
úÁ�ÉÓËÉ ÎÁÕÞÎÙÈÓÅÍÉÎÁÒÏ× ðïíé�ÏÍ 425, 2014 Ç.J.-F. RodriguesON THE MATHEMATICAL ANALYSIS OF THICKFLUIDSAbstrat. In hemial engineering models, shear-thikening or di-latant uids onverge in the limit ase to a lass of inompressibleuids with a maximum admissible shear rate, the so-alled thikuids. These non-Newtonian uids may be obtained, in partiular,as the power limit of Ostwald-de Waele uids, and may be formu-lated as a new lass of evolution variational inequalities, in whihthe shear rate is bounded by a positive onstant or, more generally,by a bounded positive funtion. We prove the existene, uniquenessand ontinuous dependene of solutions to this general lass of thikuids with variable threshold on the absolute value of the deforma-tion rate tensor, whih solutions belong to a time dependent onvexset. For suÆiently large visosity, we also show the asymptoti sta-bilization towards the unique steady state.Dediated to V. A. Solonnikovon the oasion of his 80th birthday
§1. IntrodutionIn spite of their importane in industrial proesses, the urrent under-standing of shear thikening in omplex uids, like olloidal dispersions,granular suspensions, ements or soft body armor, is far from being wellahieved. Though the rheologial survey paper [2℄ already put in evidenethe experimental fat of abrupt rising of visosity, sometimes disontinu-ously, one a ritial shear stress is attained, reent researh in this di-retion motivated a feature artile in Physis Today [31℄, showing theinreasing interest in shear-thikening uids, in partiular, in armor ap-pliations [15℄.In the reent book [19℄, where the whole Chapter 8 is dediated to therheology of shear thikening, we an �nd examples of omplex uids wherethe visosity may inrease without inrease in shear rate when the sampleKey words and phrases: shear-thikening uids, existene, uniqueness.117



118 J.-F. RODRIGUESis subjet to inreasing shear stress, or in physial situations where dis-ontinuous shear thikening may our and, regardless the applied stress,a limiting shear rate is ahieved and the uid exhibits signi�ant slip and\jamming".On the other hand, non-Newtonian ow is often modeled with a powerlaw for the relationship between shear stress and shear rate. In this workwe shall onsider the typial exampleSp = Sp(Du) = (
|Du|p−2 + �|Du|q−2)Du; (1.1)suggested by Ladyzhenskaya in [13℄ with p = 2, relating the strain veloityor deformation rate tensor, i.e., the symmetri part of the veloity gradientDu = 12 (∇u+∇uT ), with the stress tensor Sp. Here � ≥ 0 is a visosityonstant.For small powers, 1 < p; q < 2, below the linear Newtonian behavior p =q = 2, the uids exhibit shear thinning properties, while for higher degreeof the nonlinearity, i.e., for p; q > 2, the behavior is shear thikening (see[18℄, for instane). It is interesting to observe how partiular theoretialtreatments in applied books may raise enough stimulating disussions onthe in�nity degree of shear thikening behavior (see, for instane, pages124 and 332 of [5℄), although almost nothing is known for the ase of thelimit model p→ ∞.Several ritial state problems in physis have mathematial modelswith gradient onstraints, like in elastoplasti deformations, magnetiza-tion of type-II superondutors, sandpile growth or formation of network oflakes and rivers, that lead to variational inequalities (see, for instane, [23℄).It is well-known that, in the salar ase, the gradient onstraint an be ob-tained as limits of nonlinear visosity oeÆients, namely in steady prob-lems in elastoplasti torsion [10℄ or in fast/slow di�usion taken as the limitp → ∞ in the p-Laplaian [3℄, as well as in time dependent problems innonlinear di�usion [26℄ or in a sandpile model [1℄. More omplex ases withthe gradient threshold depending on the solution have been also studiedin problems related to a superondutivity model [24℄ and to di�usion-lessmodels [25℄.Reently this approah has been extended to a p-url system in eletro-magnetism [21℄ and it is shown here to be also appliable to the generalizedNavier{Stokes system. Thikening a dilatant uid, i.e., letting p → ∞ in(1.1), we onlude that, in the limit, the symmetri part of the veloity



