
úÁ�ÉÓËÉ ÎÁÕÞÎÙÈÓÅÍÉÎÁÒÏ× ðïíé�ÏÍ 432, 2015 Ç.M. V. BabihON BIRATIONAL DARBOUX COORDINATES ONCOADJOINT ORBITS OF CLASSICAL COMPLEX LIEGROUPSAbstrat. Any oadjoint orbit of the general linear group an beanonially parameterized using an iteration method, where at eahstep we turn from the matrix of a transformation A to the matrixof the transformation that is the projetion of A parallel to aneigenspae of this transformation to a oordinate subspae.We present a modi�ation of the method appliable to the groupsSO(N;C) and Sp(N;C). One step of the iteration onsists of two a-tions, namely, the projetion parallel to a subspae of an eigenspaeand the simultaneous restrition to a subspae ontaining a o-eigenspae.The iteration gives a set of ouples of funtions pk; qk on the orbitsuh that the sympleti form of the orbit is equal to ∑k dpk ∧ dqk.No restritions on the Jordan form of the matries forming the orbitare imposed.A oordinate set of funtions is seleted in the important ase ofthe absene of nontrivial Jordan bloks orresponding to the zeroeigenvalue, whih is the ase dimkerA = dimkerA2. This ase on-tains the ase of general position, the general diagonalizable ase,and many others.
§1. Introdution. Notations. Coorninates on orbits ofgroups of A-seriesI remind the method of the anonial parametrization of (o)adjointorbit of the general linear group in this setion. The method was introduedin [2{4℄ and suggested by I. M. Gelfand and M. I. Najmark [1℄. The methodis extended on the matrix groups preserving a bilinear quadrati form inthe present paper. The possibility of the extension is based on [1℄ too,where the triangular deompositions of SO(N) and Sp(N) were appliedto the representation theory. A distinguishing feature of the method isKey words and phrases: oadjoint orbit, lassial Lie groups, Lie algebra, Lie{Poisson{Kirillov{Kostant form, sympleti �bration, rational Darboux oordinates.36



ON BIRATIONAL DARBOUX COORDINATES 37its insensitivity to the Jordan form of matries generating the orbit, it isappliable to arbitrary omplex orbits.It must be noted that the assumption A ∈ so(N) or A ∈ sp(N) putssome restritions on the Jordan form of A. For example, the rank of anyskewsymmetri matrix is even, onsequently none of these Lie algebrasontains matries similar to, say, 0 1 00 0 00 0 0.We assume that the Jordan forms of the matries are ompatible withthe restritions presribed by the Lie algebra under the onsideration. It isgiven that the matrix belongs to the orresponding Lie algebra.Another diÆulty is more serious. In some ases the onstruted fun-tions are not independent, onsequently they do not form a oordinateset of funtions. We need to separate out the independent funtions andombine them into the anonial set. This diÆulty an happen only inthe ase if the zero root-spae has non-trivial Jordan bloks.The onsideration of the general ase lies outside the present work.The lassi�ation and birational anonial parametrization of the nilpotentorbits is a subjet of a spei� paper. We will not onstrut the oordinateson suh orbits here.The last thing we note is that the presented formulae are valid in the aseof zero eigenvalue yet. They give the birational anonial parametrizationof the orbits with the ompliated zero root spae, but some orbits willnot be parameterised. These \missed orbits" are some algebraially losedsubspaes of the already parameterized orbits. A anonial parametrizationof the suh subspaes is a subjet of a theory of the Hamiltonian systemswith onstraints.There are no prinipal diÆulties to alulate the Jordan form of aparameterized orbit, it an be done in the same way as for gl(N) ase.Namely, it is suÆient to determine the maximal ranks of all powers of theonstruted matrix P�n over all values of the parameters in the expliitformula. It is not diÆult beause P�n is triangular. The normal Jordanform of the matrix from the orbit oinides with the form of suh a J inthe normal Jordan form that has the ranks of all powers the same as themaximal ranks of the powers of P�n. We will not onentrate on it either.



38 M. V. BABICHBefore proeeding to the subjet it is neessary to introdue basi oneptsand notations.Let V be N -dimensional omplex linear spae. General linear groupGL(N) ats on V by hanges of bases: (e)→(eF ), where (e)=(e1; e2;: : :;eN),(eF ) = ((eF )1; (eF )2; : : : ; (eF )N ):ei; (eF )i ∈ V; (eF )k =∑i eiFik ; Fij ∈ C; F ∈ GL(N;C):The algebra gl(N;C) is the spae of all matries. Non-degenerate pairingA;B → trAB identi�es the algebra with its dual, so we do not distinguishthe algebra gl(N) and its dual gl∗(N), adjoint and oadjoint ation ofthe group. The oadjoint orbits of Lie groups are the lassial subjet ofhuge amount of investigations for more than hundred years, see [5{10℄.The manifold of all matries similar to the given one is isomorphi to theoadjoint orbit, they are anonially isomorphi sympleti spaes.Let us denote the (o)adjoint orbit of some element J ∈ gl(N) by
O(J) := ∪F∈GL(N)F−1JF . A sympleti form on the orbit is denotedby !J : TO × TO → C. To introdue the method of the parametrizationof the orbit presented in [3, 4℄ we need more notations.Notation 1. Let V be represented as a diret sum of two nonzero sub-spaes: V = L⊕M . A projetion of V along L to M is denoted by�||LM ∈ Hom(V;M):Notation 2. Let V be represented as a diret sum of two nonzero subspaesin two speial ways: L1⊕M = L2⊕M = V . A linear transformation of Vthat moves points of L1 to the points of L2 parallel to M and leave pointsof M unhanged is denoted by�||L1M +�||ML2 = (�||L2M +�||ML1 )−1 ∈ End V:We denote �nite ordered sets of vetors by boldfae letters. For examplebasis (e) an be split on two parts a and b:(e) = (e1; e2; : : : ; eN ) = (a;b); a = e1; e2; : : : ; en; b = en+1; en+2; : : : ; eN :Linear envelopes of the sets of vetors we denote by L (: : :), for example
L (a) is the orresponding oordinate subspae.If the �rst set a of the vetors of the basis belongs to L1 and the otherpart b of the basis belongs to M , the transformations (�||L1M + �||ML2 )±1



