
úÁ�ÉÓËÉ ÎÁÕÞÎÙÈÓÅÍÉÎÁÒÏ× ðïíé�ÏÍ 429, 2014 Ç.D. B. KarpREPRESENTATIONS AND INEQUALITIES FORGENERALIZED HYPERGEOMETRIC FUNCTIONSAbstrat. An integral representation for the generalized hyper-geometri funtion unifying known representations via generalizedStieltjes, Laplae, and osine Fourier transforms is found. Usingpositivity onditions for the weight in this representation, variousnew fats regarding generalized hypergeometri funtions, inludingomplete monotoniity, log-onvexity in upper parameters, mono-toniity of ratios and new proofs of Luke's bounds are established.In addition, two-sided inequalities for the Bessel type hypergeomet-ri funtions are derived with use of their series representations.
§1. IntrodutionStandard notation R, C and N for the real, omplex and natural num-bers, respetively, will adopted. N0 will denote N∪ {0}. In previous works[9, 11℄ we obtained some representations, inequalities, monotoniity andother properties for the Gauss type generalized hypergeometri funtionq+1Fq whih is equal to p = q + 1 ase of the funtion [3, 15℄pFq (AB∣

∣

∣

∣

z) = pFq (A;B; z) := ∞
∑n=0 (a1)n(a2)n · · · (ap)n(b1)n(b2)n · · · (bq)nn!zn; (1)where A = (a1; a2; : : : ; ap) and B = (b1; b2; : : : ; bq), bj =∈ −N0, are pa-rameter vetors, (a)n denotes the rising fatorial, de�ned by (a)0 = 1,(a)n = a(a + 1) · · · (a + n − 1), n > 1. The series in (1) onverges in theentire omplex z-plane if p 6 q and inside the unit disk if p = q + 1. Inthe latter ase the sum an be extended to a funtion holomorphi in theut plane C\ [1;∞). The main tool employed in [9, 11℄ to investigate thefuntion q+1Fq is the generalized Stieltjes transform (see (3) below) of ameasure with density expressed by the G-funtion of Meijer, f. [9, Theo-rem 2℄. Suh representation appeared earlier in [15, Theorem 4.2.11℄. WeKey words and phrases: generalized hypergeometri funtion, Meijer's G-funtion,generalized Stieltjes transform, Laplae transform, omplete monotoniity, log-onvexity, Luke's inequalities. 121



122 D. B. KARPontributed more relaxed onditions on parameters and studied nonnega-tivity of the representing measure. This lead to monotoniity of the ratios,two-sided bounds, mapping properties and other results for the Gauss typehypergeometri funtions q+1Fq .Another line of researh pursued in [6, 7, 12℄ hinges on the series rep-resentation (1) and yields, among other things, a number of propertiesof the Kummer type hypergeometri funtions qFq , inluding logarithmionavity or onvexity in parameters, inequalities for logarithmi deriva-tives and bounds for the Tur�anians. In this note an integral representationfor the general hypergeometri funtion pFq , whih inludes, as partiularases, the representations by the generalized Stieltjes, Laplae and osineFourier transforms is introdued. Starting with this representation we willobtain new properties of the the Gauss type funtions q+1Fq , the Kummertype funtions qFq and the Bessel type funtions q−1Fq , inluding ondi-tions for omplete monotoniity, monotoniity of ratios and log-onvexityin upper parameters. Moreover, we furnish new proofs for Luke's inequali-ties from [16℄, allowing their extension to a wider parameter range. Finally,we disover new bounds for the Bessel type hypergeometri funtions pFqwith p < q of positive argument.
§2. Representations for pFq and their onsequenesSuppose 0 6 m 6 q, 0 6 n 6 p are integers and A ∈ Cp, B ∈ Cq aresuh that ai − bj − 1 =∈ N0 for all i = 1; : : : ; n and j = 1; : : : ;m. We willheavily use Meijer's G-funtion [3, Setion 16.17℄ de�ned by the ontourintegralGm;np;q (z AB):= 12�i ∫

L

�(b1+s) · · ·�(bm+s)�(1− a1−s) · · ·�(1− an−s)z−s�(an+1+s) · · ·�(ap+s)�(1− bm+1−s) · · ·�(1− bq−s)ds: (2)The ontour L begins and ends at in�nity and separates the poles of theintegrand of the form −bj − k, k ∈ N0, leaving them on the left, from thepoles of the form −aj+k+1, k ∈ N0, leaving them on the right. Under theabove onditions suh ontour always exists and an be hosen to makethe integral in (2) onvergent. More details regarding the hoie of L andonditions for onvergene in (2) an be found in [3℄, [14, Chapters 1 and2℄ and [20, Chapter 8℄.



