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ON BIRATIONAL DARBOUX COORDINATES ON
COADJOINT ORBITS OF CLASSICAL COMPLEX LIE
GROUPS

ABSTRACT. Any coadjoint orbit of the general linear group can be
canonically parameterized using an iteration method, where at each
step we turn from the matrix of a transformation A to the matrix
of the transformation that is the projection of A parallel to an
eigenspace of this transformation to a coordinate subspace.

We present a modification of the method applicable to the groups
SO(V,C) and Sp(V,C). One step of the iteration consists of two ac-
tions, namely, the projection parallel to a subspace of an eigenspace
and the simultaneous restriction to a subspace containing a co-
eigenspace.

The iteration gives a set of couples of functions p, g on the orbit
such that the symplectic form of the orbit is equal to >~ dpi A dg.
No restrictions on the Jordan form of the matrices forming the orbit
are imposed.

A coordinate set of functions is selected in the important case of
the absence of nontrivial Jordan blocks corresponding to the zero
eigenvalue, which is the case dim ker A = dim ker A2. This case con-
tains the case of general position, the general diagonalizable case,
and many others.

§1. INTRODUCTION. NOTATIONS. COORNINATES ON ORBITS OF
GROUPS OF A-SERIES

I remind the method of the canonical parametrization of (co)adjoint
orbit of the general linear group in this section. The method was introduced
in [2-4] and suggested by I. M. Gelfand and M. I. Najmark [1]. The method
is extended on the matrix groups preserving a bilinear quadratic form in
the present paper. The possibility of the extension is based on [1] too,
where the triangular decompositions of SO(N) and Sp(N) were applied
to the representation theory. A distinguishing feature of the method is
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ON BIRATIONAL DARBOUX COORDINATES 37

its insensitivity to the Jordan form of matrices generating the orbit, it is
applicable to arbitrary complex orbits.

It must be noted that the assumption A € so(N) or A € sp(NN) puts
some restrictions on the Jordan form of A. For example, the rank of any
skewsymmetric matrix is even, consequently none of these Lie algebras

01 0
contains matrices similar to, say, |0 0 0
0 0 0

We assume that the Jordan forms of the matrices are compatible with
the restrictions prescribed by the Lie algebra under the consideration. It is
given that the matrix belongs to the corresponding Lie algebra.

Another difficulty is more serious. In some cases the constructed func-
tions are not independent, consequently they do not form a coordinate
set of functions. We need to separate out the independent functions and
combine them into the canonical set. This difficulty can happen only in
the case if the zero root-space has non-trivial Jordan blocks.

The consideration of the general case lies outside the present work.
The classification and birational canonical parametrization of the nilpotent
orbits is a subject of a specific paper. We will not construct the coordinates
on such orbits here.

The last thing we note is that the presented formulae are valid in the case
of zero eigenvalue yet. They give the birational canonical parametrization
of the orbits with the complicated zero root space, but some orbits will
not be parameterised. These “missed orbits” are some algebraically closed
subspaces of the already parameterized orbits. A canonical parametrization
of the such subspaces is a subject of a theory of the Hamiltonian systems
with constraints.

There are no principal difficulties to calculate the Jordan form of a
parameterized orbit, it can be done in the same way as for gl(N) case.
Namely, it is sufficient to determine the maximal ranks of all powers of the
constructed matrix Pg, over all values of the parameters in the explicit
formula. It is not difficult because Pgy is triangular. The normal Jordan
form of the matriz from the orbit coincides with the form of such a J in
the normal Jordan form that has the ranks of all powers the same as the
maximal ranks of the powers of Pgan. We will not concentrate on it either.
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Before proceeding to the subject it is necessary to introduce basic concepts
and notations.

Let V be N-dimensional complex linear space. General linear group
GL(N) acts on V by changes of bases: (e)—(eF), where (e)=(e1, €3,. . .,en),
(eF) = ((eF)1,(eF)a,...,(eF)n):

€, (eF), ev, (eF)k = ZeiFikyFij eC,F e GL(N,(C)

The algebra gl(N, C) is the space of all matrices. Non-degenerate pairing
A, B — tr AB identifies the algebra with its dual, so we do not distinguish
the algebra gl(N) and its dual gl*(N), adjoint and coadjoint action of
the group. The coadjoint orbits of Lie groups are the classical subject of
huge amount of investigations for more than hundred years, see [5-10].
The manifold of all matrices similar to the given one is isomorphic to the
coadjoint orbit, they are canonically isomorphic symplectic spaces.

Let us denote the (co)adjoint orbit of some element J € gl(N) by
O(J) = UpearnyF'JF. A symplectic form on the orbit is denoted
by wy : TO x TO — C. To introduce the method of the parametrization
of the orbit presented in [3,4] we need more notations.

Notation 1. Let V' be represented as a direct sum of two nonzero sub-
spaces: V. = L @ M. A projection of V along L to M is denoted by

n!” e Hom(V, M).

