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E. V. Frolova

FREE BOUNDARY PROBLEM OF
MAGNETOHYDRODYNAMICS

ABSTRACT. We consider a free boundary problem governing the
motion of a finite isolated mass of a viscous incompressible elec-
trically conducting fluid in vacuum. Media is moving under the ac-
tion of magnetic field and volume forces. We prove solvability of
this free boundary problem in an infinite time interval under the
additional smallness assumptions imposed on initial data and the
external forces.

Dedicated to the 80-th jubilee of V. A. Solonnikov

§1. STATEMENT OF THE PROBLEM

Problems of magnetohydrodynamics in fixed simply connected domains
has been studied by O. A. Ladyzhenskaya and V. A. Solonnilov in the
classical papers [1,2]. In the last five years, V. A. Solonnikov and his
coauthors investigated various free boundary problems of magnetohydro-
dynamics [3-7]. In particular, unique solvability in an infinite time interval
of a free boundary problem governing the motion of a finite isolated mass
of electrically conducting capillary liquid in vacuum is proved in [7], pro-
vided that initial data are sufficiently small. The present paper can be
regarded as a continuation of [7] and extends the result of this paper to
the case of the nonhomogeneous equation.

We consider the motion of a finite isolated mass of a viscous incompress-
ible liquid, which possesses electrical conductivity and capillary properties.
It is assumed that the liquid is contained in a bounded variable domain 4
which boundary consists of two disjoint components: the free boundary I';
and the fixed surface ¥ that is also a boundary of a fixed domain D. The
domain D U €y, is surrounded by a bounded vacuum region Qs with the

Key words and phrases: magnetohydrodynamics, solvability on an infinite time in-
terval, free boundary problems.
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exterior boundary S. It is assumed that the given surfaces I'y, S, and ¥
are homeomorphic to a sphere, [ NS =, and I'(, NY = .

Let f be the force acting. As the region occupied by the fluid is un-
known, we assume that this force is defined in the wider domain Q9UTqU
Q29. The problem consists of finding the variable domains Q;;, (i = 1,2)
together with the velocity vector field v(x, ), the pressure p(z,t), x € Qu4,
and the magnetic field H(z,t), z € Q1 U Q. Equations in Qy; have the
form

v+ -Vo—-V -T(v,p)—V -Ty(H)=f, V- -v(zt)=0,(1.1)
piH;+a trotrot H — pyrot(v x H) =0, V-H(z,t) =0,

where v is the kinematic viscosity, a-conductivity, p1-magnetic permeabil-
ity in Q4. T'(v,p) = —pI + vS(v) is the viscous stress tensor, S(v) =

Vo + (V)T = (% + ng is the doubled tensor of small strain,
E i)i=1,2,3

Ty (H) = u(H ® H — L1|H|?) is the magnetic stress tensor.
Magnetic field in the vacuum region - satisfies the equations

rot H =0, V- -H(z,t)=0. (1.2)

Equations (1.1), (1.2) are supplied with the following boundary conditions.
On the free boundary we set
(T(v,p) + [T (H)])n = on'H, (1.3)
Vpo=v-n, [pH -n]=0, [H;]=0, ze€Tly, t>0.

On fixed boundaries we set
H(z,t) -n(z)=0, z€S8, t>0,
H(z,t) -n(x)=0, rot;H=0, z€¥%, t>0, (1.4)
v(z,t) =0, z€X, ¢>0.
Finally, we append the initial conditions
'U(x,O) :Uo(l’), xr € Qlo, H(l’,O) :Ho(x), erlouﬂzo. (15)

Here po is the magnetic permeability in Qo, o is the coefficient of the
surface tension, H is the doubled mean curvature of I';, V,, is the velocity
of evolution of the surface I'; in the direction of the exterior normal n to
Ty, [u] = u™ — u® - jump of u(z) on Ty, ul) = u| g . We assume that
v, 0, 11, [io are positive constants, the density of the fluid is equal to 1.
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Local in time solvability of the problem similar to (1.1)—(1.5) was proved
in [3]. In [7] the solvability of (1.1)—(1.5) was proved for f = 0 in an infi-
nite time interval (there were used additional assumptions that the initial
position of the free boundary is close to a sphere and initial data are suffi-
ciently small). Here we extend this result to the case of nonhomogeneous
equation (1.1); under smallness assumptions on f.

As in [7], we assume that the initial position of the free boundary T’y
can be regarded as a normal perturbation of the sphere Sg,, where Ry is
defined by the relation

4

More precisely, we assume that

Lo ={z=y+N®Wpo(y), y€Sr}

where N(y) = % is the exterior normal to Sk, and pg is a given small
function. The function

¢
1 1
£(t) = m/xdw = m/ /'u(x,T)dx dr
Q 0

Q1+

is the barycenter point of the domain Q; = DUQy; filled with the liquid of
the density 1 (formally, the domain D can be also considered as filled with
a liquid). Besides, we assume that £€(0) = 0. We intend to prove that 'y is
close to a sphere with the center at the point &(¢). Due to the conservation
of the volume, this sphere has the same radius Ry. We are looking for T';
in the form

Ly ={z=y+ Np(y,t) +£(t), y€ Sk},

where the functions p(y,t), £(t) are unknown. Assumptions || = §7R}
and fQo z;dz = 0 can be written as the following conditions for py:

| (Roto)® RS =0, [ yil(Rotpo)t - RIS =0, =123,
Sl Sl

(1.6)

where S denotes the unit sphere.
Henceforth, we use the following notation. By the Sobolev space W3 (Q),
1 C R™ with non-integer s > 0 we mean the space of functions u(z), z € Q2



152 E. V. FROLOVA

with the finite norm

. . 2 dzdy
Il = Wi+ 3 | [0t~ put)
al=lslg o

where [s] denotes the integer part of s and

iy = > [ Do) de

0<|al<[s] g
is the standard norm in the space WQM (). The anisotropic Sobolev-
Slobodetskii space W;’S/Q (Qr) in the cylindrical domain Qr = Q x (0,T)
can be defined as W°(Qr) N W*/?(Qr), where
W3(Qr) = L2((0,T), W5 (),
Wy 2(Qr) = La(Q, W5*(0,7))

with the respective norm

T
sy = [ IOt + [ Tl e (1T
0 Q

Sobolev spaces of functions defined on smooth surfaces are introduced in
a standard way, with the help of local maps and partition of unity.
Now we formulate the main result.

