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REPRESENTATIONS AND INEQUALITIES FOR
GENERALIZED HYPERGEOMETRIC FUNCTIONS

ABSTRACT. An integral representation for the generalized hyper-
geometric function unifying known representations via generalized
Stieltjes, Laplace, and cosine Fourier transforms is found. Using
positivity conditions for the weight in this representation, various
new facts regarding generalized hypergeometric functions, including
complete monotonicity, log-convexity in upper parameters, mono-
tonicity of ratios and new proofs of Luke’s bounds are established.
In addition, two-sided inequalities for the Bessel type hypergeomet-
ric functions are derived with use of their series representations.

§1. INTRODUCTION

Standard notation R, C and N for the real, complex and natural num-
bers, respectively, will adopted. Ny will denote NU {0}. In previous works
[9,11] we obtained some representations, inequalities, monotonicity and
other properties for the Gauss type generalized hypergeometric function
q+1Fy which is equal to p = ¢ + 1 case of the function [3,15]

A _ DN . - (al)n(a2)n"'(ap)n n
»Fa (B ) =oFy (4 B2) = 4 o

n=0
where A = (a1,02,...,ap) and B = (b1, be,...,b), bj ¢ —Np, are pa-
rameter vectors, (a), denotes the rising factorial, defined by (a)e = 1,
(a)p =ala+1)---(a+n—1), n > 1. The series in (1) converges in the
entire complex z-plane if p < ¢ and inside the unit disk if p = ¢+ 1. In
the latter case the sum can be extended to a function holomorphic in the
cut plane C\[1,00). The main tool employed in [9,11] to investigate the
function 441 Fy is the generalized Stieltjes transform (see (3) below) of a
measure with density expressed by the G-function of Meijer, cf. [9, Theo-
rem 2]. Such representation appeared earlier in [15, Theorem 4.2.11]. We

(1)
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contributed more relaxed conditions on parameters and studied nonnega-
tivity of the representing measure. This lead to monotonicity of the ratios,
two-sided bounds, mapping properties and other results for the Gauss type
hypergeometric functions ;41 F}.

Another line of research pursued in [6,7,12] hinges on the series rep-
resentation (1) and yields, among other things, a number of properties
of the Kummer type hypergeometric functions ,F}, including logarithmic
concavity or convexity in parameters, inequalities for logarithmic deriva-
tives and bounds for the Turdnians. In this note an integral representation
for the general hypergeometric function ,Fy, which includes, as particular
cases, the representations by the generalized Stieltjes, Laplace and cosine
Fourier transforms is introduced. Starting with this representation we will
obtain new properties of the the Gauss type functions 441 Fy, the Kummer
type functions ,F, and the Bessel type functions ,_; F}, including condi-
tions for complete monotonicity, monotonicity of ratios and log-convexity
in upper parameters. Moreover, we furnish new proofs for Luke’s inequali-
ties from [16], allowing their extension to a wider parameter range. Finally,
we discover new bounds for the Bessel type hypergeometric functions ,F
with p < ¢ of positive argument.

§2. REPRESENTATIONS FOR ,F,; AND THEIR CONSEQUENCES

Suppose 0 < m < ¢, 0 < n < p are integers and A € CP, B € C? are
such that a; —b; —1 ¢ Ny foralli=1,...,nand j =1,...,m. We will
heavily use Meijer’s G-function [3, Section 16.17] defined by the contour

integral
m,n A
G (z B)
_ 1 [D(i+s) - Tbm+s)[1—ar—s)---I'(1-an—s)z"°
© 2w J D(ans1+5) - T(ap+8)T(1 = byy1—5) - T(1 — by —s)
C

ds. (2)

The contour £ begins and ends at infinity and separates the poles of the
integrand of the form —b; — k, k € No, leaving them on the left, from the
poles of the form —a; +k+1, k € Ny, leaving them on the right. Under the
above conditions such contour always exists and can be chosen to make
the integral in (2) convergent. More details regarding the choice of £ and
conditions for convergence in (2) can be found in [3], [14, Chapters 1 and
2] and [20, Chapter 8].
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We will abbreviate H I'(a;) to T'(4) and H (a;i)n to (A), throughout

i=
the paper. Expressmns hke A + a, where a € (C and Re(A4) > 0 will be
understood element-wise. The key role in the investigations carried out
in [9,11] is played by the generalized Stieltjes transform representation

1
o, A B) Y B\ dt
q+1F< ‘ ):_(A / (1+ 2t) GZ:S (t‘A> > (3)

0

which is easy to prove by termwise integration. Note that both the gener-
alized Stieltjes kernel (1 + 2t)~% = 1 Fy(o; —; —=2t) and the Laplace kernel
e~ *t = o Fy(—; —; —zt) are particular cases of a more general hypergeomet-
ric kernel. This simple observation leads to the following theorem.

