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t. In 
hemi
al engineering models, shear-thi
kening or di-latant 
uids 
onverge in the limit 
ase to a 
lass of in
ompressible
uids with a maximum admissible shear rate, the so-
alled thi
k
uids. These non-Newtonian 
uids may be obtained, in parti
ular,as the power limit of Ostwald-de Waele 
uids, and may be formu-lated as a new 
lass of evolution variational inequalities, in whi
hthe shear rate is bounded by a positive 
onstant or, more generally,by a bounded positive fun
tion. We prove the existen
e, uniquenessand 
ontinuous dependen
e of solutions to this general 
lass of thi
k
uids with variable threshold on the absolute value of the deforma-tion rate tensor, whi
h solutions belong to a time dependent 
onvexset. For suÆ
iently large vis
osity, we also show the asymptoti
 sta-bilization towards the unique steady state.Dedi
ated to V. A. Solonnikovon the o

asion of his 80th birthday
§1. Introdu
tionIn spite of their importan
e in industrial pro
esses, the 
urrent under-standing of shear thi
kening in 
omplex 
uids, like 
olloidal dispersions,granular suspensions, 
ements or soft body armor, is far from being wella
hieved. Though the rheologi
al survey paper [2℄ already put in eviden
ethe experimental fa
t of abrupt rising of vis
osity, sometimes dis
ontinu-ously, on
e a 
riti
al shear stress is attained, re
ent resear
h in this di-re
tion motivated a feature arti
le in Physi
s Today [31℄, showing thein
reasing interest in shear-thi
kening 
uids, in parti
ular, in armor ap-pli
ations [15℄.In the re
ent book [19℄, where the whole Chapter 8 is dedi
ated to therheology of shear thi
kening, we 
an �nd examples of 
omplex 
uids wherethe vis
osity may in
rease without in
rease in shear rate when the sampleKey words and phrases: shear-thi
kening 
uids, existen
e, uniqueness.117



118 J.-F. RODRIGUESis subje
t to in
reasing shear stress, or in physi
al situations where dis-
ontinuous shear thi
kening may o

ur and, regardless the applied stress,a limiting shear rate is a
hieved and the 
uid exhibits signi�
ant slip and\jamming".On the other hand, non-Newtonian 
ow is often modeled with a powerlaw for the relationship between shear stress and shear rate. In this workwe shall 
onsider the typi
al exampleSp = Sp(Du) = (
|Du|p−2 + �|Du|q−2)Du; (1.1)suggested by Ladyzhenskaya in [13℄ with p = 2, relating the strain velo
ityor deformation rate tensor, i.e., the symmetri
 part of the velo
ity gradientDu = 12 (∇u+∇uT ), with the stress tensor Sp. Here � ≥ 0 is a vis
osity
onstant.For small powers, 1 < p; q < 2, below the linear Newtonian behavior p =q = 2, the 
uids exhibit shear thinning properties, while for higher degreeof the nonlinearity, i.e., for p; q > 2, the behavior is shear thi
kening (see[18℄, for instan
e). It is interesting to observe how parti
ular theoreti
altreatments in applied books may raise enough stimulating dis
ussions onthe in�nity degree of shear thi
kening behavior (see, for instan
e, pages124 and 332 of [5℄), although almost nothing is known for the 
ase of thelimit model p→ ∞.Several 
riti
al state problems in physi
s have mathemati
al modelswith gradient 
onstraints, like in elastoplasti
 deformations, magnetiza-tion of type-II super
ondu
tors, sandpile growth or formation of network oflakes and rivers, that lead to variational inequalities (see, for instan
e, [23℄).It is well-known that, in the s
alar 
ase, the gradient 
onstraint 
an be ob-tained as limits of nonlinear vis
osity 
oeÆ
ients, namely in steady prob-lems in elastoplasti
 torsion [10℄ or in fast/slow di�usion taken as the limitp → ∞ in the p-Lapla
ian [3℄, as well as in time dependent problems innonlinear di�usion [26℄ or in a sandpile model [1℄. More 
omplex 
ases withthe gradient threshold depending on the solution have been also studiedin problems related to a super
ondu
tivity model [24℄ and to di�usion-lessmodels [25℄.Re
ently this approa
h has been extended to a p-
url system in ele
tro-magnetism [21℄ and it is shown here to be also appli
able to the generalizedNavier{Stokes system. Thi
kening a dilatant 
uid, i.e., letting p → ∞ in(1.1), we 
on
lude that, in the limit, the symmetri
 part of the velo
ity