REPRESENTATIONS AND INEQUALITIES 123We will abbreviate p
∏i=1�(ai) to �(A) and p

∏i=1(ai)n to (A)n throughoutthe paper. Expressions like A + �, where � ∈ C, and Re(A) > 0 will beunderstood element-wise. The key role in the investigations arried outin [9, 11℄ is played by the generalized Stieltjes transform representationq+1Fq(�;AB ∣

∣

∣

∣

− z) = �(B)�(A) 1
∫0 (1 + zt)−�Gq;0q;q (t ∣∣∣

∣

BA) dtt ; (3)whih is easy to prove by termwise integration. Note that both the gener-alized Stieltjes kernel (1 + zt)−� = 1F0(�;−;−zt) and the Laplae kernele−zt = 0F0(−;−;−zt) are partiular ases of a more general hypergeomet-ri kernel. This simple observation leads to the following theorem.Theorem 1. Suppose p1 > 0, p2 > 1, q1; q2 > 0, p2 > q2, p = p1 + p2,q = q1+q2, p 6 q + 1 are integers (these onditions imply that p1 6 q1+1).Write A1 = (a1; : : : ; ap1), A2 = (ap1+1; : : : ; ap), B1 = (b1; : : : ; bq1), B2 =(bq1+1; : : : ; bq) for omplex parameter vetors satisfying Re(A2) > 0. ThenpFq(A1; A2;B1; B2;−z)= �(B2)�(A2) ∞
∫0 p1Fq1 (A1;B1;−zt)Gp2;0q2;p2 (t ∣∣∣

∣

B2A2) dtt : (4)This formula is valid for z ∈ C if p1 6 q1 or z ∈ C\(−∞;−1℄ if p1 = q1+1;if p2 = q2 additional assumption Re( 2) > 0, where  2 = ∑pi=p1+1(bi−ai),has to be adopted (in this ase the G-funtion in (4) vanishes for t > 1).If p2 = q2 and  2 = 0, thenpFq(A1; A2;B1; B2;−z)= �(B2)�(A2){p1Fq1(A1;B1;−z)+ 1
∫0 p1Fq1 (A1;B1;−zt)Gp2;0q2;p2 (t ∣∣∣

∣

B2A2) dtt };(5)where z ∈ C if p1 6 q1 or z ∈ C\(−∞;−1℄ if p1 = q1 + 1.Proof. One the orretness of termwise integration has been justi�ed, itsuÆes to write the kernel p1Fq1 as the series (1) and integrate term byterm to establish formula (4). To demonstrate onvergene of the integral



124 D. B. KARPin (4) and justify the exhange of summation and integration we resort tothe asymptoti relationGp2;0q2;p2(x BA) = O (xa lnm−1(x)) as x→ 0; (6)where a = min(Re(a1); : : : ;Re(ap)), and the minimum is taken over thoseai for whih ai−bj =∈ N0 for all j = 1; : : : ; q2. Positive integerm is the maxi-mal multipliity among the numbers ai for whih the minimum is attained.This formula follows from [14, Corollary 1.12.1℄ or [13, formula (11)℄. Itproves onvergene in (4) around zero. Near in�nity for p2 > q2 we haveGp2;0q2;p2 (x BA)= (2�) 12 (�−1)√� x(1−�)=�e−�x1=� [1 +O(x−1=�)]as x→ ∞; (7)where � = p2− q2, � = q
∑i=q1+1 bi− p

∑i=p1+1 ai+ 12 (p2− q2+1). This formulais a partiular ase of the formula on page 289 in [4℄ whih is implied byformula (7.8) of the same paper. If p2 = q2 and Re( 2) > 0 thenGp2;0q2;p2 (x ∣

∣

∣

∣

B2A2) = O((1− x)Re( 2)−1) as x ↑ 1aording to [20, 8.2.59℄ andGp2;0q2;p2 (x ∣

∣

∣

∣

B2A2) = 0 for x > 1;aording to [9, Lemma 1℄ (see also proof of Theorem 2 below). This showsthe onvergene in (4) around unity for p2 = q2. Finally, formula (5) followsfrom [8, Theorem 1℄. �Remark. Condition p2 > q2 is neessary in the above theorem sine for�ÒÉ p2 < q2 Gp2;0q2;p2 (x ∣