Theorem 1. Suppose p1 2 0, p> 2 1, q1,q2 2 0, p» = @2, p = p1 + p2,
q=q1+q2, p < q+ 1 are integers (these conditions imply that py < ¢1 +1).
Write Al = (al, N ,apl), Ag = (ap1+1, .. .,ap), B1 = (bl, N ,bql), BQ =
(bgi+1,---,bq) for complex parameter vectors satisfying Re(As) > 0. Then

Fy(Ai,Ay; By, Bs; —2)

e 7F (mi-eps, ()5 Y

0

This formula is valid for z € C if p1 < g1 orz € C\(—o0, —1] if p1 = 1 +1;
if p2 = q2 additional assumption Re(12) > 0, where o = Y 0_ o1 (bi—as),
has to be adopted (in this case the G-function in (4) vanishes for t > 1).
If p» = g2 and 9y =0, then
Fy(A1, As; By, By; —2)
1

I'(B>) , B, dt
= F(Ag) {PlFlh (Al; By; _Z)+/p1FtI1 (Al; Bi;— )G527p2 ( ‘Az - (>

’ (5)

where z € C if py < q1 or z € C\(—o0,—1] if p1 = q1 + 1.

Proof. Once the correctness of termwise integration has been justified, it
suffices to write the kernel , Fj, as the series (1) and integrate term by
term to establish formula (4). To demonstrate convergence of the integral
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in (4) and justify the exchange of summation and integration we resort to
the asymptotic relation

B .
G0, (az A) =0 (z*In™ (z)) as z—0, (6)
where @ = min(Re(a1),...,Re(ap)), and the minimum is taken over those
a; for which a;—b; ¢ N forall j = 1,..., g». Positive integer m is the maxi-

mal multiplicity among the numbers a; for which the minimum is attained.
This formula follows from [14, Corollary 1.12.1] or [13, formula (11)]. It
proves convergence in (4) around zero. Near infinity for po > g2 we have

L(p-1
GP20 (:17 ‘ B) = 7(27T)2(u )m(l_a)/”e_‘””l/u 1+ Oz '/")

q2,P2 A \/ﬁ (7)

as T — 00,

q P

where p=po —qz, = > bj— > a;+3(p2—g2+1). This formula
i=q1+1 i=p1+1

is a particular case of the formula on page 289 in [4] which is implied by

formula (7.8) of the same paper. If ps = g2 and Re(y)2) > 0 then

Gp20 (:17

q2,p2

52) =O((1—x)Re=) ) as 211
2
according to [20, 8.2.59] and

GP2:0 (x By

Ay

according to [9, Lemma 1] (see also proof of Theorem 2 below). This shows
the convergence in (4) around unity for ps = go. Finally, formula (5) follows
from [8, Theorem 1]. O

q2,p2

>:0 for z>1,

Remark. Condition ps > ¢2 is necessary in the above theorem since for
mput Py < g2

B

0 2

Gg;PQ (ZL‘ A2

This condition shows that for p < g the function , F, cannot be represented

by the Laplace or generalized Stieltjes transform. The most ”extreme”

representation we can get in this case is:

):O for all z € R.

['(Bs) B>\ dt
p Iy (A; By —2) = F(Az) /OFq,p(f;Bl;—zt)ngg (t‘ AZ) e

0
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where the kernel ¢ F}, is essentially the Bessel function if m = 1 or the so
called hyper-Bessel function if m > 1 (see [15]). Besides, this kernel cannot
be represented by Theorem 1 due to condition ps > 1. It is sometimes
desirable, however, to have a representation with a kernel independent
of the parameters of the function being represented. This can be easily
achieved by introducing artificial parameters a;; > 0 to get

I'(B)

pFy(A; By —2z) = —p
r() Tf (e
i d
B t
/qu,p(f; a1,y Ogp; fzt)ngg (t ‘A, ... ,aq_p) e (8)
0

We need to require > b; > > a; + > «a; for convergence of the above
integral. In particular, choosing a; = i/(q —p+ 1), we obtain the kernel in
terms of the so called generalized cosine,

cosn(z) = e oFn_1(—;1/n,2/n,...,(n—1)/n;—(z/n)").