ON THE MATHEMATICAL ANALYSIS OF THICK FLUIDS 119gradient Du must satisfy the 
onstraint
|Du| ≤ 1 (1.2)on the shear rate. In the limit we say the 
uid is thi
k. More generally,we may 
onsider more 
omplex thi
k 
uids with a variable shear ratethreshold, by repla
ing the unit 
onstraint in (1.2) by a positive fun
tion =  (x; t).Let 
 ⊂ Rd, be a bounded domain, with Lips
hitz boundary �
, d ≥ 2and QT = 
 × (0; T ), T > 0. The 
lassi
al system for an in
ompressibledilatant 
uid for the velo
ity u = u(x; t) and the pressure � = �(x; t)reads, in QT : �tu− div(Sp − u⊗ u) +∇� = f ; (1.3)divu = 0: (1.4)Here �tu = �u�t and div(u⊗u) = (u·∇)u represents the usual 
onve
tiveterm under the in
ompressibility 
ondition (1.4).The existen
e of unique weak solution to the Cau
hy-Diri
hlet problem,i.e., to (1.3){(1.4) withu = 0 on �
× (0; T ); u(0) = u0 in 
; (1.5)for p ≥ d+22 , 1 < q < ∞, � ≥ 0 is well-known (see [14℄ and [16℄). Severalvariants of generalized Newtonian 
uids of the type (1.3){(1.4) have been
onsidered in the mathemati
al literature (see, for instan
e, the book [17℄or the survey [18℄) and the existen
e of weak solutions has been shown ford = 3 up to p > 65 [7℄.Thi
k 
ows may also be seen as limit of 
ertain non-Newtonian 
ows,similarly to the 
ase of Bingham 
uids, whi
h lead to variational inequal-ities in the limit of some approximations [8℄, [30℄ and 
orrespond to 
owswith two phases: rigid if |Du| = 0 for |S| ≤ �∗ and 
uid for |S| > �∗ > 0.Although quite di�erent, this new type of thi
k 
ow with shear rate 
on-straint has also two phases. Indeed, formally, the 
onstraint

|Du(x; t)| ≤  (x; t) (1.6)for the velo
ity �eld u of the thi
k 
uid divides the domain into twosubdomainsQT = {(x; t) : |Du(x; t)| <  (x; t)}∪{(x; t) : |Du(x; t)| =  (x; t)}: (1.7)



120 J.-F. RODRIGUESIn the �rst phase, below the 
riti
al threshold, we have the power law
ow�tu− div (�|Du|q−2Du− u⊗ u) +∇� = f in {
|Du| <  } (1.8)while in the se
ond phase, the thi
k strain velo
ity Du is 
onditioned bythe two s
alar equations

|Du(x; t)| =  (x; t) and divu = 0: (1.9)In this phase, if  is a positive 
onstant, an applied stress in
rease inthe thi
k 
uid may in
rease also the vis
osity without in
rease the shearrate. Although this limit rheology law is also of dis
ontinuity power typeit does not falls in the 
lass treated in [11℄, although our problem 
an alsobe treated with the theory of maximal monotone operators.In the next se
tion, we present the mathemati
al analysis of p→ ∞ inthe 
onstitutive law (1.1) with q = 2, obtaining an evolution variationalinequality for the equation (1.8), i.e., the Navier{Stokes equation with the
onstraint (1.2), whi
h has a unique solution. In the following se
tion, weextend the method of [24℄ and [21℄ to the variable shear rate threshold (x; t) > 0, showing the well-posedness of the 
orresponding variationalinequality with time dependent 
onvex set. We prove the 
ontinuous depen-den
e of the solution with respe
t to the data, in
luding the threshold  ,and, in the �nal se
tion, we 
onsider the asymptoti
 behavior towards thesteady-state when t → ∞ and the vis
osity is suÆ
iently large to ensurethe uniqueness of the stationary solution. In the following joint work [20℄we extend these results to more general non-Newtonian 
uids, in
ludingthe power law 
uids (1.1) with q 6= 2.After presenting these results at the opening of the 
onferen
e on \Math-emati
al Hydrodynami
s and Paraboli
 Equations", held in St. Peters-burg, 11-14 September 2013, Harald Gar
ke 
alled the attention of theauthor to the preprint [6℄ and Eduard Feireisl to the earlier work [28℄.Both works 
onsider also the 
onstraint  = 1, the �rst one for the steady-state Stokes system adapting the methods of [9℄ and presenting numeri
alexamples, and the se
ond one proving the existen
e of weak solutions fornon-Newtonian 
ows with rigid bodies in whi
h the inhomogeneous vis-
osity � is a solution of a transport equation.