ON THE MATHEMATICAL ANALYSIS OF THICK FLUIDS 119gradient Du must satisfy the onstraint
|Du| ≤ 1 (1.2)on the shear rate. In the limit we say the uid is thik. More generally,we may onsider more omplex thik uids with a variable shear ratethreshold, by replaing the unit onstraint in (1.2) by a positive funtion =  (x; t).Let 
 ⊂ Rd, be a bounded domain, with Lipshitz boundary �
, d ≥ 2and QT = 
 × (0; T ), T > 0. The lassial system for an inompressibledilatant uid for the veloity u = u(x; t) and the pressure � = �(x; t)reads, in QT : �tu− div(Sp − u⊗ u) +∇� = f ; (1.3)divu = 0: (1.4)Here �tu = �u�t and div(u⊗u) = (u·∇)u represents the usual onvetiveterm under the inompressibility ondition (1.4).The existene of unique weak solution to the Cauhy-Dirihlet problem,i.e., to (1.3){(1.4) withu = 0 on �
× (0; T ); u(0) = u0 in 
; (1.5)for p ≥ d+22 , 1 < q < ∞, � ≥ 0 is well-known (see [14℄ and [16℄). Severalvariants of generalized Newtonian uids of the type (1.3){(1.4) have beenonsidered in the mathematial literature (see, for instane, the book [17℄or the survey [18℄) and the existene of weak solutions has been shown ford = 3 up to p > 65 [7℄.Thik ows may also be seen as limit of ertain non-Newtonian ows,similarly to the ase of Bingham uids, whih lead to variational inequal-ities in the limit of some approximations [8℄, [30℄ and orrespond to owswith two phases: rigid if |Du| = 0 for |S| ≤ �∗ and uid for |S| > �∗ > 0.Although quite di�erent, this new type of thik ow with shear rate on-straint has also two phases. Indeed, formally, the onstraint

|Du(x; t)| ≤  (x; t) (1.6)for the veloity �eld u of the thik uid divides the domain into twosubdomainsQT = {(x; t) : |Du(x; t)| <  (x; t)}∪{(x; t) : |Du(x; t)| =  (x; t)}: (1.7)



120 J.-F. RODRIGUESIn the �rst phase, below the ritial threshold, we have the power lawow�tu− div (�|Du|q−2Du− u⊗ u) +∇� = f in {
|Du| <  } (1.8)while in the seond phase, the thik strain veloity Du is onditioned bythe two salar equations

|Du(x; t)| =  (x; t) and divu = 0: (1.9)In this phase, if  is a positive onstant, an applied stress inrease inthe thik uid may inrease also the visosity without inrease the shearrate. Although this limit rheology law is also of disontinuity power typeit does not falls in the lass treated in [11℄, although our problem an alsobe treated with the theory of maximal monotone operators.In the next setion, we present the mathematial analysis of p→ ∞ inthe onstitutive law (1.1) with q = 2, obtaining an evolution variationalinequality for the equation (1.8), i.e., the Navier{Stokes equation with theonstraint (1.2), whih has a unique solution. In the following setion, weextend the method of [24℄ and [21℄ to the variable shear rate threshold (x; t) > 0, showing the well-posedness of the orresponding variationalinequality with time dependent onvex set. We prove the ontinuous depen-dene of the solution with respet to the data, inluding the threshold  ,and, in the �nal setion, we onsider the asymptoti behavior towards thesteady-state when t → ∞ and the visosity is suÆiently large to ensurethe uniqueness of the stationary solution. In the following joint work [20℄we extend these results to more general non-Newtonian uids, inludingthe power law uids (1.1) with q 6= 2.After presenting these results at the opening of the onferene on \Math-ematial Hydrodynamis and Paraboli Equations", held in St. Peters-burg, 11-14 September 2013, Harald Garke alled the attention of theauthor to the preprint [6℄ and Eduard Feireisl to the earlier work [28℄.Both works onsider also the onstraint  = 1, the �rst one for the steady-state Stokes system adapting the methods of [9℄ and presenting numerialexamples, and the seond one proving the existene of weak solutions fornon-Newtonian ows with rigid bodies in whih the inhomogeneous vis-osity � is a solution of a transport equation.



ON THE MATHEMATICAL ANALYSIS OF THICK FLUIDS 121
§2. Thikening a dilatant fluid (p → ∞)In order to work with the variational formulation for the dilatant model(1.1) with q = 2, we introdue the following notations:

H = L2�(
) = losure of J in L2(
); (2.1)
Vr = losure of J in W 1;r(
); (2.2)where J = {' ∈ C∞0 (
)d : div' = 0} is the spae of solenoidal, smoothvetor funtions with support in 
 ⊂ Rd, W 1;r(
) is a Sobolev spae with1 < r <∞, L2(
) = L2(
)d andW 1;r(
) =W 1;r(
)d.We obtain the weak formulation by multiplying (1.3) by a test funtion' ∈ J and integration by parts in 
. For a.e. t ∈ (0; T ), we obtain then