Theorem 1. Let vo € Wyt (Q0), po € Wit (Sg,), Ho € Wt (),
i=1,2,1€(1/2,1), satisfy compatibility conditions and conditions (1.6).
Let f € Wy'/(Q x (0, +00)), Vf € W3'?( x (0,+00)), D2f € La(Q x
(0, 4+00)), @ = Q10UTgUQsg. Also, we assume that the following smallness
conditions

wollws+t sy + 100lwasigsy ) + 3 [ Hollwssgy << 1, (18)

i=1,2
D £l (@ (0,400)) <&
169 Fll 2 (0 ey <
||ebtfHW2l'l/2(Q><(0,+OO)) <e, b>0 (1.9)
hold and at the initial moment of time
dist{To, X} >3dp, dist{Tg,S} > 3do, do > (C* + 1)e,
where C* is defined in (4.41).
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Then, there exists a small €, such that the problem (1.1)—(1.5) has a
unique solution defined for any t > 0, which has the following properties:
the free boundary T'y is located in the layer 0 < Ry — dy < |y| < Ro + dp
and do not intersect the fized parts of the boundary,

p(,t) € Wit (Sky),  pe(,t) € Wit (Sky),  w(-,t) € Wyt (Quy),
HY( 1) € Wit ().

The solution is decaying exponentially as t tends to +oo.

The plan of the present paper is as follows. In section 2, we use Han-
zawa coordinate transform and pass from the free boundary problem to
a problem in the domain with a fixed boundary. In section 3, we prove
exponential decay for solutions of linear problems. In section 4, we prove
the main result for the nonlinear problem.

§2. REDUCTION TO A PROBLEM IN A FIXED DOMAIN

In order to reduce the problem (1.1)-(1.5) to a problem set in a fixed
domain, we construct the mapping which transforms Q = Q1 U U Qo
to Q = Fj U Sg, U Fa, where F; is the domain bounded by ¥ and Sg,,
Fo:=Q)F1, 0F2 = SU Sg,. We introduce this mapping by the relation

r=y+N"(y)p (y,1) + x(®)ER) =epe(y), yeQ, (2.1)

where x(y) is a smooth non-negative cut-off function, which is equal to 1
if y belongs to the layer Ry — dy < |y| < Ro + dp and vanishes outside the
layer Ry —2dp < |y| < Ro+2dy. N™(y) and p*(y, t) are sufficiently regular
extensions of NV and p from Sg, into  such that p*(y,t) = 0 near S and
¥ and C'-norm of p* is small. We denote by L(y, p*,€) the Jacobi matrix
of the transform (2.1), L := det £, and £ := LL™L.

With the help of the transformation (2.1), we pass from the free bound-
ary problem (1.1)-(1.5) to a nonlinear problem in the fixed domain =
F1 U Sg, U Fy, for the unknown functions u(y,t) = v oe, e, q(y,t) =
poepe— %, h(y,t) = E(y,p*,é‘)(HoeP,g). The given function f is trans-
formed to

1

f(epet)=Fu)t / VF(y+s(N"p" +XE), 1)ds (N* (9)p" (0, )+ (W)E(D))
0

We separate linear and nonlinear parts in the same way as it was done
in [3,7] and arrive at the problem, which can be decomposed in two parts.
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The first part with linear terms depending on u, g, and p is as follows:

Uy *szu"_Vq = f(y) + (f(ep7£7t) - f(y)) +l1(u7q7h7p)7y Gfla
V-u:lg(u,p), yej:lv

U(y,t) yes = 07 VHOS(U)N = l3(uap)7y € SR07

—qg+vN-S(u)N(y) +oBop =la(u, h,p) +15(p),y € Sgr,
1

pt—u-N(y)—i-—/ udy - N(y) =lg(u,p), vy € Sg,, (2.2)
1l J £,

u(y,0) =uo(y), ye€Fi, py.0)=p(y), y€Sr,,

The part with linear terms depending on h is as follows:

prhy +a trotroth =1y (h,u,p), V-h=0, y&cF,

roth =rotlg(h,p), V-h=0, yeF, (2.3)
[wh - N| =0, [h:] =1o(h,p) = [A(h,p)], vy € Sk,
h(y,t) - n(y)=0, yeSUX, rot,h=0, yex,

h(y,0) = ho(y), y€Fi1UTo.

In the above relations, llpw = w — N (w - N), the expression o Byp is the
first variation of o(H + Rio) with respect to p and has the form

1

Bop = ——5
op Ré

(As,p+2p),

Ag, is the Laplacean defined on the unit sphere S;. By l1,l2,...,lg we
denote nonlinear terms, which are the same as in [7], where one can find
their expressions.
Henceforth, we use the following notation
X(tl,tg) (u,q,p,h) = HUHW§+Z’1+1/2(}3x(tl,tg)) + HVq||W2l’l/2(]:1><(t17t2))
F1Plware ey toswgr smgn FlPelwgeormireearssy e aa))
2
+ Z Hh(l) ||W22+l’1+l/2(-7:i><(t17t2))’
i=1

where ¢; > 0 and ¢ > ¢; may be finite or infinite.
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To prove Theorem 1, we need to establish the existence result for the
problem (2.2), (2.3) in an infinite time interval and exponential decay of
the solution in corresponding Sobolev norms.