ON BIRATIONAL DARBOUX COORDINATES 39have blok-triangle matries:(a;b)(�||L1M +�||ML2 )±1 = (a;b)( I 0
∓Q I ) :Matrix elements of Q form aÆne oordinates on the algebraially opensubset of the Grassmanian of n-dimensional subspaes of V .Let �′ be an eigenvalue of matries from the orbit (i.e. an eigenvalueof J). Consider ker(A − �′I) ∩ im(A − �′I)m−1 := L for any m suh thatL 6= 0. Spae L is well de�ned, by A and m ∈ N, it is a non-zero subspaeof V . We denote a dimension of L by n = n(�′;m) ∈ N, it is the numberof Jordan bloks, orresponding to �′, of sizes m×m and larger. A simpleeigenvalue is orresponded to m=1 by this de�nition.Let basis (e) of V be split on two parts (a;b). Subset a onsists ofn = n(�′;m) vetors and subset b onsists ofN−n vetors. Consider a newbasis (aL;b) := (a;b)(�||L (a)

L (b) +�||L (b)L ). The oordinate subspae of thenew basis is a well de�ned subspae L of the eigenspae of A, onsequentlyin the basis (aL;b) transformation A ∈ gl(N) has a blok-triangular form,and original matrix A in initial basis (a;b), has the following form:A = ( I 0Q I )( �′I P0 Ã )( I 0Q I )−1 :This representation takes plae if A belongs to some algebraially opensubset of the orbit. Funtions P : O(J) → Cn×(N−n), Q : O(J) →

C(N−n)×n, Ã : O(J) → C(N−n)×(N−n) have been onstruted. The fol-lowing standpoint was presented in [4℄.The orbit O(J) is foliated over Grassmanians. The lass of birationaltrivializations of the foliations was presented. The base that is the Grass-matian was overed by a standard aÆne maps isomorphi to a linear spae,say HG = HG(�′;m), dimHG = n > 0. A �ber of the foliation has a nat-ural struture of the diret produt H∗G×O(J̃), where O(J̃) is an orbit ofthe smaller dimension J̃ = J̃(J; �′;m) and H∗G is a linear spae dual to HG.The diret produt HG ×H∗G is a linear spae with a natural sympletistruture, onsequently we get the overing of the orbit O(J) by domains.Eah domain is a sympleti spae O(J̃)× (HG×H∗G) and the sympletistrutures of the initial orbit and the overing are naturally oordinated.



40 M. V. BABICHIn other words, the linear sympleti spae1 has been split o� the initialorbit over the algebraially open sets.So the map A → Ã is a projetion of the open subset of O(J) ontoan orbit O(J̃), where a Jordan form of J̃ is de�ned by J , �′ and m: theJordan bloks of J with sizes m and larger beome one unit smaller, theother Jordan bloks J and J̃ oinide. The main results of [3, 4℄ are:
• The map O(J) → O(J̃), de�ned over the algebraially open subsetof the orbit is a projetion of the trivial sympleti �bration.Its �bre is the linear sympleti spae, we denote it by (E ; !E).
• The ouples Pij ; Qji of the symmetri matrix elements of P;Q arebirational Darboux oordinates on the �bre E .
• The sympleti form !J on the orbit is a sum of the forms on thebase O(J̃) and the �ber E :!J = !J̃ + !E = !J̃ + tr dP ∧ dQ:We skip the notions of the pull-baks of projetions for short. The proessan be iterated to exhaust the dimensions of the target orbits. It gives theDarboux oordinates on the initial orbit O(J). If we start with the orbitof matrix J with the zero trae we get the parametrization of the orbit ofSL(N) embedded into sl(N), the orbits of the groups of A-series.Let us onsider a dual pattern that gives us the representationA = ( I 0Q? I )( Ã? P ?0 �′I )( I 0Q? I )−1 :The geometrial interpretation of this formula is following. We split theinitial basis (e) = (a?;b?) in suh a way that the number of vetors ina? is a dimension of L? := im(A − �′I) + ker(A − �′I)m−1. It is evident,that dimL? + dimL = N . A new basis (a?L? ;b?) in whih A beomes ablok-triangular matrix ( Ã? P ?0 �′I ) is(a?L? ;b?) := (a?;b?)(�||L (a?)

L (b?) +�||L (b?)L? ):We hoose the part a?L? of the basis in suh a way that its linear envelope
L (a?L?) ontains an image of A−�′I, onsequently a matrix of A−�′I hasa lower blok zero in this basis. The onstrution im(A − �′I) + ker(A −�′I)m−1 provides the �xed Jordan normal form of Ã?, the same as Ã.1Hereinafter we denote spae HG ×H∗G by E.