∣

∣

∣

B2A2) = 0 for all x ∈ R:This ondition shows that for p < q the funtion pFq annot be representedby the Laplae or generalized Stieltjes transform. The most "extreme"representation we an get in this ase is:pFq(A;B;−z) = �(B2)�(A) 1
∫0 0Fq−p(−;B1;−zt)Gp;0p;p(t ∣∣∣

∣

B2A ) dtt ;



REPRESENTATIONS AND INEQUALITIES 125where the kernel 0Fm is essentially the Bessel funtion if m = 1 or the soalled hyper-Bessel funtion if m > 1 (see [15℄). Besides, this kernel annotbe represented by Theorem 1 due to ondition p2 > 1. It is sometimesdesirable, however, to have a representation with a kernel independentof the parameters of the funtion being represented. This an be easilyahieved by introduing arti�ial parameters �j > 0 to getpFq(A;B;−z) = �(B)�(A) q−p∏i=1 �(�i)1
∫0 0Fq−p(−;�1; : : : ; �q−p;−zt)Gq;0q;q (t ∣∣∣

∣

BA;�1; : : : ; �q−p) dtt : (8)We need to require ∑ bi > ∑ ai + ∑�i for onvergene of the aboveintegral. In partiular, hoosing �i = i=(q− p+1), we obtain the kernel interms of the so alled generalized osine,osn(z) = ∞
∑j=0 (−1)jznj(nj)! = 0Fn−1(−; 1=n; 2=n; : : : ; (n− 1)=n;−(z=n)n):The representation with suh kernel has been �rst suggested by Kiryakovain [15℄. An important partiular ase p = q − 1 leads to standard osinekernel as indiated in the orollary below. Before stating it let us de�nethe the parametri exess by = q

∑k=1 bk − p
∑k=1 ak: (9)Corollary 1. Suppose Re(A) > 0 element-wise. Thenq+1Fq(AB∣

∣

∣

∣

− z) = �(B)�(A) ∞
∫0 e−ztGq+1;0q;q+1 (t ∣∣∣

∣

BA) dtt : (10)If also Re( ) > 0, thenqFq(AB∣

∣

∣

∣

− z) = �(B)�(A) 1
∫0 e−ztGq;0q;q (t ∣∣∣

∣

BA) dtt : (11)



126 D. B. KARPIf Re( ) > 1=2, thenq−1Fq (AB∣

∣

∣

∣

− z) = �(B)√��(A) 1
∫0 os(2√zt)Gq;0q;q (t ∣∣∣

∣

BA; 1=2) dtt : (12)If  = 0, then (11) takes the formqFq(AB∣

∣

∣

∣

− z) = �(B)�(A){e−z + 1
∫0 e−ztGq;0q;q (t ∣∣∣

∣

BA) dtt }:If  = 1=2, then (12) takes the formq−1Fq (AB∣

∣

∣

∣

− z)= �(B)√��(A){os(2√z)+ 1
∫0 os(2√zt)Gq;0q;q (t ∣∣∣

∣

BA; 1=2)dtt }:Appliation of integral representations (3), (4), (5), (8) (10), (11) and(12) for investigating the properties of the generalized hypergeometrifuntion pFq depends heavily on the positivity of representing measures,expressed here in terms of Meijer's G-funtion. SuÆient onditions forsuh positivity are furnished in the next theorem.Theorem 2. Suppose A;B ∈ R
q are suh thatv(t) = q

∑j=1(taj − tbj ) > 0 on (0; 1℄: (13)Then Gq;0q;q (t ∣∣∣
∣

BA)

> 0 on (0; 1): (14)Before giving a proof of this theorem let us remind the reader that anonnegative funtion f de�ned on (0;∞) is alled ompletely monotone if ithas derivatives of all orders and (−1)nf (n)(x) > 0 for n ∈ N0 and x > 0 [22,De�ntion 1.3℄. This inequality is known to be strit unless f is a onstant.By the elebrated Bernstein theorem a funtion is ompletely monotoneif and only if it is the Laplae transform of a nonnegative measure [22,Theorem 1.4℄. A positive funtion f is said to be logarithmially ompletelymonotone if −(log f)′ is ompletely monotone [22, De�nition 5.8℄. Thelass of logarithmially ompletely monotone funtions is a proper subsetof the lass of ompletely monotone funtions. Their importane stems



REPRESENTATIONS AND INEQUALITIES 127from the fat that they represent Laplae transforms of in�nitely divisibleprobability distributions, see [22, Theorem 5.9℄ and [21, Setion 51℄.Proof of Theorem 2. First note thatGq;0q;q (t ∣∣∣
∣

