
úÁ�ÉÓËÉ ÎÁÕÞÎÙÈÓÅÍÉÎÁÒÏ× ðïíé�ÏÍ 430, 2014 Ç.N. A. VavilovDECOMPOSITION OF UNIPOTENTS FOR E6 AND E7:25 YEARS AFTERAbstra
t. In this paper I sket
h two new variations of the methodof de
omposition of unipotents in the mi
roweight representations(E6;$1) and (E7; $7). To put them in 
ontext, I �rst very brie
yre
all the two previous stages of the method, an A5-proof for E6and an A7-proof for E7, �rst developed some 25 years ago by AlexeiStepanov, Eugene Plotkin and myself (a de�nitive exposition wasgiven in my paper \A thirdlook at weight diagrams"), and an A2-proof for E6 and E7 developed by Mikhail Gavrilovi
h and myselfin early 2000. The �rst new twist outlined in this paper is an ob-servation that the A2-proof a
tually e�e
tuates redu
tion to smallparaboli
s, of 
orank 3 in E6 and of 
orank 5 in E7. This allows torevamp proofs and sharpen existing bounds in many appli
ations.The se
ond new variation is a D5-proof for E6, based on stabilisa-tion of 
olumns with one zero. [I devised also a similar D6-proof forE7, based on stabilisation of 
olumns with two adja
ent zeroes, butit is too abstruse to be in
luded in a 
asual exposition.℄ Also, I listseveral further variations. A
tual detailed 
al
ulations will appearin my paper \A 
loser look at weight diagrams of types (E6;$1)and (E7;$7)".In this paper we des
ribe several new variations on de
omposition ofunipotents in mi
roweight representations of Chevalley groups of types E6and E7. This paper is based on my talks at
• Is
hia Group Theory 2014 (Napoli, April 2014),
• Tsukuba Workshop on In�nite-Dimensional Lie Theory and RelatedTopi
s (Tsukuba, O
tober 2014).First, I give a very brief a

ount of the existing versions of de
ompositionof unipotents for these 
ases, and then outline two new versions of themethod, furnishing a

urate statements and 
onstru
tions, but skippingsome of the more 
umbersome and unwieldy details of 
al
ulations. I makeKey words and phrases: Chevalley groups, elementary subgroups, ex
eptionalgroups, mi
roweight representation, de
omposition of unipotents, paraboli
 subgroups,highest weight orbit.The present work was supported by the Russian S
ien
e Foundation Proje
t 14-11-00297 \De
omposition of unipotents in redu
tive groups".32



DECOMPOSITION OF UNIPOTENTS 33no attempt to give a broader histori
al a

ount of the method itself or itsappli
ations. The 
lassi
al 
ases in ve
tor/polyve
tor representations arerelatively easy and well understood [17, 41℄. On the other hand, otherlarge ex
eptional groups, of types F4 and E8, do not have mi
roweightrepresentations, and demand an entirely di�erent level of te
hni
al strain.Thus, here I limit myself ex
lusively to the mi
roweight representations(E6; $1) and (E7; $7).
§1. The first 12 yearsLet � be a redu
ed irredu
ible root system of rank l = rk(�) andR be a 
ommutative ring. Further, let G(�; R) be the simply 
onne
tedChevalley group of type � over R. We �x a split maximal torus T (�; R) inG(�; R) and parametrisations of the root subgroupsX�, � ∈ �, elementarywith respe
t to this torus. In other words, for ea
h root � ∈ � we �x anisomorphism x� : Ga −→ X�; � 7→ x�(�):The elements x�(�), � ∈ �, � ∈ R, are 
alled elementary root unipotents(or, sometimes, elementary generators). The subgroupE(�; R) = 〈x�(�) | � ∈ �; � ∈ �〉

6 G(�; R)generated by all root unipotents elementary w.r.t. T is 
alled the elemen-tary Chevalley group of type � over R.In general, E(�; R) is a proper subgroup of G(�; R), their di�eren
ebeing measured by the value of K1-fun
tor K1(�; R). One of the pivotalresults of the whole stru
ture theory of Chevalley groups is the 
elebratedSuslin{Kopeiko{Taddei normality theorem, asserting that for groups ofrank > 2 the elementary subgroup E(�; R) is normal in G(�; R), for all
ommutative rings R.In e�e
t, this theorem asserts that for any root � ∈ �, any ring ele-ment � ∈ R, and any element g ∈ G(�; R) of the Chevalley group the
orresponding root unipotent gx�(�)g−1 belongs to the elementary groupE(�; R). In other words, gx�(�)g−1 de
omposes as a produ
t of elementaryroot unipotents.For 
lassi
al types, the �rst proofs, due to Suslin and Kopeiko [19, 20, 5℄,were based on de
omposition of the matrix gx�(�)g−1 itself. In fa
t, theyrather de
omposed not just root unipotents, but broader 
lasses of root typeunipotents (roughly, matri
es from the Zariski 
losure of the set of rootunipotents, maybe, subje
t to some additional unimodularity 
onditions).



