
úÁ�ÉÓËÉ ÎÁÕÞÎÙÈÓÅÍÉÎÁÒÏ× ðïíé�ÏÍ 430, 2014 Ç.N. A. VavilovDECOMPOSITION OF UNIPOTENTS FOR E6 AND E7:25 YEARS AFTERAbstrat. In this paper I sketh two new variations of the methodof deomposition of unipotents in the miroweight representations(E6;$1) and (E7; $7). To put them in ontext, I �rst very brieyreall the two previous stages of the method, an A5-proof for E6and an A7-proof for E7, �rst developed some 25 years ago by AlexeiStepanov, Eugene Plotkin and myself (a de�nitive exposition wasgiven in my paper \A thirdlook at weight diagrams"), and an A2-proof for E6 and E7 developed by Mikhail Gavrilovih and myselfin early 2000. The �rst new twist outlined in this paper is an ob-servation that the A2-proof atually e�etuates redution to smallparabolis, of orank 3 in E6 and of orank 5 in E7. This allows torevamp proofs and sharpen existing bounds in many appliations.The seond new variation is a D5-proof for E6, based on stabilisa-tion of olumns with one zero. [I devised also a similar D6-proof forE7, based on stabilisation of olumns with two adjaent zeroes, butit is too abstruse to be inluded in a asual exposition.℄ Also, I listseveral further variations. Atual detailed alulations will appearin my paper \A loser look at weight diagrams of types (E6;$1)and (E7;$7)".In this paper we desribe several new variations on deomposition ofunipotents in miroweight representations of Chevalley groups of types E6and E7. This paper is based on my talks at
• Ishia Group Theory 2014 (Napoli, April 2014),
• Tsukuba Workshop on In�nite-Dimensional Lie Theory and RelatedTopis (Tsukuba, Otober 2014).First, I give a very brief aount of the existing versions of deompositionof unipotents for these ases, and then outline two new versions of themethod, furnishing aurate statements and onstrutions, but skippingsome of the more umbersome and unwieldy details of alulations. I makeKey words and phrases: Chevalley groups, elementary subgroups, exeptionalgroups, miroweight representation, deomposition of unipotents, paraboli subgroups,highest weight orbit.The present work was supported by the Russian Siene Foundation Projet 14-11-00297 \Deomposition of unipotents in redutive groups".32



DECOMPOSITION OF UNIPOTENTS 33no attempt to give a broader historial aount of the method itself or itsappliations. The lassial ases in vetor/polyvetor representations arerelatively easy and well understood [17, 41℄. On the other hand, otherlarge exeptional groups, of types F4 and E8, do not have miroweightrepresentations, and demand an entirely di�erent level of tehnial strain.Thus, here I limit myself exlusively to the miroweight representations(E6; $1) and (E7; $7).
§1. The first 12 yearsLet � be a redued irreduible root system of rank l = rk(�) andR be a ommutative ring. Further, let G(�; R) be the simply onnetedChevalley group of type � over R. We �x a split maximal torus T (�; R) inG(�; R) and parametrisations of the root subgroupsX�, � ∈ �, elementarywith respet to this torus. In other words, for eah root � ∈ � we �x anisomorphism x� : Ga −→ X�; � 7→ x�(�):The elements x�(�), � ∈ �, � ∈ R, are alled elementary root unipotents(or, sometimes, elementary generators). The subgroupE(�; R) = 〈x�(�) | � ∈ �; � ∈ �〉

6 G(�; R)generated by all root unipotents elementary w.r.t. T is alled the elemen-tary Chevalley group of type � over R.In general, E(�; R) is a proper subgroup of G(�; R), their di�erenebeing measured by the value of K1-funtor K1(�; R). One of the pivotalresults of the whole struture theory of Chevalley groups is the elebratedSuslin{Kopeiko{Taddei normality theorem, asserting that for groups ofrank > 2 the elementary subgroup E(�; R) is normal in G(�; R), for allommutative rings R.In e�et, this theorem asserts that for any root � ∈ �, any ring ele-ment � ∈ R, and any element g ∈ G(�; R) of the Chevalley group theorresponding root unipotent gx�(�)g−1 belongs to the elementary groupE(�; R). In other words, gx�(�)g−1 deomposes as a produt of elementaryroot unipotents.For lassial types, the �rst proofs, due to Suslin and Kopeiko [19, 20, 5℄,were based on deomposition of the matrix gx�(�)g−1 itself. In fat, theyrather deomposed not just root unipotents, but broader lasses of root typeunipotents (roughly, matries from the Zariski losure of the set of rootunipotents, maybe, subjet to some additional unimodularity onditions).