=0

The representation with such kernel has been first suggested by Kiryakova
n [15]. An important particular case p = ¢ — 1 leads to standard cosine
kernel as indicated in the corollary below. Before stating it let us define
the the parametric excess by

q p
¢=Zbk—zak- (9)
k=1 k=1

Corollary 1. Suppose Re(A4) > 0 element-wise. Then

A T(B) | y
wfilpl=9) =t [ (D) o
0
If also Re(y)) > 0, then
1
A I'(B y
AQ-)-5a e )s



126 D. B. KARP

If Re(y)) > 1/2, then
1

g—1Fy (g‘ - z) = %/COS(Q\/E)GZZS (t ‘Aﬁﬂ) % (12)

0
If ¢» = 0, then (11) takes the form

i (§) - = R e () 4}

If = 1/2, then (12) takes the form
1

1 Fy (g‘—z) FB) {Cos (2v7) +/cos nlen (t‘AEf/z)dt}
\/_

0

Application of integral representations (3), (4), (5), (8) (10), (11) and
(12) for investigating the properties of the generalized hypergeometric
function ,Fy depends heavily on the positivity of representing measures,
expressed here in terms of Meijer’s G-function. Sufficient conditions for
such positivity are furnished in the next theorem.

Theorem 2. Suppose A, B € R? are such that
q
= (% = ") >0 on (0,1]. (13)
j=1

Then
B
Gg,g( ‘A) >0 on (0,1). (14)

Before giving a proof of this theorem let us remind the reader that a
nonnegative function f defined on (0, 00) is called completely monotone if it
has derivatives of all orders and (—1)" f(®)(z) > 0 for n € Np and z > 0 [22,
Defintion 1.3]. This inequality is known to be strict unless f is a constant.
By the celebrated Bernstein theorem a function is completely monotone
if and only if it is the Laplace transform of a nonnegative measure [22,
Theorem 1.4]. A positive function f is said to be logarithmically completely
monotone if —(log f)’ is completely monotone [22, Definition 5.8]. The
class of logarithmically completely monotone functions is a proper subset
of the class of completely monotone functions. Their importance stems
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from the fact that they represent Laplace transforms of infinitely divisible
probability distributions, see [22, Theorem 5.9] and [21, Section 51].

Proof of Theorem 2. First note that

Gﬁ<4§):0

for t > 1 and all (complex) values of A and B. This follows from the fact
that for ¢ > 1 choosing the right loop to be the contour of integration in
(2) gives convergent integral according to [14, Theorem 1.1]. On the other
hand, there are no poles of the integrand inside this contour so that the
above equality follows by Cauchy’s theorem. This explains the restriction
t € (0,1) in the formulation of the theorem. Further, due to the formula

e o) - (1)

(see [20, formula 8.2.2.15] or [3, 16.19.2]) we can restrict our attention to
the case A, B > 0. Indeed, adding large enough a to A and B neither
alters the sign of Meijer’s G in (14) nor the sign of v(t) in (13). Adopting
the assumption A, B > 0 we are in the position to apply [5, Lemma 2.1]
whose particular case (essentially contained already in [1, Theorem 10])
states that the ratio z — I'(A+ ) /(B + z) is logarithmically completely
monotone if and only if condition (13) is satisfied. Hence, under (13) this
function is also completely monotone. If ¢ > 0 then

TA+z) [ . L |B
4:/6 tGg:2<etA> dt
0

I'(B + z)
and the representing measure must be nonnegative by Berstein’s theorem.
This measure is unique according to [22, Proposition 1.2]. Nonnegativity is
extended to ¥ = 0 by continuity. If ¢/ < 0 then v(¢) cannot be nonnegative
on (0,1] since v(1) =0 and v'(1) = —. O