34 N. A. VAVILOVFor ex
eptional groups, the �rst general proof, due to Taddei, was basedon lo
alisation [21℄. See also [3℄ by Hazrat and the author for an easierlo
alisation proof of a more general result. A new generation of lo
alisationproofs, in a sense the most general ones, were developed by Stepanov, see[14, 16℄.Today, 30++ years after, there are many di�erent approa
hes to theproof of this theorem, see the overview in [23, 1, 17, 4℄. One su
h verypowerful method is de
omposition of unipotents, initially proposed in 1987in the Ph. D. Thesis of Alexei Stepanov [13℄. It was immediate to gener-alise it to other 
lassi
al groups in ve
tor representations, and to GL(n;R)in polyve
tor representations, and su
h generalisations were already 
on-tained in [13, 22℄. See [17℄ for a systemati
 exposition, and also [41℄, § 1,for a slightly more general view of the polyve
tor 
ase.Essentially, in the simplest form de
omposition of unipotents gives �nitepolynomial expressions of the 
onjugatesgx�(�)g−1; � ∈ �; � ∈ R; g ∈ G(�; R);as produ
ts of fa
tors sitting in proper paraboli
 subgroups, and, in the�nal 
ount, as produ
ts of elementary generators.The following result was not stated in this form before [2℄, but a
tuallyit is an immediate 
orollary of the polynomial expression of arbitrary rootunipotents in terms of elementary root unipotents, �rst enun
iated in [44℄.The �rst proof of that de
omposition for types E6 and E7 obtained in1989 by Eugene Plotkin and the author [42℄ relied on extensive 
omputerveri�
ations. That proof was outlined in [23℄, without expli
it veri�
ationthat the o

uring signs 
oin
ide. In 1997 the author su

eeded in 
he
kingthis fa
t by hand. The �rst 
omplete proof is published in [24℄ and it isanything but immediate.Theorem 1. Let R be a 
ommutative ring and � = E6;E7. Then any rootelement of the form gx�(�)g−1, � ∈ �, � ∈ R, g ∈ G(�; R) is a produ
t ofat most L elementary root unipotents, where
• L = 4 · 16 · 27 = 1728 for � = E6,
• L = 4 · 27 · 56 = 6048 for � = E7.Here, 27 and 56 are dimensions of mi
roweight representations of thesimply 
onne
ted Chevalley groups of types E6 and E7, respe
tively. Fur-ther, 16 and 27 are dimensions of the [abelian℄ unipotent radi
als UP of the
orresponding maximal paraboli
 subgroups P , of type P1 in E6, and of



DECOMPOSITION OF UNIPOTENTS 35type P7 in E7. Finally, 4 is the inexorable fa
tor o

uring as one expressesa root type element from the Levi fa
tors of types D5 6 E6 or E6 6 E7as 
ommutators of unipotents from UP and the opposite unipotent radi
alU−P , i. e. elements of UPU−P UPU−P .Te
hni
ally, the main step in these proofs { the so 
alled \main lemma"{ 
an be stated as follows. Given a matrix g ∈ G, retrieve enough smallunipotents whi
h stabilise 
olumns of g, to ensure they span the wholeelementary group E(�; R). To be a
tually expressed as short produ
ts ofelementaries, these unipotents have to 
ome from proper subsystem sub-groups. That the proofs in [23℄ and [24℄ would work at all, seemed to bea mira
le. As a matter of fa
t, in these proofs the unipotents stabilising
olumns of g were taken from the largest possible 
lassi
al subgroups, oftypes A5 6 E6 and A7 6 E7. Another rather burdensome aspe
t of theseproofs was the ne
essity to meti
ulously 
ontrol signs of both the a
tion
onstants and equations de�ning highest weight orbits in these represen-tations.Observe, that su
h sharp polynomial bounds 
ould be very useful inreal life appli
ations. Compare, for instan
e, the polynomial bounds forthe width of 
ommutators in elementary generators, obtained by AlexanderSivatsky and Alexei Stepanov [11℄, where they 
ould rely on de
ompositionof unipotents in the above strong form, with the hyperexponential boundsin our paper with Alexei Stepanov [18℄, where we had to restraint ourselvesto lo
alisation methods instead. See [2℄ for a thorough dis
ussion.
§2. Weyl modules and weight diagramsA
tually, these proofs used various tools related to root systems, Weylgroups, Lie algebras, representation theory, geometry of minimal modules,weight diagrams, detailed 
ontrol of stru
ture 
onstants and equations,et
., whi
h we 
annot re
all here, in any reasonable way. Instead, we refer tothe 
lassi
al papers by Hideya Matsumoto [7℄ and Mi
hael Stein [12℄, whereChevalley groups over rings were �rst treated with similar te
hniques, andto our previous papers [23, 10, 43℄, for ba
kground information and manyrelated referen
es. In fa
t, the present work is a dire
t sequel of [24, 30, 31,26, 27, 25, 40, 28℄, and we assume that the reader has seen at least someof these papers.However, we have to introdu
e at least some absolute minimum of no-tation indispensable for the rest of the paper. Usually, Chevalley groupso

ur as linear groups, in 
ertain representations. Let V = V ($) be the
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2Fig. 1. (E6; $1).Weyl module of the Chevalley group G(�; R) with highest weight $, andlet � : G(�; R) −→ GL(V ) be the 
orresponding rational representation.Sometimes, the image of this representation is denoted by G$(�; R).Typi
ally, in many 
ommon appli
ations $ = $i, i = 1; : : : ; l, is afundamental weight. In the present paper we are only interested in themi
roweight 
ases (E6; $1) and (E7; $7).Further, let � = �($) be the set of weights of the representation �, withmultipli
ities, and let v�, � ∈ �, be an admissible base of V . All ve
tors areexpressed as 
oordinate 
olumns with respe
t to the base v�, � ∈ �. Now,we 
an represent a ve
tor u = (u�) ∈ V by a marked graph as follows. Putthe 
oordinate u� in the node of the weight diagram, 
orresponding to theweight �.Now, we 
an in the usual way represent an element g ∈ G(�; R) bythe matrix (g��), �; � ∈ �, whose entry g�� in the position (�; �) equalsthe 
oeÆ
ient with whi
h v� o

urs in the linear expansion of �(g)v� ,with respe
t to the base v�, � ∈ �. Below, we usually identify g with thismatrix, and write simply g = (g��).The 
olumns of these matri
es 
an be 
on
eived as elements of V , inthat 
ase their rows should be interpreted as elements of the dual moduleV ∗. It is very important that the 
olumns and rows of these matri
es arenot linearly ordered, but partially ordered, in a

ordan
e with the weightdiagram of � or its dual, respe
tively.For a mi
roweight representation V = V ($) one has � = W (�)$. Inother words, all weights are extremal and, thus, of multipli
ity 1, so that� is indeed the set of weights of V , in the usual sense. One 
an normalisean admissible base v�, � ∈ �, in su
h a way that for any � ∈ � and any