ON THE MATHEMATICAL ANALYSIS OF THICK FLUIDS 121
§2. Thi
kening a dilatant fluid (p → ∞)In order to work with the variational formulation for the dilatant model(1.1) with q = 2, we introdu
e the following notations:

H = L2�(
) = 
losure of J in L2(
); (2.1)
Vr = 
losure of J in W 1;r(
); (2.2)where J = {' ∈ C∞0 (
)d : div' = 0} is the spa
e of solenoidal, smoothve
tor fun
tions with support in 
 ⊂ Rd, W 1;r(
) is a Sobolev spa
e with1 < r <∞, L2(
) = L2(
)d andW 1;r(
) =W 1;r(
)d.We obtain the weak formulation by multiplying (1.3) by a test fun
tion' ∈ J and integration by parts in 
. For a.e. t ∈ (0; T ), we obtain then

∫
 �tu ·'+ ∫
 Sp(Du) : D'−
∫
 (u⊗ u) : ∇' = ∫
 f · '; ∀' ∈ Vp;(2.3)where, by abuse of notation, the �rst integral is understood in the usualduality sense of Vp ⊂ H ⊂ V′p. Here we take p ≥ d+22 ≥ 2 and q = 2without loss of generality, sin
e we are interested in p→ ∞.Using variational methods (see [14, 16, 17℄ or [18℄ and their referen
es),we may easily prove the following result.Proposition 2.1. For f ∈ L2(
), u0 ∈ H, p ≥ d+22 ≥ 2, there exists aunique solution u = up(t) solving (2.3) for a.e. t ∈ (0; T ) in the 
lassu = up ∈ C

([0; T ℄;H)
∩ Lp(0; T ;Vp); (2.4)with �tu ∈ Lp′(0; T ;V′p). In addition, if u0 ∈ Vp then�tu = �tup ∈ L2(0; T ;H)

⊂ L2(QT ): (2.5)Proof. The existen
e of a weak solution follows by well-known methodsusing the a priori estimate
‖u(t)‖2L2(
) + t∫0 ‖Du‖pLp(
) ≤ Cd 


t∫0 ‖f‖2L2(
) + ‖u0‖2L2(
) (2.6)whi
h is a 
onsequen
e of formally testing (2.3) with ' = up(t) and ap-plying Poin
ar�e's inequality. Note that the 
onstant Cd > 0 in (2.6) isindependent of p ≥ d+22 . This assumption also implies, by Sobolev's in-equalities that (u ·∇)u ∈ L2(QT ), also independently of p by (2.6). Hen
e,



122 J.-F. RODRIGUESby testing (2.3) with ' = �tu = �tup, using (2.6) and
−

∫
 (u⊗ u) · ∇�tu = ∫
 (u · ∇)u · �tu
≤ Cp‖u‖2L 2pp−2 (
)‖Du‖2Lp(
) + 13‖�tu‖2L2(
);we get the regularity (2.5) from the estimate, for a.e. t > 0,13 t∫0 ‖�tu‖2L2(
) + 'p(u(t)) ≤ 'p(u0) + C ′d 


t∫0 ‖f‖2L2(
) + ‖u0‖2L2(
) ;(2.7)where, as in (2.6), the 
onstant C ′d > 0 is also independent of p and wehave set 'p(u) = 1p ∫
 |Du|p + �2 ∫
 |Du|2: (2.8)The uniqueness of the solution is also well-known for the values of p ≥d+22 . �Remarking that if |Du0| ≤ 1 in 
 we have 'p(u0) ≤ C0, independentof p, we immediately 
on
lude the following proposition.Proposition 2.2. The solution up satis�es the a priori estimates

‖up‖2L∞(0;T ;L2(
)) + ‖Dup‖pLp(QT ) + �‖up‖2L2(QT ) ≤ C0 (2.9)and, if in additionu0 ∈ K
1 ≡ {w ∈ Vr : |Dw| ≤ 1 in 
}; ∀r <∞; (2.10)it satis�es also
‖�tup‖2L2(QT ) + sup0<t<T 1p‖Dup(t)‖pLp(
) ≤ C1; (2.11)where the 
onstants C0; C1 > 0 are independent of p ≥ d+22 .We may introdu
e the evolution variational inequality asso
iated withthe �xed 
onvex set K1 ⊂ ⋂1<r<∞

Vr, de�ned by (2.10) and 
orresponding



ON THE MATHEMATICAL ANALYSIS OF THICK FLUIDS 123to the limit problem for v = v(t):
∫
 �tv · (w − v) + � ∫
 Dv : D(w − v)− ∫
 (v ⊗ v) : ∇(w − v)