∫
 �tu ·'+ ∫
 Sp(Du) : D'−
∫
 (u⊗ u) : ∇' = ∫
 f · '; ∀' ∈ Vp;(2.3)where, by abuse of notation, the �rst integral is understood in the usualduality sense of Vp ⊂ H ⊂ V′p. Here we take p ≥ d+22 ≥ 2 and q = 2without loss of generality, sine we are interested in p→ ∞.Using variational methods (see [14, 16, 17℄ or [18℄ and their referenes),we may easily prove the following result.Proposition 2.1. For f ∈ L2(
), u0 ∈ H, p ≥ d+22 ≥ 2, there exists aunique solution u = up(t) solving (2.3) for a.e. t ∈ (0; T ) in the lassu = up ∈ C

([0; T ℄;H)
∩ Lp(0; T ;Vp); (2.4)with �tu ∈ Lp′(0; T ;V′p). In addition, if u0 ∈ Vp then�tu = �tup ∈ L2(0; T ;H)

⊂ L2(QT ): (2.5)Proof. The existene of a weak solution follows by well-known methodsusing the a priori estimate
‖u(t)‖2L2(
) + t∫0 ‖Du‖pLp(
) ≤ Cd 


t∫0 ‖f‖2L2(
) + ‖u0‖2L2(
) (2.6)whih is a onsequene of formally testing (2.3) with ' = up(t) and ap-plying Poinar�e's inequality. Note that the onstant Cd > 0 in (2.6) isindependent of p ≥ d+22 . This assumption also implies, by Sobolev's in-equalities that (u ·∇)u ∈ L2(QT ), also independently of p by (2.6). Hene,



122 J.-F. RODRIGUESby testing (2.3) with ' = �tu = �tup, using (2.6) and
−

∫
 (u⊗ u) · ∇�tu = ∫
 (u · ∇)u · �tu
≤ Cp‖u‖2L 2pp−2 (
)‖Du‖2Lp(
) + 13‖�tu‖2L2(
);we get the regularity (2.5) from the estimate, for a.e. t > 0,13 t∫0 ‖�tu‖2L2(
) + 'p(u(t)) ≤ 'p(u0) + C ′d 


t∫0 ‖f‖2L2(
) + ‖u0‖2L2(
) ;(2.7)where, as in (2.6), the onstant C ′d > 0 is also independent of p and wehave set 'p(u) = 1p ∫
 |Du|p + �2 ∫
 |Du|2: (2.8)The uniqueness of the solution is also well-known for the values of p ≥d+22 . �Remarking that if |Du0| ≤ 1 in 
 we have 'p(u0) ≤ C0, independentof p, we immediately onlude the following proposition.Proposition 2.2. The solution up satis�es the a priori estimates

‖up‖2L∞(0;T ;L2(
)) + ‖Dup‖pLp(QT ) + �‖up‖2L2(QT ) ≤ C0 (2.9)and, if in additionu0 ∈ K
1 ≡ {w ∈ Vr : |Dw| ≤ 1 in 
}; ∀r <∞; (2.10)it satis�es also
‖�tup‖2L2(QT ) + sup0<t<T 1p‖Dup(t)‖pLp(
) ≤ C1; (2.11)where the onstants C0; C1 > 0 are independent of p ≥ d+22 .We may introdue the evolution variational inequality assoiated withthe �xed onvex set K1 ⊂ ⋂1<r<∞

Vr, de�ned by (2.10) and orresponding



ON THE MATHEMATICAL ANALYSIS OF THICK FLUIDS 123to the limit problem for v = v(t):
∫
 �tv · (w − v) + � ∫
 Dv : D(w − v)− ∫
 (v ⊗ v) : ∇(w − v)

≥
∫
 f · (w − v); ∀w ∈ K

1; (2.12)whih should hold for a.e. t ∈ (0; T ).Theorem 2.1. For any � ≥ 0, if we denote by up the unique solution to(2.3) with f ∈ L2(QT ) and initial ondition u0 ∈ K1, we have, as p→ ∞,up → v in C
([0; T ℄;L2(
))-strong ∩ Lr(0; T ;Vr)-weak; (2.13)�tup * �tv in L2(QT )-weak; (2.14)for any r <∞, where the limit v = v(t) is in the lassv ∈ H1(0; T ;L2(
)) ∩ Lr(0; T ;Vr) ∩ L∞(0; T ;K1) (2.15)and satis�es (2.12) for a.e. t ∈ (0; T ) and the initial ondition v(0) = u0.If � > 0, the solution of (2.12) in the lass (2.15) is unique and theonvergenes (2.13){(2.14) hold for the whole sequene.Proof. Sine the estimates (2.9) and (2.11) are independent of p, (2.13)and (2.14) hold for at least a subsequene as p→ ∞. Hene for r < s < p,we have