DECOMPOSITION OF UNIPOTENTS 37� ∈ R one has x�(�)v� = v� + 
���v�+�;where all a
tion stru
ture 
onstants 
�� are equal to ±1, see [7℄. Usually,one 
hoses the 
rystal base, with the following positivity property: all stru
-ture 
onstants 
�� are equal to +1 for the fundamental and the negativefundamental roots, i. e. 
�� = +1, whenever � ∈ ±�. Existen
e of su
ha base is 
lassi
ally known, in [24℄ and [26℄ one 
an �nd two elementaryproofs. A
tually, all stru
ture 
onstants in 
rystal bases for (E6; $1) and(E7; $7) are tabulated in [38℄ and [35℄, respe
tively.The most important te
hni
al tool in our 
al
ulations are weight dia-grams. Let � : G(�; R) −→ GL(V ($)) be a representation of a Chevalleygroup on a Weyl module. For a mi
roweight representation � its weightdiagram, whi
h in this 
ase 
oin
ides with the 
rystal graph, is a markedgraph 
onstru
ted as follows.
• Its nodes 
orrespond to the weights � ∈ � of �.
• Two nodes � and � are joined by a bond marked i if their di�eren
e�− � = �i is the i-th fundamental root.Not to over
harge our diagrams with arrows, we draw them in su
ha way that a larger weight always stands to the left of and/or higherthan a smaller one, lands
ape orientation being primary. Moreover, usuallywe omit at least one of the two equal labels at the opposite sides of aparallelogramm.In Figures 1 and 2 we reprodu
e the weight diagrams for the two Weylmodules 
onsidered in the present paper, the module V ($1) for G(E6; R)and the module V ($7) for G(E7; R).The most important assignment of weight diagrams is to serve as 
roquisdrawings of weight graphs . Re
all that weight graphs are de�ned similarlyto weight diagrams, but display edges 
orresponding to all positive roots,rather than just those 
orresponding to the fundamental ones. Any attemptto draw a weight graph with a few dozen verti
es leads to a 
ompletemess. Lu
kily, this is utterly redundant. Read in 
onjun
tion with roottables weight diagrams allow to easily re
over all information en
odedin weight graphs. Namely, to restitute edges 
orresponding to any root� = m1�1 + : : : + ml�l, it suÆ
es to �nd in the 
orresponding weightdiagram all paths that 
omprise m1 edges marked 1, m2 edges marked 2,et
., in any order.
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Fig. 2. (E7; $7).For the representations (E6; $1) and (E7; $7) Weyl orbits on pairs ofweights (�; �), �; � ∈ �, are distinguished by a single invariant, namely bythe distan
e d(�; �) between � and � in the weight graph. Weights �; � ∈ �su
h that d(�; �) = 1 are 
alled adja
ent . This means that their di�eren
e�− � ∈ � is a root. Weights �; � ∈ � su
h that d(�; �) = 2 will be 
alleddistant . This means that their di�eren
e � − � ∈ � is not a root, but
an be expressed as the sum of two roots. In the 
ase (E6; $1) distan
ed(�; �) between weights only takes values 0,1 and 2. Thus, any two rootsare either equal, or adja
ent, or distant. In the 
ase (E7; $7) there is thefourth possible value, d(�; �) = 3. More pre
isely, for ea
h weight � thereexists a unique weight � at distan
e 3 from �, namely � = −�. This weightis 
alled opposite to �. In the sequel, when weight of �($7) is interpretedas a 
ertain set of roots in E8, we usually denote the weight opposite to �by �∗, in this 
ase, �∗ = �− �, where � is the maximal root of E8.
§3. The next 12 yearsReturning to the setting of § 1, suppose we already know that the el-ementary subgroup E(�; R) is normal in G(�; R) and are interested infurther appli
ations, we do not have to hunt for small unipotents stabil-ising 
olumns of arbitrary matri
es g ∈ G. In [17℄ Alexei Stepanov andI noti
ed that de
omposition of unipotents immediately implies also the