ON BIRATIONAL DARBOUX COORDINATES 41The onstrution gives a rational map from the orbit O to (C × C)�O ,where �O is a total number of all pairs P;Q. To prove that it is birationalisomorphism it is suÆient to prove that all funtions P;Q are independent.The Jordan form of A is de�ned by the numbers rank(A−�I)m. If theseranks have the same values for all2 P;Q, the statement will be proved.The following fat is fundamental for the onstrution: the normal Jor-dan form of the upper-triangular matrix with the salar diagonal bloks isde�ned by these bloks only on the algebraially-open subset of the spaeof free matrix elements.It is not diÆult to see that our sheme gives the bijetion between allnormal Jordan forms and the sets of the diagonal bloks. To introduethe isomorphism expliitly let us enumerate the diagonal bloks of theupper-triangular matrix aording with their sizes nk:�′In1 ; �′In2 ; �′In3 ; : : : ; �′Inmax−1 ; �′Inmax; nk > nk+1;where det(A − �′I) = 0; nk = nk(�′). The minimal value of the diagonalbloks orresponding to �′ is nmax × nmax, we put nmax+1 def= 0. Thetotal number of the diagonal bloks orresponding to �′ is denoted bymax = max(�′), In is the unit matrix n× n.The number of the Jordan bloks m×m orresponding to � = �′ is equalto nm − nm+1.We �nish An-series now, and turn to the subjet of the paper that isBn, Cn, and Dn-series.Let us split initial basis (e) on three parts (a; ;b) and make two stepsof the proess, one after another. The �rst one with the kernel of A − �′Iand the seond one with the image of Ã+�′I, onstruted using, generallyspeaking, di�erent eigenvalues �′ and −�′, that results:A =  I 0 0qgl1 I 0qgl2 0 I  �′I pgl1 pgl20 ÃI;I ÃI;II0 ÃII;I ÃII;II  I 0 0qgl1 I 0qgl2 0 I −1 ;
( ÃI;I ÃI;IIÃII;I ÃII;II ) := ( I 0qgl3 I )( ≈A pgl30 −�′I )( I 0qgl3 I )−1 ;2From the algebraially open set.



42 M. V. BABICHonsequently! = !≈J + tr dpgl1 ∧ dqgl1 + tr dpgl2 ∧ dqgl2 + tr dpgl3 ∧ dqgl3 :A �xed matrix similar to ≈A is denoted by ≈J .Taking into aount symmetries makes it possible to onvert the sumof the 2-forms into the anonial expression. A alulation of the ranks(A− �′I)m shows that the onstruted funtions are independent at leastif kerA = kerA2. We return to the main exposition now.
§2. Linear algebra of omplex spaes with salarprodut. Isotropi subspaesThe groups of the series B;C and D preserve a non-degenerate bilinearform, a salar produt 〈: : : ; : : :〉. A produt is symmetri 〈�; �〉 = 〈�; �〉 forB;D, and antisymmetri 〈�; �〉 = −〈�; �〉 for C.We onsider all ases simultaneously, in this sense we often use the wordorthogonal in the broad sense of the word, for sympleti salar produttoo.Consider one of the groups from the list and denote it by G, the or-responding algebra we denote by g. Let an index n runs symmetriallyn = ±[N=2℄;±([N=2℄− 1); : : : ;±1 and takes the value n = 0 for odd N .De�nition 1. A basis is alled standard if its Gram matrix3 g is




0 0 �0 1 0� 0 0  ;( 0 �

−� 0 ) ; or ( 0 �� 0 ) ;where � is a square anti-diagonal matrix, onsisting of units. It is thematrix of an inversion:� =  0 0 : : : 0 10 0 : : : 1 0::: ::: : : : ::: :::0 1 : : : 0 01 0 : : : 0 0


:3A Gram matrix of the set of vetors f1; f2; : : : is a matrix of their pairwise produtsgij := 〈fi; fj〉.



ON BIRATIONAL DARBOUX COORDINATES 43For all series B;C, and D, it holds gT = g−1. For the orthogonal groupsg2 = I, for the sympleti groups g2 = −I.We treat g; � as symbols of variable sizes, like unit matrix I. It meansthat square matries g; �; I have the sizes that are neessary for the presentsituation, for the urrent formula in the text.We onsider linear algebra over C, there are non-zero isotropi vetors:
〈�; �〉 = 0 does not imply that � = 0.De�nition 2. The spae L is alled isotropi, if it onsists of isotropivetors: � ∈ L⇒ 〈�; �〉 = 0.If a standard basis is given, an example of isotropi spae is a oordinatesubspae enveloping several oordinate vetors with the indies of the samesign.An orthogonal omplement L⊥ to the spae L is alled a set of all vetorsorthogonal to all vetors of L:� ∈ L⊥ ⇔ 〈�; �〉 = 0 ∀� ∈ L:An orthogonal omplement is a subspae. For the non-zero isotropi L,L ⊂ L⊥ 6= V , onsequently L+ L⊥ = L⊥ 6= V . Nevertheless

• (L⊥)⊥ = L,
• dimL+ dimL⊥ = dimV .It is evident that a dimension of isotropi subspae is not greater than ahalf of the dimension of the spaeN . Consequently two isotropi subspaesin a general position do not interset.Proposition 1. A set of the pairs (E;G) of isotropi spaes of the same di-mension n = dimE = dimG is an algebrai manifold. It has an algebraial-ly-open subset suh that E⊥ ⊕G = G⊥ ⊕ E = V:Let E⊥ ⊕ G = V . Let us denote W = E⊥ ∩ G⊥. It is evident thatdimW = dim V − 2n, onsequentlyV = E ⊕W ⊕G:Proposition 2. A ontration of the salar produt 〈: : : ; : : :〉 on W fromV is non-degenerated and has the same type as V has.Proof. Let �0 : ∀� ∈ W 〈�0; �〉 = 0, then �0 ∈ W⊥. By the de�nitionW := E⊥∩G⊥, onsequently �0 ∈ E⊥; �0 ∈ G⊥, and �0 ∈ (E+W +G)⊥ =V ⊥ = 0. �



44 M. V. BABICHLet us �x the splitting V = E⊕W ⊕G, and let L be an isotropi spaeof the same dimension as E is. Let these spaes be from suh algebraiallyopen sets that L ⊕ W ⊕ G = L⊥ ⊕ G = V . We de�ne some speial or-thogonal linear transformation of V , that transforms E to L now4. Thistransformation is a ouple of onsequent projetions: we projet E to Lalong W ⊕G �rst, and projet L⊕W along G to L⊥ after that. SubspaeG remaines unhanged.Let us denote by Q ∈ End V a transformation
Q := (�||EW⊕G +�||W⊕GL ) ◦ (�||L⊕WG +�||GL⊥):The �rst transformation (from the left) is idential onW⊕G, it moves E toL parallel toW ⊕G. The seond transformation is idential on G, it movesL⊕W to L⊥ parallel to G. We note that L ⊂ L⊥, onsequently the seondtransformationv is identiall on L too: (�||L⊕WG +�||GL⊥)∣∣∣L = idL ∈ End L.Theorem 1. Transformation Q := (�||EW⊕G +�||W⊕GL ) ◦ (�||L⊕WG +�||GL⊥)preserves the salar produt, it is orthogonal and unimodular: Q ∈ G.Proof. Let us introdue the following notation. Let a; ;b be sets of ve-tors. Gram matrix of the set (a; ;b) we denote as a blok-matrix:




〈a; a〉 〈a; 〉 〈a;b〉
〈; a〉 〈; 〉 〈;b〉
〈b; a〉 〈b; 〉 〈b;b〉  ;where, for example, 〈a; 〉 is a matrix of the pairwise produts of the vetorsfrom the sets a and : the matrix element (〈a; 〉)ij is 〈ai; j〉.Consider transformationQ of the standard basis (a; ;b)→(a; ;b)Q=:(aL; L;b). The orresponding matrix is blok-triangular, we denote itsbloks by q; q�; q̃:(a; ;b) I 0 0q I 0q� q̃ I  = (a+ q + bq�; + bq̃;b) = (aL; L;b):Our aim is to prove that the Gram-matrix does not hange. First of all wenote that L is isotropi and aL belongs to L, onsequently 〈aL; aL〉 = 0.The seond set of the basi vetors L = +bq̃ ompleat aL to a basisof L⊥, onsequently L ⊂ L⊥ and 〈aL; L〉 = 0.4It follows from the orthogonality that it transforms E⊥ to L⊥ too.



ON BIRATIONAL DARBOUX COORDINATES 45Finally the produts of vetors from the set a+q+bq� on the vetorsb are the same as for the sets a and b, beause L (;b) = L (b)⊥. So wehek the �rst line of the Gram-matrix.Consider the seond line. The Gram-matrix is symmetrial or anti-symmetrial, onsequently we do not have to hek several entries, say
〈; a〉; 〈b; a〉 and 〈b; 〉. Consider 〈+ bq̃; + bq̃〉, it keeps its initial valueg = 〈; 〉 beause only the vetors from the set b are added to the vetorsfrom the set , but the added vetors are orthogonal both to the vetorsfrom b, and : L (b)⊥ = L (b; ), onsequently 〈;b〉 = 0 and 〈b;b〉 = 0.By the same reason 〈L;b〉 = 〈+ bq̃;b〉 = 0.Formally, one blok 〈b;b〉 in the third line must be heked, but thevetors from b have not been hanged at all. �

§3. Symmetries of matries from group G and itsalgebra gGroup G ∋ F hanges the basis (a; ;b) F
−→ (a; ;b)F; F ∈ G. It keepsthe value of the salar produt 〈�; �〉 = �T g� = (F�)T gF� if and only ifF T gF = g:The di�erentiation of F T gF = g gives the ondition for A = _FF−1 ∈

C
N×N to belong to the algebra g:A ∈ g ⇔ AT g + gA = 0:The most important statements have been formulated as three theo-rems.Theorem 2. For any vetors �; � : 〈A�; �〉 = −〈�; A�〉.Proof.

〈A�; �〉 = (A�)T g� = �TAT g� = −�T gA� = −〈�; A�〉 �Theorem 3.AT g + gAT = 0 ⇒ dimker(A− �I)k = dimker(A+ �I)k; ∀k; �:Proof.dimker(A− �I)k = dim ker(AT − �I)k = dimker(g−1AT g − �I)k= dim ker−(A+ �I)k = dimker(A+ �I)k �



46 M. V. BABICHWe see that the eigenvalues of A ∈ g form pairs ±�′, and the struturesof their root-spaes oinide. The third important fat is that the orthogo-nal omplement to the eigenspae orresponding to �′ is the o-eigenspae,orresponding to −�′:Theorem 4. ker⊥(A− �′I) = im(A+ �′I):Proof. Let � = (A + �′I)�′, and A� = �′�, then 〈(A + �′I)�′; �〉 =�′〈�′; �〉 + 〈A�′; �〉 = �′〈�′; �〉 − 〈�′; A�〉 = �′〈�′; �〉 − �′〈�′; �〉 = 0, onse-quently im(A+ �′I) ⊂ ker(A− �′I)⊥:The strutures of the root-spaes of �′ and −�′ oinide, onsequentlythe dimensions im(A+ �′I) and ker(A− �′I)⊥ oinide too, that impliesim(A+ �′I) = ker(A− �′I)⊥; ker(A− �′I) = im(A+ �′I)⊥ �Corollary 1.(ker(A− �′I) ∩ im(A− �′I)k)⊥ = im(A+ �′I) + ker(A+ �′I)k:Proof. It is evident that (L ∩ M)⊥ ⊃ L⊥ + M⊥, and the dimensionsoinide again. �Proposition 3. The eigenspaes ker(A − �′I) and ker(A − �′′I) are or-thogonal if �′ + �′′ 6= 0.Proof. Let �′ and �′′ be the eigenvetors orresponding to �′ and �′′.
〈A�′; �′′〉 = �′〈�′; �′′〉 = −�′′〈�′; �′′〉 ⇒ (�′ + �′′)〈�′; �′′〉 = 0: �Corollary 2. The eigenspaes orresponding to the nonzero eigenvaluesare isotropi.