Condition (13) is probably also necessary for (14) at least when ¢ > 0.
However, this condition is very difficult to verify. Some sufficient conditions
are known for inequality (13) to hold. To cite the corresponding results we
need to introduce the following terminology [17, Definition A.2]. It is said
that the real vector B = (by, ..., b,) is weakly supermajorized by the real
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vector A = (a1, ...,a,) (symbolized as B <V A) if

0<a1<a2<~~~<aq,0<b1§b2<~~~<bq,

k k (15)
and ZaZ-gai for k=1,2...,q.
i=1

i=1

Q

If, in addition, ¥(= > (b; — a;)) = 0, than B is said to be majorized by

A, or B < A. =

It will be convenient to assume that A and B (or A;, B; when they
appear) are ordered ascending whenever they are real. It follows immedi-
ately from a theorem of Tomi¢ (see [17, Proposition 4.B.2]) that v(¢) > 0 if
B <" A. In the present context this fact was first used by Alzer [1, The-
orem 10]. For the particular situation ¢ = 2", n = 0,1,..., Grinshpan and
Ismail [5, Theorems 1.1,1.2] derived two different sets of sufficient condi-
tions for validity of (13).

Combining nonnegativity of G-function with representations (3) and
(11) we obtain some sufficient conditions for the generalized hypergeo-
metric functions to be completely monotone or logarithmically completely
monotone.

Theorem 3. Suppose v(t) = 0 on (0,1] and o > 0. Then the functions

A A
a:—>q+1Fq(g’B ‘— ) and xHqu(B‘— )

are completely monotone on (0,00). In particular, this holds if B <"V A.

Theorem 4. Suppose o > 0 and v(t) > 0 on (0,1] (in particular, this
holds if B <" A). Then the function

— o, Al 1
e i3

is completely monotone on (0,00). If 0 < o < 1 then it is logarithmically
completely monotone.
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Proof. By factoring the generalized Stieltjes transform (3) into repeated
Laplace transforms according to [10, Theorem 8] we get

o

1T !
x g1 Fy (0, A; B; —1/z) = F_/ *“Iu"*l/ e “dp(t) du
0
0

where
I'(B) B\ dt
dp(t) = =—=G29 (¢ —
0= rgets (¢]1) |
is nonnegative by Theorem 2 which implies complete monotonicity. Fur-
ther, according to [21, Theorem 51.4] a probability distribution is infinitely

1
divisible if it has log-convex density. The function u®~! ['e~“!dp(t) is log-

0

convex for 0 < ¢ < 1, since both factors are log-convex (the second factor is
log-convex by complete monotonicity). Thus, the function in the statement
of the theorem is the Laplace transform of an infinitely divisible distribu-
tion and so is logarithmically completely monotone by [1, Proposition on
p.387] or [22, Theorem 5.9]. O

By applying the methods of proofs from [9,11] to representations (4)
and (5) it is straightforward to get the next two propositions (cf. Theo-
rems 4 and 7 from [9]). The symbol A} will denote 4; without its maximal
element.

Theorem 5. Keep notation and constraints of Theorem 1 and suppose in

p
addition that A1, By > 0,ps = go and > (% —t%) > 0 (or By <" As).
j=p1+1

Al,A2+‘u
qu <B17BQ+/J/ — X

17A2 )
— I

A
vFa (Bl, B,

is monotone decreasing on (—00,0) if p < q or on (=1,0) if p=q+1 for
every fized p > 0. If also p = q and Z?;l(taﬂ’ —thi) >0 (or By <V A)),
then the above quotient decreases on the whole real line. If p = q+ 1 and

Then the function

xr —
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;1-1:1 (t% — %) > 0 (or By <" AY), then the above quotient decreases on
(*17 OO) .

Theorem 6. Keep notation and constraints of Theorem 1 and suppose in

p
addition that Ay, By > 0,py = go and > (% —t%) > 0 (or By <" Ay).
Jj=p1+1
Then the function
Al AQ + u
F, ’ —
b=y q(Bl’BQ"_,U’ T

is log-convez on (0, 00) for each fivzed x € (—00,0) if p < q orz € (—1,0) if
p=gq+1. If also p=q and Z?lzl(t“i —t%) >0 (or By < A;), then log-
convexity holds for each real z, while for p = q+1 and Z?;l(t“f —thi) >0
(or By <" A}) log-convezity holds for each fived x € (—1,00).