DECOMPOSITION OF UNIPOTENTS 39standard des
ription of normal (or, in fa
t, E(�; R)-normalised) subgroupsof G(�; R).For let H be a non-
entral subgroup normalised by E(�; R). Let g ∈ Hbe a non-
entral element. Then g does not 
ommute with some elementaryroot unipotent x�(1), � ∈ �. Then by de
omposition of unipotents it doesnot 
ommute with some unipotent x ∈ E(�; R) su
h that multipli
ationby x does not 
hange some 
olumn of g−1. Then gxg−1 falls into a properparaboli
 subgroup. By looking a bit more 
arefully we 
an ensure thatalready [x−1; g℄ = x−1gxg−1 does not fall into that paraboli
 subgroups,whi
h allows us to re
ourse to paraboli
 redu
tion and 
on
lude that H
ontains a non-trivial elementary root unipotent. [Re
ently, Stepanov ob-served that things are even easier than that, in the above situation [x−1; g℄always sits in a produ
t of two non-opposite paraboli
 subgroups, whi
halready suÆ
es to 
on
lude that H 
ontains a non-trivial elementary rootunipotent.℄ At this point, standard des
ription immediately follows by levelredu
tion.The following twist was proposed in [30℄, were Mikhail Gavrilovi
h andI noti
ed that in mi
roweight representations there is no need whatsoeverto worry about being able to stabilise an arbitrary 
olumn of a generi
element g ∈ G(�; R). Let, in the above setting, g be any non-
entral ele-ment of H , and let x�(1) be an elementary root unipotent not 
ommutingwith g. Repla
ing g by [g; x�(1)℄ ∈ H , whi
h is itself non-
entral, we 
anfrom the very start assume that g is a root unipotent. [Well, te
hni
allythe produ
t of a root unipotent z = gx�(1)g−1 by an elementary rootunipotent x�(−1), but that does not 
hange most of the 
olumns of z.℄Now, re
olle
t the de�nition of a mi
roweigh representation, whi
h es-sentially amounts to saying that exponents are very short,gx�(1)g−1 = g(e+ e�)g−1 = e+ ge�g−1;where e� is the root element of the 
orresponding Lie algebra. Thus, out-side of the prin
ipal diagonal z satis�es the linear equations de�ning theLie algebra of G(�; R). In parti
ular, all 
olumns of z abound with zeroes{ at least 10 of them in ea
h 
olumn in the 
ase of (E6; $1) and at least28 of them in ea
h 
olumn in the 
ase of (E7; $7).For instan
e, if we 
onsider the �rst 
olumns of these matri
es, 
orre-sponding to the highest weight $ = $1 or $ = $7, then they have zeroesin the 10 positions o

uring to the right of the 5 parallel bonds labelled 1



40 N. A. VAVILOVin Figure 1, and in the 28 positions o

uring below the 10 parallel bondslabelled 7 in Figure 2.But now something extraordinary happens. Sin
e all these 
omponentsare equal to zero, any positive root whose linear expansion 
ontains �1 or�7, respe
tively, { in other words, any root from the unipotent radi
al of P1in E6 or P7 in E7 { performs exa
tly one nontrivial addition. In fa
t, onlythe highest weight 
oordinate v$ is a�e
ted, sin
e all other 
oordinatesv� whi
h 
ould be added somewhere by x�(�) { or, what is the same,
oordinates 
orresponding to the weights � ∈ � su
h that �+� ∈ �, { arethemselves equal to zero.This means, there are plenty of ways to stabilise su
h a 
olumn withsmall unipotents, starting with something as teeny as produ
ts of twoelementary root unipotents in A2 or even 2A1. This makes that part of theproof as short and easy, as the proofs for 
lassi
al 
ases, expounded in [17℄.In fa
t, there is no more need to 
ontrol signs of the stru
ture 
onstants,or to invoke any equations, other then the linear equations de�ning theLie algebra of G. Of 
ourse, now it is quite a bit tri
kier to prove the mainlemma asserting that we have enough su
h unipotents, to still eventuallyget a nontrivial elementary root unipotent inside H .A
tually, later I tried to elaborate that proof, to a
hieve simultane-ous stabilisation of several 
olumns, to a
hieve redu
tion to smaller rankparaboli
s. Su
h a redu
tion is ne
essary in many further appli
ations,in
luding possible appli
ations at the level of K2. One of the tri
ks I pro-posed, was the so 
alled A3-proof, see [25, 28℄, whi
h allowed to simulta-neously stabilise two 
olumns of matri
es from E6 and E7, some of whoseentries vanish.There were also other similar attemps, in parti
ular, those 
onsistingin varying not only the 
lassi
al subsystem but also the paraboli
 sub-group therein, outlined in our papers with Vi
toria Kazakevi
h [32, 33℄. Insome 
ases they allowed to simultaneously stabilise a 
olumn and a row ofmatri
es from E6 and E7 in the 
orresponding representations.However, as we see in the next se
tions, at that time we missed some-thing very essential, that the A2-proof itself supplies redu
tion not to max-imal paraboli
, but to some rather deep ones.
§4. A2-proof for E6 reappraised: paghi uno, prendi treIn [30℄ we 
onstru
ted root elements x of type A2 that stabilise one
olumn of a root type unipotent g in groups of types E6 and E7. Here, we



DECOMPOSITION OF UNIPOTENTS 41show that in fa
t su
h an x automati
ally stabilises three adja
ent 
olumnsof g for the 
ase of E6 and six su
h adja
ent 
olumns1 for the 
ase of E7.Thus, instead of redu
tion to maximal paraboli
s of types P1 or P7 thisproof gives at no extra 
ost redu
tion to mu
h smaller paraboli
s. Withthis observation, some proofs in [30℄ 
ould be made even shorter, thenthey a
tually are. More importantly, greater ease to extra
t unipotentsfrom small rank paraboli
s provides entirely new promise of appli
ations.I advertise two of su
h forth
oming appli
ations in the last se
tion.The following result asserts that the same small unipotent x 
omingfrom A2 that was used in [30℄ to stabilise one 
olumn of a root unipotent g,in fa
t stabilises three 
olumns. To re
on
ile notation with the subsequentargument, we state it in the form asserting that x stabilises the �rst three
olumns of g. Sin
e the Weyl group W (E6) is transitive on triples of pair-wise adja
ent weights, this does not in
ur any loss of generality.Theorem 2. Let g ∈ G(E6; R) be a root type unipotent. Then there existsa non-trivial root type unipotent x = x�(�)x�(�) of type A2 su
h that(xg)∗$1=g∗$1 ; (xg)∗;$1−�1=g∗;$1−�1 ; (xg)∗;$1−�1−�3=g∗;$1−�1−�3 :Proof. In the following 
al
ulations we realise the 27-dimensional mo-dule V ($1) as an internal Chevalley module in the standard paraboli
subgroup P7 of the simply 
onne
ted Chevalley group G(E7; R). In otherwords, we identify V ($1) with the unipotent radi
al V = U7, equippedwith the 
onjugation a
tion of the [algebrai
℄ 
ommutator subgroup of theLevi fa
tor L7.Thus, the roots of E6 are depi
ted by their Dynkin form in E6, whereasthe weights of the 27-dimensional module V are depi
ted by their Dynkinform in E7. Under the above identi�
ation the weights of V are pre
iselythe roots of E7, su
h that �7 o