Theorem 2. Let ug € Wy '(F1), po € Wit (Sg,), h(()i) c WiH(F),
i=1,2, f € WH2(Q x (0,400)), VF € WE2(Q x (0, +0)), D2f €
Ly(Q2 x (0,400)) with a certain | € (1/2,1). Let the compatibility condi-
tions, conditions (1.6), and the following smallness conditions

HU()||W21+1(_7_-1) + H'DOHWS'*'Z(SRO) + Z Hh(()l)HW;H(]:i) ek 1, (2.4)
i—1,2

[D? £l Lo(e2x (0,400)) <& HetifHWé,l/2(gx(07+oo)) <e,

Hebtfllwé”/Q(Qx(o,Jroo)) <& b>0 (2.5)

be satisfied. Then problem (2.2), (2.3) has a unique solution with the fol-
lowing regqularity properties:

we Wi T2QL), vge W (QL),
p € W0, +00; Wi (Sky)), pr € Wats/PIPH G ),
R e WITRQL),

where Q1 = F; x (0,400), Goo = S, % (0,+00), h'Y = hlyer,, i =1,2.
The solution satisfies the inequality

X(O7+oo) (e“tu, eatq’ eatp7 eath)
2
< e(lluollwyrscr, + lollwgrisy) + D 108wy
i=1

+ [l Fllwrirz@xo,400)) + Heatvf||W21’l/2((2><(0,+oo)))’ (2.6)

with a certain small 0 < a < b.
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§3. EXPONENTIAL DECAY FOR SOLUTIONS TO LINEAR PROBLEMS

In this section, we consider a linear problem, which arises if all nonlinear
terms in (2.2), (2.3) are omitted. This problem consists of two parts: hydro-
dynamical and magnetic. First, we consider the hydrodynamical problem

vtfl/vzv_i_Vp:f(yat)a V'UZO, yefla
oS (v)N = 0,
—p+vN - -SW)N+0Byp=0, yé€Sg,,

pr— (v =" /f v(y,t)dy) - N =0, y € Sg,,
v(y,t) =0, ye E,l
v(y,0) =wo(y), y€F, py,0)=po(y), yE Sk,-
Let the initial data in (3.1) satisfy the natural compatibility conditions
V- vo(y)=0, yeFi, HOS(vO)N(y)|SRO =0, w| =0, (32

and the orthogonality conditions
[ omas=o, [ ym@ds=o, i=123 @33
SRy Sry

obtained by linearization of (1.6).

Theorem 3. Let vy € Wit(F), po € W2H(Sgr,), f € Wi (7 x
(0,7)), T € (0,400] conditions (3.2) and (3.3) be satisfied. Also, we as-
sume that the given function f is decaying exponentially as t — 400 and

||e“1tf||W2“/2(}‘1><(0,T)) < +o0, ap > 0. (34)

Then, the problem (3.1) has a unique solution: v € W22+l’1+l/2(62%p),

Vp € Wy'2(Q%), p € WP (0,T:W5%(Sk,)), o € Wy ™70 (G,
QY =F1 x (0,T), Gr = Sgr, x (0,T), which is subject to the estimate

e vllyzeesszgpy + 1€ VPl gp + 16 Plwirn o rws2(se,)

+ He“tpt||W2z+3/2,z/2+3/4(GT) + ?ng e v (-, t)||W21+z(]_-1)

+sup %ol 8)] (3:5)
fgg € P UlwiH (s)

< e(lvollwpsizy + leollwzet(sny) + e Fllwsiragy))

with a certain constant 0 < a < ay.
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Proof. Existence of a solution to the hydrodynamical linear problem with
the above stated regularity properties is known (see [3,7]). To prove es-
timate (3.5), we first deduce the energy estimate. For this purpose, we
multiply the first equation in (3.1) by v, integrate over Fj, and integrate
by parts. We arrive at the relation

1d 9 v 9
37 1P Lam) + S 1S@L, )

+/(—VS(U)N-v+pv~N)ds:/f.vdy.

0F1 Fi1

(3.6)

Due to the boundary conditions in (3.1), the surface integral in (3.6) is
equal to

1
/UBOp(pt—i-m/v(y,t)dy-N)ds
Fi1

SRrg

= /O'ptB()pdS-i-/UB()pél(t)-NdS.

Skrq SRy

(3.7)

The first term at the right-hand side of (3.7) can be rewritten in the form
o o d ‘ 1d
2| (a 20) peds = —— = 2 9p%)ds = =— M(t
R%/sl( s:p +2p) peds 2R3dt/51(|v‘”p| p7)ds = 52 M(8),
where

g . .
0 1

It has been shown in [7] that if the orthogonality conditions (3.3) are
fulfilled at the initial moment of time, then the same conditions are fulfilled
for the solution p(y,t) of the problem (3.1) at any time ¢ > 0. Due to this
fact, p is orthogonal to the first and the second eigenfunctions of Laplace-
Beltarmi operator Ag,. It implies that M (t) is positively defined:

M(t) > CHP('J)H%/V;(Sl)? (38)

while the second term at the right-hand side of (3.7) is equal to zero.
Consequently, (3.6) takes the form

S (oG DI () + M) + SIS@, ) = / foudy. (39)
Fi1
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To add the dissipative term for p, we use the so-called ”free energy”
method, introduced by M. Padula[8,9]. It was proved that if pGWQI/Z’O (GT)
has the time derivative p; € Lo(Gr) and satisfies the orthogonality condi-
tion

/ p(y,t)ds =0,

Sk

then, there exists a vector field w(-,t) € W (F1) such that wq(-,t) €
LQ(]-I)’

V"UJZO, yefla t>07 ’lU|E:0, w- N =p,

SRD

and
||w(’t)HW21(_7:1) < CH'D(.’t)HW;&(SRO)’
lw (0| pam) < ellpC Dl La(Srg)s (3.10)
||wt('7t)||L2(]:1) < C(Hpt('7t)||L2(SRO) + ||p('7t)HW21/2(SRD))'

We multiply the first equation in (3.1) by w, integrate over Fp, and inte-
grate by parts. Taking into account boundary conditions, we obtain

% 'u~wdy—|—g/5(v) : S(w)dyf/thdy—l—M(t) = /f~wdy. (3.11)
F1 F1 F1 F1

We multiply (3.11) by a small positive number v and add it to (3.9), it
leads to

%%(E(t)) + D(t) = /f-vdyM/f-wdy, (3.12)
F1 F1

where

E(t) = lv( Oll7, 0z +27 [ v-wdz + M(2),
F1
D(t):%HS(v)H%Q(fl)—Fv% [ Sw): S(w)dz—v [ v-widx +yM(t).
F1 Fi

For sufficiently small -, estimates (3.10) and the Korn inequality imply (it
can be demonstrated in the same way as in [7])

1/2([v (DI, + M®) < E®) <3/2(lv( DL, + M(H) (3.13)

and
D) = a(|lv( )z + M@), a>0. (3.14)
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Now, we multiply (3.12) by e with a certain 0 < ¢ < 2ay, which gives

(56 B®) = 5e B + D) = [f -0+ rwidy. (3.9
Fi1

At first, we fix v in such a way that (3.13), (3.14) hold, then we choose so
small ¢ that

c
D(t) - SE@) > o <||'U(~,t)||%2(}-1) + M(t)) . ar>0.  (3.16)
In what follows, it is convenient to use the following notation
B =U(H), (D)~ SB(1) = R().

