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hON BIRATIONAL DARBOUX COORDINATES ONCOADJOINT ORBITS OF CLASSICAL COMPLEX LIEGROUPSAbstra
t. Any 
oadjoint orbit of the general linear group 
an be
anoni
ally parameterized using an iteration method, where at ea
hstep we turn from the matrix of a transformation A to the matrixof the transformation that is the proje
tion of A parallel to aneigenspa
e of this transformation to a 
oordinate subspa
e.We present a modi�
ation of the method appli
able to the groupsSO(N;C) and Sp(N;C). One step of the iteration 
onsists of two a
-tions, namely, the proje
tion parallel to a subspa
e of an eigenspa
eand the simultaneous restri
tion to a subspa
e 
ontaining a 
o-eigenspa
e.The iteration gives a set of 
ouples of fun
tions pk; qk on the orbitsu
h that the symple
ti
 form of the orbit is equal to ∑k dpk ∧ dqk.No restri
tions on the Jordan form of the matri
es forming the orbitare imposed.A 
oordinate set of fun
tions is sele
ted in the important 
ase ofthe absen
e of nontrivial Jordan blo
ks 
orresponding to the zeroeigenvalue, whi
h is the 
ase dimkerA = dimkerA2. This 
ase 
on-tains the 
ase of general position, the general diagonalizable 
ase,and many others.
§1. Introdu
tion. Notations. Coorninates on orbits ofgroups of A-seriesI remind the method of the 
anoni
al parametrization of (
o)adjointorbit of the general linear group in this se
tion. The method was introdu
edin [2{4℄ and suggested by I. M. Gelfand and M. I. Najmark [1℄. The methodis extended on the matrix groups preserving a bilinear quadrati
 form inthe present paper. The possibility of the extension is based on [1℄ too,where the triangular de
ompositions of SO(N) and Sp(N) were appliedto the representation theory. A distinguishing feature of the method isKey words and phrases: 
oadjoint orbit, 
lassi
al Lie groups, Lie algebra, Lie{Poisson{Kirillov{Kostant form, symple
ti
 �bration, rational Darboux 
oordinates.36



ON BIRATIONAL DARBOUX COORDINATES 37its insensitivity to the Jordan form of matri
es generating the orbit, it isappli
able to arbitrary 
omplex orbits.It must be noted that the assumption A ∈ so(N) or A ∈ sp(N) putssome restri
tions on the Jordan form of A. For example, the rank of anyskewsymmetri
 matrix is even, 
onsequently none of these Lie algebras
ontains matri
es similar to, say, 0 1 00 0 00 0 0.We assume that the Jordan forms of the matri
es are 
ompatible withthe restri
tions pres
ribed by the Lie algebra under the 
onsideration. It isgiven that the matrix belongs to the 
orresponding Lie algebra.Another diÆ
ulty is more serious. In some 
ases the 
onstru
ted fun
-tions are not independent, 
onsequently they do not form a 
oordinateset of fun
tions. We need to separate out the independent fun
tions and
ombine them into the 
anoni
al set. This diÆ
ulty 
an happen only inthe 
ase if the zero root-spa
e has non-trivial Jordan blo
ks.The 
onsideration of the general 
ase lies outside the present work.The 
lassi�
ation and birational 
anoni
al parametrization of the nilpotentorbits is a subje
t of a spe
i�
 paper. We will not 
onstru
t the 
oordinateson su
h orbits here.The last thing we note is that the presented formulae are valid in the 
aseof zero eigenvalue yet. They give the birational 
anoni
al parametrizationof the orbits with the 
ompli
ated zero root spa
e, but some orbits willnot be parameterised. These \missed orbits" are some algebrai
ally 
losedsubspa
es of the already parameterized orbits. A 
anoni
al parametrizationof the su
h subspa
es is a subje
t of a theory of the Hamiltonian systemswith 
onstraints.There are no prin
ipal diÆ
ulties to 
al
ulate the Jordan form of aparameterized orbit, it 
an be done in the same way as for gl(N) 
ase.Namely, it is suÆ
ient to determine the maximal ranks of all powers of the
onstru
ted matrix P�n over all values of the parameters in the expli
itformula. It is not diÆ
ult be
ause P�n is triangular. The normal Jordanform of the matrix from the orbit 
oin
ides with the form of su
h a J inthe normal Jordan form that has the ranks of all powers the same as themaximal ranks of the powers of P�n. We will not 
on
entrate on it either.



38 M. V. BABICHBefore pro
eeding to the subje
t it is ne
essary to introdu
e basi
 
on
eptsand notations.Let V be N -dimensional 
omplex linear spa
e. General linear groupGL(N) a
ts on V by 
hanges of bases: (e)→(eF ), where (e)=(e1; e2;: : :;eN),(eF ) = ((eF )1; (eF )2; : : : ; (eF )N ):ei; (eF )i ∈ V; (eF )k =∑i eiFik ; Fij ∈ C; F ∈ GL(N;C):The algebra gl(N;C) is the spa
e of all matri
es. Non-degenerate pairingA;B → trAB identi�es the algebra with its dual, so we do not distinguishthe algebra gl(N) and its dual gl∗(N), adjoint and 
oadjoint a
tion ofthe group. The 
oadjoint orbits of Lie groups are the 
lassi
al subje
t ofhuge amount of investigations for more than hundred years, see [5{10℄.The manifold of all matri
es similar to the given one is isomorphi
 to the
oadjoint orbit, they are 
anoni
ally isomorphi
 symple
ti
 spa
es.Let us denote the (
o)adjoint orbit of some element J ∈ gl(N) by
O(J) := ∪F∈GL(N)F−1JF . A symple
ti
 form on the orbit is denotedby !J : TO × TO → C. To introdu
e the method of the parametrizationof the orbit presented in [3, 4℄ we need more notations.Notation 1. Let V be represented as a dire
t sum of two nonzero sub-spa
es: V = L⊕M . A proje
tion of V along L to M is denoted by�||LM ∈ Hom(V;M):Notation 2. Let V be represented as a dire
t sum of two nonzero subspa
esin two spe
ial ways: L1⊕M = L2⊕M = V . A linear transformation of Vthat moves points of L1 to the points of L2 parallel to M and leave pointsof M un
hanged is denoted by�||L1M +�||ML2 = (�||L2M +�||ML1 )−1 ∈ End V:We denote �nite ordered sets of ve
tors by boldfa
e letters. For examplebasis (e) 
an be split on two parts a and b:(e) = (e1; e2; : : : ; eN ) = (a;b); a = e1; e2; : : : ; en; b = en+1; en+2; : : : ; eN :Linear envelopes of the sets of ve
tors we denote by L (: : :), for example
L (a) is the 
orresponding 
oordinate subspa
e.If the �rst set a of the ve
tors of the basis belongs to L1 and the otherpart b of the basis belongs to M , the transformations (�||L1M + �||ML2 )±1