34 N. A. VAVILOVFor exeptional groups, the �rst general proof, due to Taddei, was basedon loalisation [21℄. See also [3℄ by Hazrat and the author for an easierloalisation proof of a more general result. A new generation of loalisationproofs, in a sense the most general ones, were developed by Stepanov, see[14, 16℄.Today, 30++ years after, there are many di�erent approahes to theproof of this theorem, see the overview in [23, 1, 17, 4℄. One suh verypowerful method is deomposition of unipotents, initially proposed in 1987in the Ph. D. Thesis of Alexei Stepanov [13℄. It was immediate to gener-alise it to other lassial groups in vetor representations, and to GL(n;R)in polyvetor representations, and suh generalisations were already on-tained in [13, 22℄. See [17℄ for a systemati exposition, and also [41℄, § 1,for a slightly more general view of the polyvetor ase.Essentially, in the simplest form deomposition of unipotents gives �nitepolynomial expressions of the onjugatesgx�(�)g−1; � ∈ �; � ∈ R; g ∈ G(�; R);as produts of fators sitting in proper paraboli subgroups, and, in the�nal ount, as produts of elementary generators.The following result was not stated in this form before [2℄, but atuallyit is an immediate orollary of the polynomial expression of arbitrary rootunipotents in terms of elementary root unipotents, �rst enuniated in [44℄.The �rst proof of that deomposition for types E6 and E7 obtained in1989 by Eugene Plotkin and the author [42℄ relied on extensive omputerveri�ations. That proof was outlined in [23℄, without expliit veri�ationthat the ouring signs oinide. In 1997 the author sueeded in hekingthis fat by hand. The �rst omplete proof is published in [24℄ and it isanything but immediate.Theorem 1. Let R be a ommutative ring and � = E6;E7. Then any rootelement of the form gx�(�)g−1, � ∈ �, � ∈ R, g ∈ G(�; R) is a produt ofat most L elementary root unipotents, where
• L = 4 · 16 · 27 = 1728 for � = E6,
• L = 4 · 27 · 56 = 6048 for � = E7.Here, 27 and 56 are dimensions of miroweight representations of thesimply onneted Chevalley groups of types E6 and E7, respetively. Fur-ther, 16 and 27 are dimensions of the [abelian℄ unipotent radials UP of theorresponding maximal paraboli subgroups P , of type P1 in E6, and of



DECOMPOSITION OF UNIPOTENTS 35type P7 in E7. Finally, 4 is the inexorable fator ouring as one expressesa root type element from the Levi fators of types D5 6 E6 or E6 6 E7as ommutators of unipotents from UP and the opposite unipotent radialU−P , i. e. elements of UPU−P UPU−P .Tehnially, the main step in these proofs { the so alled \main lemma"{ an be stated as follows. Given a matrix g ∈ G, retrieve enough smallunipotents whih stabilise olumns of g, to ensure they span the wholeelementary group E(�; R). To be atually expressed as short produts ofelementaries, these unipotents have to ome from proper subsystem sub-groups. That the proofs in [23℄ and [24℄ would work at all, seemed to bea mirale. As a matter of fat, in these proofs the unipotents stabilisingolumns of g were taken from the largest possible lassial subgroups, oftypes A5 6 E6 and A7 6 E7. Another rather burdensome aspet of theseproofs was the neessity to metiulously ontrol signs of both the ationonstants and equations de�ning highest weight orbits in these represen-tations.Observe, that suh sharp polynomial bounds ould be very useful inreal life appliations. Compare, for instane, the polynomial bounds forthe width of ommutators in elementary generators, obtained by AlexanderSivatsky and Alexei Stepanov [11℄, where they ould rely on deompositionof unipotents in the above strong form, with the hyperexponential boundsin our paper with Alexei Stepanov [18℄, where we had to restraint ourselvesto loalisation methods instead. See [2℄ for a thorough disussion.
§2. Weyl modules and weight diagramsAtually, these proofs used various tools related to root systems, Weylgroups, Lie algebras, representation theory, geometry of minimal modules,weight diagrams, detailed ontrol of struture onstants and equations,et., whih we annot reall here, in any reasonable way. Instead, we refer tothe lassial papers by Hideya Matsumoto [7℄ and Mihael Stein [12℄, whereChevalley groups over rings were �rst treated with similar tehniques, andto our previous papers [23, 10, 43℄, for bakground information and manyrelated referenes. In fat, the present work is a diret sequel of [24, 30, 31,26, 27, 25, 40, 28℄, and we assume that the reader has seen at least someof these papers.However, we have to introdue at least some absolute minimum of no-tation indispensable for the rest of the paper. Usually, Chevalley groupsour as linear groups, in ertain representations. Let V = V ($) be the
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2Fig. 1. (E6; $1).Weyl module of the Chevalley group G(�; R) with highest weight $, andlet � : G(�; R) −→ GL(V ) be the orresponding rational representation.Sometimes, the image of this representation is denoted by G$(�; R).Typially, in many ommon appliations $ = $i, i = 1; : : : ; l, is afundamental weight. In the present paper we are only interested in themiroweight ases (E6; $1) and (E7; $7).Further, let � = �($) be the set of weights of the representation �, withmultipliities, and let v�, � ∈ �, be an admissible base of V . All vetors areexpressed as oordinate olumns with respet to the base v�, � ∈ �. Now,we an represent a vetor u = (u�) ∈ V by a marked graph as follows. Putthe oordinate u� in the node of the weight diagram, orresponding to theweight �.Now, we an in the usual way represent an element g ∈ G(�; R) bythe matrix (g��), �; � ∈ �, whose entry g�� in the position (�; �) equalsthe oeÆient with whih v� ours in the linear expansion of �(g)v� ,with respet to the base v�, � ∈ �. Below, we usually identify g with thismatrix, and write simply g = (g��).The olumns of these matries an be oneived as elements of V , inthat ase their rows should be interpreted as elements of the dual moduleV ∗. It is very important that the olumns and rows of these matries arenot linearly ordered, but partially ordered, in aordane with the weightdiagram of � or its dual, respetively.For a miroweight representation V = V ($) one has � = W (�)$. Inother words, all weights are extremal and, thus, of multipliity 1, so that� is indeed the set of weights of V , in the usual sense. One an normalisean admissible base v�, � ∈ �, in suh a way that for any � ∈ � and any