Remark. It is easy to see that conditions B; <" A; and By <V A,
imply B <" A (for these relations to make sense one has to assume that
p1 = q1 and ps = ¢2). For this reason Theorems 5 and 6 are the strongest
in some informal sense when p; = ¢; = 0, i.e. for the functions

A+ A A+
e (1] ) e (2]

§3. INEQUALITIES FOR THE KUMMER AND (GAUSS TYPE
FUNCTIONS

In Theorem 16 of his paper [16] Luke gave two-sided bounds for the
function ,F,(A4; B;z) under the restrictions b; > a; > 0,7 = 1,2,...,q.
He indicated that these bounds are ”easily proved” without providing such
proofs. In this section we will supply two different proofs of Luke’s inequal-
ities, one valid for positive values of the argument = and the other valid for
all real z. In this way we substantially relax Luke’s conditions. For neg-
ative argument values our conditions are given in terms of nonnegativity
of v(t) or weak majorization B <" A. For positive argument values the
conditions can be weakened further and are given in terms of elementary
symmetric polynomials, defined by

er(T1,..., &) = E TjHTj, o xy, k=1,2,...,q.
1<j1<g2<je<q
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Theorem 7. Suppose

eq(bl,...,bq) S eq_l(bl,...,bq) S S el(bl,...,bq)
eqlar,...,a;) = eq1(ar,...,a,) ~e(ay,...,a,

>1  (16)

and each elementary symmetric polynomial above is nonnegative. Then

ef17 < Fe(A;Byx) <1 — f1 + fie® for x>0, (17)

q

where fi = [](a;/b;). Moreover, the upper bound holds true if each frac-
i=1

tion in (16) is merely not less than 1.

Remark. Note that conditions (16) are strictly weaker than B <"V A,

as we demonstrated in [9, Lemma 3].

q
Proof. Denote by f, = [][[(ai)n/(bi)n] the coefficient at z™/n! in power
=1
series expansion (1) of ,F,(A; B; ). Then conditions

ei(br,...,bg) Zei(ar,...,aq), i=1,...,q,

(i.e. each fraction in (16) is not less than 1) imply that

fnt1 T ai+n
—:R et g]_’
(n) gb¢+n

fn
since e;—;(ai, ..., aq) (eg—i(b1,...,by)) is the coefficient of n’ in the poly-
nomial in the numerator (denominator) of R(n). Thus f,+1 < fn, so that
fn < fiforn=1,2,.... Consequently, for x > 0 we get

oo " oo Fo 20
oFq(4; Bsz) = 1+anm = 1+f12——
n=1 : :

o fi n!
o xn
<1+f1zmzl—f1+f1ez-
n=1 :

Further, under conditions (16) the function R(x) defined above is increas-
ing according to [12, Lemma 2]. This leads to the following inequalities
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(k> 0)
q q
a; a; + k (a;)"
ey — K ey n ey
i=1 i=1 i=1
< ﬁ @in _ ¢ 19
~ pale} (bz)n mny
Consequently,
CR-) — fadl n?  _ N
Fy(4Ba) =1+ ) for > 14D (fi)' 5 =el?,
n—=1 n=1
which completes the proof. (I

Remark. Inequalities (17) can be refined to the estimates

§§< (/102 _ 1) < Fy(A; Biw) < 1= fo+ (f1 — o)z + foe®  (18)

valid for £ > 0 under conditions of Theorem 7. Indeed, the upper bound
is obtained by writing

o0 xn
(A310—1+ﬁx+h§: _ 1+ﬁx+h§:n!
n=2
=1-fo+(fi— fz)w + f2e”,
where we used f,41 < f, for n = 2,3,... provided that each fraction

in (16) is not less than 1. To prove the lower bound we note that under
conditions (16) we have (f2/f1)" ! < fn/fi forn =2,3,... by the increase
of R(x). Then

z"

‘nl

Fy(A;Bso) =1+ fiz + fi Z

fa
fi
>1+f1$+f1 ( ) n_ fl( (fo/f)e _q 1).
n! fz

Similar trick can be applied to separate further terms.

Corollary 2. Suppose ¢ > 0 and hypotheses of Theorem 7 are satisfied.
Then for 0 <z < 1

1 f
S -2y
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and

S P AB
o (= fox/fr)e SOOI
fo

g 1-— f2 +0'(f1 — fg)l'-i-m.