ON BIRATIONAL DARBOUX COORDINATES 39have blo
k-triangle matri
es:(a;b)(�||L1M +�||ML2 )±1 = (a;b)( I 0
∓Q I ) :Matrix elements of Q form aÆne 
oordinates on the algebrai
ally opensubset of the Grassmanian of n-dimensional subspa
es of V .Let �′ be an eigenvalue of matri
es from the orbit (i.e. an eigenvalueof J). Consider ker(A − �′I) ∩ im(A − �′I)m−1 := L for any m su
h thatL 6= 0. Spa
e L is well de�ned, by A and m ∈ N, it is a non-zero subspa
eof V . We denote a dimension of L by n = n(�′;m) ∈ N, it is the numberof Jordan blo
ks, 
orresponding to �′, of sizes m×m and larger. A simpleeigenvalue is 
orresponded to m=1 by this de�nition.Let basis (e) of V be split on two parts (a;b). Subset a 
onsists ofn = n(�′;m) ve
tors and subset b 
onsists ofN−n ve
tors. Consider a newbasis (aL;b) := (a;b)(�||L (a)

L (b) +�||L (b)L ). The 
oordinate subspa
e of thenew basis is a well de�ned subspa
e L of the eigenspa
e of A, 
onsequentlyin the basis (aL;b) transformation A ∈ gl(N) has a blo
k-triangular form,and original matrix A in initial basis (a;b), has the following form:A = ( I 0Q I )( �′I P0 Ã )( I 0Q I )−1 :This representation takes pla
e if A belongs to some algebrai
ally opensubset of the orbit. Fun
tions P : O(J) → Cn×(N−n), Q : O(J) →

C(N−n)×n, Ã : O(J) → C(N−n)×(N−n) have been 
onstru
ted. The fol-lowing standpoint was presented in [4℄.The orbit O(J) is foliated over Grassmanians. The 
lass of birationaltrivializations of the foliations was presented. The base that is the Grass-matian was 
overed by a standard aÆne maps isomorphi
 to a linear spa
e,say HG = HG(�′;m), dimHG = n > 0. A �ber of the foliation has a nat-ural stru
ture of the dire
t produ
t H∗G×O(J̃), where O(J̃) is an orbit ofthe smaller dimension J̃ = J̃(J; �′;m) and H∗G is a linear spa
e dual to HG.The dire
t produ
t HG ×H∗G is a linear spa
e with a natural symple
ti
stru
ture, 
onsequently we get the 
overing of the orbit O(J) by domains.Ea
h domain is a symple
ti
 spa
e O(J̃)× (HG×H∗G) and the symple
ti
stru
tures of the initial orbit and the 
overing are naturally 
oordinated.



40 M. V. BABICHIn other words, the linear symple
ti
 spa
e1 has been split o� the initialorbit over the algebrai
ally open sets.So the map A → Ã is a proje
tion of the open subset of O(J) ontoan orbit O(J̃), where a Jordan form of J̃ is de�ned by J , �′ and m: theJordan blo
ks of J with sizes m and larger be
ome one unit smaller, theother Jordan blo
ks J and J̃ 
oin
ide. The main results of [3, 4℄ are:
• The map O(J) → O(J̃), de�ned over the algebrai
ally open subsetof the orbit is a proje
tion of the trivial symple
ti
 �bration.Its �bre is the linear symple
ti
 spa
e, we denote it by (E ; !E).
• The 
ouples Pij ; Qji of the symmetri
 matrix elements of P;Q arebirational Darboux 
oordinates on the �bre E .
• The symple
ti
 form !J on the orbit is a sum of the forms on thebase O(J̃) and the �ber E :!J = !J̃ + !E = !J̃ + tr dP ∧ dQ:We skip the notions of the pull-ba
ks of proje
tions for short. The pro
ess
an be iterated to exhaust the dimensions of the target orbits. It gives theDarboux 
oordinates on the initial orbit O(J). If we start with the orbitof matrix J with the zero tra
e we get the parametrization of the orbit ofSL(N) embedded into sl(N), the orbits of the groups of A-series.Let us 
onsider a dual pattern that gives us the representationA = ( I 0Q? I )( Ã? P ?0 �′I )( I 0Q? I )−1 :The geometri
al interpretation of this formula is following. We split theinitial basis (e) = (a?;b?) in su
h a way that the number of ve
tors ina? is a dimension of L? := im(A − �′I) + ker(A − �′I)m−1. It is evident,that dimL? + dimL = N . A new basis (a?L? ;b?) in whi
h A be
omes ablo
k-triangular matrix ( Ã? P ?0 �′I ) is(a?L? ;b?) := (a?;b?)(�||L (a?)

L (b?) +�||L (b?)L? ):We 
hoose the part a?L? of the basis in su
h a way that its linear envelope
L (a?L?) 
ontains an image of A−�′I, 
onsequently a matrix of A−�′I hasa lower blo
k zero in this basis. The 
onstru
tion im(A − �′I) + ker(A −�′I)m−1 provides the �xed Jordan normal form of Ã?, the same as Ã.1Hereinafter we denote spa
e HG ×H∗G by E.