�Let us onsider zero eigenvalue. From ker⊥(A − �′I) = im(A + �′I), itfollows that ker⊥A = imA. We proved the followingProposition 4. The kernel of A ontains the isotropi subspae kerA ∩imA.Note that it is zero subspae i� there are no nontrivial Jordan bloksorresponding to � = 0.



ON BIRATIONAL DARBOUX COORDINATES 47Let us onsider any eigenvalue �′. All spaes ker(A−�′I)∩ im(A−�′I)mare isotropi for nonzero �′, and if �′ = 0 the spaes are isotropi form > 1.If �′ = 0, we take m > 1 from now.Let us onsider the transformation Q from Theorem 1. Let the splitting(a; ;b) orrespond to the dimension of the spae ker(A − �′I) ∩ im(A −�′I)m, that is the isotropi subspae L := ker(A−�′I)∩im(A−�′I)m de�n-ing transformationQ. It means that dimL (a) = dimL (b) = dimker(A−�′I) ∩ im(A− �′I)m. We onsider matrix Q−1AQ of the transformation Ain the basis (aL; L;b), that is the result of the ation of Q = Q(�′;m) onthe initial basis (a; ;b).Theorem 5. Matrix Q−1AQ ∈ g is blok-triangular:
Q−1AQ =  �′I � ��0 Aw �̃0 0 −�′I  ;where �; ��; �̃ are some matries. Matrix Aw belongs to the algebra5 of thesame series: AwT g + gAw = 0, but the size of matries is smaller.Proof. The �rst set aL of the basi vetors belongs to the eigenspaeorresponding to �′, onsequently the �rst olumn is (�′I; 0; 0)T .By the de�nition of Q, the sets aL; L of the basi vetors form thebasis of (ker(A− �′I) ∩ im(A− �′I)m)⊥. By the Corollary 1(ker(A− �′I) ∩ im(A− �′I)m)⊥ = im(A+ �′I) + ker(A+ �′I)m;onsequently the envelope of aL; L ontains the image of A + �′I, sothe matrix of the transformation A + �′I in the basis aL; L;b, that is

Q−1AQ+ �′I, has lower dimker(A− �′I) ∩ im(A− �′I)m lines zero.The last we have to prove is ATwg + gAw = 0. It is a onsequene of
Q ∈ G that QAQ−1 ∈ g ⇔ (QAQ−1)T g + gQAQ−1 = 0.The situation is similar to the following. The symmetry of any matrixB : BT = B implies the symmetry of any its square sub-blok the positionof whih is symmetrial with respet to the diagonal. Now we turn bakto the algebra g. It is a onsequene of the anti-diagonality of g that fromBT g+ gB = 0 it follows BTwg+ gBw = 0 for any square sub-blok Bw theposition of whih is symmetrial with respet to both the diagonal and theanti-diagonal. �5Matrix (symbol) g has \variable size", it is 2 dimker(A − �′I) ∩ im(A − �′I)m > 0units smaller than g in the previous formulae.



48 M. V. BABICHWe refolmulate the result taking into aount the hanging of the Jor-dan form of any transformation after its restrition on the subspae thatontain the o-eigenspae and after the fatorization with respet to thesubspae of the eigenspae (see [4℄).Let us onsider a linear spaeW :=(im(A+ �′I) + ker(A+ �′I)m)=(ker(A− �′I) ∩ im(A− �′I)m):To getW we fatorize the spae onsisting of vetors orthogonal to isotro-pi L with respet to this L. The result of suh speial quotient inheritsthe salar produt from V . It is not diÆult to see that the Gram matrixg of the standard basis of W has the same type as for V but the smallersize. Transformation A ∈ g ⊂ End V ats naturally on W , we denote thisation by Aw.Theorem 6. Transformation Aw belongs to algebra g of matries of sizedimW × dimW . The Jordan normal form of Aw di�ers from the Jordanform of A by the number of bloks orresponding to ±�′ only. If �′ 6= 0,the sizes of bloks of the sizes m×m and larger beome one unit smaller.If �′ = 0, the sizes of the bloks orresponding to the zero eigenvalue of thesizes m×m; m > 1 and larger beome two units smaller.The transformation from the basis (a; ;b) to the basis (aL; L;b) isperformed by the blok-triangular matrix Q:(a; ;b) I 0 0q I 0q� q̃ I  = (aL; L;b):It follows from Theorem 1 that the basis (aL; L;b) is standard too. Itimplies that matrix Q belongs to group G. Let us determine what it meansfor the bloks q; q̃; q�, and for the bloks of Q−1AQ.
§4. Symmetries of blok-matriesLet us introdue an operation of the onjugation of matries with respetto the antidiagonal : A → A⊢. This onjugation transforms the rows tothe olumns and onversely too, but the elements preserving their plaesbelong not to the diagonal but to the antidiagonal now6:A⊢