≥
∫
 f · (w − v); ∀w ∈ K

1; (2.12)whi
h should hold for a.e. t ∈ (0; T ).Theorem 2.1. For any � ≥ 0, if we denote by up the unique solution to(2.3) with f ∈ L2(QT ) and initial 
ondition u0 ∈ K1, we have, as p→ ∞,up → v in C
([0; T ℄;L2(
))-strong ∩ Lr(0; T ;Vr)-weak; (2.13)�tup * �tv in L2(QT )-weak; (2.14)for any r <∞, where the limit v = v(t) is in the 
lassv ∈ H1(0; T ;L2(
)) ∩ Lr(0; T ;Vr) ∩ L∞(0; T ;K1) (2.15)and satis�es (2.12) for a.e. t ∈ (0; T ) and the initial 
ondition v(0) = u0.If � > 0, the solution of (2.12) in the 
lass (2.15) is unique and the
onvergen
es (2.13){(2.14) hold for the whole sequen
e.Proof. Sin
e the estimates (2.9) and (2.11) are independent of p, (2.13)and (2.14) hold for at least a subsequen
e as p→ ∞. Hen
e for r < s < p,we have

‖Dv‖Ls(QT ) ≤ lim infp→∞
‖Dup‖Ls(QT )

≤ lim supp→∞
|QT | 1s− 1p ‖Dup‖Lp(QT ) ≤ |QT | 1s ; ∀s <∞;sin
e, by the estimate (2.6), ‖Dup‖Lp(QT ) ≤ C1=p0 . So, letting s → ∞ we�nd ‖Dv‖L∞(QT ) ≤ 1 and 
onsequently v is in the 
lass (2.15).By well-known 
ompa
tness results, we may also assume thatup ⊗ up → v ⊗ v in L2(QT )-strong:Integrating (2.3) in t ∈ (0; T ) with ' = w(t) − up(t), for an arbitraryw ∈ Lp(0; T ;Vp) su
h that |Dw| < 1 in QT , and using the monotoni
ity



124 J.-F. RODRIGUESof Sp(Dup), we easily get
∫QT �tup ·(w−up)+ ∫QT |Dw|p−2Dw : D(w−up)+� ∫QT Dw : D(w−up)

−
∫QT (up ⊗ up) : ∇(w − up) ≥ ∫QT f · (w − up):In the limit p→ ∞, this yields

∫QT �tv · (w − v) + � ∫QT Dw : D(w − v)− ∫QT (v ⊗ v) : ∇(w − v)
≥

∫QT f · (w − v):whi
h by density holds also for allw ∈ L∞(0; T ;K1). By Minty's argumentwe 
on
lude �rst that v satis�es the variational inequality (2.12) integratedin t ∈ (0; T ), for all su
h w. By a well-known argument for paraboli
variational inequalities (see [16℄), this implies that v(t) also satis�es (2.12)for a.e. t ∈ (0; T ), proving the �rst part of Theorem 2.1.If �> 0, the uniqueness of v in the 
lass (2.15) follows sin
e L∞(0; T ;K1)
⊂ L∞(QT ) by Sobolev's inequalities, and we may 
ontrol the 
onve
tionterms of any two solutions v and v̂ in terms of their di�eren
e w = v − v̂

∣∣∣∣∣∣

∫
 (v ⊗ v − v̂ ⊗ v̂) : ∇w∣∣∣∣∣∣
≤

∫
 |(v ⊗w +w ⊗ v̂) : ∇w| (2.16)
≤ 2M√d ‖w‖L2(
) ‖∇w‖L2(
)
≤ 2M√d√2 ‖w‖L2(
) ‖Dw‖L2(
)
≤ 4d� M2 ‖w‖2L2(
) + �2 ‖Dw‖2L2(
);whereM > 0 is an upper bound for |v| and |v̂|. Hen
e Gronwall's inequalityimmediately implies the uniqueness of the solution of (2.12). �Remark 2.1. Under the assumption u0 ∈ K1 it is 
lear that the 
onstantC1 in (2.11) is independent of � ≤ 1. Therefore we 
an let � → 0 in(2.12), i.e., if v� denote the solutions of (2.12) in the 
lass (2.15), as in theproof of Theorem 2.1, we may 
on
lude that for subsequen
es, v� → v0 in
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C

([0; T ℄;L2(
))-strong∩Lr(0; T ;Vr)-weak∩H1(0; T ;L2(
))-weak, wherev0 is a solution of the Euler system (1.8) with � = 0 and the 
onstraint(1.2). However in this invis
id limit the uniqueness argument fails and wedo not know if v0 is unique.
§3. Thi
k fluids with variable shear rate thresholdLet  =  (x; t) : QT → R+ be a given fun
tion, su
h that ≥ � > 0 and  ∈W 1;∞(0; T ;L∞(
)); (3.1)so that, the following 
losed 
onvex subset of V2 is nonempty for a.e.t ∈ (0; T ),