urs in their expansions with the 
oeÆ
ient1. As usual, we denote the set of all su
h roots by �. It is easy to 
he
kthat in this realisation the ve
tors v� = x�(1), � ∈ �, 
onstitute a 
rystalbase of V (see [24, 26℄ for proofs and further details).Re
all that the maximal number of roots of E6, forming mutual angles�=3, equals 5. Let us �x su
h a set, maximal with respe
t to the 
hosenorder on E6:�1 = 123212 ; �2 = 123211 ; �3 = 122211 ; �4 = 122111 ; �5 = 122101 :1There are two Weyl orbits on sextuples of adja
ent 
olumns in (E7;$7), the onein question are sextuples in P3-position, those that 
annot be 
ompleted to a heptuple.The other orbit 
onsists of sextuples in P1 ∩ P2-position.



42 N. A. VAVILOVFurther, 
onsider the following three series of weights:
1 = 0011111 ; 
2 = 0011110 ; 
3 = 0001110 ; 
4 = 0000110 ; 
5 = 0000010 ;Æ1 = 0111110 ; Æ2 = 0111111 ; Æ3 = 0121111 ; Æ4 = 0122111 ; Æ5 = 0122211 ;"1 = 1111110 ; "2 = 1111111 ; "3 = 1121111 ; "4 = 1122111 ; "5 = 1122211 :Our proof starts with the observation that$1 − "1 = ($1 − �1)− Æ1 = 
12 − 
2 = �1;$1 − "2 = ($1 − �1)− Æ2 = 
12 − 
1 = �2:As we mentioned in the previous se
tion, outside of the prin
ipal diag-onal the entries of a root element g ∈ G(E6; R) are subje
t to the linearequations de�ning the Lie algebra of G(E6; R). In parti
ular,g$1;"1 = ±g$1−�1;Æ1 = ±g
12;
2and similarly g$1;"2 = ±g$1−�1;Æ2 = ±g
12;
1 :However, unlike the original A2-proof [30℄, now it is essential that weadd 0, rather than twi
e something. Thus, as in the A5-proof [24℄ now wehave to keep an eye on signs. The relevant entries 
ome from the multiplesof the root elements e−�1 and e−�2 . However (see, for instan
e, [24℄ or[26℄), their signs are the same, as the signs of the 
orresponding entries ofthe opposite root elements e�1 and e�2 .Looking at the last two lines of [38℄, Table 10 (or, for that matter, Tables13 or 16 therein), we see thate�1 = e$1;"1 + e$1−�1;Æ1 + e
12;
2 + e
13;
3 + e
14;
4 + e
15;
5 ;e�2 = −e$1;"2 − e$1−�1;Æ2 − e
12;
1 + e
23;
3 + e
24;
4 + e
25;
5 :A
tually, the �rst of these elements is already 
al
ulated in [24℄, Proposi-tion 1. Besides, we 
ould easily 
al
ulate the se
ond one by hand , with thesame re
ipe.Combining the two above observations, we see thatg$1;"1 = g$1−�1;Æ1 = g
12;
2 = �; g$1;"2 = g$1−�1;Æ2 = g
12;
1 = �:
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lear that if � 6= 0, then x�1(�)x�2(−�) is the desired unipotent.On the other hand, if � = 0, then the �rst three 
olumns of g are notmodi�ed already by the a
tion of x�1(1). �Inspe
ting the above proof, we see that the fa
t that g is a root ele-ment is never used as su
h, we only invoke some linear equations on itsentries. Combining this with the observation immediately pre
eding thetheorem, we see that we have in fa
t established the following te
hni
albut somewhat more general result, see [29℄ for a 
omprehensive exposition.Theorem 3. Let �; �; � ∈ �($1) be three pair-wise adja
ent weights. As-sume that the entries of g ∈ G$1(E6; R) satisfy the following linear equa-tions.
• g�� = 0 for � = �; �; � and any � ∈ �($1) su
h that d(�; �) > 2.
• There exist roots �; � ∈ � su
h thatg�;�−� = g�;�−� = g�;�−� = �; g�;�−� = g�;�−� = g�;�−� = �:Then there exists a non-trivial root unipotent x = x�1(�)x�2(�) of type A2su
h that (xg)∗� = g∗�; (xg)∗� = g∗�; (xg)∗� = g∗� :
§5. A2-proof for E7 reappraised: paghi uno, prendi seiFor A7, a similar reassessment of the A2-proof [30℄, leads to the followingastounding result. The bottom line is that forming one 
ommutator of aroot element g with a small unipotent x of type A2, whose entries are
hosen to stabilise one 
olumn, we automati
ally stabilise six of them.In other words, implementing redu
tion to a maximal paraboli
 P7 weimmediately pre
ipitate to a rank 2 paraboli
 P3 ∩ P4 ∩ P5 ∩ P6 ∩ P7.Theorem 4. Let g ∈ G(E7; R) be a root type unipotent. Then there existsa non-trivial root type unipotent x = x�(�)x�(�) of type A2 su
h that(xg)∗$7 = g∗$7 ;(xg)∗;$7−�7 = g∗;$7−�7 ;(xg)∗;$7−�7−�6 = g∗;$7−�7−�6 ;(xg)∗;$7−�7−�6−�5 = g∗;$7−�7−�6−�5 ;(xg)∗;$7−�7−�6−�5−�4 = g∗;$7−�7−�6−�5−�4 ;(xg)∗;$7−�7−�6−�5−�4−�3 = g∗;$7−�7−�6−�5−�4−�3 :