‖Dv‖Ls(QT ) ≤ lim infp→∞
‖Dup‖Ls(QT )

≤ lim supp→∞
|QT | 1s− 1p ‖Dup‖Lp(QT ) ≤ |QT | 1s ; ∀s <∞;sine, by the estimate (2.6), ‖Dup‖Lp(QT ) ≤ C1=p0 . So, letting s → ∞ we�nd ‖Dv‖L∞(QT ) ≤ 1 and onsequently v is in the lass (2.15).By well-known ompatness results, we may also assume thatup ⊗ up → v ⊗ v in L2(QT )-strong:Integrating (2.3) in t ∈ (0; T ) with ' = w(t) − up(t), for an arbitraryw ∈ Lp(0; T ;Vp) suh that |Dw| < 1 in QT , and using the monotoniity



124 J.-F. RODRIGUESof Sp(Dup), we easily get
∫QT �tup ·(w−up)+ ∫QT |Dw|p−2Dw : D(w−up)+� ∫QT Dw : D(w−up)

−
∫QT (up ⊗ up) : ∇(w − up) ≥ ∫QT f · (w − up):In the limit p→ ∞, this yields

∫QT �tv · (w − v) + � ∫QT Dw : D(w − v)− ∫QT (v ⊗ v) : ∇(w − v)
≥

∫QT f · (w − v):whih by density holds also for allw ∈ L∞(0; T ;K1). By Minty's argumentwe onlude �rst that v satis�es the variational inequality (2.12) integratedin t ∈ (0; T ), for all suh w. By a well-known argument for parabolivariational inequalities (see [16℄), this implies that v(t) also satis�es (2.12)for a.e. t ∈ (0; T ), proving the �rst part of Theorem 2.1.If �> 0, the uniqueness of v in the lass (2.15) follows sine L∞(0; T ;K1)
⊂ L∞(QT ) by Sobolev's inequalities, and we may ontrol the onvetionterms of any two solutions v and v̂ in terms of their di�erene w = v − v̂

∣∣∣∣∣∣

∫
 (v ⊗ v − v̂ ⊗ v̂) : ∇w∣∣∣∣∣∣
≤

∫
 |(v ⊗w +w ⊗ v̂) : ∇w| (2.16)
≤ 2M√d ‖w‖L2(
) ‖∇w‖L2(
)
≤ 2M√d√2 ‖w‖L2(
) ‖Dw‖L2(
)
≤ 4d� M2 ‖w‖2L2(
) + �2 ‖Dw‖2L2(
);whereM > 0 is an upper bound for |v| and |v̂|. Hene Gronwall's inequalityimmediately implies the uniqueness of the solution of (2.12). �Remark 2.1. Under the assumption u0 ∈ K1 it is lear that the onstantC1 in (2.11) is independent of � ≤ 1. Therefore we an let � → 0 in(2.12), i.e., if v� denote the solutions of (2.12) in the lass (2.15), as in theproof of Theorem 2.1, we may onlude that for subsequenes, v� → v0 in
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C

([0; T ℄;L2(
))-strong∩Lr(0; T ;Vr)-weak∩H1(0; T ;L2(
))-weak, wherev0 is a solution of the Euler system (1.8) with � = 0 and the onstraint(1.2). However in this invisid limit the uniqueness argument fails and wedo not know if v0 is unique.
§3. Thik fluids with variable shear rate thresholdLet  =  (x; t) : QT → R+ be a given funtion, suh that ≥ � > 0 and  ∈W 1;∞(0; T ;L∞(
)); (3.1)so that, the following losed onvex subset of V2 is nonempty for a.e.t ∈ (0; T ),

K(t) ≡ {w ∈ V2 : |Dw| ≤  (x; t) a.e. x ∈ 
} : (3.2)Motivated by the previous setion, we introdue the following varia-tional inequality for the thik ow with variable shear rate threshold andpositive visosity � > 0. Find a strong solutionu ∈ L∞(0; T ;V2) ∩H1(0; T ;L2(
)); (3.3)suh that u(t) ∈ K(t) for a.e. t ∈ (0; T ); u(0) = u0; (3.4)
∫
 �tu · (w − u) + � ∫
 Du : D(w − u)− ∫
 (u⊗ u) : ∇(w − u)

≥
∫
 f · (w − u); ∀w ∈ K(t); a.e. t ∈ (0; T ); (3.5)where we shall assumef ∈ L2(QT ) and u0 ∈ K(0): (3.6)As in the salar ase of [27℄ and the url system of [21℄ we may provethe following result.Theorem 3.1. Under the assumptions (3.1), � > 0 and (3.6), there existsa unique strong solution u to the variational inequality (3.4){(3.5) satis-fying (3.3) and, as a onsequene, also u ∈ C 0([0; T ℄;C 0;(�
)d) for all0 ≤  < 1.