K(t) ≡ {w ∈ V2 : |Dw| ≤  (x; t) a.e. x ∈ 
} : (3.2)Motivated by the previous se
tion, we introdu
e the following varia-tional inequality for the thi
k 
ow with variable shear rate threshold andpositive vis
osity � > 0. Find a strong solutionu ∈ L∞(0; T ;V2) ∩H1(0; T ;L2(
)); (3.3)su
h that u(t) ∈ K(t) for a.e. t ∈ (0; T ); u(0) = u0; (3.4)
∫
 �tu · (w − u) + � ∫
 Du : D(w − u)− ∫
 (u⊗ u) : ∇(w − u)

≥
∫
 f · (w − u); ∀w ∈ K(t); a.e. t ∈ (0; T ); (3.5)where we shall assumef ∈ L2(QT ) and u0 ∈ K(0): (3.6)As in the s
alar 
ase of [27℄ and the 
url system of [21℄ we may provethe following result.Theorem 3.1. Under the assumptions (3.1), � > 0 and (3.6), there existsa unique strong solution u to the variational inequality (3.4){(3.5) satis-fying (3.3) and, as a 
onsequen
e, also u ∈ C 0([0; T ℄;C 0;
(�
)d) for all0 ≤ 
 < 1.



126 J.-F. RODRIGUESProof. For a positive parameter " < 1, we 
onsider the following familyof 
ontinuous, bounded and in
reasing fun
tions �" : R → R+, su
h that�"(s) = 




� if s ≤ 0;� es=" if " ≤ s < 1" − ";� e1="2 if s > 1" :Then, the approximate problem with penalized vis
osity for u" = u"(t),a.e. t ∈ (0; T ),
∫
 �tu" · '+ ∫
 �"(|Du"|2 −  2)Du" : D'−

∫
 (u" ⊗ u") : ∇'= ∫
 f · '; ∀' ∈ V2; (3.7)with initial 
ondition u"(0) = u0, by well-known nonlinear methods (see[16℄) has solutions u" ∈ L2(0; T ;V2) ∩H1(0; T ;L2(
)) satisfying the fol-lowing a priori estimates independently of 0 < " < 1:
‖u"‖2L∞(0;T ;L2(
)) + � ‖Du"‖2L2(QT ) ≤ C0; (3.8)

∫QT �"(|Du"|2 −  2) ≤ C1; (3.9)
‖�tu"‖L2(QT ) ≤ C2: (3.10)Indeed, (3.8) is a simple 
onsequen
e of setting ' = u" in (3.7), thatalso yields

∫QT �"(|Du"|2 −  2) |Du"|2 ≤ C0:
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alling  ≥ � > 0 and �"(s) = � for s ≤ 0 and �"(s) ≥ 0 for s ≥ 0,we 
on
lude (3.9) from�2 ∫QT �"(|Du"|2 −  2) ≤ ∫QT �"(|Du"|2 −  2) 2
≤

∫

{|Du"|2≤ 2}�"(|Du"|2 −  2)( 2−|Du"|2)+∫QT �"(|Du"|2 −  2) |Du"|2
≤ � ∫QT  2 + C0 = �2 C1:The estimate (3.9) implies, as in Lemma 4 of [24℄ or as in Proposi-tion 3.14 of [25℄, that ‖∇u"‖Lq(QT ) ≤ Cq , for any q < ∞, with a 
on-stant Cq > 0 independent of ". Therefore as in Proposition 2.1, by settingm"(s) = s∫0 �"(�) d� and letting formally ' = �tu" in (3.7), we have

∫
 |�tu"|2 + 12 ∫
 �tm"(|Du"|2 −  2) (3.11)= ∫
 f · �tu" − ∫
 �"(|Du"|2 −  2) �t −
∫
 (u" · ∇)u" · �tu"

≤ 23 ∫
 |�tu"|2 + 34 ∫
 (|f |2 + |(u" · ∇)u"|2) + C C1;by (3.1) and (3.9). Integrating in time t ∈ (0; T ), we 
on
lude (3.10) whereC2 = C2(‖f‖L2 ; ‖ ‖W 1;∞(0;T ;L∞(
)); ‖u0‖V2) is independent of " by the
ondition |Du0| ≤  (0) in 
.Hen
e, by 
ompa
tness, we 
an take a subsequen
e "→ 0, su
h thatu" → u in C ([0; T ℄;L2�(
))-strong;Du" * Du in L2(QT )-weak;�tu" * �tu in L2(QT )-weak;for some u ∈ H1(0; T ;L2(
)) ∩ L2(0; T ;V2), with u(0) = u0.