Notation 2. Let V be represented as o direct sum of two nonzero subspaces
in two special ways: L1 ® M = Lo ® M = V. A linear transformation of V
that moves points of Ly to the points of Lo parallel to M and leave points
of M unchanged is denoted by

M+ 100 = (2 +10)2) ™! € Bnd V.

We denote finite ordered sets of vectors by boldface letters. For example
basis (e) can be split on two parts a and b:

(e) = (e1,€e2,...,en) = (a,b); a=ej,e9,...,6n; b=¢€pt1,€n42,...,€N.
Linear envelopes of the sets of vectors we denote by .Z(. . .), for example
Z(a) is the corresponding coordinate subspace.
If the first set a of the vectors of the basis belongs to L; and the other
part b of the basis belongs to M, the transformations (HEVLI1 + Hyw)il

2
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have block-triangle matrices:

(a, b)(ITE + MY = (a,b) ( ;Q ) )

Matrix elements of (Q form affine coordinates on the algebraically open
subset of the Grassmanian of n-dimensional subspaces of V.

Let A" be an eigenvalue of matrices from the orbit (i.e. an eigenvalue
of J). Consider ker(A — XN'T) Nim(A — NT)™~! := L for any m such that
L # 0. Space L is well defined, by A and m € N, it is a non-zero subspace
of V. We denote a dimension of L by n = n(X,m) € N, it is the number
of Jordan blocks, corresponding to X', of sizes m x m and larger. A simple
eigenvalue is corresponded to m=1 by this definition.

Let basis (e) of V' be split on two parts (a,b). Subset a consists of
n = n(\,m) vectors and subset b consists of N —n vectors. Consider a new
basis (ar,b) := (a, b)(H‘”;ES) + Hkg(b)). The coordinate subspace of the
new basis is a well defined subspace L of the eigenspace of A, consequently
in the basis (ar,b) transformation A € gl(N) has a block-triangular form,
and original matrix A in initial basis (a, b), has the following form:

N

This representation takes place if A belongs to some algebraically open
subset of the orbit. Functions P : O(J) — C**WN-n_@Q : O(J) —
CN=mxn 4 . O(J) — CN-x(N=n) have been constructed. The fol-
lowing standpoint was presented in [4].

The orbit O(J) is foliated over Grassmanians. The class of birational
trivializations of the foliations was presented. The base that is the Grass-
matian was covered by a standard affine maps isomorphic to a linear space,
say Ho = Hg(N,m), dim Hgz = n > 0. A fiber of the foliation has a nat-

ural structure of the direct product H, x O(J), where O(J) is an orbit of
the smaller dimension .J = j(J, X ,m) and H} is a linear space dual to He.
The direct product Hg x H is a linear space with a natural symplectic
structure, consequently we get the covering of the orbit O(J) by domains.

Each domain is a symplectic space O(J) x (Hg x Hf,) and the symplectic
structures of the initial orbit and the covering are naturally coordinated.
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In other words, the linear symplectic space' has been split off the initial
orbit over the algebraically open sets.

So the map A — Ais a projection of the open subset of O(J) onto
an orbit O(j), where a Jordan form of J is defined by J, X and m: the
Jordan blocks of J with sizes m and larger become one unit smaller, the
other Jordan blocks J and J coincide. The main results of [3,4] are:

e The map O(J) — O(J), defined over the algebraically open subset
of the orbit is a projection of the trivial symplectic fibration.
Its fibre is the linear symplectic space, we denote it by (€, we).
e The couples P;j, @);; of the symmetric matrix elements of P, @) are
birational Darbouz coordinates on the fibre £.
e The symplectic form w; on the orbit is a sum of the forms on the

base O(J) and the fiber &:
wy =wj+twe =wj+trdP AdQ.

We skip the notions of the pull-backs of projections for short. The process
can be iterated to exhaust the dimensions of the target orbits. It gives the
Darboux coordinates on the initial orbit O(J). If we start with the orbit
of matrix J with the zero trace we get the parametrization of the orbit of
SL(N) embedded into sl(IV), the orbits of the groups of A-series.

Let us consider a dual pattern that gives us the representation

I 0 Ax p* T o\ "'
A:(Q*I)(o /\’I)(Q*I) '

The geometrical interpretation of this formula is following. We split the
initial basis (e) = (a*,b*) in such a way that the number of vectors in
a* is a dimension of L* := im(A — N'I) + ker(A — NI)™~ 1. It is evident,
that dim L* + dim L = N. A new basis (a}.,b*) in which A becomes a

Ax *
block-triangular matrix ( f(l) f\D,I ) is

Z(a* Z(b*
(af.,b*) = (a*, b*) (IR + 7).
We choose the part aj. of the basis in such a way that its linear envelope
Z(aj.) contains an image of A— AT, consequently a matrix of A — AT has
a lower block zero in this basis. The construction im(A — N'T) + ker(A4 —

NT)™~1 provides the fixed Jordan normal form of A*, the same as A.

LHereinafter we denote space Hg x Hf, by £.



