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G. Seregin

LIOUVILLE THEOREM FOR 2D NAVIER-STOKES
EQUATIONS IN HALF SPACE

ABSTRACT. A Liouville type theorem for mild bounded ancient so-
lutions to the Navier-Stokes system in a half plane has been proven
provided that a certain scale invariant quantity is bounded.

Dedicated to the 80th jubilee of V. A. Solonnikov

§1. MOTIVATION

In the paper, we deal with the so-called mild bounded ancient solutions
to the 2D Navier—Stokes equations in half-space with the homogeneous
Dirichlet boundary conditions. As it has been explained in [4,5], and [6],
such type of solutions appears as a result of re-scaling solutions to the
Navier—Stokes equations around a possible singular point. If they are in a
sense “trivial,” then this point is not singular.

There are several interesting cases for which Liouville type theorems for
ancient solutions to the Navier—Stokes equations turn out to be true. And
their proofs are based on a reduction to a scalar equation with the further
application of the strong maximum principle to it. For example, in 2D case,
such a scalar equations is just the 2D vorticity equation. Unfortunately,
this approach does not work in a half plane since non-slip boundary con-
ditions in terms of the velocity does not implies the homogeneous Dirchlet
boundary condition for the vorticity. However, there are some interesting
results coming out from this approach, see paper [1] and reference in it.

In the paper, we exploit a different approach related to the long time
behaviour of solutions to a conjugate system. It has been already used in
the proof of the Liouville type theorem for the Stokes system in half-space,
see the paper [3] and the paper [2] for another approach.

Let u be a mild bounded ancient solution to the Navier—Stokes equations
in a half space, i.e., u € Loo(QF) (Ju| < L ae. in QF = {z € R%, t < 0},

Key words and phrases: Naver—Stokes system, mild bounded ancient solutions, Li-
ouville theorem.
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where R%r = {r = (21,72) € R? : 23 > 0}) and there exists a scalar
function p such that, for any ¢t < 0, p = p' + p?, where

Ap! = —divdivu ® u (1.1)

in QT with p'y = 0 and p(-, ) is a harmonic function in R whose gradient
obeys the inequality

|Vp?(z,t)] < cln(2 4 1/z2) (1.2)
for (x,t) € Q1 and has the property
sup |Vp?(z,t)] — 0 (1.3)
r1ER

as x9 — oo; u and p satisfy the classical Navier—Stokes system and boun-
dary condition u(z1,0,t) = 0 in the following weak sense

/(u-(atgo—l-Ago)+u®u:V<p—|—pdiv<p)da:dt:O (1.4)

Qt
for any ¢ € C§°(Q-) with p(z1,0,t) =0 for z; € R and
/u~quxdt:O (1.5)
Qt

for any g € C§°(Q-).
Here, Q_ = R? x {t < 0}.
We are going to prove the following fact:

Theorem 1.1. Let u be a mild bounded ancient solution to the Navier—
Stokes equations in a half space. Assume in addition that

u € La oo (QF). (1.6)

Then u is identically equal to zero.

Remark 1.2. Motivation for additional condition (1.6) is as follows. The
norm of the space La o (Q) is invariant with respect to the Navier—Stokes
scaling
v(x,t) — Au(z, \*t).

So, if we study the smoothness of energy solutions in 2D, the corresponding
norm stays bounded under scaling and a limiting procedure, leading to a
mild bounded ancient solution, and thus condition (1.6) holds. For details,
see [6].
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Lemma 1.3. Under assumptions of Theorem 1.1,
Vu € Ly(Q7). (1.7)
Proof. For fixed A < 0, we can construct u as a solution to the initial
boundary value problem
Ot — Au+ Vp* = —divH
in R% x]A,0[, where H = u @ u + p'L,
77(.1'1, 07 t) = 07
u(z, A) = u(z, A)

with the help of the Green function G and the kernel K introduced by
Solonnikov in [7], i.e.,

t
i(e,t) = [ Glet = Aul, ) dy+ [ [ Koyt =P, 7 dydr,
R2 A Rﬁ_
For the further details, we refer the reader to the paper [6].
Let us describe the properties of u. Our first observation is that
divu®@u=1u-Vu € Ly (Q7F)

since u € Lo oo(QF) and Vu € Loo(QT). The last fact has been proven
in [6]. Hence,

divH € Lg oo (Q7T).
By the properties of the kernels G and K, such a solution u is bounded
and satisfies the energy identity

t
/|ﬂ(x,t)|2dx+2//|V17(x,7')|2 dx dr
R} ARy

t
= / lu(z, A)|? d:z:+2//divH(a:,T) -z, 7)dz dr
R2 AR
for all A <t < 0. In addition, we can state that for any § > 0,
0