44 N. A. VAVILOVProof. Here we des
ribe the 56-dimensional module V = V ($7) for thesimply 
onne
ted Chevalley group G(E7; R) as an internal Chevalley mod-ule in the paraboli
 subgroup P8 of the Chevalley group G(E8; R). Morepre
isely, it is interpreted as the se
tion V = U8=[U8; U8℄ of the derivedseries of the unipotent radi
al U8, equipped with the 
onjugation a
tion ofthe [algebrai
℄ 
ommutator subgroup of the Levi subgroup L8.Thus, the roots of E7 are depi
ted by their Dynkin forms in E7, whereasthe weights of the module V are depi
ted by their Dynkin form in E8.Here, the weights are pre
isely the roots of E8, su
h that �8 appears intheir expansions with 
oeÆ
ient 1. As in the 
ase of E6, we denote the setof all su
h weights by �. Sin
e [U8; U8℄ = X�, where, as above,� = 24654323is the maximal root of E8, the ve
tors v� = x�(1)X�, � ∈ �, form a baseof V .Let us des
ribe all weights of V ($7). Consider the following series ofweights
1 = 11111110 ; 
2 = 01111110 ; 
3 = 00111110 ; 
4 = 00011110 ;
5 = 00001110 ; 
6 = 00000110 ; 
7 = 00000010 :Re
all that the maximal number of root of E7, forming mutual angles�=3, equals 7. Let us �x su
h a set, maximal with respe
t to the 
hosenorder on E7:�1 = 2343212 ; �2 = 1343212 ; �3 = 1243212 ; �4 = 1233212 ;�5 = 1232212 ; �6 = 1232112 ; �7 = 1232102 :Then all weights of V ($7) look as follows:
• 7 weights 
i,
• 21 weights 
ij = �i + 
j = �j + 
i, i 6= j,
• 21 weights 
∗ij = �− 
ij ,
• 7 weights 
∗i − �− 
i.



DECOMPOSITION OF UNIPOTENTS 45The proof is similar to the proof of Theorem 2, and starts with theobservation that
∗7 − 
∗17 = 
∗6 − 
∗16 = 
∗5 − 
∗15 = 
∗4 − 
∗14 = 
∗3 − 
∗13 = 
∗17 − 
2 = �1;
∗7 − 
∗27 = 
∗6 − 
∗26 = 
∗5 − 
∗25 = 
∗4 − 
∗24 = 
∗3 − 
∗23 = 
12 − 
1 = �2:We skip all a
tual veri�
ations, that the signs agree, et
. With that endwe have to re
ourse to [35℄, Table 10 (or, for that matter, Tables 12, 14 or16). All details are reprodu
ed in my forth
oming paper [29℄. �

§6. D5-proof for E6In this se
tion we 
onstru
t root type unipotents stabilising a 
olumn ofan element g ∈ G$1(E6; R), provided this 
olumn has [at least℄ one zero.These unipotents will be 
onstru
ted in terms of subsets 
onjugate to thefollowing eight-element subset�1 = 123212 �2 = 123211 �3 = 122211 �4 = 122111�−4 = 112211 �−3 = 112111 �−2 = 111111 �−1 = 111110In the sequel this set is denoted by 
 ⊆ E6. Up to 
onjuga
y by an elementof the Weyl group, 
 
an be 
hara
terised as a maximal subset with thefollowing property, see [27℄, Corollary 1. A root �i ∈ 
 is orthogonal to�−i, and forms the angle �=3 with all roots �j , j 6= ±i. In other words, itsweight diagram is of type D4. Obviously, 
 is higher than any of its Weyl
onjugates. Thus, it is uniquely 
hara
terised as the senior subset of thisshape.Theorem 5. Let g ∈ G(E6; R). Assume that g�� = 0 for a pair of distantweights �; �. Then there exists a non-trivial root type unipotentz = x�1(z1)x�2(z2) : : : x�−2(z−2)x�−1(z−1)of type D5 su
h that (xg)∗� = g∗�. The parameters of z may be 
hosen tobe equal to ±g��, where � ∈ 
.Proof. For the produ
tz = x�1(z1)x�2(z2) : : : x�−2(z−2)x�−1(z−1)to be an element of root type, its 
oeÆ
ients z1; : : : ; z−1 ∈ R should lie ona quadri
 in the eight-dimensional aÆne spa
e de�ned by the equationz1z−1 ± z2z−2 ± z3z−3 ± z4z−4 = 0:



46 N. A. VAVILOVThe signs 
an be spe
i�ed, and this is done in [24, 27℄. The toughest partof the proof of this theorem 
onsists exa
tly in the veri�
ation that allsigns agree, and this 
an be done either by expli
it 
omputer 
al
ulations,or by the methods of [24, 26, 27℄.As usual, 
onjugating by an element of the Weyl group W (E6) we 
anfrom the very start repla
e any pair (�; �) of distant weights by any othersu
h pair, say by ($1;−$6). For the argument below it will be 
onvenientfor us to rename weights of �($1). The weights $1; �;−$6, where � =0122211 , 
onstitute the highest triad of pair-wise distant weights, see [24,34, 38℄. The remaining 24 weights �\{$1; �;−!} are naturally subdividedinto 3 o
tets2, ea
h forming the diagram of type D4:�1 = 0000110 ; �2 = 0001110 ; �3 = 0011110 ; �4 = 0111110 ;�−4 = 0011111 ; �−3 = 0111111 ; �−2 = 0121111 ; �−1 = 0122111 ;�1 = 1111110 ; �2 = 1111111 ; �3 = 1121111 ; �4 = 11221111 ;�−4 = 1221111 ; �−3 = 1222111 ; �−2 = 1232111 ; �−1 = 1232112 ;�1 = 1122211 ; �2 = 1222211 ; �3 = 1232211 ; �4 = 1232212 ;�−4 = 1233212 ; �−3 = 1233212 ; �−2 = 1243212 ; �−1 = 1343212 :We setz = x�1(g�4;$)x�2(g�3;$)x�3(g�2;$)x�4(g�1;$)
× x�−4(g�−1;$)x�−3(g�−2;$)x�−2(g�−3;$)x�−1(g�−4;$)where, for breavity sake we write simply $ instead of $1. Let us inspe
t,how left multipli
ation by z modi�es the �rst 
olumn of g. Multipli
ationby z yields 8 · 6 = 48 additions within ea
h 
olumn.2Andrei Lavrenov suggested that the most natural way to dub these weights wouldbe to use the three �ttir of Futhark. Eventually, I am going to follow that suggestion,but for now I keep the interim notation used in the slides of my talks.
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• First of all, entries in the positions (−$6; $), (�i; $) and (�;$) arenot a�e
ted at all.
• Entries in the positions (�i; $) are a�e
ted by 1 addition ea
h, sin
e�i = −$6 + �−i. However, by assumption g−$6;$ = 0 so that the extrasummand is 0. This a

ounts for 8 additions.
• Entries in the positions (�i; $) are very mu
h a�e
ted, for ea
h ofthem four extra summands o

ur, ea
h of the form ±g�i;$g�j ;$. Let usreprodu
e the 
orresponding fragment of the matrix of signs of V ($1), see[38℄, Table 7. The entry of this matrix in the position (�; �) is the sign,with whi
h e� adds v� to v�. A
tually, using the algorithm proposed in[24, 26℄, these signs 
ould have been easily 
al
ulated by hand.1112221 1122221 1123221 1223221 1123321 1223321 1224321 12343210000011 + + + + 0 0 0 00000111 − − 0 0 + + 0 00001111 + 0 − 0 − 0 + 00011111 − 0 0 − 0 − − 00101111 0 + + 0 + 0 0 +0111111 0 − 0 + 0 + 0 −0112111 0 0 − − 0 0 + +0112211 0 0 0 0 − − − −Let us summarise, what it means pre
isely in terms of additions to theeight entries g�i;$:





























−g�1;$ g�2;$ −g�3;$ g�4;$ 0 0 0 0
−g�

−2;$ g�
−1;$ 0 0 −g�3;$ g�4;$ 0 0

−g�
−3;$ 0 g�

−1;$ 0 −g�2;$ 0 g�4;$ 0
−g�

−4;$ 0 0 g�
−1;$ 0 −g�2;$ g�3;$ 00 −g�

−3;$ g�
−2;$ 0 −g�1;$ 0 0 g�4;$0 −g�

−4;$ 0 g�
−2;$ 0 −g�1;$ 0 g�3;$0 0 −g�

−4;$ g�
−3;$ 0 0 −g�1;$ g�2;$0 0 0 0 −g�

−4;$ g�
−3;$ −g�

−2;$ g�
−1;$



















































g�
−1;$g�
−2;$g�
−3;$g�
−4;$g�4;$g�3;$g�2;$g�1;$























:



48 N. A. VAVILOVAs we see, quite appropriately, in six of the a�e
ted positions non-zerosigns alternate and the o

uring extra summands 
an
el pair-wise, whi
ha

ounds for further 6 · 4 = 24 additions.So far, we have only used signs of the stru
ture 
ostants, now it 
omesto equations. As in [24℄, to 
on
lude the proof we should re
all that our
olumn is not an arbitrary element of V ($), but a 
olumn of a matrixg ∈ G$(�; R). As is well known, any su
h 
olumn lies in the highestweight orbit, and, thus, satis�es 27 �ve-term quadrati
 equations of theform x1x−1 ± x2x−2 ± x3x−3 ± x4x−4 ± x5x−5 = 0;known as Borel{Freudenthal equations, see [24, 27, 34, 38℄ for an expli
it
hoi
e of signs in these equations, whi
h is absolutely vital for what follows.We are interested in those equations that involve g−$6;� . Obviously, for the�rst 
olumn of our matrix, where g−$6;$ = 0, they would redu
e to similarfour-term equations. Looking at the �rst and the last rows of the abovematrix, we see { un mira
olo! { that we get exa
tly one of these equations(a
tually, the lowest one in terms of the natural order on weights) twi
e,with 
orre
t signs! That a

ounts for other 2 · 4 = 8 additions.
• The diagonal entry in the positions ($;$) is the most a�e
ted one,sin
e there are 8 o

uring extra summands (and that was it, sin
e 8+24+8+8 = 48). Similarly, looking at the last 
olumn of the sign matrix we seethat the signs in the eight relevant positions alternate as follows +−+−and then − + −+. In other words, multipli
ation by z adds to g$;$ thefollowing expressiong�1;$g�4;$ − g�2;$g�3;$ + g�3;$g�2;$ − g�4;$g�1;$