ON BIRATIONAL DARBOUX COORDINATES 41

The construction gives a rational map from the orbit O to (C x C)*©,
where Yo is a total number of all pairs P, Q. To prove that it is birational
isomorphism it is sufficient to prove that all functions P, () are independent.

The Jordan form of A is defined by the numbers rank(A — AI)™. If these
ranks have the same values for all? P, Q, the statement will be proved.

The following fact is fundamental for the construction: the normal Jor-
dan form of the upper-triangular matriz with the scalar diagonal blocks is
defined by these blocks only on the algebraically-open subset of the space
of free matrix elements.

It is not difficult to see that our scheme gives the bijection between all
normal Jordan forms and the sets of the diagonal blocks. To introduce
the isomorphism explicitly let us enumerate the diagonal blocks of the
upper-triangular matrix according with their sizes ny:

)‘/Im , )\/In2, )\/Ins, ey N1 )\lInmax, N = Nk,

Nmax —1?

where det(A — AM'T) = 0,n; = ng(\). The minimal value of the diagonal

. . def
blocks corresponding to A is Mmax X Mmax, W€ PUb Nmax 11 = 0. The

total number of the diagonal blocks corresponding to X is denoted by
max = max(\’), I, is the unit matrix n x n.

The number of the Jordan blocks m x m corresponding to A = X is equal
10 Ny, — Npy1-

We finish A,,-series now, and turn to the subject of the paper that is
B,,, Cy, and D,,-series.

Let us split initial basis (e) on three parts (a, ¢, b) and make two steps
of the process, one after another. The first one with the kernel of A — X'I
and the second one with the image of A+ NT, constructed using, generally
speaking, different eigenvalues X and —)’, that results:

I 00 NTopE o pE I 00
A= ¢ 1 0 0 Arr Arnnr @ 10 ;
@ 0 I 0 Arrr Ao @ 0 1

—
o]
N——
L

B ) _(10) (1 s (8
Arrr Arnar g5 1 0 NI ¢ 1

2From the algebraically open set.
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consequently

w=ws +tr dp A dg® + tr dp8' A dgB' + tr dp8 A dgf.

A fixed matrix similar to A is denoted by J .

Taking into account symmetries makes it possible to convert the sum
of the 2-forms into the canonical expression. A calculation of the ranks
(A — XT)™ shows that the constructed functions are independent at least
if ker A = ker A%2. We return to the main exposition now.

§2. LINEAR ALGEBRA OF COMPLEX SPACES WITH SCALAR
PRODUCT. [SOTROPIC SUBSPACES

The groups of the series B, C and D preserve a non-degenerate bilinear
form, a scalar product {(...,...). A product is symmetric ({,n) = (n, &) for
B, D, and antisymmetric ({,n) = —(n, ) for C.

We consider all cases simultaneously, in this sense we often use the word
orthogonal in the broad sense of the word, for symplectic scalar product
too.

Consider one of the groups from the list and denote it by &, the cor-
responding algebra we denote by g. Let an index n runs symmetrically
n = £[N/2],£([N/2] — 1),...,£1 and takes the value n = 0 for odd N.

Definition 1. A basis is called standard if its Gram matria® g is

00 = 0 7 0 7

0o 1 0 ], 0 )l - o)

T 0 0
where T is a square anti-diagonal matriz, consisting of units. It is the
matriz of an inversion:

0 0 0 1
0 0 1 0
r=1: z
0 1 0 0
1 0 0 0
3A Gram matrix of the set of vectors f1, f2,... is a matrix of their pairwise products

gij = (fi, f5)-
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For all series B, C, and D, it holds g7 = ¢g—'. For the orthogonal groups
g% =1, for the symplectic groups g% = —I.

We treat g, T as symbols of variable sizes, like unit matrix I. It means
that square matrices g, 7,1 have the sizes that are necessary for the present
situation, for the current formula in the text.

We consider linear algebra over C, there are non-zero isotropic vectors:
(£,€) = 0 does not imply that £ = 0.

Definition 2. The space L is called isotropic, if it consists of isotropic
vectors: £ € L = (£,€) =0.

If a standard basis is given, an example of isotropic space is a coordinate
subspace enveloping several coordinate vectors with the indices of the same
sign.

An orthogonal complement L' to the space L is called a set of all vectors
orthogonal to all vectors of L:

nelt e né =0Vee L.
An orthogonal complement is a subspace. For the non-zero isotropic L,
L C L+ #V, consequently L + L+ = L+ # V. Nevertheless
o (LYYt =1,
o dim L + dim L' = dim V.
It is evident that a dimension of isotropic subspace is not greater than a

half of the dimension of the space N. Consequently two isotropic subspaces
in a general position do not intersect.

Proposition 1. A set of the pairs (E, Q) of isotropic spaces of the same di-
mensionn = dim E = dim G s an algebraic manifold. It has an algebraical-
ly-open subset such that
EteG=GteE=V.
Let E+ @ G = V. Let us denote W = E+ N G*. It is evident that
dim W = dim V — 2n, consequently
V=EeWad.

Proposition 2. A contraction of the scalar product {...,...) on W from
V' is non-degenerated and has the same type as V has.