126 J.-F. RODRIGUESProof. For a positive parameter " < 1, we onsider the following familyof ontinuous, bounded and inreasing funtions �" : R → R+, suh that�"(s) = 




� if s ≤ 0;� es=" if " ≤ s < 1" − ";� e1="2 if s > 1" :Then, the approximate problem with penalized visosity for u" = u"(t),a.e. t ∈ (0; T ),
∫
 �tu" · '+ ∫
 �"(|Du"|2 −  2)Du" : D'−

∫
 (u" ⊗ u") : ∇'= ∫
 f · '; ∀' ∈ V2; (3.7)with initial ondition u"(0) = u0, by well-known nonlinear methods (see[16℄) has solutions u" ∈ L2(0; T ;V2) ∩H1(0; T ;L2(
)) satisfying the fol-lowing a priori estimates independently of 0 < " < 1:
‖u"‖2L∞(0;T ;L2(
)) + � ‖Du"‖2L2(QT ) ≤ C0; (3.8)

∫QT �"(|Du"|2 −  2) ≤ C1; (3.9)
‖�tu"‖L2(QT ) ≤ C2: (3.10)Indeed, (3.8) is a simple onsequene of setting ' = u" in (3.7), thatalso yields

∫QT �"(|Du"|2 −  2) |Du"|2 ≤ C0:



ON THE MATHEMATICAL ANALYSIS OF THICK FLUIDS 127Realling  ≥ � > 0 and �"(s) = � for s ≤ 0 and �"(s) ≥ 0 for s ≥ 0,we onlude (3.9) from�2 ∫QT �"(|Du"|2 −  2) ≤ ∫QT �"(|Du"|2 −  2) 2
≤

∫

{|Du"|2≤ 2}�"(|Du"|2 −  2)( 2−|Du"|2)+∫QT �"(|Du"|2 −  2) |Du"|2
≤ � ∫QT  2 + C0 = �2 C1:The estimate (3.9) implies, as in Lemma 4 of [24℄ or as in Proposi-tion 3.14 of [25℄, that ‖∇u"‖Lq(QT ) ≤ Cq , for any q < ∞, with a on-stant Cq > 0 independent of ". Therefore as in Proposition 2.1, by settingm"(s) = s∫0 �"(�) d� and letting formally ' = �tu" in (3.7), we have

∫
 |�tu"|2 + 12 ∫
 �tm"(|Du"|2 −  2) (3.11)= ∫
 f · �tu" − ∫
 �"(|Du"|2 −  2) �t −
∫
 (u" · ∇)u" · �tu"

≤ 23 ∫
 |�tu"|2 + 34 ∫
 (|f |2 + |(u" · ∇)u"|2) + C C1;by (3.1) and (3.9). Integrating in time t ∈ (0; T ), we onlude (3.10) whereC2 = C2(‖f‖L2 ; ‖ ‖W 1;∞(0;T ;L∞(
)); ‖u0‖V2) is independent of " by theondition |Du0| ≤  (0) in 
.Hene, by ompatness, we an take a subsequene "→ 0, suh thatu" → u in C ([0; T ℄;L2�(
))-strong;Du" * Du in L2(QT )-weak;�tu" * �tu in L2(QT )-weak;for some u ∈ H1(0; T ;L2(
)) ∩ L2(0; T ;V2), with u(0) = u0.