BA) = 0for t > 1 and all (omplex) values of A and B. This follows from the fatthat for t > 1 hoosing the right loop to be the ontour of integration in(2) gives onvergent integral aording to [14, Theorem 1.1℄. On the otherhand, there are no poles of the integrand inside this ontour so that theabove equality follows by Cauhy's theorem. This explains the restritiont ∈ (0; 1) in the formulation of the theorem. Further, due to the formulat�Gq;0q;q (t ∣∣∣
∣

BA) = Gq;0q;q (t ∣∣∣
∣

B + �A+ �)(see [20, formula 8.2.2.15℄ or [3, 16.19.2℄) we an restrit our attention tothe ase A;B > 0. Indeed, adding large enough � to A and B neitheralters the sign of Meijer's G in (14) nor the sign of v(t) in (13). Adoptingthe assumption A;B > 0 we are in the position to apply [5, Lemma 2.1℄whose partiular ase (essentially ontained already in [1, Theorem 10℄)states that the ratio x → �(A+x)=�(B+x) is logarithmially ompletelymonotone if and only if ondition (13) is satis�ed. Hene, under (13) thisfuntion is also ompletely monotone. If  > 0 then�(A+ x)�(B + x) = ∞
∫0 e−xtGq;0q;q (e−t ∣∣∣

∣

BA) dtand the representing measure must be nonnegative by Berstein's theorem.This measure is unique aording to [22, Proposition 1.2℄. Nonnegativity isextended to  = 0 by ontinuity. If  < 0 then v(t) annot be nonnegativeon (0; 1℄ sine v(1) = 0 and v′(1) = − . �Condition (13) is probably also neessary for (14) at least when  > 0.However, this ondition is very diÆult to verify. Some suÆient onditionsare known for inequality (13) to hold. To ite the orresponding results weneed to introdue the following terminology [17, De�nition A.2℄. It is saidthat the real vetor B = (b1; : : : ; bq) is weakly supermajorized by the real



128 D. B. KARPvetor A = (a1; : : : ; aq) (symbolized as B ≺W A) if0 < a1 6 a2 6 · · · 6 aq ; 0 < b1 6 b2 6 · · · 6 bq ;and k
∑i=1 ai 6

k
∑i=1 bi for k = 1; 2 : : : ; q: (15)If, in addition,  (= q

∑i=1(bi − ai)) = 0, than B is said to be majorized byA, or B ≺ A.It will be onvenient to assume that A and B (or Ai, Bi when theyappear) are ordered asending whenever they are real. It follows immedi-ately from a theorem of Tomi� (see [17, Proposition 4.B.2℄) that v(t) > 0 ifB ≺W A. In the present ontext this fat was �rst used by Alzer [1, The-orem 10℄. For the partiular situation q = 2n, n = 0; 1; : : :, Grinshpan andIsmail [5, Theorems 1.1,1.2℄ derived two di�erent sets of suÆient ondi-tions for validity of (13).Combining nonnegativity of G-funtion with representations (3) and(11) we obtain some suÆient onditions for the generalized hypergeo-metri funtions to be ompletely monotone or logarithmially ompletelymonotone.Theorem 3. Suppose v(t) > 0 on (0; 1℄ and � > 0. Then the funtionsx → q+1Fq (�;AB ∣

∣

∣

∣

− x) and x→ qFq (AB∣

∣

∣

∣

− x)are ompletely monotone on (0;∞). In partiular, this holds if B ≺W A.Theorem 4. Suppose � > 0 and v(t) > 0 on (0; 1℄ (in partiular, thisholds if B ≺W A). Then the funtionx→ x−�q+1Fq (�;AB ∣

∣

∣

∣

− 1x)is ompletely monotone on (0;∞). If 0 < � 6 1 then it is logarithmiallyompletely monotone.



REPRESENTATIONS AND INEQUALITIES 129Proof. By fatoring the generalized Stieltjes transform (3) into repeatedLaplae transforms aording to [10, Theorem 8℄ we getx−�q+1Fq(�;A;B;−1=x) = 1�(�) ∞
∫0 e−uxu�−1∫ 10 e−utd�(t) du= 1�(�) ∞
∫0 e−uxu�−1qFq(A;B;−u) du;where d�(t) = �(B)�(A)Gq;0q;q (t ∣∣∣