Identity (3.15) reads
1d

5 = P(0) + R(0) = /ectf.(vﬂw)dy. (3.17)
OF

We estimate the right-hand side of (3.17) by the Holder inequality, making
use of (3.10) and (3.8)

[ et|f - (w+yw)|dy < e[| fllpaim) (Ivllzacm) +vwllzac))

Fi
< Cle§t|‘f(7t)”l/2(.7:1)u(t)
Consequently, (3.17) implies

d

E(U(t)) < ClegtHf('vt)HLz(}—l)'

It follows that
t

U(t) < Cx [ AN ardr +UO), (318)
0
By (3.8), (3.18), we obtain the exponential decay for the solution in Lo
norms:

1o )1y + 1065 (5,

o*

e 2T‘f(.’7')||%2(7_-1)d7'), (3.19)

t
< e (ool + 0l + |
0
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where the constant Cy is independent of t, ¢* < ¢. Multiplying (3.18) by
e 2(c=At where ¢ — 8 > 0, we have

U(t)e 3B
t
) (3.20)
<G / e BB £ 1) oy + e HEDY(0).
0

Inequality (3.20) implies the estimate of the integral

T

T
0/ =Ryt )) dt:/eBtE(t)dt

0

by the quantity

/neztf D112,y + U (0).

Together with (3.8), it yields
T

J e (o, 12 ) + Hp(-,t)II%V;(sRD)) dt

0
<G <|v0|%2(]—'1)+||p0||%/[/21(53 +f||€2 A7 l)dt> (3.21)

with a certain positive 8 < ¢ < 2a;.
Now, it is convenient to introduce the functions

v=cv, p=ep, p=evp,  f=e"f
where 0 < a < % < a1, As a consequence of (3.1), we obtain

0 — vV +Vp=av+f, V-0=0, yeF,

Iy S(v)N =0,
—p+vN -S(®)N +0Byp =0,
ﬁt: (f77|90|71f]—‘11~](y7t)dy) 'N+(lﬁ, yGSRoa
o(y,t) =0, yex,
o(y,0) =voly), y€F, pPy,0)=po(y), yESk,-
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By estimate of a solution to the hydrodynamical linear problem [7], we
have

19llyprerrzrguy + VB2 gy
+ |‘/3HW2’/2(07T;W25/2(5R0)) + H/3t||W2{+3/2,t/2+3/4(GT) .

- - - 3.22
< Cu(IBllzagoy) + aldlyreopy + 1w o)

+ allpllyparnirniass gy + vollw e + 190w s )

with the constant Cy independent of T'. We apply interpolation inequalities
for the terms ||f)||W21,1/2(Q1T) an'd ||p~||W21~+3/2,1/2+3/4(C5T3 at the right—hand side
of (3.22) and use (3.21) to estimate [|9([1, (1), HpHW21(GT). As a result, we
obtain (3.5) with a certain a < a;. O

Now we consider the homogeneous magnetic problem
pmH; +a 'rotrot H=0, V-H=0, yeJF,
roo H=0, V-H=0, ye&kF,
[uH -N]=0, [H;]=0, y¢&Sg,, (3.23)
H-n=0, yeSUY, rotH=0, yex,
H(y,0) = Ho(y), y€FUF.

Theorem 4. For arbitrary Hy € WSTH(F;), i = 1,2, satisfying the com-
patibility conditions
V-Hyz)=0, yeFLUF, rotHpy(x)=0, y€Fo,
(wHo-N]1=0, [Ho; =0, y€Sg,, (3.24)
Hy - n=0, rot,Hy=0, yeX Hy-n=0, yes,
the problem (3.23) has a unique solution, and the inequality
2
> (1™ H Oy zevsms gy, + 50 e HO (1) o, )

i=1

) (3.25)
<Cs Z ||H(()Z)HW;+Z(}1)

i=1
holds, where a is a certain positive constant and Cs is a constant indepen-

dent of T.
Existence has been proved in [3,7]. Below, we sketch the proof of (3.25).
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By H™(2), m = 1,2 we denote the spaces of vector fields from Wi (Q),
satisfying the conditions (3.24) (without the condition rot, H =0, y € ¥
for m = 1).

Problem (3.23) can be written in the form of the Cauchy problem

Ht + .AH - 07 H|t:0 == H(), (326)
where the operator A is defined on the space H? as follows:
AH = Pyop ' rot Ea™' rot H.

Here £ is an extension operator from Fi into 0 defined on the space of
the divergence free vector fields w(z) with w - N|s,, = 0, w;|s = 0, and
such that

Ew)rls =0,  [lEw|yrriq) < cllwllypz)-

Py0 is the orthogonal projection on H°() in the space L2() with the

scalar product
/ uwH - hdzx.
Q

By H°(2) we mean the closure of H!(2) in Ly norm induced by this scalar
product.
The characteristic property of A is

/ pAH - hdx = ofl/ rot H -rot hdz, Vh,H € H?,
Q Fi1

which implies that A4 is a positive defined self-adjoint operator, the spec-
trum of —A consists of a countable number of real negative eigenvalues
with the accumulation point at —oo. This guarantees the weighted esti-
mate (3.25) (see details in [5]).

§4. NONLINEAR PROBLEM.