Proof. Let & : Vn € W{(&,n) = 0, then & € W=. By the definition
W := E+ NG+, consequently & € E+,& € G+, and § € (E+W+G)* =
Vvi=o0. O
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Let us fix the splitting V = E® W @& G, and let L be an isotropic space
of the same dimension as F is. Let these spaces be from such algebraically
open sets that L& W @ G = L+ @& G = V. We define some special or-
thogonal linear transformation of V', that transforms E to L now®. This
transformation is a couple of consequent projections: we project E to L
along W @ G first, and project L @ W along G to L' after that. Subspace
G remaines unchanged.

Let us denote by Q@ € End V a transformation
Q= (Il + Y o (oY + 1Y),

The first transformation (from the left) is identical on W @G, it moves E to
L parallel to W & G. The second transformation is identical on G, it moves
L@ W to L+ parallel to G. We note that L C L*, consequently the second

transformationv is identicall on L too: (HLLQBW + Hlﬂ) =14dr € End L.
L

Theorem 1. Transformation Q := (Hl“f@G + HQIW@G) o (HLL@W + Hﬂi)

preserves the scalar product, it is orthogonal and unimodular: Q € &.

Proof. Let us introduce the following notation. Let a, ¢, b be sets of vec-
tors. Gram matrix of the set (a, c,b) we denote as a block-matrix:

(a,a) (a,c) (a,b)

(c,a) (c,e) (e,b) |,
(b,a) (b,c) (b,b)

where, for example, (a, ¢) is a matrix of the pairwise products of the vectors
from the sets a and c: the matrix element ((a,c));; is (as,c;).

Consider transformation Q of the standard basis (a,c,b)— (a,c, b)Q=:
(ar,cr,b). The corresponding matrix is block-triangular, we denote its
blocks by ¢, g0, ¢:

f—
— O

(a,c,b) q
g g 1
Our aim is to prove that the Gram-matrix does not change. First of all we
note that L is isotropic and ay, belongs to L, consequently (ar,ar) = 0.
The second set of the basic vectors ¢;, = ¢ + bg compleat aj, to a basis
of L*, consequently c¢;, C L* and (ar,cz) = 0.

= (a+cq+ bgn,c +bg,b) = (ar,cr,b).

41t follows from the orthogonality that it transforms E-+ to L' too.
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Finally the products of vectors from the set a + cq + bgg on the vectors
b are the same as for the sets a and b, because .Z(c,b) = Z(b)*. So we
check the first line of the Gram-matrix.

Consider the second line. The Gram-matrix is symmetrical or anti-
symmetrical, consequently we do not have to check several entries, say
(c,a), (b,a) and (b, c). Consider (¢ + bg, c + bq), it keeps its initial value
g = {c, ¢) because only the vectors from the set b are added to the vectors
from the set ¢, but the added vectors are orthogonal both to the vectors
from b, and c: Z(b)+ = Z(b, c), consequently (c,b) = 0 and (b,b) = 0.
By the same reason (c;,,b) = (¢ + bg,b) = 0.

Formally, one block (b,b) in the third line must be checked, but the
vectors from b have not been changed at all. O

§3. SYMMETRIES OF MATRICES FROM GROUP & AND ITS
ALGEBRA g

Group & > F changes the basis (a, ¢, b) x, (a,c,b)F, F € &. It keeps
the value of the scalar product (¢,n) = ¢Tgn = (F¢)T gFn if and only if

FTgF =g.

The differentiation of FTgF = g gives the condition for A = FF-' e
CN*N to belong to the algebra g:

Aecg o Alg+gA=0.

The most important statements have been formulated as three theo-
rems.

Theorem 2. For any vectors £,n: (A, n) = —(&, An).
Proof.
(Ag,m) = (AQ)Tgn = " ATgn = —€" gAn = — (€, An) m
Theorem 3.
ATg + gAT = 0 = dimker(A — AX)* = dim ker(A4 + AD)*, Vk, .
Proof.
dimker(A — AXI)* = dim ker(AT — AI)* = dimker(g AT g — AD)¥
= dim ker — (A 4+ AI)* = dim ker(A + AI)* O
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We see that the eigenvalues of A € g form pairs ), and the structures
of their root-spaces coincide. The third important fact is that the orthogo-
nal complement to the eigenspace corresponding to A’ is the co-eigenspace,
corresponding to —\:

Theorem 4.
ker™ (A — N'T) = im(A + \'T).

Proof. Let £ = (A + N1)¢/, and Ao = No, then ((A + NT)¢,0) =
N{(E o)+ (A€, o) = N (&, a) — (¢, Ao) = N (& ,0) — N{(¢',o) =0, conse-
quently
im(A + NT) C ker(A — XT)L.
The structures of the root-spaces of A’ and —)’ coincide, consequently

the dimensions im(A4 + X'I) and ker(4 — X'I)* coincide too, that implies

im(A + XNT) = ker(4 — XT)1, ker(4A = XNT) =im(A+ X))t O
Corollary 1.