∣

BA) dttis nonnegative by Theorem 2 whih implies omplete monotoniity. Fur-ther, aording to [21, Theorem 51.4℄ a probability distribution is in�nitelydivisible if it has log-onvex density. The funtion u�−1 1
∫0 e−utd�(t) is log-onvex for 0 < � 6 1, sine both fators are log-onvex (the seond fator islog-onvex by omplete monotoniity). Thus, the funtion in the statementof the theorem is the Laplae transform of an in�nitely divisible distribu-tion and so is logarithmially ompletely monotone by [1, Proposition onp.387℄ or [22, Theorem 5.9℄. �By applying the methods of proofs from [9, 11℄ to representations (4)and (5) it is straightforward to get the next two propositions (f. Theo-rems 4 and 7 from [9℄). The symbol A′1 will denote A1 without its maximalelement.Theorem 5. Keep notation and onstraints of Theorem 1 and suppose inaddition that A1; B1 > 0, p2 = q2 and p

∑j=p1+1(taj−tbj ) > 0 (or B2 ≺W A2).Then the funtion x→
pFq (A1; A2 + �B1; B2 + �∣

∣

∣

∣

− x)pFq (A1; A2B1; B2∣∣∣∣ − x)is monotone dereasing on (−∞; 0) if p 6 q or on (−1; 0) if p = q + 1 forevery �xed � > 0. If also p = q and ∑p1j=1(taj − tbj ) > 0 (or B1 ≺W A1),then the above quotient dereases on the whole real line. If p = q + 1 and



130 D. B. KARP
∑q1j=1(taj − tbj ) > 0 (or B1 ≺W A′1), then the above quotient dereases on(−1;∞).Theorem 6. Keep notation and onstraints of Theorem 1 and suppose inaddition that A1; B1 > 0, p2 = q2 and p

∑j=p1+1(taj−tbj ) > 0 (or B2 ≺W A2).Then the funtion � → pFq (A1; A2 + �B1; B2 + �∣

∣

∣

∣

− x)is log-onvex on (0;∞) for eah �xed x ∈ (−∞; 0) if p 6 q or x ∈ (−1; 0) ifp = q+1. If also p = q and ∑p1j=1(taj − tbj ) > 0 (or B1 ≺W A1), then log-onvexity holds for eah real x, while for p = q+1 and ∑q1j=1(taj − tbj ) > 0(or B1 ≺W A′1) log-onvexity holds for eah �xed x ∈ (−1;∞).Remark. It is easy to see that onditions B1 ≺W A1 and B2 ≺W A2imply B ≺W A (for these relations to make sense one has to assume thatp1 = q1 and p2 = q2). For this reason Theorems 5 and 6 are the strongestin some informal sense when p1 = q1 = 0, i.e. for the funtionsx→ qFq (A+ �B + �∣

∣

∣

∣

− x)/qFq (AB∣

∣

∣

∣

− x) and �→ qFq (A+ �B + �∣

∣

∣

∣

− x) :
§3. Inequalities for the Kummer and Gauss typefuntionsIn Theorem 16 of his paper [16℄ Luke gave two-sided bounds for thefuntion qFq(A;B;x) under the restritions bi > ai > 0, i = 1; 2; : : : ; q.He indiated that these bounds are "easily proved" without providing suhproofs. In this setion we will supply two di�erent proofs of Luke's inequal-ities, one valid for positive values of the argument x and the other valid forall real x. In this way we substantially relax Luke's onditions. For neg-ative argument values our onditions are given in terms of nonnegativityof v(t) or weak majorization B ≺W A. For positive argument values theonditions an be weakened further and are given in terms of elementarysymmetri polynomials, de�ned byek(x1; : : : ; xq) = ∑16j1<j2···<jk6q xj1xj2 · · ·xjk ; k = 1; 2; : : : ; q:



REPRESENTATIONS AND INEQUALITIES 131Theorem 7. Supposeeq(b1; : : : ; bq)eq(a1; : : : ; aq) >
eq−1(b1; : : : ; bq)eq−1(a1; : : : ; aq) > · · · >

e1(b1; : : : ; bq)e1(a1; : : : ; aq) > 1 (16)and eah elementary symmetri polynomial above is nonnegative. Thenef1x 6 qFq(A;B;x) 6 1− f1 + f1ex for x > 0; (17)where f1 = q
∏i=1(ai=bi). Moreover, the upper bound holds true if eah fra-tion in (16) is merely not less than 1.Remark. Note that onditions (16) are stritly weaker than B ≺W A,as we demonstrated in [9, Lemma 3℄.Proof. Denote by fn = q

∏i=1[(ai)n=(bi)n℄ the oeÆient at xn=n! in powerseries expansion (1) of qFq(A;B;x). Then onditionsei(b1; : : : ; bq) > ei(a1; : : : ; aq); i = 1; : : : ; q;(i.e. eah fration in (16) is not less than 1) imply thatfn+1fn = R(n) = q
∏i=1 ai + nbi + n 6 1;sine eq−i(a1; : : : ; aq) (eq−i(b1; : : : ; bq)) is the oeÆient of ni in the poly-nomial in the numerator (denominator) of R(n). Thus fn+1 6 fn, so thatfn 6 f1 for n = 1; 2; : : : . Consequently, for x > 0 we getqFq(A;B;x) = 1 + ∞

∑n=1 fnxnn! = 1 + f1 ∞
∑n=1 fnf1 xnn!