DECOMPOSITION OF UNIPOTENTS 37� ∈ R one has x�(�)v� = v� + ���v�+�;where all ation struture onstants �� are equal to ±1, see [7℄. Usually,one hoses the rystal base, with the following positivity property: all stru-ture onstants �� are equal to +1 for the fundamental and the negativefundamental roots, i. e. �� = +1, whenever � ∈ ±�. Existene of suha base is lassially known, in [24℄ and [26℄ one an �nd two elementaryproofs. Atually, all struture onstants in rystal bases for (E6; $1) and(E7; $7) are tabulated in [38℄ and [35℄, respetively.The most important tehnial tool in our alulations are weight dia-grams. Let � : G(�; R) −→ GL(V ($)) be a representation of a Chevalleygroup on a Weyl module. For a miroweight representation � its weightdiagram, whih in this ase oinides with the rystal graph, is a markedgraph onstruted as follows.
• Its nodes orrespond to the weights � ∈ � of �.
• Two nodes � and � are joined by a bond marked i if their di�erene�− � = �i is the i-th fundamental root.Not to overharge our diagrams with arrows, we draw them in suha way that a larger weight always stands to the left of and/or higherthan a smaller one, landsape orientation being primary. Moreover, usuallywe omit at least one of the two equal labels at the opposite sides of aparallelogramm.In Figures 1 and 2 we reprodue the weight diagrams for the two Weylmodules onsidered in the present paper, the module V ($1) for G(E6; R)and the module V ($7) for G(E7; R).The most important assignment of weight diagrams is to serve as roquisdrawings of weight graphs . Reall that weight graphs are de�ned similarlyto weight diagrams, but display edges orresponding to all positive roots,rather than just those orresponding to the fundamental ones. Any attemptto draw a weight graph with a few dozen verties leads to a ompletemess. Lukily, this is utterly redundant. Read in onjuntion with roottables weight diagrams allow to easily reover all information enodedin weight graphs. Namely, to restitute edges orresponding to any root� = m1�1 + : : : + ml�l, it suÆes to �nd in the orresponding weightdiagram all paths that omprise m1 edges marked 1, m2 edges marked 2,et., in any order.
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Fig. 2. (E7; $7).For the representations (E6; $1) and (E7; $7) Weyl orbits on pairs ofweights (�; �), �; � ∈ �, are distinguished by a single invariant, namely bythe distane d(�; �) between � and � in the weight graph. Weights �; � ∈ �suh that d(�; �) = 1 are alled adjaent . This means that their di�erene�− � ∈ � is a root. Weights �; � ∈ � suh that d(�; �) = 2 will be alleddistant . This means that their di�erene � − � ∈ � is not a root, butan be expressed as the sum of two roots. In the ase (E6; $1) distaned(�; �) between weights only takes values 0,1 and 2. Thus, any two rootsare either equal, or adjaent, or distant. In the ase (E7; $7) there is thefourth possible value, d(�; �) = 3. More preisely, for eah weight � thereexists a unique weight � at distane 3 from �, namely � = −�. This weightis alled opposite to �. In the sequel, when weight of �($7) is interpretedas a ertain set of roots in E8, we usually denote the weight opposite to �by �∗, in this ase, �∗ = �− �, where � is the maximal root of E8.
§3. The next 12 yearsReturning to the setting of § 1, suppose we already know that the el-ementary subgroup E(�; R) is normal in G(�; R) and are interested infurther appliations, we do not have to hunt for small unipotents stabil-ising olumns of arbitrary matries g ∈ G. In [17℄ Alexei Stepanov andI notied that deomposition of unipotents immediately implies also the