(ker(A — N'T) Nim(A — NT)F)+ = im(A4 + N1) + ker(A4 + NT)*.

Proof. It is evident that (L N M)+ > Lt + M*, and the dimensions
coincide again. (|

Proposition 3. The eigenspaces ker(A — XN'1) and ker(A — X'T) are or-
thogonal if X + X' # 0.

Proof. Let & and £’ be the eigenvectors corresponding to A’ and N\,
(AL, &) = N(¢,&") = =X"(€.¢") = (W + X")(¢,¢") = 0. 0

Corollary 2. The eigenspaces corresponding to the nonzero eigenvalues
are isotropic.

O
Let us consider zero eigenvalue. From ker™ (A — X'I) = im(A4 4+ M), it
follows that ker™ A = im A. We proved the following

Proposition 4. The kernel of A contains the isotropic subspace ker AN
im A.

Note that it is zero subspace iff there are no nontrivial Jordan blocks
corresponding to A = 0.
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Let us consider any eigenvalue A’'. All spaces ker(A —XNT)Nim(A—NT)™
are isotropic for nonzero \’, and if A’ = 0 the spaces are isotropic for m > 1.
If M =0, we take m > 1 from now.

Let us consider the transformation Q from Theorem 1. Let the splitting
(a,c,b) correspond to the dimension of the space ker(A — X'T) Nim(A —
NT)™, that is the isotropic subspace L := ker(A—A'T)Nim (A —NI)™ defin-
ing transformation Q. It means that dim.#(a) = dim Z(b) = dim ker(A—
NT) Nim(A — M'T)™. We consider matrix Q1 AQ of the transformation A
in the basis (ar,, cr,, b), that is the result of the action of @ = Q(\,m) on
the initial basis (a, ¢, b).

Theorem 5. Matriz O 1AQ € g is block-triangular:

N p po
Q40 = 0 Ay p )
0 0 =N

where p, po, p are some matrices. Matriz A,, belongs to the algebra® of the
same series: Ay’ g+ gAw =0, but the size of matrices is smaller.

Proof. The first set ap of the basic vectors belongs to the eigenspace
corresponding to X, consequently the first column is (A'I1,0,0)7.

By the definition of Q, the sets ay,cy of the basic vectors form the
basis of (ker(4 — MI) Nim(4 — AX'T)™)L. By the Corollary 1

(ker(A — NT) Nim(A — NI)™)* = im(A4 + X1) 4 ker(4 + N'I)™,

consequently the envelope of ar,cr contains the image of A + A, so
the matrix of the transformation A + A1 in the basis ay,,cy,b, that is
Q- 1AQ + N1, has lower dim ker(A — X'T) Nim(A — X'I)™ lines zero.

The last we have to prove is ALg 4+ gA4,, = 0. It is a consequence of
Q€ 6 that QAQ ' € g« (QAQ )T g +9gQAQ~ ! =0.

The situation is similar to the following. The symmetry of any matrix
B : BT = B implies the symmetry of any its square sub-block the position
of which is symmetrical with respect to the diagonal. Now we turn back
to the algebra g. It is a consequence of the anti-diagonality of g that from
BTg+ gB =0 it follows Bl g+ gB,, = 0 for any square sub-block B,, the
position of which is symmetrical with respect to both the diagonal and the
anti-diagonal. (|

SMatrix (symbol) g has “variable size”, it is 2 dimker(A — M'T) Nim(A — N'T)™ > 0
units smaller than ¢ in the previous formulae.
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We refolmulate the result taking into account the changing of the Jor-
dan form of any transformation after its restriction on the subspace that
contain the co-eigenspace and after the factorization with respect to the
subspace of the eigenspace (see [4]).

Let us consider a linear space

W:=(m(A4 + N'T) + ker(A + N'T)™)/(ker(A — N'T) Nim(4 — N'T)™).

To get W we factorize the space consisting of vectors orthogonal to isotro-
pic L with respect to this L. The result of such special quotient inherits
the scalar product from V. It is not difficult to see that the Gram matrix
g of the standard basis of W has the same type as for V' but the smaller
size. Transformation A € g C End V' acts naturally on W, we denote this
action by A,,.

Theorem 6. Transformation A, belongs to algebra g of matrices of size
dim W x dim W. The Jordan normal form of A, differs from the Jordan
form of A by the number of blocks corresponding to +X only. If N # 0,
the sizes of blocks of the sizes m x m and larger become one unit smaller.
If X =0, the sizes of the blocks corresponding to the zero eigenvalue of the
sizes m X m, m > 1 and larger become two units smaller.

The transformation from the basis (a,c¢,b) to the basis (ar,cyr,b) is
performed by the block-triangular matrix Q:

I 00
(a,c,b) g 1 0 | =(ag,cr,b).
qo 67 I

It follows from Theorem 1 that the basis (ar,cy,b) is standard too. It
implies that matrix O belongs to group &. Let us determine what it means
for the blocks ¢, 7, gu, and for the blocks of Q~1AQ.

