording to [1, 2℄ the neessary information on X isenoded in the struture of q × q matrix with elements given by the innerproduts of gradients, grad(pi) :
||Grad||ij = (grad (pi) ; grad (pj)) : (9)Thus, summarizing all above observations, the orbit spae an be iden-ti�ed with the semi-algebrai variety, de�ned as points, satisfying two on-ditions:a) z ∈ Z, where Z is the surfae de�ned by the syzygy ideal for theintegrity basis in R[V ℄G;b) Grad(z) > 0.

§4. Construting the G-invariant polynomialsLet GL(n;C) be the general linear group of degree n over the �eld C.Assume that GL(n;C) ; operates with the polynomials p(x1; x2; : : : ; xn) ∈
C[x1; x2; : : : ; xn℄ as follows:(gp) (x1; x2; : : : ; xn) := p (x′1; x′2; : : : ; x′n) ; g ∈ GL(n;C); (10)where x′i = g−1ij xj : (11)The polynomials p(x1; x2; : : : ; xn) are alled G-invariant if they representthe �xed points of the transformation (10):(gp) (x1; x2; : : : ; xn) := p (x1; x2; : : : ; xn) : (12)Here we are onerned with the polynomials in n2 omplex entries of thedensity matries p(%) = p(%11, %12; : : : ; %nn). To redue the adjoint ation(1) to a linear transformation of the type (11) one an identify the Hermit-ian density matrix % with the omplex vetor V of length n2 and onsider



116 V. GERDT, A. KHVEDELIDZE, Y. PALIIthe linear representation of the subgroup L ⊂ GL(n;C) de�ned via tensorprodut of unitary matrix with its omplex onjugated oneL := U(n) ⊗U(n): (13)The invariant polynomials (12) form an algebra over the C, and any suhinvariant an be expressed as a polynomial of the so-alled fundamentalinvariants, the homogeneous polynomials of �xed degrees. Sine the homo-geneous invariants of a �xed degree form a vetor spae, it is suÆient to�nd a maximal, linearly independent set of homogeneous invariants, i.e., abasis for that vetor spae. The dimension of this vetor spae an be ex-trated from the power series (Poinare series [4℄) expansion of the Molienfuntion [5℄. In fat, given a ompat Lie group G and its representation�, the Molien funtion an be diretly de�ned by the power series (f. [5℄)M�(C[V ℄G; q) = ∞
∑k=0 k(�)qk: (14)Here k(�) is the number of linearly independent G-invariant polynomialsof degree k on V .4.1. The Molien funtion. The Molien funtion (14) assoiated to therepresentation �(g) of a ompat Lie group G on V admits integral rep-resentation [5, 6℄ (Molien's formula):M�(C[V ℄G; q) = ∫G d�(g)det(I − q�(g)) ; |q| < 1; (15)where d�(g) is the Haar measure for Lie group G. Aording to the Weyl'sIntegration Formula [6℄, an integral over a ompat Lie group G an bedeomposed into a double integral over a maximal torus T and over thequotient of the group by this torus G=T . If the integrand is a funtioninvariant under onjugation in the group, then the latter integral is \q-independent" and the total integral redues to an integral over the maximaltorus with oordinates x and the additional Weyl fator A(x):M�(C[V ℄G; q) = ∫T d�[x℄A(x)det(I − q�(x)) : (16)The resulting integral is transformed into a omplex path integral that anbe evaluated by residue theorem.



