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DECOMPOSITION OF UNIPOTENTS FOR Egs AND E;:
25 YEARS AFTER

ABSTRACT. In this paper I sketch two new variations of the method
of decomposition of unipotents in the microweight representations
(E¢,w1) and (E7,w7). To put them in context, I first very briefly
recall the two previous stages of the method, an Ajs-proof for Eg
and an Ar-proof for Er, first developed some 25 years ago by Alexei
Stepanov, Eugene Plotkin and myself (a definitive exposition was
given in my paper “A thirdlook at weight diagrams”), and an As-
proof for Eg and E7 developed by Mikhail Gavrilovich and myself
in early 2000. The first new twist outlined in this paper is an ob-
servation that the Aa-proof actually effectuates reduction to small
parabolics, of corank 3 in Eg and of corank 5 in E7. This allows to
revamp proofs and sharpen existing bounds in many applications.
The second new variation is a Ds-proof for Eg, based on stabilisa-
tion of columns with one zero. [I devised also a similar Dg-proof for
E7, based on stabilisation of columns with two adjacent zeroes, but
it is too abstruse to be included in a casual exposition.] Also, I list
several further variations. Actual detailed calculations will appear
in my paper “A closer look at weight diagrams of types (E¢,w1)
and (E7,@7)”.

In this paper we describe several new variations on decomposition of
unipotents in microweight representations of Chevalley groups of types Eg
and E;. This paper is based on my talks at

e Ischia Group Theory 2014 (Napoli, April 2014),

e Tsukuba Workshop on Infinite-Dimensional Lie Theory and Related
Topics (Tsukuba, October 2014).

First, I give a very brief account of the existing versions of decomposition
of unipotents for these cases, and then outline two new versions of the
method, furnishing accurate statements and constructions, but skipping
some of the more cumbersome and unwieldy details of calculations. I make
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no attempt to give a broader historical account of the method itself or its
applications. The classical cases in vector/polyvector representations are
relatively easy and well understood [17, 41]. On the other hand, other
large exceptional groups, of types Fy4 and Eg, do not have microweight
representations, and demand an entirely different level of technical strain.
Thus, here I limit myself exclusively to the microweight representations
(Eﬁ, wl) and (E77 w7).

§1. THE FIRST 12 YEARS

Let & be a reduced irreducible root system of rank ! = rk(®) and
R be a commutative ring. Further, let G(®, R) be the simply connected
Chevalley group of type ® over R. We fix a split maximal torus T'(®, R) in
G(®, R) and parametrisations of the root subgroups X,, a € ®, elementary
with respect to this torus. In other words, for each root a € ® we fix an
isomorphism

ZTo Gy — Xy, £ 24(8).

The elements z,(£), a € ®, £ € R, are called elementary root unipotents
(or, sometimes, elementary generators). The subgroup

E(®,R) = (za(€) |a € @, £ € B) < G(2,R)

generated by all root unipotents elementary w.r.t. T' is called the elemen-
tary Chevalley group of type ® over R.

In general, E(®, R) is a proper subgroup of G(®, R), their difference
being measured by the value of Ki-functor Ki(®, R). One of the pivotal
results of the whole structure theory of Chevalley groups is the celebrated
Suslin—Kopeiko—Taddei normality theorem, asserting that for groups of
rank > 2 the elementary subgroup E(®, R) is normal in G(®, R), for all
commutative rings R.

In effect, this theorem asserts that for any root a € ®, any ring ele-
ment ¢ € R, and any element g € G(®, R) of the Chevalley group the
corresponding root unipotent gz, (£)g—' belongs to the elementary group
E(®, R). In other words, gz, (£)g~! decomposes as a product of elementary
root unipotents.

For classical types, the first proofs, due to Suslin and Kopeiko [19, 20, 5],
were based on decomposition of the matrix gz, (£)g~! itself. In fact, they
rather decomposed not just root unipotents, but broader classes of root type
unipotents (roughly, matrices from the Zariski closure of the set of root
unipotents, maybe, subject to some additional unimodularity conditions).
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For exceptional groups, the first general proof, due to Taddei, was based
on localisation [21]. See also [3] by Hazrat and the author for an easier
localisation proof of a more general result. A new generation of localisation
proofs, in a sense the most general ones, were developed by Stepanov, see
[14, 16].

Today, 30++ years after, there are many different approaches to the
proof of this theorem, see the overview in [23, 1, 17, 4]. One such very
powerful method is decomposition of unipotents, initially proposed in 1987
in the Ph. D. Thesis of Alexei Stepanov [13]. It was immediate to gener-
alise it to other classical groups in vector representations, and to GL(n, R)
in polyvector representations, and such generalisations were already con-
tained in [13, 22]. See [17] for a systematic exposition, and also [41], § 1,
for a slightly more general view of the polyvector case.