Proof. Following Luke’s idea from [16], write the bounds (17) for
F,(A; B;t), multiply by e "t ~! and integrate using

1

/e*tytgfquq(A; B;t)dt =y °T(0)g+1Fy (0, A; B; 1/y).
0

It remains to write = 1/y in the resulting inequality and simplify to get
the first inequality. The second inequality is proved by applying the same
trick to (18). O

q
Theorem 8. Suppose A, B >0 and >_ (t% —t%) > 0 (or B <" A). Then
j=1

e_flw < qu(A;Ba 71’) < 1- fl + fle_m
for all real x.

Proof. According to the integral form of Jensen’s inequality [18, Chap-
ter I, formula (7.15)]

/ £(s)du(s / / du(s) | < / o (F(s))du(s) / / du(s)  (19)

if ¢ is convex and f is integrable w1th respect to a nonnegative measure
w. Put @, (y) =e ¥, f(s) = s and

o= ()%
[ if RIS
du(s

ij(f( )
0

Then
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The last equality is a rewriting of (11). This proves the lower bound. To
demonstrate the upper bound we will apply the converse Jensen inequality
due to Lah and Ribarié¢, which reads as follows. Set

M M
Alg) = [ atsydr(s) [ [ ars).

m

where 7 is a nonnegative measure and ¢ is a continuous function. If —oco <
m < M < oo and ¢ is convex on [m, M] then according to [19, Theo-
rem 3.37]

(M —m)A(p(9)) < (M = Ag))p(m) + (A(g) — m)p(M).
Setting ¢, (t) = e~ %, dr(s) = du(s), g(s) = s and [m, M] = [0,1], we

arrive at the upper bound of the theorem. (I

Corollary 3. Suppose ¢ > 0 and hypotheses of Theorem 8 are satisfied.
Then
Y P, ABi-z) <1— fi+ T
(1+f1$)‘7 X g+14¢\Vy A4 D, X 1 (1+ZL‘)U
for x > 0.
Proof. Multiply inequality (17) written for ,F,(4;B;—xt) by ettt

and integrate using the formula

/e_tt”_quq(A; B; —zt)dt =T'(0)4+1F,;(0, A; B; —x). O

0

§4. INEQUALITIES FOR THE BESSEL TYPE FUNCTIONS

First, we will find an upper bound in the general situation p < gq. As
before the symbol f,, will denote the coefficient at xz™/n! in the series
representation (1), i.e.

[T (ai)n
fn= i:ql = Eg))n for n=0,1,
[T (i) "

~
Il
=

Theorem 9. Suppose p < q. If
eq—i(b1,...,bg) Z ep_ilar,...,ap), i=0,1,...,p, (20)
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then for x > 0
pFe(A;Bx) <1— fi+ fie".

If

eq(bl,...,bq) < eq,l(bl,...,bq) ... < eq,p+1(b1,...,bq) (21)
eplat, ..., ap) = ep—1(ai,...,ap) = = eilat,...,ap)

then for x > 0
oFy(A; By x) < el'®.

Proof. The proof of the first upper bound repeats the proof of the upper
bound (17) in Theorem 7. To demonstrate the second bound note that for

p < g the function
p
I (ai + )
R(z) = =2

[1(bi +2)

i=1
is decreasing under conditions (21) according to [12, p.394] which implies
that

@) Tla)”
fa= Bl <EL gy
(ORI (%

Hence,

[e )

> " "
qu(AEBW):l-i-anmgl'i‘ (fl)nm:ehw.
n=1 ’ =1 ’

n

According to the asymptotic formula [3, 16.11.8],

17 (3]2) = sy by (1 o)

as T — +00,

q—1 q
where v = % Z:l a; — % 2:1 b; +1/4. Hence, the upper bounds of Theorem 9
1= 1=

are very wrong in asymg)totic order. In the most important case p = ¢ — 1
we can do much better.
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Theorem 10. Suppose A, B > 0 (understood element-wise). Then for
z >0