/ / |Vp*|? dadt < C(5,A) < oo. (1.8)
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Our aim is to show that u = @ in R% x]A4,0[. It is easy to see that, for
any R > 0,
v, )2, (r) — 0
ast — A, where v = u —w. This follows from the facts that u is continuous
on the completion of the set Q4 (R) for any R > 0, see details in [6], and
that w € C([4,0]; Lo(R%)).
The latter property allows us to show that v satisfies that the identity

0

//(v~(9tcp+v-Ag0)dxdt:O

A R3
for any ¢ € C§°(Q-) such that ¢(x1,0,t) = 0 for any 1 € R and any
t €]—00,0[ and divy = 0 in Q. If we extend v by zero for t < A, this field
will be bounded ancient solution to the Stokes system and therefore has the
form v = (v1(22,1),0), see [2] and [3]. The gradient of the corresponding
pressure p?> — p? depends only on t. However, by (1.3) and by (1.8), this
gradient must be zero. And the Liouville theorem for the heat equation in
the half-space implies that v = 0.

Now, since u = u, the energy identity implies

0
/|u(x,0)|2dx+2//|Vu(x,7)|2 dxd7:/|u(x,A)|2 dx
R2 RZ

ARZ
for any A < 0. This completes the proof of the lemma. O

Remark 1.4. In fact, we have proven that
0

//|Vp2|2d:1:dt<c< 00

AR
for any A < 0.

Given a tensor-valued function F € C§°(Q7), let us consider the fol-
lowing initial boundary value problem:

O +u-Vv+ Av+ Vg =div F, dive =0 (1.9)

in Q4 = Rix] —00,0[,
v(21,0,t) =0 (1.10)
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for any 1 € R and ¢ < 0, and
v(z,0) =0 (1.11)
for z € Ri. Here, vector-valued field v and scalar function ¢ are unknown.
Why we consider this system? At least formally, we have the following
identity
/u-didea:dt: /u (8tv+u-VU+AU+Vq) dz dt
Qt Qt
= /u <8tv+u~Vv+Av)dxdt
Qt
= / (—8tu—divu®u+Au) ~vdz dt
QT
= / (—8tu—divu®u+Au—Vp) ~vdxdt = 0.
QT

This would imply that u is the function of ¢ only and thus, since u is a
mild bounded ancient solution, v must be identically zero.

§2. PROPERTIES OF SOLUTIONS TO DUAL PROBLEM

Proposition 2.1. There exists a unique solution v to (1.9), (1.10), and
(1.11) with the following properties:

v € Ly oo(QF), Vuve Ly(Q7),
and, for all T <0,
Op, Vv, Vq € Ly(R% x|T, 0]).

Proof. First of all, there exists a unique energy solution. This follows from
the identity

/(u-VU) ~vdedt =0
Qt



142 G. SEREGIN

and from the inequality

‘—/divF-vda:dt‘ :‘/F:VUda:dt
Qt QT

1 1

2 2

g( |F|2dxdt> </|Vv|2dxdt> .
Qf Qf

So, we can state that
v € Lyoo(@F), Vv e Ly(QF). (2.1)

The latter means that u- Vv € Ly(QT). So, statements of Proposition 2.1
follows from the theory for Stokes system. O

§3. MAIN FORMULA, INTEGRATION BY PARTS

For smooth function ¢ € C§°(R? x R), we have

/u-z/Jdidea:dt: /u-w(atwru-vwrervq) de dt
Qt Qt
= / ( — U 00 — u - vu - VY — w50 5+ w005 — que V@b) dx dt
Qt
— v - ((%u—i—u-Vquu)dxdt: / (7u~v8twfu~vu~vw
Qt
— 2u0; 5 5 + (U ;Ui + wiv; )Y 5 — qu - V@b) dx dt + / vy - Vpdx dt
Qt
:—/(u cvOpHu - vu - Vb4 2u0; 5 5 +u - vAY+(qu + po) - Vz/J) dz dt.
Qr
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We pick ¢(x,t) = x(t)¢(z). Using simple arguments and smoothness of
u and v, we can get rid of y and have

//u odiv F do dt = / (@)@, T) - v(z, T) dz

T]R2

+ // (u cvu - Vo + 2uv; 50,5 + u - v + (qu + po) - ch) dx dt.
T g2

Fix a cut-off function p(z) = &(x/R), where ¢ € C§°(R®) with the
following properties: 0 < € < 1, &(z) = 11if 2] < 1, and &(z) = 0 if |z| > 2.
Our aim is to show that

JR://(u~5u~Vgp—|—2uﬁm~g)J+u~i7Acp+(Eju+pf))~Vg0) dz dt
T R2

tends to zero if R — oo.
We start with

0
//2uivi,jcp,j dx dt

T g2
9 3
</ / |u|? d:z:dt) (/ / |VU|2da:dt>

T B{(2R) T By(2R)\By

0 1
<C\/_T</ / |Vv|2dxdt)§ﬂo
T B4+(2R)\B4(R)
as R — oo.