Essentially, in the simplest form decomposition of unipotents gives finite
polynomial expressions of the conjugates

97.(&)g”", a€® E€R, geG(Q,R),

as products of factors sitting in proper parabolic subgroups, and, in the
final count, as products of elementary generators.

The following result was not stated in this form before [2], but actually
it is an immediate corollary of the polynomial expression of arbitrary root
unipotents in terms of elementary root unipotents, first enunciated in [44].
The first proof of that decomposition for types Eg and E; obtained in
1989 by Eugene Plotkin and the author [42] relied on extensive computer
verifications. That proof was outlined in [23], without explicit verification
that the occuring signs coincide. In 1997 the author succeeded in checking
this fact by hand. The first complete proof is published in [24] and it is
anything but immediate.

Theorem 1. Let R be a commutative ring and ® = Eg, E7. Then any root
element of the form gz, (£)g™!, a € ®, £ € R, g € G(®, R) is a product of
at most L elementary root unipotents, where

o L =4-16-27=1728 for ® = Eg,

o [ =4.27-56=6048 for ® = E;.

Here, 27 and 56 are dimensions of microweight representations of the
simply connected Chevalley groups of types Eg and Er, respectively. Fur-
ther, 16 and 27 are dimensions of the [abelian] unipotent radicals Up of the
corresponding maximal parabolic subgroups P, of type P; in Eg, and of
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type P; in E;. Finally, 4 is the inexorable factor occuring as one expresses
a root type element from the Levi factors of types D5 < Eg or Eg < Ef
as commutators of unipotents from Up and the opposite unipotent radical
Up, i.e. elements of UpU,UpUp,.

Technically, the main step in these proofs — the so called “main lemma”
— can be stated as follows. Given a matrix g € @, retrieve enough small
unipotents which stabilise columns of g, to ensure they span the whole
elementary group E(®, R). To be actually expressed as short products of
elementaries, these unipotents have to come from proper subsystem sub-
groups. That the proofs in [23] and [24] would work at all, seemed to be
a miracle. As a matter of fact, in these proofs the unipotents stabilising
columns of g were taken from the largest possible classical subgroups, of
types As < Eg and A7 < E7. Another rather burdensome aspect of these
proofs was the necessity to meticulously control signs of both the action
constants and equations defining highest weight orbits in these represen-
tations.

Observe, that such sharp polynomial bounds could be very useful in
real life applications. Compare, for instance, the polynomial bounds for
the width of commutators in elementary generators, obtained by Alexander
Sivatsky and Alexei Stepanov [11], where they could rely on decomposition
of unipotents in the above strong form, with the hyperexponential bounds
in our paper with Alexei Stepanov [18], where we had to restraint ourselves
to localisation methods instead. See [2] for a thorough discussion.

§2. WEYL MODULES AND WEIGHT DIAGRAMS

Actually, these proofs used various tools related to root systems, Weyl
groups, Lie algebras, representation theory, geometry of minimal modules,
weight diagrams, detailed control of structure constants and equations,
etc., which we cannot recall here, in any reasonable way. Instead, we refer to
the classical papers by Hideya Matsumoto [7] and Michael Stein [12], where
Chevalley groups over rings were first treated with similar techniques, and
to our previous papers [23, 10, 43], for background information and many
related references. In fact, the present work is a direct sequel of [24, 30, 31,
26, 27, 25, 40, 28], and we assume that the reader has seen at least some
of these papers.

However, we have to introduce at least some absolute minimum of no-
tation indispensable for the rest of the paper. Usually, Chevalley groups
occur as linear groups, in certain representations. Let V' = V(w) be the
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Flg 1. (Eg,wl)

Weyl module of the Chevalley group G(®, R) with highest weight w, and
let 7 : G(®,R) — GL(V) be the corresponding rational representation.
Sometimes, the image of this representation is denoted by G (®, R).

Typically, in many common applications w = w;, ¢ = 1,...,[, is a
fundamental weight. In the present paper we are only interested in the
microweight cases (Eg, 1) and (E7, 7).

Further, let A = A(w) be the set of weights of the representation 7, with
multiplicities, and let v*, A € A, be an admissible base of V. All vectors are
expressed as coordinate columns with respect to the base v*, A € A. Now,
we can represent a vector u = (uy) € V by a marked graph as follows. Put
the coordinate uy in the node of the weight diagram, corresponding to the
weight A.

Now, we can in the usual way represent an element g € G(®, R) by
the matrix (g9u.), i, ¥ € A, whose entry g,, in the position (p,r) equals
the coefficient with which v# occurs in the linear expansion of 7(g)v”,
with respect to the base v*, A € A. Below, we usually identify g with this
matrix, and write simply g = (g ).