§4. SYMMETRIES OF BLOCK-MATRICES

Let us introduce an operation of the conjugation of matrices with respect
to the antidiagonal: A — A". This conjugation transforms the rows to
the columns and conversely too, but the elements preserving their places
belong not to the diagonal but to the antidiagonal now®:

AT, s =A e A=A

—,—

61f indices run from 1 to N, then AJFV—i+1,N—j+1 = AN_j+1,N—it1 & A;j =

AN_j4r1,N—it+1
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This antidiagonal conjugation can be expressed using an inversion and
the usual conjugation A — AT:

AT = (AT)TT =7ATr,

where 7 is the matrix of the inversion that is antidiagonal matrix consisting
of units.

For the presentation of the symplectic case we need one more concept.
It is the operation that reverses the sign of symbols that have the indices
of one sign and preserves the objects with the indices of the opposite sign.
The corresponding matrix is a diagonal matrix, one half of which is matrix
unit I and the other half is minus unit —I. In the cases of the orthogonal
groups we do not need such an operation and in the uniform presentation
we can set this matrix just unit matrix.

To avoid such an extra-notation we note that matrix g7 has all the nec-
essary properties. It is the unit matriz for the cases with the symmetrical
scalar product, and for the symplectic cases it is a diagonal matriz that has
a left-upper half collected from units and a right-lower half collected from
minus-units. We remind that

Note 1. The matrices g, g7, g°> are “adjustable”, like T or like the unit
matriz. Their structures are given, but the sizes depend on the context.

Now we turn to an important condition AT g 4+ gA = 0, it is equivalent
to A € g. It can be written as A" = —rgArg, where the involution 4 —
TgATg is identical for the orthogonal cases.

Consider the symplectic cases. Let us represent matrix as four blocks
of the half dimension. The involution preserves the diagonal blocks and
changes signs of the antidiagonal blocks:

B C _ B -C
“\e p )Y \-E D )
Let us split matrix A on 9 = 3 x 3 blocks in such a way that the pattern

is symmetric with respect to the both diagonals. For the orthogonal groups
ATg + gA = 0 is equivalent to

B po
A= E F —p~ |, where p5=—pg,F" =—-F H =—-H.
H —-E- -Bf
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For the symplectic cases 7g # I, and the condition ATg + gA = 0 is
equivalent to

B p po
A=| E F —rgp" |, pi=po,F" = —-1gFrg,H = H.
H —-E'rg -B"
We can see that the middle block in the last column is defined by p and
we will write —7gp" instead of p.

Let us consider lower unitriangular matrix Q. It follows from the sym-
metry QT ¢gQ = g, that we can change the block ¢ for —¢"7g too:

I 0 0
g 1 0
—a" I
a0 qa 79
An angle unit gg does not have a simple symmetry, it is neither symmetri-
cal nor antisymmetrical with respect to the antidiagonal conjugation here.
Nevertheless, matrix go has a following property:

1.
quqgfiq 7949,

where gz = Fq¢i has the same symmetry as pn has, and the summand
with the opposite symmetry in comparison with pg and gg, symmetry is
defined by ¢, it is 1¢" 7gq.

Summand 7%(]%qu is the square matriz with the opposite symmetry
with respect to the antidiagonal conjugation in comparison with pg and qx.
Matrix ¢~ 7gq is symmetrical for the orthogonal groups and antisimmetrical
for the symplectic groups because (7g)" = +7g.

e For the orthogonal groups
Iw = %(qa —qn), %qFqu = %qkq = %(qu)F.
e For the symplectic groups
qw = %(qu +4ah), %qFqu = *%(qFqu)V
We can write it uniformly:

. - .
g = (a0 — (9°)a5) /2, (d"79a) = (9°) (¢"T9q),

because g> = £I. We put ¢? into the brackets to emphasise that 7¢g and

(¢%) have the different sizes in the formula, it is just the sign.
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An arbitrary” element from the orbit O¢ is represented as:
—1

I 0 0 N p o I 00
A= q I 0 0 A, -—T1gp" x 1 0
g —q 19 1 0 0 -\ IR |

§5. CANONICAL COORDINATES ON ORBITS OF SERIES B, C AND D

Let us consider the element A € g as an element of the orbit of GL(V)
in gl(NV), where we know the Darboux coordinates (see [3,4]). We represent

the single transformation Q := (HLL@W +Hyi)o (HW@G +HlW@G) from &

as a couple of the sequential transformations Hl“/f@G—i—HkW@G and HLL@W—i—

chj each of them from SL(N).
Let us denote the canonical coordinates corresponding to the first step
by p8, ¢, p8, ¢8', and the coordinates corresponding to the second step
1 gl
by p5, a5 :
-1

I 00 NTopE pE I 00
q%i I 0 0 5171 51,11 fIf L0 J
¢ 0 I 0 Amrgr Armrar G 0 1
111,1 ZI,II o I 0 Aw pgl ooy
A Amar ) ¢ 1 0 =T g 1 ’
consequently

1 1 gl 1 1 1 1 1
p=p% +05d5.p0=050a=0" . an =45, 790" =p§,—d"T9=45,

and p%l = p+ pog Tg. We can calculate the increment of the symplectic
form in going from space V' to space W:

trdp8 A dg® + trdpf A dg8 + tr dp%1 A dq§1
= 2trdp Adg + trdpo A dgo + trdpagTg A dg.
We use the equality

‘ 1
trdpo A (g0 + (97)a5)/2 = trdpo A 54" 799 = 0,

"The element from the algebraically open set of matrices having Gaussian expansion
on the product of the upper- and lower- triangular factors.
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to replace go with its (anti)symmetrical part gg := (g0 — (9%)g5)/2- It is
correct because the trace of the product of symmetrical and antisymmet-
rical matrices is equal to zero.