−i;−j = A−j;−i ⇔ A⊢i;j = A−j;−i:6If indies run from 1 to N , then A⊢N−i+1;N−j+1 = AN−j+1;N−i+1 ⇔ A⊢i;j =AN−j+1;N−i+1



ON BIRATIONAL DARBOUX COORDINATES 49This antidiagonal onjugation an be expressed using an inversion andthe usual onjugation A → AT :A⊢ = (A�)T � = �AT �;where � is the matrix of the inversion that is antidiagonal matrix onsistingof units.For the presentation of the sympleti ase we need one more onept.It is the operation that reverses the sign of symbols that have the indiesof one sign and preserves the objets with the indies of the opposite sign.The orresponding matrix is a diagonal matrix, one half of whih is matrixunit I and the other half is minus unit −I. In the ases of the orthogonalgroups we do not need suh an operation and in the uniform presentationwe an set this matrix just unit matrix.To avoid suh an extra-notation we note that matrix g� has all the ne-essary properties. It is the unit matrix for the ases with the symmetrialsalar produt, and for the sympleti ases it is a diagonal matrix that hasa left-upper half olleted from units and a right-lower half olleted fromminus-units. We remind thatNote 1. The matries g, g� , g2 are \adjustable", like � or like the unitmatrix. Their strutures are given, but the sizes depend on the ontext.Now we turn to an important ondition AT g + gA = 0, it is equivalentto A ∈ g. It an be written as A⊢ = −�gA�g, where the involution A →�gA�g is idential for the orthogonal ases.Consider the sympleti ases. Let us represent matrix as four bloksof the half dimension. The involution preserves the diagonal bloks andhanges signs of the antidiagonal bloks:�g( B CE D ) �g = ( B −C
−E D ) :Let us split matrix A on 9 = 3×3 bloks in suh a way that the patternis symmetri with respet to the both diagonals. For the orthogonal groupsAT g + gA = 0 is equivalent toA =  B � ��E F −�⊢H −E⊢ −B⊢


 ; where �⊢

�
= −��; F⊢ = −F;H⊢ = −H:



50 M. V. BABICHFor the sympleti ases �g 6= I, and the ondition AT g + gA = 0 isequivalent toA =  B � ��E F −�g�⊢H −E⊢�g −B⊢


 ; �⊢

�
= ��; F⊢ = −�gF�g;H⊢ = H:We an see that the middle blok in the last olumn is de�ned by � andwe will write −�g�⊢ instead of �̃.Let us onsider lower unitriangular matrix Q. It follows from the sym-metry QT gQ = g, that we an hange the blok q̃ for −q⊢�g too:




I 0 0q I 0q� −q⊢�g I  :An angle unit q� does not have a simple symmetry, it is neither symmetri-al nor antisymmetrial with respet to the antidiagonal onjugation here.Nevertheless, matrix q� has a following property:q� = q⊠ −

12q⊢�gq;where q⊠ = ∓q⊢
⊠
has the same symmetry as �� has, and the summandwith the opposite symmetry in omparison with �� and q⊠, symmetry isde�ned by q, it is 12q⊢�gq.Summand − 12q⊢�gq is the square matrix with the opposite symmetrywith respet to the antidiagonal onjugation in omparison with �� and q⊠.Matrix q⊢�gq is symmetrial for the orthogonal groups and antisimmetrialfor the sympleti groups beause (�g)⊢ = ±�g.

• For the orthogonal groupsq⊠ := 12(q� − q⊢
�
); 12q⊢�gq = 12q⊢q = 12(q⊢q)⊢:

• For the sympleti groupsq⊠ := 12(q� + q⊢
�
); 12q⊢�gq = −

12(q⊢�gq)⊢:We an write it uniformly:q⊠ = (q� − (g2)q⊢
�

) =2; (q⊢�gq)⊢ = (g2) (q⊢�gq) ;beause g2 = ±I. We put g2 into the brakets to emphasise that �g and(g2) have the di�erent sizes in the formula, it is just the sign.



ON BIRATIONAL DARBOUX COORDINATES 51An arbitrary7 element from the orbit Og is represented as:A =  I 0 0q I 0q� −q⊢�g I  �′I � ��0 Aw −�g�⊢0 0 −�′I 






I 0 0
∗ I 0
∗ ∗ I −1 :

§5. Canonial oordinates on orbits of series B, C and DLet us onsider the element A ∈ g as an element of the orbit of GL(N)in gl(N), where we know the Darboux oordinates (see [3,4℄). We representthe single transformationQ := (�||L⊕WG +�||GL⊥)◦(�||EW⊕G+�||W⊕GL ) from Gas a ouple of the sequential transformations �||EW⊕G+�||W⊕GL and �||L⊕WG +�||GL⊥ eah of them from SL(N).Let us denote the anonial oordinates orresponding to the �rst stepby pgl1 ; qgl1 ; pgl2 ; qgl2 , and the oordinates orresponding to the seond stepby pgl3 ; qgl3 :



I 0 0qgl1 I 0qgl2 0 I  �′I pgl1 pgl20 ÃI;I ÃI;II0 ÃII;I ÃII;II  I 0 0qgl1 I 0qgl2 0 I −1 ;

( ÃI;I ÃI;IIÃII;I ÃII;II ) := ( I 0qgl3 I )( Aw pgl30 −�′I )( I 0qgl3 I )−1 ;onsequently� = pgl1 + pgl2 qgl3 ; �� = pgl2 ; q = qgl1 ; q� = qgl2 ;−�g�⊢ = pgl3 ;−q⊢�g = qgl3 ;and pgl1 = � + ��q⊢�g. We an alulate the inrement of the sympletiform in going from spae V to spae W :tr dpgl1 ∧ dqgl1 + tr dpgl2 ∧ dqgl2 + tr dpgl3 ∧ dqgl3= 2 tr d� ∧ dq + tr d�� ∧ dq� + tr d��q⊢�g ∧ dq:We use the equalitytr d�� ∧ (q� + (g2)q⊢
�
)=2 = tr d�� ∧

12q⊢�gq = 0;7The element from the algebraially open set of matries having Gaussian expansionon the produt of the upper- and lower- triangular fators.