128 J.-F. RODRIGUESBy onsidering the partition of QT in the formA" = {(x; t) ∈ QT : |Du"(x; t)|2 −  2(x; t) < √"} ;B" = {(x; t) ∈ QT : √" ≤ |Du"(x; t)|2 −  2(x; t) ≤ 1="} ;C" = {(x; t) ∈ QT : |Du"(x; t)|2 −  2(x; t) > 1="} ;we onlude �rst u(t) ∈ K(t), a.e. t ∈ (0; T ), i.e., |Du(t)| ≤  (t) a.e. inQT , from
∫QT (|Du"|2 −  2)+ ≤ lim inf" ∫QT (|Du"|2 −  2) ∧ 1" ∨

√"
≤ lim inf" ∫A" √"+ lim inf" ∫B"∪C" 1"
≤ lim" [C1" � (e−1=√" + e−1="2)] = 0by the estimate (3.9) and the de�nition of �" implies �"(|Du"|2 −  2) ≥� e1=√" in B" and �"(|Du"|2 −  2) = �e1="2 in C".Sine �" is monotone, for w = w(t) ∈ K(t) we have

∫
 �"(|Du"|2 −  2)Du" : D(w − u") ≤ � ∫
 Dw : D(w − u");and from (3.7), integrating in time over 0 < t < t + h < T we obtain inQh = 
× (t; t+ h)
∫Qh �tu" · (w − u") + � ∫Qh Dw : D(w − u") + ∫Qh (u" ⊗ u") : Dw

≥
∫Qh f · (w − u"):We notie that ∫
 (v ⊗ v) : ∇(w − v) = ∫
 (v ⊗ v) : Dw, for v;w ∈ V2.Passing to the limit in (3.11) we obtain, using Minty's Lemma and u(t) ∈
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K(t), �rst

∫Qh �tu · (w − u) + � ∫Qh Du : D(w − u) + ∫Qh (u⊗ u) : Dw
≥

∫Qh f · (w − u)and, afterwards, multiplying by 1=h and letting h → 0 and hoosing testfuntions ontinuous in t, whih is possible by assumption (3.1), we on-lude that u = u(t) satis�es also (3.5) for a.e. t ∈ (0; T ) (see also Re-mark 3.2 below). Finally, K(t) ⊂ ⋂0<r<∞
Vr, by Poinar�e and Korn inequal-ities, implies u ∈ L∞(0; T ;W1;r(
)), ∀ r <∞. The ompatness results of[29℄ with Sobolev embeddings yields that in fat u ∈ C 0([0; T ℄;C 0;(
)d)for all 0 ≤  < 1. �Remark 3.1. As it is well-known, Korn's inequality establishes that thereexists a onstant kp > 0 suh that

‖∇w‖Lp(
) ≤ kp ‖Dw‖Lp(
) (3.12)holds for all w ∈ W 1;p0 (
)d and all 1 < p < ∞ (see [17, p. 196℄, forinstane). However, it is also known that in the limits ases p = 1 and p =
∞, it is false (see [4℄, for a reent proof and referenes). Therefore it is notpossible to onlude from this theorem that all strong solutions to (3.4){(3.5) have bounded spatial gradient, and therefore the limit regularity = 1 is an open question. Observe that for w ∈ V2 we may take theequality in (3.12) with k2 = √2.Remark 3.2. As in [27℄ (see also Lemma 4.6 of [21℄), if we give twothresholds  1 and  2 satisfying (3.1) and we denote by K1(t) and K2(t)their respetive onvex sets de�ned by (3.2), for any w1 ∈ K1(t), thereexists w2 ∈ K2(t) suh that

‖D(w1 −w2)(t)‖L2(
) ≤ C1 ‖ 1(t)−  2(t)‖L∞(
) ≡ C1 �(t): (3.13)Indeed, it is suÆient to take w2(t) = �w1(t)�+�(t) and C1 ≥ 1�‖Dw1(t)‖L2(
).In partiular, if we take  2(t) =  1(t+h), for |h| > 0, learly the assump-tion (3.1) yields the ontinuity of t→ K1(t) in a strong sense.This remark yields a strong ontinuous dependene result for thik uidsin the ase � > 0.



130 J.-F. RODRIGUESTheorem 3.2. Let ui denote the solution to the variational inequality(3.4){(3.5) with data (3.6) given by ( i;f i;u0i), i = 1; 2, with both  1 and 2 satisfying (3.1). Then there exists a onstant C = C(T ) > 0 suh that
‖u1 − u2‖2L∞(0;T;L2(
)) + ‖D(u1 − u2)‖2L2(QT )