DECOMPOSITION OF UNIPOTENTS 39standard desription of normal (or, in fat, E(�; R)-normalised) subgroupsof G(�; R).For let H be a non-entral subgroup normalised by E(�; R). Let g ∈ Hbe a non-entral element. Then g does not ommute with some elementaryroot unipotent x�(1), � ∈ �. Then by deomposition of unipotents it doesnot ommute with some unipotent x ∈ E(�; R) suh that multipliationby x does not hange some olumn of g−1. Then gxg−1 falls into a properparaboli subgroup. By looking a bit more arefully we an ensure thatalready [x−1; g℄ = x−1gxg−1 does not fall into that paraboli subgroups,whih allows us to reourse to paraboli redution and onlude that Hontains a non-trivial elementary root unipotent. [Reently, Stepanov ob-served that things are even easier than that, in the above situation [x−1; g℄always sits in a produt of two non-opposite paraboli subgroups, whihalready suÆes to onlude that H ontains a non-trivial elementary rootunipotent.℄ At this point, standard desription immediately follows by levelredution.The following twist was proposed in [30℄, were Mikhail Gavrilovih andI notied that in miroweight representations there is no need whatsoeverto worry about being able to stabilise an arbitrary olumn of a generielement g ∈ G(�; R). Let, in the above setting, g be any non-entral ele-ment of H , and let x�(1) be an elementary root unipotent not ommutingwith g. Replaing g by [g; x�(1)℄ ∈ H , whih is itself non-entral, we anfrom the very start assume that g is a root unipotent. [Well, tehniallythe produt of a root unipotent z = gx�(1)g−1 by an elementary rootunipotent x�(−1), but that does not hange most of the olumns of z.℄Now, reollet the de�nition of a miroweigh representation, whih es-sentially amounts to saying that exponents are very short,gx�(1)g−1 = g(e+ e�)g−1 = e+ ge�g−1;where e� is the root element of the orresponding Lie algebra. Thus, out-side of the prinipal diagonal z satis�es the linear equations de�ning theLie algebra of G(�; R). In partiular, all olumns of z abound with zeroes{ at least 10 of them in eah olumn in the ase of (E6; $1) and at least28 of them in eah olumn in the ase of (E7; $7).For instane, if we onsider the �rst olumns of these matries, orre-sponding to the highest weight $ = $1 or $ = $7, then they have zeroesin the 10 positions ouring to the right of the 5 parallel bonds labelled 1



40 N. A. VAVILOVin Figure 1, and in the 28 positions ouring below the 10 parallel bondslabelled 7 in Figure 2.But now something extraordinary happens. Sine all these omponentsare equal to zero, any positive root whose linear expansion ontains �1 or�7, respetively, { in other words, any root from the unipotent radial of P1in E6 or P7 in E7 { performs exatly one nontrivial addition. In fat, onlythe highest weight oordinate v$ is a�eted, sine all other oordinatesv� whih ould be added somewhere by x�(�) { or, what is the same,oordinates orresponding to the weights � ∈ � suh that �+� ∈ �, { arethemselves equal to zero.This means, there are plenty of ways to stabilise suh a olumn withsmall unipotents, starting with something as teeny as produts of twoelementary root unipotents in A2 or even 2A1. This makes that part of theproof as short and easy, as the proofs for lassial ases, expounded in [17℄.In fat, there is no more need to ontrol signs of the struture onstants,or to invoke any equations, other then the linear equations de�ning theLie algebra of G. Of ourse, now it is quite a bit trikier to prove the mainlemma asserting that we have enough suh unipotents, to still eventuallyget a nontrivial elementary root unipotent inside H .Atually, later I tried to elaborate that proof, to ahieve simultane-ous stabilisation of several olumns, to ahieve redution to smaller rankparabolis. Suh a redution is neessary in many further appliations,inluding possible appliations at the level of K2. One of the triks I pro-posed, was the so alled A3-proof, see [25, 28℄, whih allowed to simulta-neously stabilise two olumns of matries from E6 and E7, some of whoseentries vanish.There were also other similar attemps, in partiular, those onsistingin varying not only the lassial subsystem but also the paraboli sub-group therein, outlined in our papers with Vitoria Kazakevih [32, 33℄. Insome ases they allowed to simultaneously stabilise a olumn and a row ofmatries from E6 and E7 in the orresponding representations.However, as we see in the next setions, at that time we missed some-thing very essential, that the A2-proof itself supplies redution not to max-imal paraboli, but to some rather deep ones.
§4. A2-proof for E6 reappraised: paghi uno, prendi treIn [30℄ we onstruted root elements x of type A2 that stabilise oneolumn of a root type unipotent g in groups of types E6 and E7. Here, we