The columns of these matrices can be conceived as elements of V', in
that case their rows should be interpreted as elements of the dual module
V*. It is very important that the columns and rows of these matrices are
not linearly ordered, but partially ordered, in accordance with the weight
diagram of 7 or its dual, respectively.

For a microweight representation V' = V() one has A = W(®)w. In
other words, all weights are extremal and, thus, of multiplicity 1, so that
A is indeed the set of weights of V, in the usual sense. One can normalise
an admissible base v*, A € A, in such a way that for any o € ® and any
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£ € R one has
To ()0 = v + erna &M,

where all action structure constants cy, are equal to £1, see [7]. Usually,
one choses the crystal base, with the following positivity property: all struc-
ture constants ¢y, are equal to +1 for the fundamental and the negative
fundamental roots, i. e. ¢y = +1, whenever o € +£II. Existence of such
a base is classically known, in [24] and [26] one can find two elementary
proofs. Actually, all structure constants in crystal bases for (Eg, ) and
(E7, wr) are tabulated in [38] and [35], respectively.

The most important technical tool in our calculations are weight dia-
grams. Let 7 : G(®, R) — GL(V(w)) be a representation of a Chevalley
group on a Weyl module. For a microweight representation 7 its weight
diagram, which in this case coincides with the crystal graph, is a marked
graph constructed as follows.

e Its nodes correspond to the weights A € A of 7.

e Two nodes X\ and p are joined by a bond marked ¢ if their difference
A — p = q; is the i-th fundamental root.

Not to overcharge our diagrams with arrows, we draw them in such
a way that a larger weight always stands to the left of and/or higher
than a smaller one, landscape orientation being primary. Moreover, usually
we omit at least one of the two equal labels at the opposite sides of a
parallelogramm.

In Figures 1 and 2 we reproduce the weight diagrams for the two Weyl
modules considered in the present paper, the module V(w;) for G(Eg, R)
and the module V (w7) for G(E7, R).

The most important assignment of weight diagrams is to serve as croquis
drawings of weight graphs. Recall that weight graphs are defined similarly
to weight diagrams, but display edges corresponding to all positive roots,
rather than just those corresponding to the fundamental ones. Any attempt
to draw a weight graph with a few dozen vertices leads to a complete
mess. Luckily, this is utterly redundant. Read in conjunction with root
tables weight diagrams allow to easily recover all information encoded
in weight graphs. Namely, to restitute edges corresponding to any root
a = myoy + ... + myay, it suffices to find in the corresponding weight
diagram all paths that comprise m; edges marked 1, mo edges marked 2,
etc., in any order.
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Flg 2. (E7, w'y).

For the representations (Eg,w;) and (E7,w7) Weyl orbits on pairs of
weights (A, u), A, € A, are distinguished by a single invariant, namely by
the distance d(A, u) between A and p in the weight graph. Weights A, u € A
such that d(\, u) = 1 are called adjacent. This means that their difference
A—p € @ is a root. Weights A, u € A such that d(A, u) = 2 will be called
distant. This means that their difference A — 4 € ® is not a root, but
can be expressed as the sum of two roots. In the case (Eg,w;) distance
d(\, i) between weights only takes values 0,1 and 2. Thus, any two roots
are either equal, or adjacent, or distant. In the case (E;,w7) there is the
fourth possible value, d(A, 1) = 3. More precisely, for each weight A there
exists a unique weight p at distance 3 from A, namely p = —A\. This weight
is called opposite to A. In the sequel, when weight of A(w7) is interpreted
as a certain set of roots in Eg, we usually denote the weight opposite to A
by A*, in this case, \* = p — A, where p is the maximal root of Eg.

§3. THE NEXT 12 YEARS

Returning to the setting of § 1, suppose we already know that the el-
ementary subgroup E(®,R) is normal in G(®, R) and are interested in
further applications, we do not have to hunt for small unipotents stabil-
ising columns of arbitrary matrices g € G. In [17] Alexei Stepanov and
I noticed that decomposition of unipotents immediately implies also the
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standard description of normal (or, in fact, E(®, R)-normalised) subgroups
of G(®, R).

For let H be a non-central subgroup normalised by E(®, R). Let g € H
be a non-central element. Then g does not commute with some elementary
root unipotent z,(1), & € ®. Then by decomposition of unipotents it does
not commute with some unipotent 2z € E(®, R) such that multiplication
by z does not change some column of g='. Then gzg~"' falls into a proper
parabolic subgroup. By looking a bit more carefully we can ensure that
already [z71,g] = 2 tgxg~! does not fall into that parabolic subgroups,
which allows us to recourse to parabolic reduction and conclude that H
contains a non-trivial elementary root unipotent. [Recently, Stepanov ob-
served that things are even easier than that, in the above situation [z, g]
always sits in a product of two non-opposite parabolic subgroups, which
already suffices to conclude that H contains a non-trivial elementary root
unipotent.] At this point, standard description immediately follows by level
reduction.