6 1 + f1 ∞
∑n=1 xnn! = 1− f1 + f1ex:Further, under onditions (16) the funtion R(x) de�ned above is inreas-ing aording to [12, Lemma 2℄. This leads to the following inequalities



132 D. B. KARP(k > 0): R(0) = q
∏i=1 aibi 6

q
∏i=1 ai + kbi + k = R(k) ⇒ (f1)n = q

∏i=1 (ai)n(bi)n
6

q
∏i=1 (ai)n(bi)n = fn; n = 1; 2; : : :Consequently,qFq(A;B;x) = 1 + ∞

∑n=1 fnxnn! > 1 + ∞
∑n=1(f1)nxnn! = ef1x;whih ompletes the proof. �Remark. Inequalities (17) an be re�ned to the estimates1 + f21f2 (e(f2=f1)x − 1) 6 qFq(A;B;x) 6 1− f2 + (f1 − f2)x+ f2ex (18)valid for x > 0 under onditions of Theorem 7. Indeed, the upper boundis obtained by writingqFq(A;B;x) = 1 + f1x+ f2 ∞

∑n=2 fnf2 xnn! 6 1 + f1x+ f2 ∞
∑n=2 xnn!= 1− f2 + (f1 − f2)x+ f2ex;where we used fn+1 6 fn for n = 2; 3; : : : provided that eah frationin (16) is not less than 1. To prove the lower bound we note that underonditions (16) we have (f2=f1)n−1 6 fn=f1 for n = 2; 3; : : : by the inreaseof R(x). ThenqFq(A;B;x) = 1 + f1x+ f1 ∞

∑n=2 fnf1 xnn!
> 1 + f1x+ f1 ∞

∑n=2(f2f1)n−1 xnn! = 1 + f21f2 (e(f2=f1)x − 1):Similar trik an be applied to separate further terms.Corollary 2. Suppose � > 0 and hypotheses of Theorem 7 are satis�ed.Then for 0 6 x < 11(1− f1x)� 6 q+1Fq(�;A;B;x) 6 1− f1 + f1(1− x)�



REPRESENTATIONS AND INEQUALITIES 133and 1− f21f2 + f21f2(1− f2x=f1)� 6 q+1Fq(�;A;B;x)
6 1− f2 + �(f1 − f2)x+ f2(1− x)� :Proof. Following Luke's idea from [16℄, write the bounds (17) forqFq(A;B; t), multiply by e−tyt�−1 and integrate using

∞
∫0 e−tyt�−1qFq(A;B; t) dt = y−��(�)q+1Fq(�;A;B; 1=y):It remains to write x = 1=y in the resulting inequality and simplify to getthe �rst inequality. The seond inequality is proved by applying the sametrik to (18). �Theorem 8. Suppose A;B > 0 and q

∑j=1(taj −tbj ) > 0 (or B ≺W A). Thene−f1x 6 qFq(A;B;−x) 6 1− f1 + f1e−xfor all real x.Proof. Aording to the integral form of Jensen's inequality [18, Chap-ter I, formula (7.15)℄'



b
∫a f(s)d�(s)/ b

∫a d�(s) 6

b
∫a '(f(s))d�(s)/ b

∫a d�(s) (19)if ' is onvex and f is integrable with respet to a nonnegative measure�. Put 'x(y) = e−xy, f(s) = s andd�(s) = �(B)�(A)Gq;0q;q (s ∣

∣

∣

∣

BA) dss :Then 1
∫0 d�(s) = 1; 1

∫0 f(s)d�(s) = q
∏i=1 aibi = f1;1

∫0 'x(f(s))d�(s) = qFq(A;B;−x):



134 D. B. KARPThe last equality is a rewriting of (11). This proves the lower bound. Todemonstrate the upper bound we will apply the onverse Jensen inequalitydue to Lah and Ribari�, whih reads as follows. SetA(g) = M
∫m g(s)d�(s)/ M