ON BIRATIONAL DARBOUX COORDINATES 41The 
onstru
tion gives a rational map from the orbit O to (C × C)�O ,where �O is a total number of all pairs P;Q. To prove that it is birationalisomorphism it is suÆ
ient to prove that all fun
tions P;Q are independent.The Jordan form of A is de�ned by the numbers rank(A−�I)m. If theseranks have the same values for all2 P;Q, the statement will be proved.The following fa
t is fundamental for the 
onstru
tion: the normal Jor-dan form of the upper-triangular matrix with the s
alar diagonal blo
ks isde�ned by these blo
ks only on the algebrai
ally-open subset of the spa
eof free matrix elements.It is not diÆ
ult to see that our s
heme gives the bije
tion between allnormal Jordan forms and the sets of the diagonal blo
ks. To introdu
ethe isomorphism expli
itly let us enumerate the diagonal blo
ks of theupper-triangular matrix a

ording with their sizes nk:�′In1 ; �′In2 ; �′In3 ; : : : ; �′Inmax−1 ; �′Inmax; nk > nk+1;where det(A − �′I) = 0; nk = nk(�′). The minimal value of the diagonalblo
ks 
orresponding to �′ is nmax × nmax, we put nmax+1 def= 0. Thetotal number of the diagonal blo
ks 
orresponding to �′ is denoted bymax = max(�′), In is the unit matrix n× n.The number of the Jordan blo
ks m×m 
orresponding to � = �′ is equalto nm − nm+1.We �nish An-series now, and turn to the subje
t of the paper that isBn, Cn, and Dn-series.Let us split initial basis (e) on three parts (a; 
;b) and make two stepsof the pro
ess, one after another. The �rst one with the kernel of A − �′Iand the se
ond one with the image of Ã+�′I, 
onstru
ted using, generallyspeaking, di�erent eigenvalues �′ and −�′, that results:A =  I 0 0qgl1 I 0qgl2 0 I  �′I pgl1 pgl20 ÃI;I ÃI;II0 ÃII;I ÃII;II  I 0 0qgl1 I 0qgl2 0 I −1 ;
( ÃI;I ÃI;IIÃII;I ÃII;II ) := ( I 0qgl3 I )( ≈A pgl30 −�′I )( I 0qgl3 I )−1 ;2From the algebrai
ally open set.



42 M. V. BABICH
onsequently! = !≈J + tr dpgl1 ∧ dqgl1 + tr dpgl2 ∧ dqgl2 + tr dpgl3 ∧ dqgl3 :A �xed matrix similar to ≈A is denoted by ≈J .Taking into a

ount symmetries makes it possible to 
onvert the sumof the 2-forms into the 
anoni
al expression. A 
al
ulation of the ranks(A− �′I)m shows that the 
onstru
ted fun
tions are independent at leastif kerA = kerA2. We return to the main exposition now.
§2. Linear algebra of 
omplex spa
es with s
alarprodu
t. Isotropi
 subspa
esThe groups of the series B;C and D preserve a non-degenerate bilinearform, a s
alar produ
t 〈: : : ; : : :〉. A produ
t is symmetri
 〈�; �〉 = 〈�; �〉 forB;D, and antisymmetri
 〈�; �〉 = −〈�; �〉 for C.We 
onsider all 
ases simultaneously, in this sense we often use the wordorthogonal in the broad sense of the word, for symple
ti
 s
alar produ
ttoo.Consider one of the groups from the list and denote it by G, the 
or-responding algebra we denote by g. Let an index n runs symmetri
allyn = ±[N=2℄;±([N=2℄− 1); : : : ;±1 and takes the value n = 0 for odd N .De�nition 1. A basis is 
alled standard if its Gram matrix3 g is




0 0 �0 1 0� 0 0  ;( 0 �

−� 0 ) ; or ( 0 �� 0 ) ;where � is a square anti-diagonal matrix, 
onsisting of units. It is thematrix of an inversion:� =  0 0 : : : 0 10 0 : : : 1 0::: ::: : : : ::: :::0 1 : : : 0 01 0 : : : 0 0


:3A Gram matrix of the set of ve
tors f1; f2; : : : is a matrix of their pairwise produ
tsgij := 〈fi; fj〉.



ON BIRATIONAL DARBOUX COORDINATES 43For all series B;C, and D, it holds gT = g−1. For the orthogonal groupsg2 = I, for the symple
ti
 groups g2 = −I.We treat g; � as symbols of variable sizes, like unit matrix I. It meansthat square matri
es g; �; I have the sizes that are ne
essary for the presentsituation, for the 
urrent formula in the text.We 
onsider linear algebra over C, there are non-zero isotropi
 ve
tors:
〈�; �〉 = 0 does not imply that � = 0.De�nition 2. The spa
e L is 
alled isotropi
, if it 
onsists of isotropi
ve
tors: � ∈ L⇒ 〈�; �〉 = 0.If a standard basis is given, an example of isotropi
 spa
e is a 
oordinatesubspa
e enveloping several 
oordinate ve
tors with the indi
es of the samesign.An orthogonal 
omplement L⊥ to the spa
e L is 
alled a set of all ve
torsorthogonal to all ve
tors of L:� ∈ L⊥ ⇔ 〈�; �〉 = 0 ∀� ∈ L:An orthogonal 
omplement is a subspa
e. For the non-zero isotropi
 L,L ⊂ L⊥ 6= V , 
onsequently L+ L⊥ = L⊥ 6= V . Nevertheless

• (L⊥)⊥ = L,
• dimL+ dimL⊥ = dimV .It is evident that a dimension of isotropi
 subspa
e is not greater than ahalf of the dimension of the spa
eN . Consequently two isotropi
 subspa
esin a general position do not interse
t.Proposition 1. A set of the pairs (E;G) of isotropi
 spa
es of the same di-mension n = dimE = dimG is an algebrai
 manifold. It has an algebrai
al-ly-open subset su
h that E⊥ ⊕G = G⊥ ⊕ E = V:Let E⊥ ⊕ G = V . Let us denote W = E⊥ ∩ G⊥. It is evident thatdimW = dim V − 2n, 
onsequentlyV = E ⊕W ⊕G:Proposition 2. A 
ontra
tion of the s
alar produ
t 〈: : : ; : : :〉 on W fromV is non-degenerated and has the same type as V has.Proof. Let �0 : ∀� ∈ W 〈�0; �〉 = 0, then �0 ∈ W⊥. By the de�nitionW := E⊥∩G⊥, 
onsequently �0 ∈ E⊥; �0 ∈ G⊥, and �0 ∈ (E+W +G)⊥ =V ⊥ = 0. �



44 M. V. BABICHLet us �x the splitting V = E⊕W ⊕G, and let L be an isotropi
 spa
eof the same dimension as E is. Let these spa
es be from su
h algebrai
allyopen sets that L ⊕ W ⊕ G = L⊥ ⊕ G = V . We de�ne some spe
ial or-thogonal linear transformation of V , that transforms E to L now4. Thistransformation is a 
ouple of 
onsequent proje
tions: we proje
t E to Lalong W ⊕G �rst, and proje
t L⊕W along G to L⊥ after that. Subspa
eG remaines un
hanged.Let us denote by Q ∈ End V a transformation
Q := (�||EW⊕G +�||W⊕GL ) ◦ (�||L⊕WG +�||GL⊥):The �rst transformation (from the left) is identi
al onW⊕G, it moves E toL parallel toW ⊕G. The se
ond transformation is identi
al on G, it movesL⊕W to L⊥ parallel to G. We note that L ⊂ L⊥, 
onsequently the se
ondtransformationv is identi
all on L too: (�||L⊕WG +�||GL⊥)∣∣∣L = idL ∈ End L.Theorem 1. Transformation Q := (�||EW⊕G +�||W⊕GL ) ◦ (�||L⊕WG +�||GL⊥)preserves the s
alar produ
t, it is orthogonal and unimodular: Q ∈ G.Proof. Let us introdu
e the following notation. Let a; 
;b be sets of ve
-tors. Gram matrix of the set (a; 
;b) we denote as a blo
k-matrix:




〈a; a〉 〈a; 
〉 〈a;b〉
〈
; a〉 〈
; 
〉 〈
;b〉
〈b; a〉 〈b; 
〉 〈b;b〉  ;where, for example, 〈a; 
〉 is a matrix of the pairwise produ
ts of the ve
torsfrom the sets a and 
: the matrix element (〈a; 
〉)ij is 〈ai; 
j〉.Consider transformationQ of the standard basis (a; 
;b)→(a; 
;b)Q=:(aL; 
L;b). The 
orresponding matrix is blo
k-triangular, we denote itsblo
ks by q; q�; q̃:(a; 
;b) I 0 0q I 0q� q̃ I  = (a+ 
q + bq�; 
+ bq̃;b) = (aL; 
L;b):Our aim is to prove that the Gram-matrix does not 
hange. First of all wenote that L is isotropi
 and aL belongs to L, 
onsequently 〈aL; aL〉 = 0.The se
ond set of the basi
 ve
tors 
L = 
+bq̃ 
ompleat aL to a basisof L⊥, 
onsequently 
L ⊂ L⊥ and 〈aL; 
L〉 = 0.4It follows from the orthogonality that it transforms E⊥ to L⊥ too.



ON BIRATIONAL DARBOUX COORDINATES 45Finally the produ
ts of ve
tors from the set a+
q+bq� on the ve
torsb are the same as for the sets a and b, be
ause L (
;b) = L (b)⊥. So we
he
k the �rst line of the Gram-matrix.Consider the se
ond line. The Gram-matrix is symmetri
al or anti-symmetri
al, 
onsequently we do not have to 
he
k several entries, say
〈
; a〉; 〈b; a〉 and 〈b; 
〉. Consider 〈
+ bq̃; 
+ bq̃〉, it keeps its initial valueg = 〈
; 
〉 be
ause only the ve
tors from the set b are added to the ve
torsfrom the set 
, but the added ve
tors are orthogonal both to the ve
torsfrom b, and 
: L (b)⊥ = L (b; 
), 
onsequently 〈
;b〉 = 0 and 〈b;b〉 = 0.By the same reason 〈
L;b〉 = 〈
+ bq̃;b〉 = 0.Formally, one blo
k 〈b;b〉 in the third line must be 
he
ked, but theve
tors from b have not been 
hanged at all. �

§3. Symmetries of matri
es from group G and itsalgebra gGroup G ∋ F 
hanges the basis (a; 
;b) F
−→ (a; 
;b)F; F ∈ G. It keepsthe value of the s
alar produ
t 〈�; �〉 = �T g� = (F�)T gF� if and only ifF T gF = g:The di�erentiation of F T gF = g gives the 
ondition for A = _FF−1 ∈

C
N×N to belong to the algebra g:A ∈ g ⇔ AT g + gA = 0:The most important statements have been formulated as three theo-rems.Theorem 2. For any ve
tors �; � : 〈A�; �〉 = −〈�; A�〉.Proof.

〈A�; �〉 = (A�)T g� = �TAT g� = −�T gA� = −〈�; A�〉 �Theorem 3.AT g + gAT = 0 ⇒ dimker(A− �I)k = dimker(A+ �I)k; ∀k; �:Proof.dimker(A− �I)k = dim ker(AT − �I)k = dimker(g−1AT g − �I)k= dim ker−(A+ �I)k = dimker(A+ �I)k �



46 M. V. BABICHWe see that the eigenvalues of A ∈ g form pairs ±�′, and the stru
turesof their root-spa
es 
oin
ide. The third important fa
t is that the orthogo-nal 
omplement to the eigenspa
e 
orresponding to �′ is the 
o-eigenspa
e,
orresponding to −�′:Theorem 4. ker⊥(A− �′I) = im(A+ �′I):Proof. Let � = (A + �′I)�′, and A� = �′�, then 〈(A + �′I)�′; �〉 =�′〈�′; �〉 + 〈A�′; �〉 = �′〈�′; �〉 − 〈�′; A�〉 = �′〈�′; �〉 − �′〈�′; �〉 = 0, 
onse-quently im(A+ �′I) ⊂ ker(A− �′I)⊥:The stru
tures of the root-spa
es of �′ and −�′ 
oin
ide, 
onsequentlythe dimensions im(A+ �′I) and ker(A− �′I)⊥ 
oin
ide too, that impliesim(A+ �′I) = ker(A− �′I)⊥; ker(A− �′I) = im(A+ �′I)⊥ �Corollary 1.(ker(A− �′I) ∩ im(A− �′I)k)⊥ = im(A+ �′I) + ker(A+ �′I)k:Proof. It is evident that (L ∩ M)⊥ ⊃ L⊥ + M⊥, and the dimensions
oin
ide again. �Proposition 3. The eigenspa
es ker(A − �′I) and ker(A − �′′I) are or-thogonal if �′ + �′′ 6= 0.Proof. Let �′ and �′′ be the eigenve
tors 
orresponding to �′ and �′′.
〈A�′; �′′〉 = �′〈�′; �′′〉 = −�′′〈�′; �′′〉 ⇒ (�′ + �′′)〈�′; �′′〉 = 0: �Corollary 2. The eigenspa
es 
orresponding to the nonzero eigenvaluesare isotropi
.

�Let us 
onsider zero eigenvalue. From ker⊥(A − �′I) = im(A + �′I), itfollows that ker⊥A = imA. We proved the followingProposition 4. The kernel of A 
ontains the isotropi
 subspa
e kerA ∩imA.Note that it is zero subspa
e i� there are no nontrivial Jordan blo
ks
orresponding to � = 0.
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onsider any eigenvalue �′. All spa
es ker(A−�′I)∩ im(A−�′I)mare isotropi
 for nonzero �′, and if �′ = 0 the spa
es are isotropi
 form > 1.If �′ = 0, we take m > 1 from now.Let us 
onsider the transformation Q from Theorem 1. Let the splitting(a; 
;b) 
orrespond to the dimension of the spa
e ker(A − �′I) ∩ im(A −�′I)m, that is the isotropi
 subspa
e L := ker(A−�′I)∩im(A−�′I)m de�n-ing transformationQ. It means that dimL (a) = dimL (b) = dimker(A−�′I) ∩ im(A− �′I)m. We 
onsider matrix Q−1AQ of the transformation Ain the basis (aL; 
L;b), that is the result of the a
tion of Q = Q(�′;m) onthe initial basis (a; 
;b).Theorem 5. Matrix Q−1AQ ∈ g is blo
k-triangular:
Q−1AQ =  �′I � ��0 Aw �̃0 0 −�′I  ;where �; ��; �̃ are some matri
es. Matrix Aw belongs to the algebra5 of thesame series: AwT g + gAw = 0, but the size of matri
es is smaller.Proof. The �rst set aL of the basi
 ve
tors belongs to the eigenspa
e
orresponding to �′, 
onsequently the �rst 
olumn is (�′I; 0; 0)T .By the de�nition of Q, the sets aL; 
L of the basi
 ve
tors form thebasis of (ker(A− �′I) ∩ im(A− �′I)m)⊥. By the Corollary 1(ker(A− �′I) ∩ im(A− �′I)m)⊥ = im(A+ �′I) + ker(A+ �′I)m;
onsequently the envelope of aL; 
L 
ontains the image of A + �′I, sothe matrix of the transformation A + �′I in the basis aL; 
L;b, that is

Q−1AQ+ �′I, has lower dimker(A− �′I) ∩ im(A− �′I)m lines zero.The last we have to prove is ATwg + gAw = 0. It is a 
onsequen
e of
Q ∈ G that QAQ−1 ∈ g ⇔ (QAQ−1)T g + gQAQ−1 = 0.The situation is similar to the following. The symmetry of any matrixB : BT = B implies the symmetry of any its square sub-blo
k the positionof whi
h is symmetri
al with respe
t to the diagonal. Now we turn ba
kto the algebra g. It is a 
onsequen
e of the anti-diagonality of g that fromBT g+ gB = 0 it follows BTwg+ gBw = 0 for any square sub-blo
k Bw theposition of whi
h is symmetri
al with respe
t to both the diagonal and theanti-diagonal. �5Matrix (symbol) g has \variable size", it is 2 dimker(A − �′I) ∩ im(A − �′I)m > 0units smaller than g in the previous formulae.
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ount the 
hanging of the Jor-dan form of any transformation after its restri
tion on the subspa
e that
ontain the 
o-eigenspa
e and after the fa
torization with respe
t to thesubspa
e of the eigenspa
e (see [4℄).Let us 
onsider a linear spa
eW :=(im(A+ �′I) + ker(A+ �′I)m)=(ker(A− �′I) ∩ im(A− �′I)m):To getW we fa
torize the spa
e 
onsisting of ve
tors orthogonal to isotro-pi
 L with respe
t to this L. The result of su
h spe
ial quotient inheritsthe s
alar produ
t from V . It is not diÆ
ult to see that the Gram matrixg of the standard basis of W has the same type as for V but the smallersize. Transformation A ∈ g ⊂ End V a
ts naturally on W , we denote thisa
tion by Aw.Theorem 6. Transformation Aw belongs to algebra g of matri
es of sizedimW × dimW . The Jordan normal form of Aw di�ers from the Jordanform of A by the number of blo
ks 
orresponding to ±�′ only. If �′ 6= 0,the sizes of blo
ks of the sizes m×m and larger be
ome one unit smaller.If �′ = 0, the sizes of the blo
ks 
orresponding to the zero eigenvalue of thesizes m×m; m > 1 and larger be
ome two units smaller.The transformation from the basis (a; 
;b) to the basis (aL; 
L;b) isperformed by the blo
k-triangular matrix Q:(a; 
;b) I 0 0q I 0q� q̃ I  = (aL; 
L;b):It follows from Theorem 1 that the basis (aL; 
L;b) is standard too. Itimplies that matrix Q belongs to group G. Let us determine what it meansfor the blo
ks q; q̃; q�, and for the blo
ks of Q−1AQ.
§4. Symmetries of blo
k-matri
esLet us introdu
e an operation of the 
onjugation of matri
es with respe
tto the antidiagonal : A → A⊢. This 
onjugation transforms the rows tothe 
olumns and 
onversely too, but the elements preserving their pla
esbelong not to the diagonal but to the antidiagonal now6:A⊢