CONSTRUCTING THE SU(2) ×U(1) 117In what follows we present the Molien funtions for the U(3) and itsU(2) subgroup ating linearly (13) on omplex 9-dimensional spae.
•The Molien funtion for U(3) • For the group U(3) the Weyl fatorA(x) is squire of Vandermonde determinant alulated for torus oordi-nates divided by the order of the orresponding Weyl group:ASU(3)(x1; x2; x3) = 13! 3

∏i<j(xi − xj)(xi − xj);and the Molien funtion is given byM (d=9)U(3) (q) = 1(1− q)(1− q2)(1− q3) (17)
• The Molien funtion for SU(2)×U(1) • For this ase � ⊗ �� repre-sentation for maximal torus reads� ⊗ �� = (x; x−1; y)⊗ (x−1; x; y−1)= (1; x2; xy−1; x−2; 1; x−1y−1; yx−1; xy; 1) ;where x is oordinate on SU(2) group torus and y is oordinate on U(1).The Weyl fator for SU(2) groupASU(2)(x) := 1− x2 − x−22implies redution of the integral in (16) to the double path integralM (d=9)SU(2)×U(1)(q) = ∫ d �SU(2)d �U(1)det |1− q � ⊗ ��|= 18�2 1(1−q)3 ∮

|x|=1 ∮

|y|=1 (1−x2)2 xdx ydy(1−qx2)(1−qxy)(y−qx)(x−qy)(xy−q)(x2−q) :Subsequent alulation of the residues of the integrand �rst with respet toy at poles Py = {qx; q=x} and then with respet to x variable at poles Px =
{±√q; ±q} gives �nally the rational expression for the Molien funtion:M (d=9)SU(2)×U(1)(q) = 1(1− q)2(1− q2)2(1− q3) : (18)



118 V. GERDT, A. KHVEDELIDZE, Y. PALII4.2. U(3) and SU(2)×U(1)-invariant polynomials. Expressions (17)and (18) for Molien funtions indiate that the set fundamental homoge-neous polynomials for rings C[x℄SU(3) onsists of three polynomials of de-gree 1, 2 and 3, while there are �ve SU(2)×U(1)-invariant homogeneouspolynomials forming the integrity basis for he ring C[x℄SU(2)×U(1). The lat-ter basis inludes one polynomial of degree 1, two polynomials of degree 2and one polynomial of degree 3.As the integrity basis for the ring C[x℄SU(3) an be omposed eitherof the trae invariants tk = tr (%k), k = 1; 2; 3 or of the SU(3) Casimirinvariants onstruted via orrespondene with the elements of the enteruniversal enveloping algebra U(su(3)).
• Casimir invariants • Using the Bloh parametrization for the densitymatrix (2) of qutrit, the quadrati and qubi Casimir invariants are thefollowing polynomials

C2 = �i�i ; (19)
C3 = √3 dijk�i�j�k ; (20)

• SU(2)×U(1)-invariants • Due to the graded struture of the ring ofinvariants their onstrutions redues to the onstrutions of the basi ho-mogeneous invariant polynomials. These homogeneous G -invariant poly-nomials of a given degree are subjet to the system of linear homogeneousequations (12). Atually those equations are redued to the in�nitesimalversion of the following form [4℄eif = 0 ; i = 1; : : : ;m ;gjf = f ; i = 1; : : : ; s ;where e1; : : : ; em form the basis of Borel subgroup B ⊂ G and g1; : : : ; gsis a system of representatives of onjugated lasses for the group G withrespet to its onneted subgroup G0. Applying this generi sheme onean derive the following set of SU(2)×U(1)-invariants:f1=�8 ; (21)f2=�21 + �22 + �23 ; (22)f3=�24 + �25 + �26 + �27 ; (23)f4=2(−�1(�4�6+�5�7)+�2(�4�7−�5�6))+�3(−�24−�25+�26+�27): (24)
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§5. Orbit spaes of qutritBefore applying the above mentioned method by Proessi and Shwarz[1, 2℄ to the orbit spae onstrution let us reformulate the semi-algebraidesription of the qutrit state spae P(R8) in terms of the SU(3) Casimirinvariants. In doing so, we mainly follow the ideology presented in [9℄.5.1. The global orbit spae P(R8)=SU(3). Let us start with the semi-algebrai struture of state spae P(R8)=SU(3) :