The goal of this section is to prove Theorem 2. We begin with proving
existence of a generalized solution on the finite time interval [0,7"]. We
divide initial conditions in (2.2), (2.3) in two parts

Up = Uy + Uy, pPo=py+py, ho="hy+hy,

where the functions ug , pg , hg satisfy the same compatibility conditions
as ug, po, ho and have the order 2. More precisely, the conditions (1.6)
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imply
" 1 5 1 s
roFon)dS = = | #3(Fos)S = 5z | (RS
S, 4 J
" 3 1 ,
Yipo (Roy)dS = “5R, yipa(Roy)dS — R2 Yiry(Roy)dS
Sy 4 d
1 4 .
—@%/ﬁmd&wﬂ& i=1,2,3,
S1

Compatibility conditions in (2.2), (2.3) imply
Vg (w) = b (uo, po), y € T,
VITs,, S(ug)N (y) = I3(uo,po), ¥y € Shy,
rot hy = rotls(h$?, po), y € Fo,
V-ho =0, yeFUF,
[ho.] = ls(ho, po), [uhg - N1=0, y € Sg,,
hy mn=0 yeSUS, rotrhy=0, yekx.

These functions satisfy the estimates

2
||P0HW2+l(sR +||u0||W1+l(_7-‘1) (HPOHW2+l(5R )"‘HU0||W1+’(}-1)) - (41)

2 2
1" : 2
> hollwgeicry < e( 310 gz + oo lwzetcs,,) - (42)

i=1
We note that such functions can be indeed constructed due to inverse trace
theorems (see [3,4]).

To simplify the presentation, we use the notation

Y (1) = [l ) lyae gy + 190D wasgsp ) + Z (L]

and denote by Y/( t) and YN( ) the same expression defined by means of
the functions u’ p h' and u p n’ respectlvely.

The functions uy = wo—1ug, Py = Po—Po h0 hofhg evidently satisfy
compatibility conditions in corresponding to (2.2), (2.3) linear problem
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(3.1), (3.23). This problem has a unique solution u/,q/,p/,h/. By (3.5),
(3.19), (3.25), the following estimates

X(O,T) (eatu’7eatq” eatp’7eath/) <ec (Y’(O) T ||€atf||W21’l/2(Q%«)) s (43)

1/2

’

t
Y (1) < et | V'(0) + / 16 £, 5, 7 (4.4)
0

hold with a certain 0 < a < b.

"

The functions 4 = u — ul, q” =q- q/, p” =p- pl, ' =h—h we
find from the following nonlinear system of equations:

1"

u; — w2 + Vg
1
= /Vf(y + (N (' +p")" +x€),0ds (N*(p +p")" + x€)
0

+hw +u" ¢ +¢ W +h . p+p"), in Fi, (45)
Veu =hw +u 0 +p ), in F,
pih, +a 'rotroth =l (R +h u +u ) +p), in F,
v-h'=0, in F,
roth =rotlg(h +h ,p +p"), V-h' =0, in F,
supplied with the boundary conditions
VIhS(u )N =13(u’ +u’,p'+p ), on Sg,,
—¢ +vN-Su )N(y) +0cBop’
=l +u b +h )+ 0 )+ +p), on Sk,

"

pl N+ (0] [z NG

Fi
— lﬁ('ll/ + uu’p/ + p”)’ on SRD’ uu (y’t)‘yez _ 0’
[wh"-N]=0, [h.]=Ll(h +h",p' +p"), on Sk,

"

h (y,t)-n(y)=0, on SUX, rotTh” =0, on X,
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and initial conditions
u'(y,0) =ug(y), yeF, h (4,0 =hy(y), yeFUR,
P (yuo):po(y)a yGSRo'

We choose T sufficiently large, so that c;e™ %7 < i (c1 is the constant in
(4.4)). Problem (4.5) can be solved for ¢t € [0, T, provided ¢ is sufficiently
small. We start with estimates of the nonlinear terms and the first term
at the right-hand side of the first equation in (4.5).

Lemma 4.1. [3,4, 7] Let [ € (1/2,1),

||P('at)HW22“(SRO) <4 <1, Hu(~,t)HW21+z(]_-1) < < 1, t<T,

(4.6)
the functions w,q, p, h have a finite norm

X(O,T) (u7 q, p, h) + sup Y(t)
t<T

Then the sum of the norms of the nonlinear terms

Z[(u,q,p, W)|(T) = [[lh ||W2l,l/2(Q%w) + |‘12||W§+”0(Q;) + ?Eg ||lZ||W2l(f1)

9 .
+ Ha(([ — ET)“)“WS””(Q%J + Hl3|‘W2t+1/2,z/2+1/4(GT)
+ ||l4||W2l+1/2’O(GT) + Hl4||W2l/2(0,T,W21/2(SRO))
s lwirrrzo gy + Wsllwirz o rwirz s,
sl prorzirnvars gy + Mallywgrzgry + lvotlsllyeo gz
)
s | 0tsllwg oy + | et

+ ||l9HW2t+3/2,o(GT) + ?ng Hl9HW2’+1/2(SRO)

2
9 i
+ I A W)y, (47
i=1

satisfies the inequality

Z[(u,q, p, W)|(T) gCQ(T)[ (X(07T) +sup y(t)) 2+ ( X(OyT)jL?EgY(t))?’ }

t<T
(4.8)
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Lemma 4.2 Let all the assumptions of Lemma 4.1 be fulfilled, x(y) be a
smooth function with uniformly bounded derivatives, and

IV ooy <& ID°Fliaaxory <e (49)

Then, the function
1

K(N*p* + x€) = /Vf(y +5(N"p" +x§),t)ds (N"p* + x§) ,
0

where

t
£(t) = ﬁ / / w(y, )| L|dydr.
0 F;

is subject to the following estimate:
”’C(N*p* + Xf)||W2”/2(Q%)

<C3(T) (5X(0,T) —l—aXfo’T) +e fgg Y(t)

DIV F lypr2 oy ) (410

Proof. In our case [ € (1/2,1), consequently I < n/2, and we estimate
the product of two functions as follows (see (4.6) in [4]):

luvlwyzmy < ellulwsmn 10lyzringzy, 7> 0.

By this result we obtain

IK(N*p* + Xf)”W;O(QlT)
< CfggHN p (1) +X£(t)HW23/2+"(]:1)
1

<[ TH+ SN+ X, 05l oy,
0

<clsu -t 241 + su t \ i . (411
(82 10 Oz 5, + 500 EO1) 19 sy (10
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Similarly, 1/2 < 1/2, and we have

[C(N*p* + x§) HW;”/?(Q%,)

1
<ol [ A+ SO 4 X0, 05l gy
0

x HN*p* + XEHW20v1/2+"(Q%W)7 n>0. (4'12)

We can set 7 = 1/2, and use the relation

/ 1
€0 =g f/ w(y,1)|L|dy.