Next, since |u| < 1, we have

/O/U.Umodxdt </ / |u|2dxdt> <//|v|2dxdt>

T R} T By(2R) T RE

-T
< C?HU”ZOQQJ: — 0




144 G. SEREGIN

as R — oc.
The third term is estimated as follows (by boundedness of w):

0
//u~vu~Vg0dxdt

T g2
3,0 3
%(/ / || * d:z:dt) (/ / |v|? d:z:dt)
T B,(2R) T B, (2R)\B4(R)
0 1 0 3
< %(/ / |u|2dxdt> (/ |v|2dxdt>
T B4(2R) T B4(2R)\B4(R

%(//|u|zdmdt>é<//|v|2d:ﬁdt>;

2 2
T R2 T R2

-T
< CfHUHz,oo,Qt [l 00,0t =0

as B — oc.
The first term containing the pressure is estimated as follows. We have

0 0
//pv-thdwdt://pRU-Vgoda:dt,

2 2
T]R+ T]R+

where
_ 1 2
PR = PR + PR
with py, = p* — [p']s, (2r) and p}, = p? — [p?]B, (2r)- By the assumptions,
after even extension, the function p' belongs to L. (—00,0; BMO) and

thus
1 .
7 [ WhenPd<e
B+ (2R)

for all t < 0. As to p%, we use Poincaré inequality
1 . . . .
— / Ip%(z,t)* dz < / |Vp?(z, 1)) doz < / |Vp?(z,t)|? dz.

R2
BL(2R) B (2R) R3
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So, by Lemma 1.3 and by the Lebesgue theorem about dominated con-
vergence,

0
//pv -Vedzdt
T R2
0
< c/ d’l’( / lv(z, 7)|? dx)
T B4 (2R)\B4(R)
0 1
+ %( RQ//|VpQ|2 d:z:dt)

2
T]R+

[N

1
2

(/0 / |v|2da:dt> 0

T BL(2R)\Bs (R)

2

as R — oo.
The last term is treated with the help of Poincaré inequality in the same
way as p%. Indeed,

0
//qu-Vgoda:dt

T Ri
0
= //(q*[q]m(m))wvcpdwdt
T Ri
0 1,0 1
< %( RZ/ / |Vq|2d:1:dt> ( / / |u|2da:dt>
T B0 T B, CR\B,(R)

The right-hand side of the latter inequality tends to zero as R — oo by
the assumption that u € La o (QF).
So, finally, we have

0
//u ~divFdedt = — lim | p(z)u(z,T) - v(z,T)dx

R—o0
2 2
T]R+ R%
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Now, our aim to see what happens if T' — —o0.

§4. t —» —o0
We shall show that
o, Dllaez — 0.
as t — —oo.
Indeed, we also know

¢
/ /|VU|2 dxdr — 0

—0 ]Ri
as t — —oo. By Ladyzhenskaya’s inequality,
v E L4(Qt)

and thus
t

/ /|v|4dxd7' —0
— 0 ]Ri
as t — —oo.
Now, for sufficiently large —ty, we have

v:v1+v2,

where

ot + At + Vgl =0, divel=0

in R% x] — 00, to,
v (21,0,) =0
for any z; € R and for any ¢ < tg, and
vl(xatO) = U(xatO)

for any z € R?.
As to v?, it satisfies

v + A2+ V¢ = —dive Qu,
in R% x| — oo, to,
v?(21,0,t) =0
for any z; € R and for any ¢ < tg, and
vl (x,t0) =0

(4.3)
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for any z € R?.
Then, it is well known that

[o! - D)llo 52 — 0 (1.4)
as t — —o0. On the other hand, by the energy inequality,

0

t
%Hvz(.,t)H;Ri+//|sz|2dxd7'
R2

t

to to
://Uz-divv(@uda:drz—//U®U:VU2d:1:dT
t ]R2+ t ]R2+
to 1, 1 1t
g(//|V1j2|2dasz> (//|u|4d:1:d7> <//|U|4dZL‘dT>
R2 R3

2
t R2 t t

A=

for t < tg. For the same reason as for v, we have
0

// lu|* dz dr < ¢ (4.5)

OORﬁ_

and thus, by the Cauchy inequality,

to % to %
Huz(-,t)njm <c< //|v|4dxd7> <c< //|v|4dxd7> (4.6)
t ]Ri

— 2
oo R2

for all t < tg.

It is not so difficult to deduce (4.1) from (4.2), (4.4), and (4.6).

The only assumption we really need is (4.5) and it is true if u €
Lo.oo(QF) and Vu € Ly(QT). The latter follows from Ladyzhenskaya’s
inequality.
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