− g�−1;$g�−4;$ + g�−2;$g�−3;$ − g�−3;$g�−2;$ + g�−4;$g�−1;$:But this expression is 
learly 0, sin
e both the �rst and the se
ond linesare equal to 0 by the same reason as above, they are the 
hunks of the
orresponding Borel{Freudenthal equations obtained by obliterating termsinvolving g−$6;$ = 0. We are done. �

§7. Further variations and final remarksIn fa
t, the three new versions of de
omposition of unipotents I sket
hedin this talk, are just a prelude and an anti
ipation of a mu
h broaderprospe
t. At this point I 
ame a
ross a dozen or two of similar variationsfor E6 and E7, and I am absolutely positive that further systemati
 sear
h
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h expli
it redu
tions to small rank parabol-i
s, also in other representations, and for other groups. Let me mentionsome of the simplest ones, whi
h are already there.
• D6-proof: stabilisation of a 
olumn with two adja
ent zeros in E7.
• A3-proof revisited: stabilisation of a 
olumn with 5 zeros in P5 posi-tions in GL27.
• (A3; P2)-proof: simultaneous stabilisation of a 
olumn and a row in aroot element of E6.
• A4-proof: stabilisation of a 
olumn with 5 zeros in P2 ∩ P6 positionsin GL27.
• A5-proof revisited: simultaneous stabilisation of two 
olumns in ele-ments of E6 and GL27.Finally, let me mention some of the most immediate possible appli
a-tions of these methods.
• Des
ription of overgroups of subsystem subgroups. More pre-
isely, let � ⊆ � be a [suÆ
iently large℄ root subsystem. What are theintermediate subgroups E(�; R) 6 H 6 G(�; R)? Before this work, therewas not a single instan
e, where this problem was fully solved in an ex-
eptional group over an arbitrary 
ommutative ring. Consult our paperwith Alexander Sh
hegolev [45℄ for pre
ise 
onje
tures and referen
es tothe known results for 
lassi
al groups.One of the main te
hni
al steps in the proof would be extra
tion ofunipotents from an element g ∈ H sitting in a proper paraboli
 P , withthe use of unipotents from E(�; R). Sin
e we do not wish to ex
lude 
aseswhen some irredu
ible 
omponents of � have rank 2 [or even 1, for thatmatter℄, it would be highly expedient to be able to limit ourselves to the
ase, where g sits in a small paraboli
.Presently, Alexander Sh
hegolev and I have virtually 
ompleted theanalysis of intermediate subgroups for the simplest su
h ex
eptional em-bedding A7 6 E7, where the answer is stated in terms of one ideal of R.The proof 
ru
ially depends on our Theorem 4.
• Des
ription of subnormal subgroups. It is well known that thisproblem is essentially equivalent to des
ription of subgroups of G(�; R),normalised by the relative elementary subgroup E(�; R;A), for an idealA E R. The standard answer to this last problem looks as follows. Thereexists an m = m(�) su
h that for any subgroup H 6 G(�; R) normalised



50 N. A. VAVILOVby E(�; R;A), there exists an ideal I E R su
h that E(�; R;AmI) 6 H 6C(�; R; I).The most important te
hni
al aspe
ts of this problem is to �nd thesmallest su
h m. This amounts to forming 
onse
utive 
ommutators withelements of E(�; R;A), to extra
t root unipotents. Clearly, the possibilityof getting into small paraboli
s by forming a single 
ommutator is instru-mental in minimising m.Again, before this work, there was not a single 
ase, where this problemwas fully solved for ex
eptional groups. Equipped with Theorems 2 and4, Zuhong Zhang re
ently su

eeded in vanquishing the 
ases E6 and E7,with the bound m = 7, very 
lose to the a
tual bounds for 
lassi
al groups.Finally, let me mention the most ambitious possible appli
ation.
• Stru
ture of isotropi
 redu
tive groups. Another extremely im-portant unsolved problem is to obtain the standard des
ription of normalsubgroups in twisted forms 'G(�; R) of Chevalley groups of types E6 andE7 over an arbitrary 
ommutative ring R, provided that they 
ontain asplit subgroup of type A2. Let us list the forms in question, see [9℄.
◦ For E6, this is the twisted Chevalley group of type 2E6 { the aboveproblem is not solved even for quasi-split forms! { plus two inner formsof relative rank 2, with Tits indi
es E286;2 and E166;2, plus two further outerforms of relative rank 2, with Tits indi
es 2E16′6;2 and 2E16′′6;2 .
◦ For E7 these are the forms of relative ranks 2, 3 and 4, with Titsindi
es E317;2, E287;3 and E97;4, respe
tively.I am 
onvin
ed that the methods dis
ussed here 
ould laun
h a viableapproa
h towards the solution of that problem, whi
h 
ould then 
onstitutea realisti
 alternative to or a bene�
ial reinfor
ement of the lo
alisationmethods developed in this setting by Anastasia Stavrova, Vi
tor Petrov,Alexander Luzgarev [8, 6℄ and others.Referen
es1. A. Bak, N. Vavilov, Stru
ture of hyperboli
 unitary groups. I. Elementary subgroups.| Algebra Colloq. 7, No. 2, (2000), 159{196.2. R. Hazrat, A. Stepanov, N. Vavilov, Zuhong Zhang, Commutators width in Cheval-ley groups. | Note di Matemati
a 33, No. 1, (2013), 139{170.3. R. Hazrat, N. Vavilov, K1 of Chevalley groups are nilpotent. | J. Pure Appl.Algebra 179, No. 1, (2003), 99{116.4. R. Hazrat, N. Vavilov, Bak's work on the K-theory of rings. | J. K-Theory 4,No. 1, (2009), 1{65.
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