Due to the assumptions (4.6), Jacobian L is uniformly bounded, the cut-
off function x also has uniformly bounded derivatives. Consequently, we
obtain

IN"p" + X£HW§’1(Q1T)
1/2

T
<e | 1 lwgropy + | [ I e
0

< CX(O7T) . (4.13)

The first norm in the right-hand side of (4.12) is small due to the assump-
tions (4.9), indeed,

1

I [ T8+ 5N + 380l g
0

< (IVFllwoarz oy + 102 Flla@xom) IN*2* + XEll e (q1,))
<ee (1+ X)) (4.14)
Tnequalities (4.11), (4.13), (4.14) imply (4.10). O
Theorem 5. Let all the assumptions of Theorem 2 be fulfilled. The func-

tionsu', ¢, p, h' are subject to (4.3), (4.4). For a given T > 0, there
exists such € > 0 that if the given functions satisfy conditions (2.4), (2.5)
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with this e, then problem (4.5) is uniquely solvable on the time interval
[0,T] and the solution satisfies the estimate

X(O,T) (u” ? q” ? p”’ h”) + Sup Y” (t)
<t (4.15)

< ex(D)e (YO + I Flyzor2 gy + 1V Flugirzgnoiry) -

Proof. To prove this result, we apply the successive approximations
method.

For the first approximation, we take ulll and plll, which satisfy the initial
conditions

"

Uy

1"

" 7
t:0:u07 pl t:OZpO’

and the inequalities
I g0y S sy Bl 7y < et gy 1, (436)

" " "
loy HW25/2'H’O(GT) + [|p1 HWQUQ(O,T,W;&(SRO)) + ||P1tHW2l+s/2,z/2+s/4(GT)
1" "
+§1<1¥ 12 ('yt)HW;H(sRO) < cllpo ||W22+I(SRO).

The existence of extensions of initial data with such regularity properties
follows from inverse trace theorems in Sobolev—Slobodetskii spaces and
Proposition 4.1 in [11]. We put ¢, = 0.

For hlll, we take a divergence free vector field such that

h, t:0:h07 y € F1UFs,

and the estimate

D (1Dl gerasra g, +sup 7 () i)

i=1
2
< CZ (7o HWZ}“(};) (4.17)
i=1

holds (construction of this vector field is presented in [4]). Due to (4.1),
(4.2), (4.16), (4.17), we have

Xor) (ufal01. b1 ) +sup T (1) < CUT)EY (0) (4.18)
<
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For p(y,t), y € Sgr,, we define a linear extension operator E with the
following properties:
OEp

htand st =0
on 1sg,

suppEp C (Q,
1B )iz gy < cllollwgesny ™€ (0,14 5/2),
12 Eo, 0l o2y < ellorlwgsag) ™€ 0.1+3/2)

= EpI.

We set p;*(y,t) = Epy, p *(y,t)
mi1s Pmy1 for m > 1 can be found step

Approximations u;n 11 Ty 15 P
by step from the following linear system of equations

8 " " " * * m
By m1 — VU + Ve = K(N (' + pll)* + x&m) +l§ ),
Vouy,, =1, in A, (4.19)

a ” "
m EhmH +a 'rotrot by, = 1’
Vb, =0, in F,
rot h;H = rotlém), Y h;;LH =0, in Fy,

supplied with the following boundary conditions

"

voS (W, )N :lgm), on  Sg,,
- q;’;L+1 + VN ! S(’u’;’n—i-l)N(y) + O—BOP;;%&-I = lz(lm) + lém)u on SR07

a 12 1" _ 1" m
it~y N+ [ wide N@) =1, on S,
1

1 (m)

i1 N1= 0, (s = 1", on S,
h;;LH(y,t) ‘n(y) =0on SUX, rot, h;;LH =0on X, u;lnﬂ|E =0,
and initial conditions

Uppi1(4:0) =g (1), Y EFi, hopyy(4,0) = ho(y), in Fi UF,
Pms1(®,0) = po(y), on  Sgy.

¢
In the above relations, &,,(t) := |Ql—0| [ (u + um) |L|dydr,
0 F

5 =1 (u + Uy F b A R + p;) :
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Now, we are aimed to prove (4.15) for all the approximations.
The problem (4.19) is uniquely solvable due to known results for linear
problems (see [3, 6, 7]). Moreover,

Xm+1 (07 T) + sup Ym+1 (t)
t<T
< CuT) (2 +usd + a0+ ps B+ P)
(N (0 + )™ + Xem) lypair gy +Y (0)). (4.20)

Let for the m-th approximation conditions (4.6) be fulfilled and Jacobian
L is uniformly bounded. We apply Lemmas 4.1, 4.2 and the estimate

T
e S dr [ (1w, 7l + up(y, 7)) [ldy
0 F1

sup [€,,(¢)] <
t<T
< C5(T) (”ulHLz(Q}) + ||“;;L|\L2(Q1T>)
< C(T) (X'(0.7) + X,,(0,T)) (4.21)

to the right-hand side of (4.20). This gives

Xm+1 (07 T) + sup Ym+1 (t)
t<T

< Ce(T)( (XI(O,T) tsupY’ (t))2 + (X;,;(O,T) + sup Y'r;':,(t))Z

t<T t<T
’ ’ 3 " " 3
+ (X (0,T) +supY (t)) + (Xm(O,T) + squm(t)) )
t<T t<T

+ C3(T)Cy(T) (=(X(0,T) + sup (1)) + (X, (0,T) + sup ¥ (1)

+ C5(T) (X (0,T) + X, (0. D)V F 720 0.1 )
+Cy(T)YV"(0). (4.22)
By (4.3), (4.4) with a = 0 we obtain

/ / < )
X'0.1) 45y () < Or (Y(0) + 1 Fllwirzqy. )

For the first approximation we have (4.18). Also, we have the smallness
assumptions (2.4), (2.5) for the given functions. Hence, for the second
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approximation, (4.22) implies