−i;−j = A−j;−i ⇔ A⊢i;j = A−j;−i:6If indi
es run from 1 to N , then A⊢N−i+1;N−j+1 = AN−j+1;N−i+1 ⇔ A⊢i;j =AN−j+1;N−i+1
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onjugation 
an be expressed using an inversion andthe usual 
onjugation A → AT :A⊢ = (A�)T � = �AT �;where � is the matrix of the inversion that is antidiagonal matrix 
onsistingof units.For the presentation of the symple
ti
 
ase we need one more 
on
ept.It is the operation that reverses the sign of symbols that have the indi
esof one sign and preserves the obje
ts with the indi
es of the opposite sign.The 
orresponding matrix is a diagonal matrix, one half of whi
h is matrixunit I and the other half is minus unit −I. In the 
ases of the orthogonalgroups we do not need su
h an operation and in the uniform presentationwe 
an set this matrix just unit matrix.To avoid su
h an extra-notation we note that matrix g� has all the ne
-essary properties. It is the unit matrix for the 
ases with the symmetri
als
alar produ
t, and for the symple
ti
 
ases it is a diagonal matrix that hasa left-upper half 
olle
ted from units and a right-lower half 
olle
ted fromminus-units. We remind thatNote 1. The matri
es g, g� , g2 are \adjustable", like � or like the unitmatrix. Their stru
tures are given, but the sizes depend on the 
ontext.Now we turn to an important 
ondition AT g + gA = 0, it is equivalentto A ∈ g. It 
an be written as A⊢ = −�gA�g, where the involution A →�gA�g is identi
al for the orthogonal 
ases.Consider the symple
ti
 
ases. Let us represent matrix as four blo
ksof the half dimension. The involution preserves the diagonal blo
ks and
hanges signs of the antidiagonal blo
ks:�g( B CE D ) �g = ( B −C
−E D ) :Let us split matrix A on 9 = 3×3 blo
ks in su
h a way that the patternis symmetri
 with respe
t to the both diagonals. For the orthogonal groupsAT g + gA = 0 is equivalent toA =  B � ��E F −�⊢H −E⊢ −B⊢


 ; where �⊢

�
= −��; F⊢ = −F;H⊢ = −H:
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ti
 
ases �g 6= I, and the 
ondition AT g + gA = 0 isequivalent toA =  B � ��E F −�g�⊢H −E⊢�g −B⊢


 ; �⊢

�
= ��; F⊢ = −�gF�g;H⊢ = H:We 
an see that the middle blo
k in the last 
olumn is de�ned by � andwe will write −�g�⊢ instead of �̃.Let us 
onsider lower unitriangular matrix Q. It follows from the sym-metry QT gQ = g, that we 
an 
hange the blo
k q̃ for −q⊢�g too:




I 0 0q I 0q� −q⊢�g I  :An angle unit q� does not have a simple symmetry, it is neither symmetri-
al nor antisymmetri
al with respe
t to the antidiagonal 
onjugation here.Nevertheless, matrix q� has a following property:q� = q⊠ −

12q⊢�gq;where q⊠ = ∓q⊢
⊠
has the same symmetry as �� has, and the summandwith the opposite symmetry in 
omparison with �� and q⊠, symmetry isde�ned by q, it is 12q⊢�gq.Summand − 12q⊢�gq is the square matrix with the opposite symmetrywith respe
t to the antidiagonal 
onjugation in 
omparison with �� and q⊠.Matrix q⊢�gq is symmetri
al for the orthogonal groups and antisimmetri
alfor the symple
ti
 groups be
ause (�g)⊢ = ±�g.

• For the orthogonal groupsq⊠ := 12(q� − q⊢
�
); 12q⊢�gq = 12q⊢q = 12(q⊢q)⊢:

• For the symple
ti
 groupsq⊠ := 12(q� + q⊢
�
); 12q⊢�gq = −

12(q⊢�gq)⊢:We 
an write it uniformly:q⊠ = (q� − (g2)q⊢
�

) =2; (q⊢�gq)⊢ = (g2) (q⊢�gq) ;be
ause g2 = ±I. We put g2 into the bra
kets to emphasise that �g and(g2) have the di�erent sizes in the formula, it is just the sign.



ON BIRATIONAL DARBOUX COORDINATES 51An arbitrary7 element from the orbit Og is represented as:A =  I 0 0q I 0q� −q⊢�g I  �′I � ��0 Aw −�g�⊢0 0 −�′I 






I 0 0
∗ I 0
∗ ∗ I −1 :

§5. Canoni
al 
oordinates on orbits of series B, C and DLet us 
onsider the element A ∈ g as an element of the orbit of GL(N)in gl(N), where we know the Darboux 
oordinates (see [3,4℄). We representthe single transformationQ := (�||L⊕WG +�||GL⊥)◦(�||EW⊕G+�||W⊕GL ) from Gas a 
ouple of the sequential transformations �||EW⊕G+�||W⊕GL and �||L⊕WG +�||GL⊥ ea
h of them from SL(N).Let us denote the 
anoni
al 
oordinates 
orresponding to the �rst stepby pgl1 ; qgl1 ; pgl2 ; qgl2 , and the 
oordinates 
orresponding to the se
ond stepby pgl3 ; qgl3 :



I 0 0qgl1 I 0qgl2 0 I  �′I pgl1 pgl20 ÃI;I ÃI;II0 ÃII;I ÃII;II  I 0 0qgl1 I 0qgl2 0 I −1 ;