52 M. V. BABICHto replae q� with its (anti)symmetrial part q⊠ := (q� − (g2)q⊢
�
)=2. It isorret beause the trae of the produt of symmetrial and antisymmet-rial matries is equal to zero.Matrix q⊠ = (q� − (g2)q⊢

�
)=2 is (anti)symmetrial, and we an alulatethe trae tr d�� ∧ dq� using only one half of the pairs of matrix elements�� and q� − (g2)q⊢

�
= 2q⊠, it is just the values that we need along withq and �, for the renewal (reonstrution) of the initial matrix. They formthe oordinate set of funtions.To formulate the main result of the present artile we introdue a oupleof retangular matries P and Q now.Matrix P onsists of two bloks, one is retangular and the other blokis square. The retangular blok 2�+ ��q⊢�g is n× (N − 2n). The squareblok adjoined to the right side of the retangular one is ��, its size isn× n.Matrix Q onsists of the bloks symmetrial to the bloks of P . Theupper blok is q, its size is (N − 2n)× n. The square blok adjoint to thelower side of the retangular one is q� − (g2)q⊢

�
− ð, where ð = adiagq� isthe antidiagonal matrix8:P = ( 2�+ ��q⊢�g ; ��

) ; Q = ( qq� − (g2)q⊢
�
− ð

) :The version of the present formulae for P and Q for the orthogonalgroups9: P = ( 2�+ ��q⊢ ; ��

) ; Q = ( qq� − q⊢
�

) :The version of the formulae for P and Q for the sympleti groups:P = ( 2�+ ��q⊢( I 00 −I ) ; ��

) ; Q = ( qq� + q⊢
�
− ð

) :Note 2. About the antidiagonal term ð.Let us illustrate the subtration of the antidiagonal ð. We onsider 2×2ase, the square bloks only, just for the illustration:��=( a b a); q�=( d eg f ) ; q⊠= 12(q�+ q⊢
�
)=( (h+f)=2 eg (h+f)=2) :8The subtration of ð divides the antidiagonal of the lower square blok of Q bytwo, in the sympleti ase.9We do not subtrat ð beause in the orthogonal ases we do not use the antidiagonalelements.



ON BIRATIONAL DARBOUX COORDINATES 53The goal is to introdue variables p1; q1; p2; q2; p3; q3 in suh a way that thevalue tr d��∧dq⊠ takes the anonial form dp1∧dq1+dp2∧dq2+dp3∧dq3.The diret alulation gives:d�� ∧ dq⊠ = da ∧ d(h+ f) + db ∧ dg + d ∧ de:We have introduedP = ��; ð = adiag q� = ( 0 eg 0 ) ; Q=q�+q⊢�−ð =( h+ f eg h+ f ) ;and have laimed that the anonial oordinates are the pairs (P−1;−1; Q−1;−1)= (a; h+ f), (P−1;1; Q1;−1) = (b; g), (P1;−1; Q−1;1) = (; e).We have proved that any matrix A from the algebraially open subsetof the of the orbit Og(J) an be written as QfinPfinQ−1fin, where10 Pfin =
Pfin(P kij ; Qkij) and Qfin = Qfin(Qkij) are matries onstruted during theiteration proess. We enumerate the steps of the proess by k : k = 1; 2; : : :We have onstruted the map Og → (C×C)�O ∋ ∪k;i;j(P kij ; Qkij), where�O is a number of all pairs of the onstruted funtions.Note 3. Matries from the algebraially-losed sets may be out of the orbit.As an example we put P kij = 0 ∀i; j; k. We get diagonalizable matries, theyan not be from a non-diagonalizable orbit.Nevertheless, the Jordan form is onstant on the algebraially opensubset of (C × C)�O . The image of the inverse map belongs to some or-bit. Unfortunately, in some speial ases it is not the orbit from whih westarted. Sometimes the funtions onstruted by the orbit are not indepen-dent. Additional symmetries on P kij ; Qkij must be put on the onstrutionof the map the orbit. The loss of simpliity happens, if the root-spae ofthe zero eigenvalue has a ompliated Jordan struture.Theorem 7 (Conluding theorem). Canonial oordinates on the algeb-raially-open domain of the orbit Og(J), where dimkerJ = dimkerJ2, arethe symmetrial pairs of elements of matries P and Q, namely Pij andQji, where

• the indies i; j of the oordinate pairs for the orthogonal groupssatisfy an inequality i+ j < 0,10Matrix Qfin is olleted just from Qkji. Any matrix element of Pfin is linear withrespet to P kij 's and the oeÆients of these linear funtions are the produts of severalmatrix elements Qkji, linear with respet to eah Qkji.