X5 (0,T) +sup Yy (1)
t<T

< CalD)e (Y(O) + I lygorm gy + 1V Flysiroanoryy)  (429)

+09(T)52 (Y(O) + H.fHWz’J/?(Q%,) + ||foW21’l/2(Q><(07T))) )
Cs = CsCr + C3C4C7(1 4 Cy) + Cy.
We choose € in such a way that the right-hand side of (4.23) is less or equal

2CS(T)6 (Y(O) + F) R F = ||f||W2”/2(Q%) + HVf||W2l’l/2(Q><(O,T))'
Let the estimate
X, [0,T] + supY, (t) < 2Cs(T)e (Y (0) + F) (4.24)
t<T

holds for m-th approximation. For (m + 1)-th approximation, (4.22) gives
X1 (0,T) + sup Vi1 (t) < Cs(T)e (Y(0) + F)
t<

+(4C§53+80555+060752+20304CS(C5+1)52)(Y(O)+F) (4.25)

Hence, for the (m + 1)-th approximation the estimate (4.24) follows from
(4.25), provided that ¢ is sufficiently small. We conclude that if (4.6) hold
for the mth approximation, then the same conditions hold for the (m+1)th
approximation.

The convergence of the sequence (u;;“ q;, p;;“ h;) follows from the es-
timates of the differences

" " 12 "
km-‘rl = hm+1 - hm7 Wm41 = um+1 — Uy,
1" 1" 1" 1"

rm-&-l = pm—‘,—l - pm7 pm+1 = qm+1 - qm

Differences of the nonlinear terms can be estimated by the same tech-
nic as the nonlinear terms (Lemma 4.1, Lemma 4.2). Precisely, if all the
assumptions of Lemma 4.1 be fulfilled, and (4.6) holds for m € N, then

Zr[(W + Uy @+ G B+ P 0+ 1)
- (ul + umflﬂ ql + Am—1> h’/ + h’m717 pl + pmfl)] (426)
= CGI(EaT)X (wmypmykmyrm) s

where the function 6;(e,T) is small for small .
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If all the assumptions of Lemma 4.2 are fulfilled, and (4.6) holds for
m € N, then

H’C(N*(P/ + )" F XEm) = KN (0" + P 1)" + XEm—1 ||W21,1/2(Q1T)

g 692 (Ea T)X (wmypma kma rm) ) (427)

where the function 6»(e,T') is small for small .
With the help of (4.26), (4.27), we deduce

X(O,T) ['wm—i-l s Pm+15 Bm1, rm—&-l] < cfs(e, T)X(O,T) [wmypma km, rm]-
(4.28)
For sufficiently small 85(¢,T'), the estimate (4.28) guarantees the conver-
gence of the sequence (w,,,q.,, P, h,,) to the solution of problem (4.5).
Passing to the limit in (4.24), we arrive at (4.15). Uniqueness of the so-
lution follows from the above estimates applied to the difference of two

solutions of (4.5). O

Taking a sum of solution u/,q/,p/,h’ to linear problem (3.1), (3.23)
with initial data ué), pé), hé) and solution v, ¢, p", h to problem (4.5), we
obtain a solution to problem (2.2), (2.3) on time interval [0,7]. Remind,
that the value T was fixed in such a way that the factor c;e=?7 in (4.4) is
not grater then 1. Now we choose such ¢ that c;(T)e in (4.15) is also not
grater then 1. In consequence of (4.4), (4.15), solution to problem (2.2),
(2.3) satisfies the estimate

1
Y(T) < Y(O) + Z(”‘f”Wé’l/z(QlT) + va”WQl’l/z(QX(OJ“))

N | =

T .
+ (/||ea7'f(.’7')|%2(]_-1)d7')1/2). (429)
0

We prove the existence result in an infinite time interval step by step.
Let we have proved existence of a solution to problem (2.2), (2.3) on time
interval [0, kT]. Let |£€(¢)| is uniformly bounded for ¢ € [0,kT], and the
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estimates

Y(iT) < =Y ((i — 1)T)

1
2

T 1/2
1 - a(t—(i— p

s lFme | [ e e | | @0

(i-1)T

where

Fli]= HfHW;W(flx((i—1)T,iT)) + HVf||W2l’l/2(Q><((z’—l)T,iT))

are valid for ¢ = 1,..., k. On time interval [(¢ — 1)T, 4T, the solution can
be decomposed in two parts: u = u + u”, qg = q/ + q”, p = pl + p”,
h = h + h , satisfying the following estimates

1" " " " 1 . -
Xiayrar (w00 B) < T V(G- DT + L), (431)

(t=(=1)T)y palt=(=1)T) ) palt—(i=)T) ;f a(t—(i—l)T)h')

X(i—1)T,iT) (ea p e

<e (Y((z' — )T)+ [ EID f ) La<b (4.32)

(Fix((i—1)T,iT))
Now we prove existence in time interval [kT, (k+1)T"]. We consider upr =
u(-, kT), prr = p(,kT), hyr = h(-,kT), as initial data at ¢ = kT and
repeat the above scheme on [kT, (k + 1)T]. Due to the conservation of the
volume, the first of conditions (1.6) holds for p(y, kT). The barycenter is
located at the point £(kT'), which not necessary coincides with the origin.
We have

/ widw = @(kT)%wRS = &(kT) / dz,

QT Qrr

ie. [ (wi—&(kT))dw = 0,7 =1,2,3. We pass to the spherical coordi-
QT
nates with the center at the point £(kT") and see that the linear part of the

second condition (1.6) for p(y, kT') has the same form as for pg, precisely,
[ vip(Roy, kT)dS = 0. Consequently, we can use all the results of section 3
S1

on the time interval [kT, (k + 1)T7.
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To repeat the above scheme on time interval [KT, (k + 1)T], we again
separate the data at t = k7T in two parts

1" 7 1" ’ 12 ’
UpT = Upp + Upr, PRT = Prr + Prr>  Pkr = hpr + By,

where the functions wu,z, prp h;;T satisfy the same compatibility con-
ditions as wgT, prT, hrr in nonlinear problem (2.2), (2.3) and have the

order 2. The solution ', ¢, p’, b’ to linear problem (3.1), (3.23) with ini-
tial data w, g, pyr, hyr satisfies (4.3), (4.4) on time interval [kT, (k +1)T.
It gives

(k+1)T "
’ Ly a(r—kT) >
Y{((k+DT)<y [V (RT)+ lle FCNL, 7 dr
kT

(4.33)
and (4.32) for i =k + 1.
To apply Theorem 5 on time interval [kT, (k + 1)T], we have to take
care of the term

sup [€(t)].
ET<t<(k+1)T

It is clear that £(t) — £(kT) is estimated in the same way as in (4.21) by
|| 2o (7, x (kT (k+1)T)) » and it remains to estimate |{(ET)].