11 -
o <§ b Vi cz) < Fy(ABi),  (22)
where ¢ > 0 is given by
c max |:€i(b17b27-~-7bq) —ei(ay,az,. .., ap) ) (23)
ic{1,2,....q} 62’-1(@17 az, . .. 7%)
p=q—1andes(ar,az,...,a,) =0.
Proof. Suppose we could find a number ¢ such that
(@)n - (ap)n _ 1
=~ PR s for n=12,... 24
= Bn e~ @ .
Then forz >0 (p=q—1):
JF,(A; B;z) = 1+i (@) - (ap)n > 1+i L oFi(—;c;x).
2 (bi)n - (by)n ! = () n!
(25)

Further, we can use some known lower bounds for the function ¢ F; (—; ¢; x)
(which is equal to the modified Bessel function I._; up to a simple mul-
tiplier) to derive lower bounds for ,F,(A; B;z) in terms of elementary
functions. For (24) to hold it suffices to satisfy fic > 1 and

funr(@nir _ (a1 +n) - (ay +m)(e+n)
fn(E)n (b +n)"'(bq+”)

In turn, the above inequality holds if (recall that ¢ =p+ 1)

>1, n=1,2,...

ei(ar,az,...,ap,¢) = e€;(b1,ba,...,b), i=1,2,...,q,

or
ei(ar,az,...,ap) +cei_1(ay,as,...,ap) = e;(by,ba, ..., by),
1=1,2,...,q.
To satisfy these ¢ inequalities we need to choose ¢ by
c= max ei(bl,bg,...,bq)—ei(al,ag,...,ap)
i€{1,2,....q4} ei—1(ay,az,...,ap)

Here eg = 1 and e4(ay, az, . ..,a,) = 0. Due to the last identity we get ¢ > 0
for any positive arrays A and B. Hence, the problem reduces to finding
good bounds for ¢Fi(—;c;z) for z,c¢ > 0. Numerically best bounds are
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contained in [2, formula (11)] in terms of the ratio 1,41 /I, of the modified
Bessel functions

I(z) = (2/2)"[0(v + D] o Fi(—5v + 127 /4).

When rewritten in terms of the logarithmic derivative of ¢ F; (—; ¢; z) these
bounds read

2 o oFY (—; ¢ ) _ oFi(—;e+ 1;2)/c
Viz+ e +e oFi(—;¢) oFi(—;¢1)

< 2 3
Vir+ (c+1)24+c—1

where the derivative formula oFy'(—;¢;2) = oFi(—;¢ + 1;2)/c has been
used. Employing the evaluation

r 2t 1 AP R
/— - /4xq+bzfglnw,_’
0

a+\/itg+bv 4 q a+b q

we can integrate the above inequalities to obtain

/4 2
\/4x+62fclogc—’_24x+cfcélog(0F1(*;C§$))
c
‘ —1+./4 1)
< VAT (e r 1P (e 1)log C VRN )

Taking exponentials yields:

—C

1 1
e\/WC<_ + —4x + 02) <oFi(—;¢ )

2 2
1—c
< e\/4x+(c+1)2—c—1 g + l Az + (C+1)2 ] (26)
2c 2c
Combining the lower bound here with (25) proves the theorem. O

Theorem 11. Suppose A, B > 0 (understood element-wise) and d given
by

d= min { (27)

ei(bi,ba,...,by) —ei(ar,as,... ,ap)}
i€{1,2,...,q}

ei_l(al,ag, e ,ap)
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is positive. Here p = q — 1, eg = 1 and e4(a1,a0,...,ap) = 0. Then for
z >0
JEr@—an (-1 1 A
(28)

Proof. If we could find d such that
(a1)n -+ (ap)n(d)

Jald)n = <1 for n=1,2,...,
D= g0 G
then
= (a1)n - (ap)n 2"
F,(A;B;z) =1+ -
r ,; (01)n - -+ (bg)n n!
= 1 "
<1+;WH=0F1(*;d;x).

Application of the upper bound from (26) to the above inequality will
prove (28). To find such d it suffices to satisfy fid < 1 and

foi1(ns _ (a1 +n)---(ap +n)(d+n)
fn(d)n (bl +n)"'(bq+n)
In turn, the above inequality holds if (recall that ¢ =p+ 1)

< 1.

ei(ar,as,...,ap,d) <ei(b,ba,...,0y), i=1,2,...,q,

or
ei(ar,az, ... ap) +de;_1(a1,az,...,ap) <e;(by,ba,....0y), i=1,2,...,q.
To satisfy these ¢ inequalities we need to choose d by (27). O
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