The following twist was proposed in [30], were Mikhail Gavrilovich and
I noticed that in microweight representations there is no need whatsoever
to worry about being able to stabilise an arbitrary column of a generic
element g € G(®, R). Let, in the above setting, g be any non-central ele-
ment of H, and let z,(1) be an elementary root unipotent not commuting
with g. Replacing g by [g,2(1)] € H, which is itself non-central, we can
from the very start assume that g is a root unipotent. [Well, technically
the product of a root unipotent z = gz,(1)g~* by an elementary root
unipotent z,(—1), but that does not change most of the columns of z.]

Now, recollect the definition of a microweigh representation, which es-
sentially amounts to saying that exponents are very short,

-1 1

gzra(l)g :g(e+ea)g_1 =e+ge.g
where e, is the root element of the corresponding Lie algebra. Thus, out-
side of the principal diagonal z satisfies the linear equations defining the
Lie algebra of G(®, R). In particular, all columns of z abound with zeroes
— at least 10 of them in each column in the case of (Eg,w;) and at least
28 of them in each column in the case of (Er, w7).

For instance, if we consider the first columns of these matrices, corre-
sponding to the highest weight @w = w; or w = wy, then they have zeroes
in the 10 positions occuring to the right of the 5 parallel bonds labelled 1
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in Figure 1, and in the 28 positions occuring below the 10 parallel bonds
labelled 7 in Figure 2.

But now something extraordinary happens. Since all these components
are equal to zero, any positive root whose linear expansion contains «; or
a7, respectively, — in other words, any root from the unipotent radical of Py
in Eg or P; in E7; — performs exactly one nontrivial addition. In fact, only
the highest weight coordinate v, is affected, since all other coordinates
vy which could be added somewhere by z,(£) — or, what is the same,
coordinates corresponding to the weights A € A such that A+« € A, — are
themselves equal to zero.

This means, there are plenty of ways to stabilise such a column with
small unipotents, starting with something as teeny as products of two
elementary root unipotents in As or even 2 A;. This makes that part of the
proof as short and easy, as the proofs for classical cases, expounded in [17].
In fact, there is no more need to control signs of the structure constants,
or to invoke any equations, other then the linear equations defining the
Lie algebra of G. Of course, now it is quite a bit trickier to prove the main
lemma asserting that we have enough such unipotents, to still eventually
get a nontrivial elementary root unipotent inside H.

Actually, later I tried to elaborate that proof, to achieve simultane-
ous stabilisation of several columns, to achieve reduction to smaller rank
parabolics. Such a reduction is necessary in many further applications,
including possible applications at the level of K5. One of the tricks I pro-
posed, was the so called Aj-proof, see [25, 28], which allowed to simulta-
neously stabilise two columns of matrices from Eg and E7, some of whose
entries vanish.

There were also other similar attemps, in particular, those consisting
in varying not only the classical subsystem but also the parabolic sub-
group therein, outlined in our papers with Victoria Kazakevich [32, 33]. In
some cases they allowed to simultaneously stabilise a column and a row of
matrices from Eg and E7 in the corresponding representations.

However, as we see in the next sections, at that time we missed some-
thing very essential, that the As-proof itself supplies reduction not to max-
imal parabolic, but to some rather deep ones.

§4. A5-PROOF FOR Eg REAPPRAISED: PAGHI UNO, PRENDI TRE

In [30] we constructed root elements z of type A, that stabilise one
column of a root type unipotent g in groups of types Eg and E7. Here, we
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show that in fact such an z automatically stabilises three adjacent columns
of g for the case of Eg and siz such adjacent columns' for the case of E;.

Thus, instead of reduction to maximal parabolics of types P, or P; this
proof gives at no extra cost reduction to much smaller parabolics. With
this observation, some proofs in [30] could be made even shorter, then
they actually are. More importantly, greater ease to extract unipotents
from small rank parabolics provides entirely new promise of applications.
I advertise two of such forthcoming applications in the last section.

The following result asserts that the same small unipotent z coming
from A, that was used in [30] to stabilise one column of a root unipotent g,
in fact stabilises three columns. To reconcile notation with the subsequent
argument, we state it in the form asserting that x stabilises the first three
columns of g. Since the Weyl group W (Es) is transitive on triples of pair-
wise adjacent weights, this does not incur any loss of generality.