≤ C (
‖f1 − f2‖2L2(QT ) + ‖u01 − u02‖2L2(
) + ‖ 1 −  2‖L∞(QT )) :(3.14)Proof. In (3.5) for ui we set wi = �(t)uj(t) ∈ Ki(t) for i; j = 1; 2, j 6= iand with �(t) = ��+�(t) , �(t) = ‖ 1(t) −  2(t)‖L∞(
). By addition, weobtain for v = u1 − u2 and a.e. t > 0:∫
 �tv · v + � ∫
 |Dv|2 ≤ ∫
 (f 1 − f 2) · v +�(t) + �(t); (3.15)where�(t) = ∫
 {�tu1 · (w1 − u2) + �Du1 : D(w1 − u2) + f 1 · (u2 −w1)+ �tu2 · (w2 − u1) + �Du2 : D(w2 − u1) + f2 · (u1 −w2)}and �(t) = ∫
 {(u1 ⊗ u1) : ∇(w1 − u1) + (u2 ⊗ u2) : ∇(w2 − u2)}= ∫
 {(u1 ⊗ v + v ⊗ u2) : ∇v+ (u1 ⊗ u1) : (�− 1)∇u2 + (u2 ⊗ u2) : (�− 1)∇u1}:Sine f i; �tui are bounded in L2(QT ) and ui;Dui in L∞(QT ), arguingas in (2.16) and using Remark 3.2, we �nd thatt∫0 �(�) d� ≤ C ‖ 1 −  2‖L∞(QT )and t∫0 �(�) d� ≤ �2 t∫0 ∫
 |Dv|2 + C� t∫0 ∫
 |v|2 + C ′ ‖ 1 −  2‖L∞(QT ):



ON THE MATHEMATICAL ANALYSIS OF THICK FLUIDS 131Hene, (3.15) follows easily by the integral form of Gronwall's inequality.
�

§4. The Asymptoti Behavior in TimeWe onsider �rst the steady-state problem for givenf∞ ∈ L2(
);  ∞ ∈ L∞(
) with  ∞ =  ∞(x) ≥ � > 0 a.e. in 
;(4.1)and the onvex set
K∞ = {v ∈ V2 : |Dv(x)| ≤  ∞(x) a.e. x ∈ 
}: (4.2)Theorem 4.1. For any � ≥ 0, there exists at least a solution u∞ suhthat u∞ ∈ K∞ ∩ C

0;(
)d (0 ≤  < 1); (4.3)� ∫
 Du∞ : D(w − u∞)− ∫
 (u∞ ⊗ u∞) : ∇(w − u∞) (4.4)
≥

∫
 f∞ · (w − u∞); ∀w ∈ K∞:Moreover, there exists �d = �d(f∞;  ∞;
) > 0 for whih the solution isunique for � > �d.Proof. Sine K∞ is a bounded, losed and non empty onvex subset of
V2 and A : K∞ → V′2 given by

〈Av;w〉 = � ∫
 Dv : Dw −
∫
 (v ⊗ v) : ∇w; v ∈ K∞; w ∈ V2;learly de�nes a pseudo-monotone operator (for all � ≥ 0), the existeneresult is an immediate onsequene of the general theory of variationalinequalities (see, for instane, Theorem 8.1, p. 245 of [16℄). Sine also

K∞ ⊂ ⋂1<r<∞
Vr, the C 0; regularity follows by Sobolev's inequalities.The uniqueness for large � follows essentially as in the ase of stationaryNavier{Stokes with low Reynold's numbers (see [14℄).



132 J.-F. RODRIGUESIndeed, the di�erene w = u1−u2 of two solutions with the same dataf∞ and  ∞, satis�es� ∫
 |Dw|2 ≤ ∫
 (u1 ⊗ u1 − u2 ⊗ u2) : ∇w
≤

∫
 |(u1 ⊗w) : ∇w| (4.5)
≤M √d ‖w‖L2(
) ‖∇w‖L2(
) ≤ 2M √d � ‖Dw‖2L2(
);where, as in (2.16),M is an upper bound for |u1| and � > 0 is a Poinar�e'sonstant.Hene, the uniqueness follows if� > �d ≡ 2M √d � > 0: (4.6)

�Remark 4.1. If we hoose the Poinar�e's onstant � = 1=√�1, where�1 > 0 is the �rst eigenvalue of −� in H10 (
), by letting w = 0 in (4.4)we get the a priori estimate for u∞

‖∇u∞‖L2(
) = √2 ‖Du∞‖L2(
) ≤ √2�� ‖f∞‖L2(
);and using Ladyzhenskaya's inequalities for d = 2; 3 we an in fat usethe same uniqueness riteria for uniqueness to the solution of (4.4) asin Navier{Stokes stationary problem. For instane, for d = 3 we have2√6�3 �−2 ‖f∞‖L2(
) < 1 (see [14, p. 118℄). However, for large f∞ wemay have smaller �d if  ∞ is also smaller.For the asymptoti result we use the following well-known Lemma (see,for instane, [12, p. 286℄).Lemma 4.1. Let � = �(t) ≥ 0 be loally absolutely ontinuous and � =�(t) ≥ 0 be a loally integrable funtion. If ! > 0 and� ′(t) + ! �(t) ≤ �(t); t > 0;then�(t+ s) ≤ e−!t�(s) + 11− e−! 