DECOMPOSITION OF UNIPOTENTS 41show that in fat suh an x automatially stabilises three adjaent olumnsof g for the ase of E6 and six suh adjaent olumns1 for the ase of E7.Thus, instead of redution to maximal parabolis of types P1 or P7 thisproof gives at no extra ost redution to muh smaller parabolis. Withthis observation, some proofs in [30℄ ould be made even shorter, thenthey atually are. More importantly, greater ease to extrat unipotentsfrom small rank parabolis provides entirely new promise of appliations.I advertise two of suh forthoming appliations in the last setion.The following result asserts that the same small unipotent x omingfrom A2 that was used in [30℄ to stabilise one olumn of a root unipotent g,in fat stabilises three olumns. To reonile notation with the subsequentargument, we state it in the form asserting that x stabilises the �rst threeolumns of g. Sine the Weyl group W (E6) is transitive on triples of pair-wise adjaent weights, this does not inur any loss of generality.Theorem 2. Let g ∈ G(E6; R) be a root type unipotent. Then there existsa non-trivial root type unipotent x = x�(�)x�(�) of type A2 suh that(xg)∗$1=g∗$1 ; (xg)∗;$1−�1=g∗;$1−�1 ; (xg)∗;$1−�1−�3=g∗;$1−�1−�3 :Proof. In the following alulations we realise the 27-dimensional mo-dule V ($1) as an internal Chevalley module in the standard parabolisubgroup P7 of the simply onneted Chevalley group G(E7; R). In otherwords, we identify V ($1) with the unipotent radial V = U7, equippedwith the onjugation ation of the [algebrai℄ ommutator subgroup of theLevi fator L7.Thus, the roots of E6 are depited by their Dynkin form in E6, whereasthe weights of the 27-dimensional module V are depited by their Dynkinform in E7. Under the above identi�ation the weights of V are preiselythe roots of E7, suh that �7 ours in their expansions with the oeÆient1. As usual, we denote the set of all suh roots by �. It is easy to hekthat in this realisation the vetors v� = x�(1), � ∈ �, onstitute a rystalbase of V (see [24, 26℄ for proofs and further details).Reall that the maximal number of roots of E6, forming mutual angles�=3, equals 5. Let us �x suh a set, maximal with respet to the hosenorder on E6:�1 = 123212 ; �2 = 123211 ; �3 = 122211 ; �4 = 122111 ; �5 = 122101 :1There are two Weyl orbits on sextuples of adjaent olumns in (E7;$7), the onein question are sextuples in P3-position, those that annot be ompleted to a heptuple.The other orbit onsists of sextuples in P1 ∩ P2-position.



42 N. A. VAVILOVFurther, onsider the following three series of weights:1 = 0011111 ; 2 = 0011110 ; 3 = 0001110 ; 4 = 0000110 ; 5 = 0000010 ;Æ1 = 0111110 ; Æ2 = 0111111 ; Æ3 = 0121111 ; Æ4 = 0122111 ; Æ5 = 0122211 ;"1 = 1111110 ; "2 = 1111111 ; "3 = 1121111 ; "4 = 1122111 ; "5 = 1122211 :Our proof starts with the observation that$1 − "1 = ($1 − �1)− Æ1 = 12 − 2 = �1;$1 − "2 = ($1 − �1)− Æ2 = 12 − 1 = �2:As we mentioned in the previous setion, outside of the prinipal diag-onal the entries of a root element g ∈ G(E6; R) are subjet to the linearequations de�ning the Lie algebra of G(E6; R). In partiular,g$1;"1 = ±g$1−�1;Æ1 = ±g12;2and similarly g$1;"2 = ±g$1−�1;Æ2 = ±g12;1 :However, unlike the original A2-proof [30℄, now it is essential that weadd 0, rather than twie something. Thus, as in the A5-proof [24℄ now wehave to keep an eye on signs. The relevant entries ome from the multiplesof the root elements e−�1 and e−�2 . However (see, for instane, [24℄ or[26℄), their signs are the same, as the signs of the orresponding entries ofthe opposite root elements e�1 and e�2 .Looking at the last two lines of [38℄, Table 10 (or, for that matter, Tables13 or 16 therein), we see thate�1 = e$1;"1 + e$1−�1;Æ1 + e12;2 + e13;3 + e14;4 + e15;5 ;e�2 = −e$1;"2 − e$1−�1;Æ2 − e12;1 + e23;3 + e24;4 + e25;5 :Atually, the �rst of these elements is already alulated in [24℄, Proposi-tion 1. Besides, we ould easily alulate the seond one by hand , with thesame reipe.Combining the two above observations, we see thatg$1;"1 = g$1−�1;Æ1 = g12;2 = �; g$1;"2 = g$1−�1;Æ2 = g12;1 = �:



DECOMPOSITION OF UNIPOTENTS 43Now, it is lear that if � 6= 0, then x�1(�)x�2(−�) is the desired unipotent.On the other hand, if � = 0, then the �rst three olumns of g are notmodi�ed already by the ation of x�1(1). �Inspeting the above proof, we see that the fat that g is a root ele-ment is never used as suh, we only invoke some linear equations on itsentries. Combining this with the observation immediately preeding thetheorem, we see that we have in fat established the following tehnialbut somewhat more general result, see [29℄ for a omprehensive exposition.Theorem 3. Let �; �; � ∈ �($1) be three pair-wise adjaent weights. As-sume that the entries of g ∈ G$1(E6; R) satisfy the following linear equa-tions.
• g�� = 0 for � = �; �; � and any � ∈ �($1) suh that d(�; �) > 2.
• There exist roots �; � ∈ � suh thatg�;�−� = g�;�−� = g�;�−� = �; g�;�−� = g�;�−� = g�;�−� = �:Then there exists a non-trivial root unipotent x = x�1(�)x�2(�) of type A2suh that (xg)∗� = g∗�; (xg)∗� = g∗�; (xg)∗� = g∗� :
§5. A2-proof for E7 reappraised: paghi uno, prendi seiFor A7, a similar reassessment of the A2-proof [30℄, leads to the followingastounding result. The bottom line is that forming one ommutator of aroot element g with a small unipotent x of type A2, whose entries arehosen to stabilise one olumn, we automatially stabilise six of them.In other words, implementing redution to a maximal paraboli P7 weimmediately preipitate to a rank 2 paraboli P3 ∩ P4 ∩ P5 ∩ P6 ∩ P7.Theorem 4. Let g ∈ G(E7; R) be a root type unipotent. Then there existsa non-trivial root type unipotent x = x�(�)x�(�) of type A2 suh that(xg)∗$7 = g∗$7 ;(xg)∗;$7−�7 = g∗;$7−�7 ;(xg)∗;$7−�7−�6 = g∗;$7−�7−�6 ;(xg)∗;$7−�7−�6−�5 = g∗;$7−�7−�6−�5 ;(xg)∗;$7−�7−�6−�5−�4 = g∗;$7−�7−�6−�5−�4 ;(xg)∗;$7−�7−�6−�5−�4−�3 = g∗;$7−�7−�6−�5−�4−�3 :