128 J.-F. RODRIGUESBy 
onsidering the partition of QT in the formA" = {(x; t) ∈ QT : |Du"(x; t)|2 −  2(x; t) < √"} ;B" = {(x; t) ∈ QT : √" ≤ |Du"(x; t)|2 −  2(x; t) ≤ 1="} ;C" = {(x; t) ∈ QT : |Du"(x; t)|2 −  2(x; t) > 1="} ;we 
on
lude �rst u(t) ∈ K(t), a.e. t ∈ (0; T ), i.e., |Du(t)| ≤  (t) a.e. inQT , from
∫QT (|Du"|2 −  2)+ ≤ lim inf" ∫QT (|Du"|2 −  2) ∧ 1" ∨

√"
≤ lim inf" ∫A" √"+ lim inf" ∫B"∪C" 1"
≤ lim" [C1" � (e−1=√" + e−1="2)] = 0by the estimate (3.9) and the de�nition of �" implies �"(|Du"|2 −  2) ≥� e1=√" in B" and �"(|Du"|2 −  2) = �e1="2 in C".Sin
e �" is monotone, for w = w(t) ∈ K(t) we have

∫
 �"(|Du"|2 −  2)Du" : D(w − u") ≤ � ∫
 Dw : D(w − u");and from (3.7), integrating in time over 0 < t < t + h < T we obtain inQh = 
× (t; t+ h)
∫Qh �tu" · (w − u") + � ∫Qh Dw : D(w − u") + ∫Qh (u" ⊗ u") : Dw

≥
∫Qh f · (w − u"):We noti
e that ∫
 (v ⊗ v) : ∇(w − v) = ∫
 (v ⊗ v) : Dw, for v;w ∈ V2.Passing to the limit in (3.11) we obtain, using Minty's Lemma and u(t) ∈
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K(t), �rst

∫Qh �tu · (w − u) + � ∫Qh Du : D(w − u) + ∫Qh (u⊗ u) : Dw
≥

∫Qh f · (w − u)and, afterwards, multiplying by 1=h and letting h → 0 and 
hoosing testfun
tions 
ontinuous in t, whi
h is possible by assumption (3.1), we 
on-
lude that u = u(t) satis�es also (3.5) for a.e. t ∈ (0; T ) (see also Re-mark 3.2 below). Finally, K(t) ⊂ ⋂0<r<∞
Vr, by Poin
ar�e and Korn inequal-ities, implies u ∈ L∞(0; T ;W1;r(
)), ∀ r <∞. The 
ompa
tness results of[29℄ with Sobolev embeddings yields that in fa
t u ∈ C 0([0; T ℄;C 0;
(
)d)for all 0 ≤ 
 < 1. �Remark 3.1. As it is well-known, Korn's inequality establishes that thereexists a 
onstant kp > 0 su
h that

‖∇w‖Lp(
) ≤ kp ‖Dw‖Lp(
) (3.12)holds for all w ∈ W 1;p0 (
)d and all 1 < p < ∞ (see [17, p. 196℄, forinstan
e). However, it is also known that in the limits 
ases p = 1 and p =
∞, it is false (see [4℄, for a re
ent proof and referen
es). Therefore it is notpossible to 
on
lude from this theorem that all strong solutions to (3.4){(3.5) have bounded spatial gradient, and therefore the limit regularity
 = 1 is an open question. Observe that for w ∈ V2 we may take theequality in (3.12) with k2 = √2.Remark 3.2. As in [27℄ (see also Lemma 4.6 of [21℄), if we give twothresholds  1 and  2 satisfying (3.1) and we denote by K1(t) and K2(t)their respe
tive 
onvex sets de�ned by (3.2), for any w1 ∈ K1(t), thereexists w2 ∈ K2(t) su
h that

‖D(w1 −w2)(t)‖L2(
) ≤ C1 ‖ 1(t)−  2(t)‖L∞(
) ≡ C1 �(t): (3.13)Indeed, it is suÆ
ient to take w2(t) = �w1(t)�+�(t) and C1 ≥ 1�‖Dw1(t)‖L2(
).In parti
ular, if we take  2(t) =  1(t+h), for |h| > 0, 
learly the assump-tion (3.1) yields the 
ontinuity of t→ K1(t) in a strong sense.This remark yields a strong 
ontinuous dependen
e result for thi
k 
uidsin the 
ase � > 0.



130 J.-F. RODRIGUESTheorem 3.2. Let ui denote the solution to the variational inequality(3.4){(3.5) with data (3.6) given by ( i;f i;u0i), i = 1; 2, with both  1 and 2 satisfying (3.1). Then there exists a 
onstant C = C(T ) > 0 su
h that
‖u1 − u2‖2L∞(0;T;L2(
)) + ‖D(u1 − u2)‖2L2(QT )