sup�≥s �+1∫� �(�) d�

 ; ∀ t; s > 0: (4.7)



ON THE MATHEMATICAL ANALYSIS OF THICK FLUIDS 133Using Remark 3.2, we may now prove the following asymptoti stabi-lization as t→ ∞. Set�(t) = ‖ (t)−  ∞‖L∞(
) and '(t) = t+1∫t ∫
 |f(�)− f∞| d�:Theorem 4.2. Let u = u(t) be the solution of (3.4){(3.5) with the as-sumptions (3.1),f ∈ L∞(0;∞;L2(
)) and  ∈W 1;∞(0;∞;L∞(
)); (4.8)and u∞ the unique solution of (4.4) under the assumption (4.6), i.e.,� > �d = 2�√d ‖u∞‖L∞(
); (4.9)where � > 0 is as in Remark 4.1. Let  > 12 and�(t) = O(t−); '(t) → 0 as t→ ∞: (4.10)Then�(t) = ‖u(t)− u∞‖2L2(
) −→t→∞
0 and �(t) = ‖u(t)− u∞‖

C 0(
)d −→t→∞
0:(4.11)If also '(t) = O(t−�) then�(t) = O(t−�) and �(t) = O(t−� );with � = min(�;  − 12 ) > (d + 2)� > 0, and if, for some � > 0, �(t) =O(e−�t) and '(t) = O(e−�t) then�(t) = O(e−Æt) and �(t) = O(e−�t)for any Æ and �, suh that, 0 < (d+ 2)� < Æ < min(�; (�− �d)=�2).Proof. As in [27℄, we observe that the assumption (4.7) implies that thereexists a onstant C∞ = C∞(u0;f ;  ) independent of T ≥ 1, suh that

‖�tu‖2L2(QT ) ≤ C∞ T: (4.12)In fat, sine ‖f‖2L2(QT ) ≤ T ‖f‖2L∞(0;∞;L2(
)), from the proof of Theo-rem 3.1, in partiular, from (3.11), we easily onlude that both onstantsC0 and C1 grow linearly with T .Now, setting �(t) = ��+�(t) , we take w = �(t)u∞ ∈ K(t) in (3.5) andw = �(t)u(t) ∈ K∞ in (4.4), in order to get for v = u(t) − u∞ and a.e.
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∫
 �tv · v + � ∫
 |Dv|2 ≤ ∫
 (f(t)− f∞) · v +�(t) + �(t) + �(t); (4.13)where we have the following estimates:�(t) = �(t) ∫
 (u⊗ u− u∞ ⊗ u∞) : ∇v ≤ 2�√d ‖u∞‖L∞(
) ∫
 |Dv|2analogously to (4.4), sine 0 < �(t) ≤ 1, with l = ‖u∞‖L2(
),�(t) = (�(t)− 1) ∫
 �tu · u∞ ≤ l�(t) ‖�tu(t)‖L2(
)sine 0 ≤ 1− �(t) ≤ �(t), and�(t) = (1− �(t)) ∫
 (f · u∞ + f∞ · u+ 2�Du : Du∞) ≤ k �(t)where the onstant k > 0 depends on the data only through the assump-tions (4.1) and (4.8).From (4.9) and realling ‖v‖L∞(Q∞) = M < ∞ we onlude that wemay apply the Lemma above to �(t) = ∫
 |v(t)|2 with ! = (�−�d)=�2 > 0and �(t) = 2M ∫
 |f(t)− f∞|+ 2�(t) (k + l ‖�tu‖L2(
)) ;sine (4.12) yields ( t+1∫t ∫
 |�tu(�)|2 d�)1=2 = O(t1=2) as t → ∞. Henethe Theorem follows easily: �rst for �(t), by applying the assumptionsto (4.7); then for �(t) by applying the Gagliardo-Nirenberg interpolationequality [22℄

‖v‖L∞(
) ≤ C1‖∇v‖aLr(
)‖v‖1−aL2(
) + C2‖v‖L2(
)to the funtion v = u(t) − u∞ ∈
⋂d<r<∞

Vr ⊂ C
0(
)d, with a = a(r) =rdrd+2(r−d) > 0. Sine 0 < 1−a(r) < 2d+2 for d < r <∞, by realling (3.12)and the assumptions, the onlusion follows by simple alulations. �
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