• The semi-positivity of density matrix• The equations (4) and (5)de�ning the semi-positivity of the qutrit density matrix in terms of theBloh vetor � an be rewritten via two SU(3) Casimir invariants C2 and
C3 as follows 0 6 C2 6 1 ; (25)0 6 3C2 − 2C3 6 1: (26)
• The Hermiity of density matrix• The inequalities (25) and (26)should be ompleted by the reality ondition of eigenvalues of the qutritdensity matrix. This ondition an be also expressed as polynomial in-equality in two Casimirs. This inequality is the non-negativity requirementfor the disriminant of the harateristi equation det (�− %) = 0 for thequtrit density matrix %: Dis := C32 − C23 > 0: (27)Thus the intersetion of the strip determined by the linear inequalities(25) and (26) with the domain (27) de�nes the image of qutrit state spaeunder the polynomial mapping. This intersetion represents the urvilineartriangle ABC on the (C2;C3)-plane depited on the Figure 1.Now we show the triangle ABC represents the oset spae P(R8)=SU(3)for the qutrit state spae. Indeed, sine the determinant of the Proesi{Shwarz GradSU(3)-matrixGradSU(3) = ( 4C2 6C36C3 9C22 ) (28)is proportional to the disriminant (27)det ||GradSU(3)|| = 36(C32 − C23);the semi-positivity of Grad-matrix, that determines the orbit spae
P(R8)=SU(3) oinides with the Hermiity requirement of the qutrit den-sity matrix.
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Fig. 1. Triangle ABC as qutrit's global orbit spae on theCasimir's (C2 ;C3)-plane.5.2. The orbit spae P=SU(2)×U(1). Let us start with the observationthat the SU(3) Casimir invariants an be expressed in terms of the fourSU(2)×U(1)-invariants (21){(24) as
C2 = f21 + f2 + f3 ; C3 = f1(f2 − 12f3)− 3√34 f4 − f31 : (29)Beause we are interested in the projetion of orbit spae P=SU(2)×U(1)to the spae P(R8)=SU(3), it is onstrutive to use relations (29) and tobuild the integrity basis that ontains C2 and C3 as its elements of theseond and third degree,

PSU(2)×U(1) := {f1; f2; C2; C3} :Let us present the 4×4 Grad-matrix for the integrity basis {f1; f2;C2;C3},in the the blok formGradSU(2)×U(1) =  A; B
BT ; D



 : (30)
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Fig. 2. Domain GradSU(2)×U(1) > 0 and its projetion to(C2;C3)-plane for f1 = 0 .Here A := diag(1; 4f2) ; is the 2× 2 diagonal matrix D that oinides withthe Grad-matrix (28) and
B :=  2f1; 32 (3f2 − f21 − C2)4f2; 3f1(f2 + C2) + 2C3  : (31)It is easy to see that the semi-positivity of matrix (30) is redued to thenon-negativity ondition of its determinant:det ||GradSU(2)×U(1)|| > 0 (32)Furthermore, from the expressiondet ||GradSU(2)×U(1)|| = 4 (C2 + 3f2 − f21 )

×
[

− 9f21 (C22 + 3f22 )− 12C3f1(C2 − 3f2) + 3f41 (2C2 + 3f2)+ 27f2(C2 − f2)2 − 4C23 + 4C3f31 − f61 ]: (33)it follows that domain of the Grad-matrix non-negativity is the 4-dimensi-onal body bounded by two 3-dimensional hypersurfaes that we denote by�+ and �−. The expliit parametrization of �± an be found by solving
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− 9f21 (C22 + 3f22 )− 12C3f1(C2 − 3f2 − 13f21 )+ 3f41 (2C2 + 3f2) + 27f2(C2 − f2)2 − 4C23 − f61 = 0 (34)with respet to C3. Thereby, the �± hypersurfaes are given by equations:

C3 = 32 (f1(3f2 − C2) + f313 ∓
√3f2 (−C2 + f2 + f21 )) : (35)Aording to (35), the �+ and �− interset if