Matrix g = (g0 — (92)g¢5)/2 is (anti)symmetrical, and we can calculate
the trace trdpg A dgg using only one half of the pairs of matrix elements
po and g0 — (92)g5 = 2gm, it is just the values that we need along with
g and p, for the renewal (reconstruction) of the initial matrix. They form
the coordinate set of functions.

To formulate the main result of the present article we introduce a couple
of rectangular matrices P and @) now.

Matrix P consists of two blocks, one is rectangular and the other block
is square. The rectangular block 2p + pog™7g is n x (N — 2n). The square
block adjoined to the right side of the rectangular one is pg, its size is
n X n.

Matrix () consists of the blocks symmetrical to the blocks of P. The
upper block is g, its size is (N — 2n) x n. The square block adjoint to the
lower side of the rectangular one is go — (¢%)g5 — 0, where 0 = adiaggy is
the antidiagonal matrix®:

— - _ q
P=(2p+pogd'rg , po),Q= ( w© — () — D )
The version of the present formulae for P and @ for the orthogonal
groups’:
— - _ q
P=(2p+pog” ,po),Q= < i — o )
The version of the formulae for P and @ for the symplectic groups:

I 0 q
— = —
P—<2p qu<0 —I> ’pD)’Q_<QD+QE_5)'

Note 2. About the antidiagonal term 0.

Let us illustrate the subtraction of the antidiagonal 9. We consider 2 x 2
case, the square blocks only, just for the illustration:

ib) =5 7)wemgard=("P 0 5)

8The subtraction of & divides the antidiagonal of the lower square block of @ by
two, in the symplectic case.

9We do not subtract & because in the orthogonal cases we do not use the antidiagonal
elements.
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The goal is to introduce variables p1, q1, D2, g2, P3, ¢3 in such a way that the
value tr dpg A dgx takes the canonical form dp; Adgy + dps Adgs 4+ dps Ndgs.
The direct calculation gives:

dpo Ndgs = da Nd(h + f) + db A dg + de A de.

We have introduced

_ _ . _ 0 e _ [ _ h + f e
P—pg,ﬁ—adlagqg_(g 0)7Q_QD+qD_6_( g h—f-f)’
and have claimed that the canonical coordinates are the pairs (P11, Q—1.41)
= (Cl, h + f)7 (P—l,lle,—l) = (b7 g)7 (Pl,—la Q—l,l) = (C, e)'

We have proved that any matrix A from the algebraically open subset
of the of the orbit O%(.J) can be written as QfinPrin Q;iln, where!'® Py, =
me(Pi’;, f]) and Qrin = Qrin (Qf]) are matrices constructed during the
iteration process. We enumerate the steps of the processby k: k£ =1,2,...

We have constructed the map 09 — (CxC)¥® 3 Uy ; ;(PE,QF.), where

12 %
Yo is a number of all pairs of the constructed functions.

Note 3. Matrices from the algebraically-closed sets may be out of the orbit.
As an example we put Pi’; =0Vi,j, k. We get diagonalizable matrices, they
can not be from a non-diagonalizable orbit.

Nevertheless, the Jordan form is constant on the algebraically open
subset of (C x C)*©. The image of the inverse map belongs to some or-
bit. Unfortunately, in some special cases it is not the orbit from which we
started. Sometimes the functions constructed by the orbit are not indepen-
dent. Additional symmetries on PZ;-, fj must be put on the construction
of the map the orbit. The loss of simplicity happens, if the root-space of
the zero eigenvalue has a complicated Jordan structure.

Theorem 7 (Concluding theorem). Canonical coordinates on the algeb-
raically-open domain of the orbit O%(.J), where dimker .J = dim ker .J2, are
the symmetrical pairs of elements of matrices P and @), namely P;; and
Qji, where
e the indices i, J of the coordinate pairs for the orthogonal groups
satisfy an inequality i + j <0,

L0Matrix Qjin is collected just from Qfl Any matrix element of Py;, is linear with
respect to PZ.’; ’s and the coefficients of these linear functions are the products of several
. k . . k
matrix elements ij linear with respect to each jS.
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o the indices i,] of the coordinate pairs for the symplectic groups
satisfy an inequality 1 + 7 < 0.