54 M. V. BABICH
• the indies i; j of the oordinate pairs for the sympleti groupssatisfy an inequality i+ j 6 0.Proof. We have proved that the sympleti form has a anonial form inthe onstruted funtions P kij ; Qkji. What remains is to prove that for thealgebraially-open subset of the spae of the parameters P kij ; Qkji, formulaA = QfinPfinQ−1fin gives a matrix with the preassigned orbit.It is not diÆult to see that the Jordan form of any upper-triangularmatrix with �xed salar diagonal bloks is onstant on the algebraially-open subset of the spae of free matrix elements. So, we have to prove theindependene of the funtions P kij ; Qkji only.Let us make the iteration proess using pairs of non-zero eigenvaluesonly. At the end we get a zero-dimensional orbit orresponding to the zeroeigenvalue if it exists, it does not produe the funtions Pij ; Qji.The independene of the onstruted funtions follows from the vari-ation of the Jordan form of the upper-triangular matrix Pfin during theiteration. To ontrol the Jordan form it is useful to take into aount:
• If matries from the algebra g are similar to eah other (i.e. theyhave the same Jordan struture), they belong to the same orbit
Og. It means that the onjugating matrix an be taken from theorresponding group G.

• The matries have the same Jordan form i� their funtions κ oftwo variables � and m oinide: κ(�;m|A) = rank(A− �I)m.
• The variation of the Jordan form during the iteration for the eigen-values ±�′ 6= 0 is the same as onsidered in [4℄. �5.1. Examples. In the �rst example we demonstrate that the matrixelements of P;Q an be dependent in the nilpotent ase.Example 1. The set of funtions Pij ; Qji onstruted on the orbit O(J),where J =  0 0 0 1 00 0 0 0 −10 0 0 0 00 0 0 0 00 0 0 0 0 


∈ so(5)



ON BIRATIONAL DARBOUX COORDINATES 55is not independent. From the identity J2=0 follows that �=(�−2;0; �−1;0)=0, onsequently P = ( (��)−2;1q0;−1 (��)−2;1 ∗
−(��)−2;1q0;−2 ∗ ∗

) ;Q =  q0;−2 q0;−1(q�)1;−2 − (q�)2;−1 ∗
∗ ∗


 ;so the values Pij ; Qji are dependent:P−2;0Q0;−2 = −P−1;0Q0;−1 = P−2;1Q0;−1Q0;−2:Nevertheless, it is not diÆult to onstrut a anonial oordinate set(pso1 ; qso1 ); (pso2 ; qso2 ) using these Pij ; Qji:pso1 = P−2;0; qso1 = 2Q0;−2; pso2 = P−2;1; qso2 = Q−2;1 −Q0;−1Q0;−2:We do not onsider suh ases in this paper. As a regular exampleof the theory let us alulate the anonial oordinates and hek theiranoniity in the simplest ase when the term ��q⊢�g does not vanish. Itis the ase n = 1, nonzero matries ��; q⊠ have the size 1× 1 that impliesthe symmetri property. Matrix g is antisymmetrial matrix 2× 2:g = ( 0 1

−1 0 ) ; g� = ( 1 00 −1 ) :We set Aw = 0 for short, beause 2× 2 ase is not interesting, it oinideswith sl(2;C)-ase, any B ∈ sl(2;C) satis�es BT g + gB = 0.We parameterize an orbit Osp(J) of the sympleti group Sp(4;C),where J = diag(�′; 0; 0;−�′) 6= 0:A= 1 0 0 0q1 1 0 0q2 0 1 0q� q2 −q1 1  �′ �1 �2 ��0 0 0 �20 0 0 −�10 0 0 −�′  1 0 0 0q1 1 0 0q2 0 1 0q� q2 −q1 1 −1 :The o�ered oordinates on the orbit are(psp1 ; psp2 ; psp0 ) = (2�1 − ��q2; 2�2 + ��q1; ��);and (qsp1 ; qsp2 ; qsp0 ) = (q1; q2; q�), we will skip the subindex \sp" for theq-oordinates below.Note that the oordinate with the subindex zero ame from \the an-tidiagonal" of the square 1× 1 matrix, there is no sum like q� + q⊢
�
here.They are just matrix elements (Q−1AQ)−2;2 and (Q)2;−2.



56 M. V. BABICHWe immerse an orbit Osp(J) ∋ A of the sympleti group to the \mooreroomy" orbit of the general linear group Osl(J), where the anonialparametrization pi; qi; i = 0; 1 : : : 4 is known:Av =  1 0 0 0q1 1 0 0q2 0 1 0q0 0 0 1  �′ p1 p2 p000 Ã0 





1 0 0 0q1 1 0 0q2 0 1 0q0 0 0 1 −1 ;

 Ã 

 =  1 0 00 1 0q3 q4 1  0 0 p30 0 p40 0 −�′  1 0 00 1 0q3 q4 1 −1 :Equating of the matrix elements, partiularly q0 = q�, givesA= 1 0 0 0q1 1 0 0q2 0 1 0q� 0 0 1  �′ (�1; �2; ��) 1 0 00 1 0q2 −q1 1 −10 Ã 



∗




−1 ;Ã =  1 0 00 1 0q3 q4 1  0 0 p30 0 p40 0 −�′  ∗




−1
=  1 0 00 1 0q2 −q1 1  0 0 �20 0 −�10 0 −�′  ∗




−1 ;onsequently,p1 = �1 − q2�� = 12(psp1 − psp0 qsp2 ); p2�2 + q1�� = 12(psp2 + psp0 qsp1 );p3 = �̃1 = �2 = 12(psp2 − psp0 qsp1 ); p4 = �̃2 = −�1 = 12(psp1 + psp0 qsp2 );q3 = q2 = qsp2 ; q1 = −q4 = qsp1 ; p0 = �� = psp0 ; q0 = q� = qsp0 :One an see that 4∑i=0 dpi ∧ dqi = 2∑j=0 dpspi ∧ dqspi :
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