≤ C (
‖f1 − f2‖2L2(QT ) + ‖u01 − u02‖2L2(
) + ‖ 1 −  2‖L∞(QT )) :(3.14)Proof. In (3.5) for ui we set wi = �(t)uj(t) ∈ Ki(t) for i; j = 1; 2, j 6= iand with �(t) = ��+�(t) , �(t) = ‖ 1(t) −  2(t)‖L∞(
). By addition, weobtain for v = u1 − u2 and a.e. t > 0:∫
 �tv · v + � ∫
 |Dv|2 ≤ ∫
 (f 1 − f 2) · v +�(t) + �(t); (3.15)where�(t) = ∫
 {�tu1 · (w1 − u2) + �Du1 : D(w1 − u2) + f 1 · (u2 −w1)+ �tu2 · (w2 − u1) + �Du2 : D(w2 − u1) + f2 · (u1 −w2)}and �(t) = ∫
 {(u1 ⊗ u1) : ∇(w1 − u1) + (u2 ⊗ u2) : ∇(w2 − u2)}= ∫
 {(u1 ⊗ v + v ⊗ u2) : ∇v+ (u1 ⊗ u1) : (�− 1)∇u2 + (u2 ⊗ u2) : (�− 1)∇u1}:Sin
e f i; �tui are bounded in L2(QT ) and ui;Dui in L∞(QT ), arguingas in (2.16) and using Remark 3.2, we �nd thatt∫0 �(�) d� ≤ C ‖ 1 −  2‖L∞(QT )and t∫0 �(�) d� ≤ �2 t∫0 ∫
 |Dv|2 + C� t∫0 ∫
 |v|2 + C ′ ‖ 1 −  2‖L∞(QT ):



ON THE MATHEMATICAL ANALYSIS OF THICK FLUIDS 131Hen
e, (3.15) follows easily by the integral form of Gronwall's inequality.
�

§4. The Asymptoti
 Behavior in TimeWe 
onsider �rst the steady-state problem for givenf∞ ∈ L2(
);  ∞ ∈ L∞(
) with  ∞ =  ∞(x) ≥ � > 0 a.e. in 
;(4.1)and the 
onvex set
K∞ = {v ∈ V2 : |Dv(x)| ≤  ∞(x) a.e. x ∈ 
}: (4.2)Theorem 4.1. For any � ≥ 0, there exists at least a solution u∞ su
hthat u∞ ∈ K∞ ∩ C

0;
(
)d (0 ≤ 
 < 1); (4.3)� ∫
 Du∞ : D(w − u∞)− ∫
 (u∞ ⊗ u∞) : ∇(w − u∞) (4.4)
≥

∫
 f∞ · (w − u∞); ∀w ∈ K∞:Moreover, there exists �d = �d(f∞;  ∞;
) > 0 for whi
h the solution isunique for � > �d.Proof. Sin
e K∞ is a bounded, 
losed and non empty 
onvex subset of
V2 and A : K∞ → V′2 given by

〈Av;w〉 = � ∫
 Dv : Dw −
∫
 (v ⊗ v) : ∇w; v ∈ K∞; w ∈ V2;
learly de�nes a pseudo-monotone operator (for all � ≥ 0), the existen
eresult is an immediate 
onsequen
e of the general theory of variationalinequalities (see, for instan
e, Theorem 8.1, p. 245 of [16℄). Sin
e also

K∞ ⊂ ⋂1<r<∞
Vr, the C 0;
 regularity follows by Sobolev's inequalities.The uniqueness for large � follows essentially as in the 
ase of stationaryNavier{Stokes with low Reynold's numbers (see [14℄).
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e w = u1−u2 of two solutions with the same dataf∞ and  ∞, satis�es� ∫
 |Dw|2 ≤ ∫
 (u1 ⊗ u1 − u2 ⊗ u2) : ∇w
≤

∫
 |(u1 ⊗w) : ∇w| (4.5)
≤M √d ‖w‖L2(
) ‖∇w‖L2(
) ≤ 2M √d � ‖Dw‖2L2(
);where, as in (2.16),M is an upper bound for |u1| and � > 0 is a Poin
ar�e's
onstant.Hen
e, the uniqueness follows if� > �d ≡ 2M √d � > 0: (4.6)

�Remark 4.1. If we 
hoose the Poin
ar�e's 
onstant � = 1=√�1, where�1 > 0 is the �rst eigenvalue of −� in H10 (
), by letting w = 0 in (4.4)we get the a priori estimate for u∞

‖∇u∞‖L2(
) = √2 ‖Du∞‖L2(
) ≤ √2�� ‖f∞‖L2(
);and using Ladyzhenskaya's inequalities for d = 2; 3 we 
an in fa
t usethe same uniqueness 
riteria for uniqueness to the solution of (4.4) asin Navier{Stokes stationary problem. For instan
e, for d = 3 we have2√6�3 �−2 ‖f∞‖L2(
) < 1 (see [14, p. 118℄). However, for large f∞ wemay have smaller �d if  ∞ is also smaller.For the asymptoti
 result we use the following well-known Lemma (see,for instan
e, [12, p. 286℄).Lemma 4.1. Let � = �(t) ≥ 0 be lo
ally absolutely 
ontinuous and � =�(t) ≥ 0 be a lo
ally integrable fun
tion. If ! > 0 and� ′(t) + ! �(t) ≤ �(t); t > 0;then�(t+ s) ≤ e−!t�(s) + 11− e−! 