Theorem 2. Let g € G(Eg, R) be a root type unipotent. Then there exists
a non-trivial root type unipotent © = x4(€)xz(C) of type As such that

(xg)*wlzg*wn (mg)*ﬂUl*al:g*ﬂUl*al? (xg)*,wlfalfﬂﬁ =0gx,mw1—a1—as-
Proof. In the following calculations we realise the 27-dimensional mo-
dule V() as an internal Chevalley module in the standard parabolic
subgroup Pr of the simply connected Chevalley group G(E7, R). In other
words, we identify V() with the unipotent radical V' = Uy, equipped
with the conjugation action of the [algebraic] commutator subgroup of the
Levi factor Lr.

Thus, the roots of Eg are depicted by their Dynkin form in Eg, whereas
the weights of the 27-dimensional module V' are depicted by their Dynkin
form in E;. Under the above identification the weights of V' are precisely
the roots of E7, such that a7 occurs in their expansions with the coefficient
1. As usual, we denote the set of all such roots by A. It is easy to check
that in this realisation the vectors v®* = z,(1), @ € A, constitute a crystal
base of V' (see [24, 26] for proofs and further details).

Recall that the maximal number of roots of Eg, forming mutual angles
/3, equals 5. Let us fix such a set, maximal with respect to the chosen
order on Eg:

g = 123821 g, 12321 g 12221 g 12211 4 12210

LThere are two Weyl orbits on sextuples of adjacent columns in (E7,w7), the one
in question are sextuples in P3-position, those that cannot be completed to a heptuple.
The other orbit consists of sextuples in P; N Ps-position.
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Further, consider the following three series of weights:

g0 = 0011, — O0LIIL . _ 000111, 000011 .. _ 000001,

5, = 0111 5 _OLI111 5 _ 012111 5 _ 012211 5 _ 012221
0 1 1 1 1

ey = UL o) UL 11201 1201 11222,

Our proof starts with the observation that
w1 — €1 = (w1 —061) — 01 =12 — 72 = B,
w1 — €2 = (Wl *041)*52 =72 N = fa.

As we mentioned in the previous section, outside of the principal diag-
onal the entries of a root element g € G(Eg, R) are subject to the linear
equations defining the Lie algebra of G(Eg, R). In particular,

Gor,e1 = Ehmi—a1,60 = £Gviz,7s
and similarly
G, = t9m1—an,00 = ig’hzﬁl'

However, unlike the original As-proof [30], now it is essential that we
add 0, rather than twice something. Thus, as in the Aj-proof [24] now we
have to keep an eye on signs. The relevant entries come from the multiples
of the root elements e_g, and e_g,. However (see, for instance, [24] or
[26]), their signs are the same, as the signs of the corresponding entries of
the opposite root elements eg, and eg,.

Looking at the last two lines of [38], Table 10 (or, for that matter, Tables
13 or 16 therein), we see that

€81 = Cwier T Cwmi—a1,61 T €yinyye T €yisiys T €yiava T €y15,750
€8y = —Cwier ~ Cwi—a1,d2 ~ Cyim T Cyaa,3 T Cyoaya T Cras,yse

Actually, the first of these elements is already calculated in [24], Proposi-
tion 1. Besides, we could easily calculate the second one by hand, with the
same recipe.

Combining the two above observations, we see that

Jwi,e1 = Jwi—01,61 = Gy12,72 = 3 91,60 = w1 —a1,02 = Gyiz,n = ¢
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Now, it is clear that if £ # 0, then g, (), (—¢) is the desired unipotent.
On the other hand, if £ = 0, then the first three columns of g are not
modified already by the action of x3, (1). O

Inspecting the above proof, we see that the fact that g is a root ele-
ment is never used as such, we only invoke some linear equations on its
entries. Combining this with the observation immediately preceding the
theorem, we see that we have in fact established the following technical
but somewhat more general result, see [29] for a comprehensive exposition.

Theorem 3. Let A, p,v € A(wy) be three pair-wise adjacent weights. As-
sume that the entries of g € G, (Eg, R) satisfy the following linear equa-
tions.

® g0 =0 for o = A p,v and any p € A(w1) such that d(p,o) > 2.
o There exist roots a, 5 € ® such that
IAIN—a = I\ p—a = Gr\v—a = 57 IGAN-8 = g \,u—8 = 9rA\v—p = C
Then there exists a non-trivial root unipotent © = xa, (()xs,(£) of type Ay
such that
(wg)*)\ = Gxx, (xg)*u = Gxu> (mg)*,, = Gxv-
§5. Ay-PROOF FOR E; REAPPRAISED: PAGHI UNO, PRENDI SEI

For A7, a similar reassessment of the Ay-proof [30], leads to the following
astounding result. The bottom line is that forming one commutator of a
root element g with a small unipotent x of type Ao, whose entries are
chosen to stabilise one column, we automatically stabilise siz of them.
In other words, implementing reduction to a maximal parabolic P; we
immediately precipitate to a rank 2 parabolic PsN Py N Ps N Ps N P;.