( ÃI;I ÃI;IIÃII;I ÃII;II ) := ( I 0qgl3 I )( Aw pgl30 −�′I )( I 0qgl3 I )−1 ;
onsequently� = pgl1 + pgl2 qgl3 ; �� = pgl2 ; q = qgl1 ; q� = qgl2 ;−�g�⊢ = pgl3 ;−q⊢�g = qgl3 ;and pgl1 = � + ��q⊢�g. We 
an 
al
ulate the in
rement of the symple
ti
form in going from spa
e V to spa
e W :tr dpgl1 ∧ dqgl1 + tr dpgl2 ∧ dqgl2 + tr dpgl3 ∧ dqgl3= 2 tr d� ∧ dq + tr d�� ∧ dq� + tr d��q⊢�g ∧ dq:We use the equalitytr d�� ∧ (q� + (g2)q⊢
�
)=2 = tr d�� ∧

12q⊢�gq = 0;7The element from the algebrai
ally open set of matri
es having Gaussian expansionon the produ
t of the upper- and lower- triangular fa
tors.
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e q� with its (anti)symmetri
al part q⊠ := (q� − (g2)q⊢
�
)=2. It is
orre
t be
ause the tra
e of the produ
t of symmetri
al and antisymmet-ri
al matri
es is equal to zero.Matrix q⊠ = (q� − (g2)q⊢

�
)=2 is (anti)symmetri
al, and we 
an 
al
ulatethe tra
e tr d�� ∧ dq� using only one half of the pairs of matrix elements�� and q� − (g2)q⊢

�
= 2q⊠, it is just the values that we need along withq and �, for the renewal (re
onstru
tion) of the initial matrix. They formthe 
oordinate set of fun
tions.To formulate the main result of the present arti
le we introdu
e a 
oupleof re
tangular matri
es P and Q now.Matrix P 
onsists of two blo
ks, one is re
tangular and the other blo
kis square. The re
tangular blo
k 2�+ ��q⊢�g is n× (N − 2n). The squareblo
k adjoined to the right side of the re
tangular one is ��, its size isn× n.Matrix Q 
onsists of the blo
ks symmetri
al to the blo
ks of P . Theupper blo
k is q, its size is (N − 2n)× n. The square blo
k adjoint to thelower side of the re
tangular one is q� − (g2)q⊢

�
− ð, where ð = adiagq� isthe antidiagonal matrix8:P = ( 2�+ ��q⊢�g ; ��

) ; Q = ( qq� − (g2)q⊢
�
− ð

) :The version of the present formulae for P and Q for the orthogonalgroups9: P = ( 2�+ ��q⊢ ; ��

) ; Q = ( qq� − q⊢
�

) :The version of the formulae for P and Q for the symple
ti
 groups:P = ( 2�+ ��q⊢( I 00 −I ) ; ��

) ; Q = ( qq� + q⊢
�
− ð

) :Note 2. About the antidiagonal term ð.Let us illustrate the subtra
tion of the antidiagonal ð. We 
onsider 2×2
ase, the square blo
ks only, just for the illustration:��=( a b
 a); q�=( d eg f ) ; q⊠= 12(q�+ q⊢
�
)=( (h+f)=2 eg (h+f)=2) :8The subtra
tion of ð divides the antidiagonal of the lower square blo
k of Q bytwo, in the symple
ti
 
ase.9We do not subtra
t ð be
ause in the orthogonal 
ases we do not use the antidiagonalelements.



ON BIRATIONAL DARBOUX COORDINATES 53The goal is to introdu
e variables p1; q1; p2; q2; p3; q3 in su
h a way that thevalue tr d��∧dq⊠ takes the 
anoni
al form dp1∧dq1+dp2∧dq2+dp3∧dq3.The dire
t 
al
ulation gives:d�� ∧ dq⊠ = da ∧ d(h+ f) + db ∧ dg + d
 ∧ de:We have introdu
edP = ��; ð = adiag q� = ( 0 eg 0 ) ; Q=q�+q⊢�−ð =( h+ f eg h+ f ) ;and have 
laimed that the 
anoni
al 
oordinates are the pairs (P−1;−1; Q−1;−1)= (a; h+ f), (P−1;1; Q1;−1) = (b; g), (P1;−1; Q−1;1) = (
; e).We have proved that any matrix A from the algebrai
ally open subsetof the of the orbit Og(J) 
an be written as QfinPfinQ−1fin, where10 Pfin =
Pfin(P kij ; Qkij) and Qfin = Qfin(Qkij) are matri
es 
onstru
ted during theiteration pro
ess. We enumerate the steps of the pro
ess by k : k = 1; 2; : : :We have 
onstru
ted the map Og → (C×C)�O ∋ ∪k;i;j(P kij ; Qkij), where�O is a number of all pairs of the 
onstru
ted fun
tions.Note 3. Matri
es from the algebrai
ally-
losed sets may be out of the orbit.As an example we put P kij = 0 ∀i; j; k. We get diagonalizable matri
es, they
an not be from a non-diagonalizable orbit.Nevertheless, the Jordan form is 
onstant on the algebrai
ally opensubset of (C × C)�O . The image of the inverse map belongs to some or-bit. Unfortunately, in some spe
ial 
ases it is not the orbit from whi
h westarted. Sometimes the fun
tions 
onstru
ted by the orbit are not indepen-dent. Additional symmetries on P kij ; Qkij must be put on the 
onstru
tionof the map the orbit. The loss of simpli
ity happens, if the root-spa
e ofthe zero eigenvalue has a 
ompli
ated Jordan stru
ture.Theorem 7 (Con
luding theorem). Canoni
al 
oordinates on the algeb-rai
ally-open domain of the orbit Og(J), where dimkerJ = dimkerJ2, arethe symmetri
al pairs of elements of matri
es P and Q, namely Pij andQji, where