Lemma 4.3 Let inequalities (4.30), (4.31), (4.32) are valid fori =1,...,k.
Then

€(kT)| < s, (4.34)

where the constant C is independent of kT and .

Proof. We use (4.30) fori =1,...,k., and deduce

1
Y (kT) < Y (0)
k iT 1/2
1 : a(r—(i— :
e g [Fi | e Nl || @)
i=1

(i-1)T
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Under the assumptions of Theorem 2, the norms |\e”tf|\w2z,1/zgx(07+oo),

HeatVf||W2l,,/QQX(07+OO), a < b are bounded. It is clear that

. —(i—1)aT at
Fli] < e D (He Fllwrire @y -1y

t
1V F gz s-ayrar )

Similarly,

iT . 1/2 ‘
( / |ea(r(zl)T)f(.’T)|i2(]_—1)> gei(lil)aTHeatfHLg(]-‘l)x((i—l)T,iT)-
(i-1)T

As a result, (4.35) leads to

1
2—kY(O)

1 at at
+ (min{2, eaT})k (He 'wazl’l/2(QX(07kT)) e foWé’l/2(Qx(0,kT)))

1 t
S (min{2, " T} )F (V) + 16 020 0,000

+|\eafo||W2l,,/2(QX(OW))). (4.36)

Y (ET) <

Note, that (4.36) is valid for every ky = 1,2,...,k. In particular, for ¢ €
[0, KT]

||’U,(, t) ||L2(-7:1)

< e (V0) + e Fllgp 2 to woey) + 1€ VE litir2augo ooy

—at
< 3ce” e,

with a certain o > 0. In consequence of (4.31), (4.32), Jacobian L is uni-
formly bounded for ¢ € [0, kT]. Using this fact and the Holder inequality,
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we obtain
kT
I<:T|_‘/dt/ :zrtda: / dt/ w(y, t)|| Ll dy
/ et am it < / cealdt < Ce, (437)
0
with the constant C' independent of kT and e. (|

Now, we can repeat the proof of Theorem 5 on time interval [kT,
(k + 1)T], replacing everywhere Y (0) by Y (kT) and the first term at the
right-hand side of (4.23) by

(Cs(T)+C)e (Y (kT) + F[k+ 1)),

where C' is the constant from (4.37). By Theorem 5, solution to problem
(4.5) exists for ¢t € [kT, (k + 1)T] and satisfies the estimate

X[kT,(k+1)T} (u »qd 5P 7h )+ sup Y (t)
ET<t<(k+1)T

< &(T)e (Y (KT) + Flk+1]).  (4.38)

Due to the fact that the constant C' in (4.37) is independent of k, we can
be sure that the constant ¢é2(T") is also independent of k. Starting from
k = 1, we fix so small & that &(T)e < i. Hence, we choose ¢ when we
construct solution on [T, 2T]. For k > 2 we can repeat the proof with the
same €.

Taking a sum of solutions to problem (4.5) with initial data Uk:m Py
hyp and to linear problems (3.1), (3.23) with initial data Uyrs Pprs hr,
we obtain a solution to problem (2.2), (2.3) on time interval [k¥T, (k+1)T].
Inequalities (4.30) — (4.32) for this solution are valid (i = k + 1). We
repeat the above scheme for any & € IN and step by step obtain a solution
to problem (2.2), (2.3) on an infinite time interval [0, +00).
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Now, we pass to estimate (2.6). By (4.32) and (4.36), we have

X[(Flmm(ea(t—(i—nT)u/’ea(t—(i D7)y ealt—(i= 1)T)p/’ea(t—(i—1)T)h’)

1 at
< “(min{2, eaT})i—1 (Y(O) + 20 fllwrrz@x 0400

+ (€5 £ llypara ))), ieN, (4.39)

(2%x(0,400

here the constant ¢ is independent of ¢. We estimate the right-hand side
of (4.31) by the same reasonings as in proving (4.36), which gives

X[(i—l)T,iT] (u,,’q,,’pu’ h”)
1

t
< ey (O 1 Fly sy

+ €%V £ llypar2 ))), ieN. (4.40)

(2%x(0,400
Estimates (4.39) and (4.40) imply (2.6), provided that e*T < 2.

Theorem 1 follows from Theorem 2. We find the position of the free
boundary for any ¢ > 0 by the formula

I‘t:{x:y—i—N(y)p(y,t)—i—E(t), yGSRo}u

make the inverse coordinate transform and obtain a solution v, p, H to
the free boundary problem (1.1) — (1.5).

Due to (2.6), we conclude that Jacobian of the mapping (2.1) is uni-
formly bounded for any ¢ > 0, and exponential decay of the solution in
terms of Sobolev norms takes place for ¢ — +00. By the same reasonings
as in (4.37), we have

+o00o
&(+00)] / dt/ (z,t)|dx
Qs
<C / (D) Ly dt < C / ceoldt < Cre. (4.41)
0

It means that |£(¢)| is uniformly bounded for any ¢ > 0. To be sure
that the free boundary do not intersect the fixed parts of the boundary,
we have assumed that at the initial moment of time dist{[y,X} > 3do,
dist{To, S} > 3dp, do > (C* + 1)e (see assumptions of Theorem 1).
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R

emark 1. Theorem 1 implies exponential stability of the trivial rest

state with zero velocity and zero magnetic field.

R

emark 2. The same scheme can be applied to the free boundary problem

described the motion of a finite isolated mass of a viscous incompressible
fluid in vacuum when the external force is acting on the fluid, but there is
no magnetic field.

10.

11.

St
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