44 N. A. VAVILOVProof. Here we desribe the 56-dimensional module V = V ($7) for thesimply onneted Chevalley group G(E7; R) as an internal Chevalley mod-ule in the paraboli subgroup P8 of the Chevalley group G(E8; R). Morepreisely, it is interpreted as the setion V = U8=[U8; U8℄ of the derivedseries of the unipotent radial U8, equipped with the onjugation ation ofthe [algebrai℄ ommutator subgroup of the Levi subgroup L8.Thus, the roots of E7 are depited by their Dynkin forms in E7, whereasthe weights of the module V are depited by their Dynkin form in E8.Here, the weights are preisely the roots of E8, suh that �8 appears intheir expansions with oeÆient 1. As in the ase of E6, we denote the setof all suh weights by �. Sine [U8; U8℄ = X�, where, as above,� = 24654323is the maximal root of E8, the vetors v� = x�(1)X�, � ∈ �, form a baseof V .Let us desribe all weights of V ($7). Consider the following series ofweights1 = 11111110 ; 2 = 01111110 ; 3 = 00111110 ; 4 = 00011110 ;5 = 00001110 ; 6 = 00000110 ; 7 = 00000010 :Reall that the maximal number of root of E7, forming mutual angles�=3, equals 7. Let us �x suh a set, maximal with respet to the hosenorder on E7:�1 = 2343212 ; �2 = 1343212 ; �3 = 1243212 ; �4 = 1233212 ;�5 = 1232212 ; �6 = 1232112 ; �7 = 1232102 :Then all weights of V ($7) look as follows:
• 7 weights i,
• 21 weights ij = �i + j = �j + i, i 6= j,
• 21 weights ∗ij = �− ij ,
• 7 weights ∗i − �− i.



DECOMPOSITION OF UNIPOTENTS 45The proof is similar to the proof of Theorem 2, and starts with theobservation that∗7 − ∗17 = ∗6 − ∗16 = ∗5 − ∗15 = ∗4 − ∗14 = ∗3 − ∗13 = ∗17 − 2 = �1;∗7 − ∗27 = ∗6 − ∗26 = ∗5 − ∗25 = ∗4 − ∗24 = ∗3 − ∗23 = 12 − 1 = �2:We skip all atual veri�ations, that the signs agree, et. With that endwe have to reourse to [35℄, Table 10 (or, for that matter, Tables 12, 14 or16). All details are reprodued in my forthoming paper [29℄. �

§6. D5-proof for E6In this setion we onstrut root type unipotents stabilising a olumn ofan element g ∈ G$1(E6; R), provided this olumn has [at least℄ one zero.These unipotents will be onstruted in terms of subsets onjugate to thefollowing eight-element subset�1 = 123212 �2 = 123211 �3 = 122211 �4 = 122111�−4 = 112211 �−3 = 112111 �−2 = 111111 �−1 = 111110In the sequel this set is denoted by 
 ⊆ E6. Up to onjugay by an elementof the Weyl group, 
 an be haraterised as a maximal subset with thefollowing property, see [27℄, Corollary 1. A root �i ∈ 
 is orthogonal to�−i, and forms the angle �=3 with all roots �j , j 6= ±i. In other words, itsweight diagram is of type D4. Obviously, 
 is higher than any of its Weylonjugates. Thus, it is uniquely haraterised as the senior subset of thisshape.Theorem 5. Let g ∈ G(E6; R). Assume that g�� = 0 for a pair of distantweights �; �. Then there exists a non-trivial root type unipotentz = x�1(z1)x�2(z2) : : : x�−2(z−2)x�−1(z−1)of type D5 suh that (xg)∗� = g∗�. The parameters of z may be hosen tobe equal to ±g��, where � ∈ 
.Proof. For the produtz = x�1(z1)x�2(z2) : : : x�−2(z−2)x�−1(z−1)to be an element of root type, its oeÆients z1; : : : ; z−1 ∈ R should lie ona quadri in the eight-dimensional aÆne spae de�ned by the equationz1z−1 ± z2z−2 ± z3z−3 ± z4z−4 = 0:



46 N. A. VAVILOVThe signs an be spei�ed, and this is done in [24, 27℄. The toughest partof the proof of this theorem onsists exatly in the veri�ation that allsigns agree, and this an be done either by expliit omputer alulations,or by the methods of [24, 26, 27℄.As usual, onjugating by an element of the Weyl group W (E6) we anfrom the very start replae any pair (�; �) of distant weights by any othersuh pair, say by ($1;−$6). For the argument below it will be onvenientfor us to rename weights of �($1). The weights $1; �;−$6, where � =0122211 , onstitute the highest triad of pair-wise distant weights, see [24,34, 38℄. The remaining 24 weights �\{$1; �;−!} are naturally subdividedinto 3 otets2, eah forming the diagram of type D4:�1 = 0000110 ; �2 = 0001110 ; �3 = 0011110 ; �4 = 0111110 ;�−4 = 0011111 ; �−3 = 0111111 ; �−2 = 0121111 ; �−1 = 0122111 ;�1 = 1111110 ; �2 = 1111111 ; �3 = 1121111 ; �4 = 11221111 ;�−4 = 1221111 ; �−3 = 1222111 ; �−2 = 1232111 ; �−1 = 1232112 ;�1 = 1122211 ; �2 = 1222211 ; �3 = 1232211 ; �4 = 1232212 ;�−4 = 1233212 ; �−3 = 1233212 ; �−2 = 1243212 ; �−1 = 1343212 :We setz = x�1(g�4;$)x�2(g�3;$)x�3(g�2;$)x�4(g�1;$)
× x�−4(g�−1;$)x�−3(g�−2;$)x�−2(g�−3;$)x�−1(g�−4;$)where, for breavity sake we write simply $ instead of $1. Let us inspet,how left multipliation by z modi�es the �rst olumn of g. Multipliationby z yields 8 · 6 = 48 additions within eah olumn.2Andrei Lavrenov suggested that the most natural way to dub these weights wouldbe to use the three �ttir of Futhark. Eventually, I am going to follow that suggestion,but for now I keep the interim notation used in the slides of my talks.
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• First of all, entries in the positions (−$6; $), (�i; $) and (�;$) arenot a�eted at all.
• Entries in the positions (�i; $) are a�eted by 1 addition eah, sine�i = −$6 + �−i. However, by assumption g−$6;$ = 0 so that the extrasummand is 0. This aounts for 8 additions.
• Entries in the positions (�i; $) are very muh a�eted, for eah ofthem four extra summands our, eah of the form ±g�i;$g�j ;$. Let usreprodue the orresponding fragment of the matrix of signs of V ($1), see[38℄, Table 7. The entry of this matrix in the position (�; �) is the sign,with whih e� adds v� to v�. Atually, using the algorithm proposed in[24, 26℄, these signs ould have been easily alulated by hand.1112221 1122221 1123221 1223221 1123321 1223321 1224321 12343210000011 + + + + 0 0 0 00000111 − − 0 0 + + 0 00001111 + 0 − 0 − 0 + 00011111 − 0 0 − 0 − − 00101111 0 + + 0 + 0 0 +0111111 0 − 0 + 0 + 0 −0112111 0 0 − − 0 0 + +0112211 0 0 0 0 − − − −Let us summarise, what it means preisely in terms of additions to theeight entries g�i;$:
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48 N. A. VAVILOVAs we see, quite appropriately, in six of the a�eted positions non-zerosigns alternate and the ouring extra summands anel pair-wise, whihaounds for further 6 · 4 = 24 additions.So far, we have only used signs of the struture ostants, now it omesto equations. As in [24℄, to onlude the proof we should reall that ourolumn is not an arbitrary element of V ($), but a olumn of a matrixg ∈ G$(�; R). As is well known, any suh olumn lies in the highestweight orbit, and, thus, satis�es 27 �ve-term quadrati equations of theform x1x−1 ± x2x−2 ± x3x−3 ± x4x−4 ± x5x−5 = 0;known as Borel{Freudenthal equations, see [24, 27, 34, 38℄ for an expliithoie of signs in these equations, whih is absolutely vital for what follows.We are interested in those equations that involve g−$6;� . Obviously, for the�rst olumn of our matrix, where g−$6;$ = 0, they would redue to similarfour-term equations. Looking at the �rst and the last rows of the abovematrix, we see { un miraolo! { that we get exatly one of these equations(atually, the lowest one in terms of the natural order on weights) twie,with orret signs! That aounts for other 2 · 4 = 8 additions.
• The diagonal entry in the positions ($;$) is the most a�eted one,sine there are 8 ouring extra summands (and that was it, sine 8+24+8+8 = 48). Similarly, looking at the last olumn of the sign matrix we seethat the signs in the eight relevant positions alternate as follows +−+−and then − + −+. In other words, multipliation by z adds to g$;$ thefollowing expressiong�1;$g�4;$ − g�2;$g�3;$ + g�3;$g�2;$ − g�4;$g�1;$