Theorem 4. Let g € G(E7, R) be a root type unipotent. Then there exists
a non-trivial root type unipotent © = x4(€)xz(C) of type As such that

(xg)*W7 = Gxwr;

(29) @7 —ar = Gx,wr—ars
(wg)*7w7_0¢7—046 = Gx,mwr—ar—as>
(wg)*,W7—a7—a6—a5 = Jx,mwr—ar—as—as>
(xg)*,W7704770[670[57044 = %, wr—ar—ag—as—aqr

(xg)*,w7*047*046*(15*(14*043 = g*,w7*047*016*045*044*013'
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Proof. Here we describe the 56-dimensional module V' = V(wy) for the
simply connected Chevalley group G(E7, R) as an internal Chevalley mod-
ule in the parabolic subgroup Py of the Chevalley group G(Es, R). More
precisely, it is interpreted as the section V' = Us/[Us, Us] of the derived
series of the unipotent radical Uy, equipped with the conjugation action of
the [algebraic] commutator subgroup of the Levi subgroup Lg.

Thus, the roots of E7 are depicted by their Dynkin forms in E;, whereas
the weights of the module V' are depicted by their Dynkin form in Es.
Here, the weights are precisely the roots of Eg, such that ag appears in
their expansions with coefficient 1. As in the case of Eg, we denote the set
of all such weights by A. Since [Ug, Us] = X,, where, as above,

= 2435432

is the maximal root of Eg, the vectors v® = z,(1)X,, a € A, form a base
of V.

Let us describe all weights of V' (w7). Consider the following series of
weights

"= 11(1)11117 vy = 01(1)1111’ vy = 00(1)1111’ = 0081111’

_ 0000111 _ 0000011 _ 0000001
- 0 9 - O 5 — O .

Vs Y6 Y7

Recall that the maximal number of root of E7, forming mutual angles
/3, equals 7. Let us fix such a set, maximal with respect to the chosen
order on E7:

B = 23421321’ B = 134213217 By = 124213217 By = 12%321’
85 = 12%221’ Be = 12;)2117 By = 12%210 )
Then all weights of V(w7) look as follows:
e 7 weights ~;,
e 21 weights vij = Bi +7; = B + v, ¢ # J,
e 21 weights v, = p — 745,
o 7 weights v — p — ;.
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The proof is similar to the proof of Theorem 2, and starts with the
observation that

Vi MT =Y — Ve =5 — Vs =71 — V4 =73 —Viz = Vit — e = B,

Vo =Yt =Y~ Va6 =V — Va5 = Vi~ Vau =3 — Va3 = YViz — N = P
We skip all actual verifications, that the signs agree, etc. With that end
we have to recourse to [35], Table 10 (or, for that matter, Tables 12, 14 or
16). All details are reproduced in my forthcoming paper [29]. O

§6. D5-PROOF FOR Eg

In this section we construct root type unipotents stabilising a column of
an element g € G, (Eg, R), provided this column has [at least] one zero.
These unipotents will be constructed in terms of subsets conjugate to the
following eight-element subset

5, = 12321 5, = 12321 5, = 12221 5, = 12211

2 1 1 1
_ 11221 _ 11211 _ 11111 _ 11111
6—4 - 1 ﬁ—3 - 1 6—2 - 1 6—1 - 0

In the sequel this set is denoted by 2 C E4. Up to conjugacy by an element
of the Weyl group, Q can be characterised as a maximal subset with the
following property, see [27], Corollary 1. A root §; € Q is orthogonal to
B—;, and forms the angle /3 with all roots 3;, j # %i. In other words, its
weight diagram is of type D4. Obviously, Q is higher than any of its Weyl
conjugates. Thus, it is uniquely characterised as the senior subset of this
shape.

Theorem 5. Let g € G(Eg, R). Assume that g,» = 0 for a pair of distant
weights X\, . Then there exists a non-trivial root type unipotent

Z=Tp, (Zl)xﬁz (ZZ) - TB (2’72)$571 (271)
of type D5 such that (£g)«x = g«x- The parameters of z may be chosen to
be equal to +g, ), where v € Q.

Proof. For the product
Z=Tp, (Zl)xﬁz (ZZ) - TB (2’72)$571 (271)

to be an element of root type, its coeflicients z;,...,z_1 € R should lie on
a quadric in the eight-dimensional affine space defined by the equation

2121t 202 o F 232 3t 242 4 =0.
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The signs can be specified, and this is done in [24, 27]. The toughest part
of the proof of this theorem consists exactly in the verification that all
signs agree, and this can be done either by explicit computer calculations,
or by the methods of [24, 26, 27].