Proof. We have proved that the symplectic form has a canonical form in
the constructed functions P, Q¥. What remains is to prove that for the

350
. k Ok
algebraically-open subset of the space of the parameters P;7, ()7;, formula

E
A= QinPrin Q;}n gives a matrix with the preassigned orbit.

It is not difficult to see that the Jordan form of any upper-triangular
matrix with fixed scalar diagonal blocks is constant on the algebraically-
open subset of the space of free matrix elements. So, we have to prove the
independence of the functions P, Q¥ only.

Let us make the iteration process using pairs of non-zero eigenvalues
only. At the end we get a zero-dimensional orbit corresponding to the zero
eigenvalue if it exists, it does not produce the functions P;;, Q.

The independence of the constructed functions follows from the vari-
ation of the Jordan form of the upper-triangular matrix Py;, during the

iteration. To control the Jordan form it is useful to take into account:

e If matrices from the algebra g are similar to each other (i.e. they
have the same Jordan structure), they belong to the same orbit
O8%. It means that the conjugating matrix can be taken from the
corresponding group &.

e The matrices have the same Jordan form iff their functions s of
two variables A and m coincide: »(A, m|A) = rank(4 — AXI)™.

e The variation of the Jordan form during the iteration for the eigen-
values )’ # 0 is the same as considered in [4]. O

5.1. Examples. In the first example we demonstrate that the matrix
elements of P, can be dependent in the nilpotent case.

Example 1. The set of functions P;j, Qi constructed on the orbit O(J),
where

<

1
coocoo
coocoo
coocoo
cooc o~
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is not independent. From the identity J> =0 follows that p=(p_2,0,p—10)=
0, consequently

p= ( 7(/’5)—2,1(10,—1 (po)—21 = )7

(PD)72,1(I0,72 * *
qo,—2 qo,—1

Q= (go)1,—2—(gn)2—1 = ,
* *

so the values Pj;,Q;; are dependent:
P_20Q0,—2 = —P_10Q0,—1 =P-21Q0,-1Q0,-2-

Nevertheless, it is not difficult to construct a canonical coordinate set
(P1°,4:°), (3, g5°) using these Pyj, Q:

P’ = Po20,q1" =2Q0,—2; 5’ =P-21,¢" = Q-21 — Qo,—1Q0,—2-

We do not consider such cases in this paper. As a regular example
of the theory let us calculate the canonical coordinates and check their
canonicity in the simplest case when the term png"7¢ does not vanish. It

is the case n = 1, nonzero matrices pg, gg have the size 1 x 1 that implies
the symmetric property. Matrix g is antisymmetrical matrix 2 x 2:

(0 1 (10
9=\ -10) 970 1)

We set A,, = 0 for short, because 2 x 2 case is not interesting, it coincides
with sl(2, C)-case, any B € sl(2,C) satisfies BT g + gB = 0.

We parameterize an orbit O®P(J) of the symplectic group Sp(4,C),
where J = diag(\,0,0,—X) # 0:

-1

1 0 0 0 N opope po 1 0 0 0
4| @ 1 0 0 0 0 0 po g 1 0 0
2 0 1 0 0 0 0 —p 2 0 1 0
w ¢ —q 1 0o 0 0 =X w ¢ —q 1

The offered coordinates on the orbit are

®1*,05°,05") = (2p1 — podz, 2p2 + podu, po),
and (¢;¥,¢57,457) = (q1,92,90), we will skip the subindex “sp” for the
g-coordinates below.
Note that the coordinate with the subindex zero came from “the an-
tidiagonal” of the square 1 x 1 matrix, there is no sum like g5 + g here.
They are just matrix elements (Q 1 AQ)_» and (Q)a, 2.
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We immerse an orbit O%P(.J) 5 A of the symplectic group to the “moore
roomy” orbit of the general linear group O (.J), where the canonical
parametrization p;,q;, ¢ =0,1...4 is known:

1 000 XN piop2 po 1 00 0\ "
A = q1 1 0 0 0 _ q1 1 0 O
v g2 0 1 0 0 A g 0 1 0 ’
g0 0 0 1 0 @ 0 0 1
N 1 0 0 00 ps 1 0 0\ '
A = 0 1 0 0 0 pg 0 1 0
3 qa 1 00 =X g qa 1
Equating of the matrix elements, particularly gy = go, gives
1 000 1 0 o\ o
| @ L0 0[N (puppa)| 0 10 .
2 0 1 0 @ —qu 1 ’
g 0 0 1 0 A
N 1 0 0 00 ps !
A= 0 1 o0 00 p x
3 qq 1 00 X
1 0 0 00 po -
= 0 1 0 0 0 *pl * >
@2 —q 1 00 —X
consequently,

1 1
P1=p1— Gpo = 5(1)?’ —pPas?), p2po + qipo = §(p§p + pefai?),

_ 1 ~ 1
p3s=p1=p2 = 5(1)3” =04t ),pa = P2 = —p1 = 5(19?” +057a5"),
B=@E=06,0=—u=q¢"p=po=p 0 =4q =4q -
One can see that

4 2
> dpiAda; = dpi Adg?.
i=0 j=0
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