− g�−1;$g�−4;$ + g�−2;$g�−3;$ − g�−3;$g�−2;$ + g�−4;$g�−1;$:But this expression is learly 0, sine both the �rst and the seond linesare equal to 0 by the same reason as above, they are the hunks of theorresponding Borel{Freudenthal equations obtained by obliterating termsinvolving g−$6;$ = 0. We are done. �

§7. Further variations and final remarksIn fat, the three new versions of deomposition of unipotents I skethedin this talk, are just a prelude and an antiipation of a muh broaderprospet. At this point I ame aross a dozen or two of similar variationsfor E6 and E7, and I am absolutely positive that further systemati searh



DECOMPOSITION OF UNIPOTENTS 49should unearth many more suh expliit redutions to small rank parabol-is, also in other representations, and for other groups. Let me mentionsome of the simplest ones, whih are already there.
• D6-proof: stabilisation of a olumn with two adjaent zeros in E7.
• A3-proof revisited: stabilisation of a olumn with 5 zeros in P5 posi-tions in GL27.
• (A3; P2)-proof: simultaneous stabilisation of a olumn and a row in aroot element of E6.
• A4-proof: stabilisation of a olumn with 5 zeros in P2 ∩ P6 positionsin GL27.
• A5-proof revisited: simultaneous stabilisation of two olumns in ele-ments of E6 and GL27.Finally, let me mention some of the most immediate possible applia-tions of these methods.
• Desription of overgroups of subsystem subgroups. More pre-isely, let � ⊆ � be a [suÆiently large℄ root subsystem. What are theintermediate subgroups E(�; R) 6 H 6 G(�; R)? Before this work, therewas not a single instane, where this problem was fully solved in an ex-eptional group over an arbitrary ommutative ring. Consult our paperwith Alexander Shhegolev [45℄ for preise onjetures and referenes tothe known results for lassial groups.One of the main tehnial steps in the proof would be extration ofunipotents from an element g ∈ H sitting in a proper paraboli P , withthe use of unipotents from E(�; R). Sine we do not wish to exlude aseswhen some irreduible omponents of � have rank 2 [or even 1, for thatmatter℄, it would be highly expedient to be able to limit ourselves to thease, where g sits in a small paraboli.Presently, Alexander Shhegolev and I have virtually ompleted theanalysis of intermediate subgroups for the simplest suh exeptional em-bedding A7 6 E7, where the answer is stated in terms of one ideal of R.The proof ruially depends on our Theorem 4.
• Desription of subnormal subgroups. It is well known that thisproblem is essentially equivalent to desription of subgroups of G(�; R),normalised by the relative elementary subgroup E(�; R;A), for an idealA E R. The standard answer to this last problem looks as follows. Thereexists an m = m(�) suh that for any subgroup H 6 G(�; R) normalised



50 N. A. VAVILOVby E(�; R;A), there exists an ideal I E R suh that E(�; R;AmI) 6 H 6C(�; R; I).The most important tehnial aspets of this problem is to �nd thesmallest suh m. This amounts to forming onseutive ommutators withelements of E(�; R;A), to extrat root unipotents. Clearly, the possibilityof getting into small parabolis by forming a single ommutator is instru-mental in minimising m.Again, before this work, there was not a single ase, where this problemwas fully solved for exeptional groups. Equipped with Theorems 2 and4, Zuhong Zhang reently sueeded in vanquishing the ases E6 and E7,with the bound m = 7, very lose to the atual bounds for lassial groups.Finally, let me mention the most ambitious possible appliation.
• Struture of isotropi redutive groups. Another extremely im-portant unsolved problem is to obtain the standard desription of normalsubgroups in twisted forms 'G(�; R) of Chevalley groups of types E6 andE7 over an arbitrary ommutative ring R, provided that they ontain asplit subgroup of type A2. Let us list the forms in question, see [9℄.
◦ For E6, this is the twisted Chevalley group of type 2E6 { the aboveproblem is not solved even for quasi-split forms! { plus two inner formsof relative rank 2, with Tits indies E286;2 and E166;2, plus two further outerforms of relative rank 2, with Tits indies 2E16′6;2 and 2E16′′6;2 .
◦ For E7 these are the forms of relative ranks 2, 3 and 4, with Titsindies E317;2, E287;3 and E97;4, respetively.I am onvined that the methods disussed here ould launh a viableapproah towards the solution of that problem, whih ould then onstitutea realisti alternative to or a bene�ial reinforement of the loalisationmethods developed in this setting by Anastasia Stavrova, Vitor Petrov,Alexander Luzgarev [8, 6℄ and others.Referenes1. A. Bak, N. Vavilov, Struture of hyperboli unitary groups. I. Elementary subgroups.| Algebra Colloq. 7, No. 2, (2000), 159{196.2. R. Hazrat, A. Stepanov, N. Vavilov, Zuhong Zhang, Commutators width in Cheval-ley groups. | Note di Matematia 33, No. 1, (2013), 139{170.3. R. Hazrat, N. Vavilov, K1 of Chevalley groups are nilpotent. | J. Pure Appl.Algebra 179, No. 1, (2003), 99{116.4. R. Hazrat, N. Vavilov, Bak's work on the K-theory of rings. | J. K-Theory 4,No. 1, (2009), 1{65.
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