As usual, conjugating by an element of the Weyl group W (Eg) we can
from the very start replace any pair (A, u) of distant weights by any other
such pair, say by (w1, —wsg). For the argument below it will be convenient

for us to rename weights of A(w;). The weights wy,v, —ws, where v =
01%221, constitute the highest triad of pair-wise distant weights, see [24,

34, 38]. The remaining 24 weights A\ {w;, v, —&} are naturally subdivided
into 3 octets?, each forming the diagram of type Dy:

A\ = 0000117 Ay = 000111 Ag = 001111 My = 011111

0 0 - 0o - 0o -
Ay = 001111’ Ag = 01}111’ Ay = 01%111’ A = 01%211’
o = 11(1)1117 liy = 11%111’ (g = 11%1117 e = 11%2111’
= 12%111’ fg = 12%211’ [y = 12i1’>211’ P 12;211’
v = 11%221’ Uy = 12%221’ Vg = 122{)221’ vy = 12%221’
Vo4 = 123321’ y_g= 123321’ Y g = 123321’ y_q = 133321.
We set

Z=Tp (g>\4,w)wﬁ2 (gz\syw)wﬁs (g/\27w)'7;54 (g>\17w)
X TH_y (g>\—17w)mﬁ—s (g>\—27w)x5—2 (g/\—s7w)xﬁ—1 (g,\_4,w)
where, for breavity sake we write simply w instead of w;. Let us inspect,

how left multiplication by z modifies the first column of g. Multiplication
by z yields 8 - 6 = 48 additions within each column.

2Andrei Lavrenov suggested that the most natural way to dub these weights would
be to use the three @ttir of Futhark. Eventually, I am going to follow that suggestion,
but for now I keep the interim notation used in the slides of my talks.
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e First of all, entries in the positions (—wg, @), (A, @) and (v, w) are
not affected at all.

e Entries in the positions (u;, o) are affected by 1 addition each, since
i = —we + f—;. However, by assumption g_, - = 0 so that the extra
summand is 0. This accounts for 8 additions.

e Entries in the positions (v;,w) are very much affected, for each of
them four extra summands occur, each of the form +gy; ©gx; . Let us
reproduce the corresponding fragment of the matrix of signs of V (w, ), see
[38], Table 7. The entry of this matrix in the position (A, u) is the sign,
with which e, adds v* to v*. Actually, using the algorithm proposed in
[24, 26], these signs could have been easily calculated by hand.

11111111
11121222
12222223
2233(3344
222213333
22222222
1111|1111

0000011 [+ +++[0 0 0 0

0000111 | — =0 0 [+ +0 0

0001111 |+0 —0 |~ 0 +0

0011111 -0 0 —[0 — —0

0101111|0 ++0 |+0 0 +
0111111|0 -0 +|0 +0 —
011211110 0 — = |0 0 + +
011221110 0 0 O |— — — —

Let us summarise, what it means precisely in terms of additions to the
eight entries g,; :

—9gri, @ Grs,w —9xrg, @ Grg,w 0 0 0 0
I9r_1,=

—9x_g9,% 9r_i,= 0 0 —9x3,w 94w 0 0
Ix_o,=
—9r_3,w 0 Ir_1,w 0 —9rg, ™ 0 Irg,w 0 Ir_g.m
—gr_4,@ 0 0 9r_1.,® 0 “Irg,m  Ir3,w 0 9x_4,w
0 —9x_3,% Ir_o,= 0 —gx @ 0 0 Irg, = g,
0 —9x_4,w 0 9r_o,w 0 —9r,w 0 Irg,w Irg, =
0 0 —9r_4,w 9r_3,w 0 0 —9gri,w  rg,w Iro,=
gxq, @

0 0 0 0 —9r_4,@ Ir_5,@ —9r_g,@ IA_q,w@
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As we see, quite appropriately, in six of the affected positions non-zero
signs alternate and the occuring extra summands cancel pair-wise, which
accounds for further 6 - 4 = 24 additions.

So far, we have only used signs of the structure costants, now it comes
to equations. As in [24], to conclude the proof we should recall that our
column is not an arbitrary element of V(w), but a column of a matrix
g € Go(®,R). As is well known, any such column lies in the highest
weight orbit, and, thus, satisfies 27 five-term quadratic equations of the
form

1T -1 + Lol 2 + 3T _3 + Lol —4 + 5L 5 — O,

known as Borel-Freudenthal equations, see [24, 27, 34, 38] for an explicit
choice of signs in these equations, which is absolutely vital for what follows.
We are interested in those equations that involve g_, . Obviously, for the
first column of our matrix, where g_; - = 0, they would reduce to similar
four-term equations. Looking at the first and the last rows of the above
matrix, we see — un miracolo! — that we get exactly one of these equations
(actually, the lowest one in terms of the natural order on weights) twice,
with correct signs! That accounts for other 2 -4 = 8 additions.