sup�≥s �+1∫� �(�) d�

 ; ∀ t; s > 0: (4.7)
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 stabi-lization as t→ ∞. Set�(t) = ‖ (t)−  ∞‖L∞(
) and '(t) = t+1∫t ∫
 |f(�)− f∞| d�:Theorem 4.2. Let u = u(t) be the solution of (3.4){(3.5) with the as-sumptions (3.1),f ∈ L∞(0;∞;L2(
)) and  ∈W 1;∞(0;∞;L∞(
)); (4.8)and u∞ the unique solution of (4.4) under the assumption (4.6), i.e.,� > �d = 2�√d ‖u∞‖L∞(
); (4.9)where � > 0 is as in Remark 4.1. Let 
 > 12 and�(t) = O(t−
); '(t) → 0 as t→ ∞: (4.10)Then�(t) = ‖u(t)− u∞‖2L2(
) −→t→∞
0 and �(t) = ‖u(t)− u∞‖

C 0(
)d −→t→∞
0:(4.11)If also '(t) = O(t−�) then�(t) = O(t−�) and �(t) = O(t−� );with � = min(�; 
 − 12 ) > (d + 2)� > 0, and if, for some � > 0, �(t) =O(e−�t) and '(t) = O(e−�t) then�(t) = O(e−Æt) and �(t) = O(e−�t)for any Æ and �, su
h that, 0 < (d+ 2)� < Æ < min(�; (�− �d)=�2).Proof. As in [27℄, we observe that the assumption (4.7) implies that thereexists a 
onstant C∞ = C∞(u0;f ;  ) independent of T ≥ 1, su
h that

‖�tu‖2L2(QT ) ≤ C∞ T: (4.12)In fa
t, sin
e ‖f‖2L2(QT ) ≤ T ‖f‖2L∞(0;∞;L2(
)), from the proof of Theo-rem 3.1, in parti
ular, from (3.11), we easily 
on
lude that both 
onstantsC0 and C1 grow linearly with T .Now, setting �(t) = ��+�(t) , we take w = �(t)u∞ ∈ K(t) in (3.5) andw = �(t)u(t) ∈ K∞ in (4.4), in order to get for v = u(t) − u∞ and a.e.
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∫
 �tv · v + � ∫
 |Dv|2 ≤ ∫
 (f(t)− f∞) · v +�(t) + �(t) + �(t); (4.13)where we have the following estimates:�(t) = �(t) ∫
 (u⊗ u− u∞ ⊗ u∞) : ∇v ≤ 2�√d ‖u∞‖L∞(
) ∫
 |Dv|2analogously to (4.4), sin
e 0 < �(t) ≤ 1, with l = ‖u∞‖L2(
),�(t) = (�(t)− 1) ∫
 �tu · u∞ ≤ l�(t) ‖�tu(t)‖L2(
)sin
e 0 ≤ 1− �(t) ≤ �(t), and�(t) = (1− �(t)) ∫
 (f · u∞ + f∞ · u+ 2�Du : Du∞) ≤ k �(t)where the 
onstant k > 0 depends on the data only through the assump-tions (4.1) and (4.8).From (4.9) and re
alling ‖v‖L∞(Q∞) = M < ∞ we 
on
lude that wemay apply the Lemma above to �(t) = ∫
 |v(t)|2 with ! = (�−�d)=�2 > 0and �(t) = 2M ∫
 |f(t)− f∞|+ 2�(t) (k + l ‖�tu‖L2(
)) ;sin
e (4.12) yields ( t+1∫t ∫
 |�tu(�)|2 d�)1=2 = O(t1=2) as t → ∞. Hen
ethe Theorem follows easily: �rst for �(t), by applying the assumptionsto (4.7); then for �(t) by applying the Gagliardo-Nirenberg interpolationequality [22℄

‖v‖L∞(
) ≤ C1‖∇v‖aLr(
)‖v‖1−aL2(
) + C2‖v‖L2(
)to the fun
tion v = u(t) − u∞ ∈
⋂d<r<∞

Vr ⊂ C
0(
)d, with a = a(r) =rdrd+2(r−d) > 0. Sin
e 0 < 1−a(r) < 2d+2 for d < r <∞, by re
alling (3.12)and the assumptions, the 
on
lusion follows by simple 
al
ulations. �
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