∫m d�(s) ;where � is a nonnegative measure and g is a ontinuous funtion. If −∞ <m < M < ∞ and ' is onvex on [m;M ℄ then aording to [19, Theo-rem 3.37℄(M −m)A('(g)) 6 (M −A(g))'(m) + (A(g)−m)'(M):Setting 'x(t) = e−xt, d�(s) = d�(s), g(s) = s and [m;M ℄ = [0; 1℄, wearrive at the upper bound of the theorem. �Corollary 3. Suppose � > 0 and hypotheses of Theorem 8 are satis�ed.Then 1(1 + f1x)� 6 q+1Fq(�;A;B;−x) 6 1− f1 + f1(1 + x)�for x > 0.Proof. Multiply inequality (17) written for qFq(A;B;−xt) by e−tt�−1and integrate using the formula
∞
∫0 e−tt�−1qFq(A;B;−xt) dt = �(�)q+1Fq(�;A;B;−x): �

§4. Inequalities for the Bessel type funtionsFirst, we will �nd an upper bound in the general situation p < q. Asbefore the symbol fn will denote the oeÆient at xn=n! in the seriesrepresentation (1), i.e.fn = p
∏i=1(ai)nq
∏i=1(bi)n = (A)n(B)n for n = 0; 1; : : :Theorem 9. Suppose p < q. Ifeq−i(b1; : : : ; bq) > ep−i(a1; : : : ; ap); i = 0; 1; : : : ; p; (20)



REPRESENTATIONS AND INEQUALITIES 135then for x > 0 pFq(A;B;x) 6 1− f1 + f1ex:If eq(b1; : : : ; bq)ep(a1; : : : ; ap) 6
eq−1(b1; : : : ; bq)ep−1(a1; : : : ; ap) 6 · · · 6

eq−p+1(b1; : : : ; bq)e1(a1; : : : ; ap) (21)
6 eq−p(b1; : : : ; bq);then for x > 0 pFq(A;B;x) 6 ef1x:Proof. The proof of the �rst upper bound repeats the proof of the upperbound (17) in Theorem 7. To demonstrate the seond bound note that forp < q the funtion R(x) = p

∏i=1(ai + x)q
∏i=1(bi + x)is dereasing under onditions (21) aording to [12, p.394℄ whih impliesthat fn = p

∏i=1(ai)nq
∏i=1(bi)n 6

p
∏i=1(ai)nq
∏i=1(bi)n = (f1)n:Hene, pFq(A;B;x) = 1 + ∞

∑n=1 fnxnn! 6 1 + ∞
∑n=1(f1)nxnn! = ef1x:

�Aording to the asymptoti formula [3, 16.11.8℄,q−1Fq (AB∣

∣

∣

∣

x) = �(b1) · · ·�(bq)2√��(a1) · · ·�(aq−1)x�e2√x (1 + d1√x +O(x−1))as x → +∞;where � = 12 q−1∑i=1 ai− 12 q
∑i=1 bi+1=4. Hene, the upper bounds of Theorem 9are very wrong in asymptoti order. In the most important ase p = q− 1we an do muh better.



136 D. B. KARPTheorem 10. Suppose A;B > 0 (understood element-wise). Then forx > 0 e√4x+2− (12 + 12√4x+ 2)−
6 q−1Fq(A;B;x); (22)where  > 0 is given by = maxi∈{1;2;:::;q} [ei(b1; b2; : : : ; bq)− ei(a1; a2; : : : ; ap)ei−1(a1; a2; : : : ; ap) ] ; (23)p = q − 1 and eq(a1; a2; : : : ; ap) = 0.Proof. Suppose we ould �nd a number  suh thatfn = (a1)n · · · (ap)n(b1)n · · · (bq)n >

1()n for n = 1; 2; : : : (24)Then for x > 0 (p = q − 1):pFq(A;B;x) = 1+ ∞
∑n=1 (a1)n · · · (ap)n(b1)n · · · (bq)n xnn! > 1+ ∞