e The diagonal entry in the positions (w,w) is the most affected one,
since there are 8 occuring extra summands (and that was it, since 8 + 24 +
8 + 8 = 48). Similarly, looking at the last column of the sign matrix we see
that the signs in the eight relevant positions alternate as follows + — +—
and then — 4+ —+. In other words, multiplication by z adds to g, the
following expression

I\, wIpa,w — Do,@wus,m T Ihs,w9u2,0 — 9ra,wYu1,
91, wu_4,w + I\ _o,w9u_3,m ~9A_3,w9u_»,w + D_s,wu_1,w-

But this expression is clearly 0, since both the first and the second lines
are equal to 0 by the same reason as above, they are the chunks of the
corresponding Borel-Freudenthal equations obtained by obliterating terms
involving g_ ;.o = 0. We are done. O

§7. FURTHER VARIATIONS AND FINAL REMARKS

In fact, the three new versions of decomposition of unipotents I sketched
in this talk, are just a prelude and an anticipation of a much broader
prospect. At this point I came across a dozen or two of similar variations
for Eg and E7, and I am absolutely positive that further systematic search
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should unearth many more such explicit reductions to small rank parabol-
ics, also in other representations, and for other groups. Let me mention
some of the simplest ones, which are already there.

e Dg-proof: stabilisation of a column with two adjacent zeros in Fr.

e Aj-proof revisited: stabilisation of a column with 5 zeros in P posi-
tions in GLay7.

e (A3, Py)-proof: simultaneous stabilisation of a column and a row in a
root element of Eg.

e A,-proof: stabilisation of a column with 5 zeros in P, N Py positions
in GL27.

e As-proof revisited: simultaneous stabilisation of two columns in ele-
ments of Eg and GLsy7.

Finally, let me mention some of the most immediate possible applica-
tions of these methods.

e Description of overgroups of subsystem subgroups. More pre-
cisely, let A C & be a [sufficiently large] root subsystem. What are the
intermediate subgroups F(A, R) < H < G(®, R)? Before this work, there
was not a single instance, where this problem was fully solved in an ex-
ceptional group over an arbitrary commutative ring. Consult our paper
with Alexander Shchegolev [45] for precise conjectures and references to
the known results for classical groups.

One of the main technical steps in the proof would be extraction of
unipotents from an element g € H sitting in a proper parabolic P, with
the use of unipotents from E(A, R). Since we do not wish to exclude cases
when some irreducible components of A have rank 2 [or even 1, for that
matter], it would be highly expedient to be able to limit ourselves to the
case, where g sits in a small parabolic.

Presently, Alexander Shchegolev and I have virtually completed the
analysis of intermediate subgroups for the simplest such exceptional em-
bedding A7 < E;, where the answer is stated in terms of one ideal of R.
The proof crucially depends on our Theorem 4.

e Description of subnormal subgroups. It is well known that this
problem is essentially equivalent to description of subgroups of G(®, R),
normalised by the relative elementary subgroup E(®, R, A), for an ideal
A < R. The standard answer to this last problem looks as follows. There
exists an m = m(®) such that for any subgroup H < G(®, R) normalised
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by E(®, R, A), there exists an ideal I < R such that E(®, R, A™I) < H <
C(®,R,I).

The most important technical aspects of this problem is to find the
smallest such m. This amounts to forming consecutive commutators with
elements of E(®, R, A), to extract root unipotents. Clearly, the possibility
of getting into small parabolics by forming a single commutator is instru-
mental in minimising m.

Again, before this work, there was not a single case, where this problem
was fully solved for exceptional groups. Equipped with Theorems 2 and
4, Zuhong Zhang recently succeeded in vanquishing the cases Eg and E7,
with the bound m = 7, very close to the actual bounds for classical groups.

Finally, let me mention the most ambitious possible application.

e Structure of isotropic reductive groups. Another extremely im-
portant unsolved problem is to obtain the standard description of normal
subgroups in twisted forms ,G(®, R) of Chevalley groups of types E¢ and
E; over an arbitrary commutative ring R, provided that they contain a
split subgroup of type As. Let us list the forms in question, see [9].

o For Eg, this is the twisted Chevalley group of type 2E¢ — the above
problem is not solved even for quasi-split forms! — plus two inner forms
of relative rank 2, with Tits indices E%?Z and Eé?g, plus two further outer

5 ’ B "
forms of relative rank 2, with Tits indices 2E¢¢, and 2EgS, .

o For E; these are the forms of relative ranks 2, 3 and 4, with Tits
indices E2',, E2% and E3 4, respectively.

I am convinced that the methods discussed here could launch a viable
approach towards the solution of that problem, which could then constitute
a realistic alternative to or a beneficial reinforcement of the localisation
methods developed in this setting by Anastasia Stavrova, Victor Petrov,
Alexander Luzgarev [8, 6] and others.
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