√3f2 (f2 + f21 − C2) = 0: (36)Thus, �± hypersurfaes interset along the following 2-dimensional sur-faes �1 and �2:(1) �1 surfae:f2 = 0 ; C3 = 32f1(f213 − C2) ; (37)(2) �2 surfae:f2 + f21 − C2 = 0 ; C3 = 3f1(C2 − 43f21) : (38)To make desription of orbit spae more transparent, onsider its 3-dimensional ross setions for di�erent values of the \loal" invariant f1:
• P=SU(2)×U(1) for f1 = 0 • The 3-dimensional slie of the \loal" orbitspae �xed by the loal invariant f1 = 0 is drawn on Figure 2. From thispiture one an see that the projetion of the \one of semipositivity" of theGrad-matrix to the (C2;C3)-plane reprodues exatly the ABC triangle,the orbit spae P(R8)=SU(3) depited on Figure 1.For non-vanishing values of f1 the attainable area of the Casmir in-variants (C2 ;C3) is shrinking. To illustrate this e�et, we give below theorresponding pitures for positive, f1 = 2=5 and negative, f1 = −2=5values of invariant f1.
• P=SU(2)×U(1) for f1 = 2=5 • For this value the \one of semiposi-tivity" is drawn on the Figure 3. For non-zero values of f1 the vertex of\one of semipositivity" intersets the Casmir invariants (C2, C3)-plane atthe point D that di�ers from the point A. The line DE is projetion of thesurfae �2 with f1 = 2=5. With growing f1 the line DE moves towardsBC and for f1 = 1=2 it overs the last. To make more vivid illustration
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Fig. 3. Domain GradSU(2)×U(1) > 0 and its projetion to(C2;C3)-plane for f1 = 2=5.

Fig. 4. DCBE is the image of P=SU(2)×U(1) on SU(3)orbit spae for �xed f1 = 2=5.the shrinking area of the allowed SU(3) Casimirs invariants is shown onFigure 4.
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Fig. 5. Domain GradSU(2)×U(1) > 0 and its projetion to(C2;C3-plane for f1 = −2=5.

Fig. 6. DCBE is the image of P=SU(2)×U(1) on SU(3)orbit spae for f1 = −2=5.When the \loal" invariant f1 lies in the interval (0;−1℄; an alternativemehanism of shrinking of the triangle ABC triangle is realized:
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• P=SU(2)×U(1) for f1 = −2=5 • For this ase the the \one of semi-positivity" is depited on the Figure 5. When f1 takes negative values thepoints D and E move toward the point B and all oinide for f1 = −1.The Figure 6 exempli�es the e�et of shrinking of the allowed SU(3)Casimirs invariants domain for negative value f = −2=5.Finally, the 3-dimensional of slies of the orbit spae P=SU(2)×U(1)for di�erent values of f1 are presented on the Figure 7.
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Fig. 7. P=SU(2)×U(1) slies for f1 = 2=5 (top), f1 = 0and f1 = −2=5 (bottom).
§6. ConlusionIn the present note we analyze the SU(2)×U(1)-orbit spae of qutrittreating it as simpli�ed analogue of the entanglement spae of a ompositesystem. The orbit spae is desribed as a semi-algebrai variety in R4, de-�ned by a set of polynomial inequalities in SU(2)×U(1) adjoint invariants.These inequalities follow from the simultaneous semi-positivity of two ma-tries, the qutrit density matrix and the Proesi{Shwarz Grad-matrix,onstruted with the aid of fundamental set of SU(2)× U(1)-invariants. Itwas disussed in details how the semi-positivity of the Grad -matrix forSU(2)× U(1)-invariants provides new restritions on the geometry of orbitspae in ontrast to the ase of the SU(3) orbit spae.Referenes1. C. Proesi, G. Shwarz, The geometry of orbit spaes and gauge symmetry breakingin supersymmetri gauge theories. | Phys. Lett. B 161 (1985), 117{121.2. C. Proesi, G. Shwarz, Inequalities de�ning orbit spaes. | Invent. Math. 81(1985), 539{554.
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