∑n=1 1()n xnn! = 0F1(−; ;x):(25)Further, we an use some known lower bounds for the funtion 0F1(−; ;x)(whih is equal to the modi�ed Bessel funtion I−1 up to a simple mul-tiplier) to derive lower bounds for pFq(A;B;x) in terms of elementaryfuntions. For (24) to hold it suÆes to satisfy f1 > 1 andfn+1()n+1fn()n = (a1 + n) · · · (ap + n)(+ n)(b1 + n) · · · (bq + n) > 1; n = 1; 2; : : :In turn, the above inequality holds if (reall that q = p+ 1)ei(a1; a2; : : : ; ap; ) > ei(b1; b2; : : : ; bq); i = 1; 2; : : : ; q;or ei(a1; a2; : : : ; ap) + ei−1(a1; a2; : : : ; ap) > ei(b1; b2; : : : ; bq);i = 1; 2; : : : ; q:To satisfy these q inequalities we need to hoose  by = maxi∈{1;2;:::;q} [ei(b1; b2; : : : ; bq)− ei(a1; a2; : : : ; ap)ei−1(a1; a2; : : : ; ap) ] :Here e0 = 1 and eq(a1; a2; : : : ; ap) = 0. Due to the last identity we get  > 0for any positive arrays A and B. Hene, the problem redues to �ndinggood bounds for 0F1(−; ;x) for x;  > 0. Numerially best bounds are



REPRESENTATIONS AND INEQUALITIES 137ontained in [2, formula (11)℄ in terms of the ratio I�+1=I� of the modi�edBessel funtionsI�(x) = (x=2)� [�(� + 1)℄−10F1(−; � + 1;x2=4):When rewritten in terms of the logarithmi derivative of 0F1(−; ;x) thesebounds read 2√4x+ 2 +  6
0F1′(−; ;x)0F1(−; ;x) = 0F1(−; + 1;x)=0F1(−; ;x)

6
2

√4x+ (+ 1)2 + − 1 ;where the derivative formula 0F1′(−; ;x) = 0F1(−;  + 1;x)= has beenused. Employing the evaluationx
∫0 2dta+ √4tq + b2 = 1q√4xq + b2 − aq ln a+√4xq + b2a+ b − bq ;we an integrate the above inequalities to obtain

√4x+ 2 −  log +√4x+ 22 −  6 log(0F1(−; ;x))
6

√4x+ (+ 1)2 − (− 1) log − 1 +√4x+ (+ 1)22 − (+ 1):Taking exponentials yields:e√4x+2−(12 + 12√4x+ 2)−6 0F1(−; ;x)
6 e√4x+(+1)2−−1(− 12 + 12√4x+ (+ 1)2)1− : (26)Combining the lower bound here with (25) proves the theorem. �Theorem 11. Suppose A;B > 0 (understood element-wise) and d givenby d = mini∈{1;2;:::;q} [ei(b1; b2; : : : ; bq)− ei(a1; a2; : : : ; ap)ei−1(a1; a2; : : : ; ap) ] (27)



138 D. B. KARPis positive. Here p = q − 1, e0 = 1 and eq(a1; a2; : : : ; ap) = 0. Then forx > 0q−1Fq(A;B;x) 6 e√4x+(d+1)2−d−1 (d− 12d + 12d√4x+ (d+ 1)2)1−d :(28)Proof. If we ould �nd d suh thatfn(d)n = (a1)n · · · (ap)n(d)n(b1)n · · · (bq)n 6 1 for n = 1; 2; : : : ;then pFq(A;B;x) = 1 + ∞
∑n=1 (a1)n · · · (ap)n(b1)n · · · (bq)n xnn!

6 1 + ∞
∑n=1 1(d)n xnn! = 0F1(−; d;x):Appliation of the upper bound from (26) to the above inequality willprove (28). To �nd suh d it suÆes to satisfy f1d 6 1 andfn+1(d)n+1fn(d)n = (a1 + n) · · · (ap + n)(d+ n)(b1 + n) · · · (bq + n) 6 1:In turn, the above inequality holds if (reall that q = p+ 1)ei(a1; a2; : : : ; ap; d) 6 ei(b1; b2; : : : ; bq); i = 1; 2; : : : ; q;orei(a1; a2; : : : ; ap) + dei−1(a1; a2; : : : ; ap) 6 ei(b1; b2; : : : ; bq); i = 1; 2; : : : ; q:To satisfy these q inequalities we need to hoose d by (27). �Aknowledgments. This work has been supported by the RussianSiene Foundation under projet 14-11-00022.Referenes1. H. Alzer, On some inequalities for the gamma and psi funtions. | Math. Comp.66, No. 217 (1997), 373{389.2. D. E. Amos, Computation of modi�ed Bessel funtions and their ratios. | Math.Comp. 28, No. 25 (1974), 239{251.3. R. A. Askey and A. B. Olde Daalhuis, Generalized Hypergeometri Funtions andMeijer G-Funtion. NIST handbook of mathematial funtions, 403{418, US Dept.Commere, Washington, DC, 2010.
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