• the indi
es i; j of the 
oordinate pairs for the orthogonal groupssatisfy an inequality i+ j < 0,10Matrix Qfin is 
olle
ted just from Qkji. Any matrix element of Pfin is linear withrespe
t to P kij 's and the 
oeÆ
ients of these linear fun
tions are the produ
ts of severalmatrix elements Qkji, linear with respe
t to ea
h Qkji.
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• the indi
es i; j of the 
oordinate pairs for the symple
ti
 groupssatisfy an inequality i+ j 6 0.Proof. We have proved that the symple
ti
 form has a 
anoni
al form inthe 
onstru
ted fun
tions P kij ; Qkji. What remains is to prove that for thealgebrai
ally-open subset of the spa
e of the parameters P kij ; Qkji, formulaA = QfinPfinQ−1fin gives a matrix with the preassigned orbit.It is not diÆ
ult to see that the Jordan form of any upper-triangularmatrix with �xed s
alar diagonal blo
ks is 
onstant on the algebrai
ally-open subset of the spa
e of free matrix elements. So, we have to prove theindependen
e of the fun
tions P kij ; Qkji only.Let us make the iteration pro
ess using pairs of non-zero eigenvaluesonly. At the end we get a zero-dimensional orbit 
orresponding to the zeroeigenvalue if it exists, it does not produ
e the fun
tions Pij ; Qji.The independen
e of the 
onstru
ted fun
tions follows from the vari-ation of the Jordan form of the upper-triangular matrix Pfin during theiteration. To 
ontrol the Jordan form it is useful to take into a

ount:
• If matri
es from the algebra g are similar to ea
h other (i.e. theyhave the same Jordan stru
ture), they belong to the same orbit
Og. It means that the 
onjugating matrix 
an be taken from the
orresponding group G.

• The matri
es have the same Jordan form i� their fun
tions κ oftwo variables � and m 
oin
ide: κ(�;m|A) = rank(A− �I)m.
• The variation of the Jordan form during the iteration for the eigen-values ±�′ 6= 0 is the same as 
onsidered in [4℄. �5.1. Examples. In the �rst example we demonstrate that the matrixelements of P;Q 
an be dependent in the nilpotent 
ase.Example 1. The set of fun
tions Pij ; Qji 
onstru
ted on the orbit O(J),where J =  0 0 0 1 00 0 0 0 −10 0 0 0 00 0 0 0 00 0 0 0 0 


∈ so(5)



ON BIRATIONAL DARBOUX COORDINATES 55is not independent. From the identity J2=0 follows that �=(�−2;0; �−1;0)=0, 
onsequently P = ( (��)−2;1q0;−1 (��)−2;1 ∗
−(��)−2;1q0;−2 ∗ ∗

) ;Q =  q0;−2 q0;−1(q�)1;−2 − (q�)2;−1 ∗
∗ ∗


 ;so the values Pij ; Qji are dependent:P−2;0Q0;−2 = −P−1;0Q0;−1 = P−2;1Q0;−1Q0;−2:Nevertheless, it is not diÆ
ult to 
onstru
t a 
anoni
al 
oordinate set(pso1 ; qso1 ); (pso2 ; qso2 ) using these Pij ; Qji:pso1 = P−2;0; qso1 = 2Q0;−2; pso2 = P−2;1; qso2 = Q−2;1 −Q0;−1Q0;−2:We do not 
onsider su
h 
ases in this paper. As a regular exampleof the theory let us 
al
ulate the 
anoni
al 
oordinates and 
he
k their
anoni
ity in the simplest 
ase when the term ��q⊢�g does not vanish. Itis the 
ase n = 1, nonzero matri
es ��; q⊠ have the size 1× 1 that impliesthe symmetri
 property. Matrix g is antisymmetri
al matrix 2× 2:g = ( 0 1

−1 0 ) ; g� = ( 1 00 −1 ) :We set Aw = 0 for short, be
ause 2× 2 
ase is not interesting, it 
oin
ideswith sl(2;C)-
ase, any B ∈ sl(2;C) satis�es BT g + gB = 0.We parameterize an orbit Osp(J) of the symple
ti
 group Sp(4;C),where J = diag(�′; 0; 0;−�′) 6= 0:A= 1 0 0 0q1 1 0 0q2 0 1 0q� q2 −q1 1  �′ �1 �2 ��0 0 0 �20 0 0 −�10 0 0 −�′  1 0 0 0q1 1 0 0q2 0 1 0q� q2 −q1 1 −1 :The o�ered 
oordinates on the orbit are(psp1 ; psp2 ; psp0 ) = (2�1 − ��q2; 2�2 + ��q1; ��);and (qsp1 ; qsp2 ; qsp0 ) = (q1; q2; q�), we will skip the subindex \sp" for theq-
oordinates below.Note that the 
oordinate with the subindex zero 
ame from \the an-tidiagonal" of the square 1× 1 matrix, there is no sum like q� + q⊢
�
here.They are just matrix elements (Q−1AQ)−2;2 and (Q)2;−2.
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ti
 group to the \mooreroomy" orbit of the general linear group Osl(J), where the 
anoni
alparametrization pi; qi; i = 0; 1 : : : 4 is known:Av =  1 0 0 0q1 1 0 0q2 0 1 0q0 0 0 1  �′ p1 p2 p000 Ã0 





1 0 0 0q1 1 0 0q2 0 1 0q0 0 0 1 −1 ;

 Ã 

 =  1 0 00 1 0q3 q4 1  0 0 p30 0 p40 0 −�′  1 0 00 1 0q3 q4 1 −1 :Equating of the matrix elements, parti
ularly q0 = q�, givesA= 1 0 0 0q1 1 0 0q2 0 1 0q� 0 0 1  �′ (�1; �2; ��) 1 0 00 1 0q2 −q1 1 −10 Ã 



∗




−1 ;Ã =  1 0 00 1 0q3 q4 1  0 0 p30 0 p40 0 −�′  ∗




−1
=  1 0 00 1 0q2 −q1 1  0 0 �20 0 −�10 0 −�′  ∗




−1 ;
onsequently,p1 = �1 − q2�� = 12(psp1 − psp0 qsp2 ); p2�2 + q1�� = 12(psp2 + psp0 qsp1 );p3 = �̃1 = �2 = 12(psp2 − psp0 qsp1 ); p4 = �̃2 = −�1 = 12(psp1 + psp0 qsp2 );q3 = q2 = qsp2 ; q1 = −q4 = qsp1 ; p0 = �� = psp0 ; q0 = q� = qsp0 :One 
an see that 4∑i=0 dpi ∧ dqi = 2∑j=0 dpspi ∧ dqspi :
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