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§1. IntrodutionLet 
 be a bounded onneted domain in R

d (d > 2) with Lipshitzboundary �. We onsider estimates of the distane between a funtionv ∈ V :=W 1;q0 (
;Rd) := {v ∈W 1;q(
;Rd) | v = 0 on �} 1 < q < +∞and the spae S1;q0 (
;Rd), whih is the losure (with respet to the normof V ) of smooth divergene free �elds having ompat supports in 
. Also,we onsider similar estimates for vetor valued funtions vanishing only ona measurable part �D ⊂ � and the set of divergene free �elds satisfyingthe same boundary ondition.Key words and phrases: Inompressible visous uids, inf-sup ondition, distane todivergene free �elds, Stokes, Oseen, and Navier{Stokes problems, omputable boundsof the distane to the generalized solution.The researh is in part supported by Max{Plank Institute for Mathematis inLeipzig and grant No. 14-01-00162 of RFBR.99



100 S. REPINThroughout the paper, {f}
 denotes the mean value of f in 
, ‖ · ‖!denotes the L2 norm of a salar or vetor valued funtion over the set !(if ! oinides with 
, then the subindex is omitted).If q = 2, then an estimate of the distane between v ∈W 1;20 (
;Rd) andthe set of divergene free �elds is based on the following prinipal result.Theorem 1. For any f ∈ L2(
) satisfying the ondition {f}
 = 0, thereexists a funtion wf ∈ W 1;20 (
;Rd) suh thatdivwf = f and ‖∇wf‖ 6 �
‖f‖; (1.1)where �
 is a positive onstant depending only on 
.We refer to [2,12℄ for the proof of Theorem 1, whih has several impor-tant appliations. It was used by O. A. Ladyzhenskaya and V. A. Solon-nikov for proving existene of a generalized solution to the Stokes problem(see, e.g., [11, 12℄).Theorem 1 implies the key relation in the mathematial theory of in-ompressible uids (it is often alled the Inf{Sup (or LBB) ondition):there exists a positive onstant 
 suh thatinfp∈L2(
)
{p}
=0; p 6=0 supw∈V0w 6=0 ∫
 p divw dx

‖p‖ ‖∇w‖ > 
: (1.2)In view of (1.1), the ondition (1.2) holds with 
 = (�
)−1.Also, (1.2) an be justi�ed by means of the Ne�as inequality [14℄:
‖p‖2 6 ‖p‖2−1;
 + d∑i=1 ∥∥∥∥ �p�xi ∥∥∥∥2−1;
 ∀ p ∈ L2(
);where ‖�‖2−1;
 := sup�∈H10 (
)(�; �)=‖�‖H1 . For domains with Lipshitzboundaries a simple proof an be found in [3℄.In [1℄ and [6℄, the LBB ondition was introdued, proved, and used inorder to justify the onvergene of the so{alled mixed approximationmethods, in whih a boundary-value problem is redued to a saddle-pointproblem for a ertain Lagrangian. Conditions analogous to (1.2) writtenfor various pairs of �nite dimensional spaes are often used for provingstability and onvergene of numerial methods developed for visous in-ompressible uids (see, e.g., [13℄). In [8℄, it was suggested a numerialmethod, whih provides approximate values of 
 for ertain lasses ofdomains.



ESTIMATES OF THE DISTANCE 101Theorem 1 an be extended to Lq spaes for 1 < q < +∞ (see [4, 5, 17,18℄).Theorem 2. Let f ∈ Lq(
). If {f}
 = 0, then there existsvf ∈ W 1;q0 (
;Rd)suh that divvf = f and ‖∇vf‖q;
 6 �
;q‖divvf‖q;
; (1.3)where �
;q ( �
;2 = �
) is a positive onstant, whih depends only on 
.Theorems 1 and 2 imply estimates of the distane between a vetorfuntion v ∈ W 1;q0 (
;Rd) and the subspae S1;q0 (
;Rd) ⊂ W 1;q0 (
;Rd)ontaining divergene free funtions if the distane is measured in termsof the quantityd(v; S1;q0 (
;Rd)) := infv0∈S1;q0 (
;Rd) ‖∇(v − v0)‖q;
:Lemma 1. For any v ∈ W 1;q0 (
;Rd),d(v; S1;q0 (
;Rd)) 6 �
;q‖divv‖q;
: (1.4)This result diretly follows from Theorem 2 if we set f = divv. Then, afuntion vf ∈ W 1;q0 (
;Rd) exists suh that (1.3) holds. We setv0 := v − vf ∈ S1;q0 (
)and obtain
‖∇(v − v0)‖q;
 = ‖∇vf‖q;
 6 �
;q‖divv‖q;
:Hene, the distane between v ∈W 1;q0 (
;Rd) and the set of divergenefree �elds is easily estimated from above provided that the onstant �
;q (ora suitable upper bound of it) is known. Regrettably, the latter requirementgenerates a very diÆult problem. Even for the most simple ase q = 2estimates of the onstant are known only for a restrited amount of speial(simple) domains (see, e.g., [7, 15, 16, 26℄). In partiular, for d = 2 it isknown that the onstant 
 an be expressed throughout the onstantL in the inequality ‖u‖2 6 L‖v‖2, whih holds for an analyti funtionu + iv provided that {u}
 = 0 (see [9℄). It was shown (see [26℄) that
 = 1√1+L 6 1√2 . For star shaped domains estimation of the onstantL is based on simple geometrial properties of 
 and, in partiular, leadsto the onlusion that 
 = 1√2 for the irle, sin �8 6 
 6

√�−22� for



102 S. REPINthe square and sin �16 6 
 6

√�−2√22� for the isoseles right triangle.Analogous onstants an be found analytially or omputed numeriallyfor ertain basi three dimensional domains.However, in general, the onstants �
;q are unknown. Moreover, so farwe do not know any method able to ompute guaranteed and realistibounds of these onstants for arbitrary three dimensional Lipshitz domainsor, at least, for polygonal 3D domains. This fat imposes the question,whih often arises in quantitative analysis of inompressible media: how toestimate the distane between a funtion v ∈ W 1;q0 (
;Rd) and the set ofdivergene free �elds for a suÆiently wide lass of domains? Moreover, itis neessary to answer the same question in the ase where the funtions arevanishing only on a part of the boundary. Below we show that estimates ofthe distane an be obtained provided that upper bounds of the respetiveonstants assoiated with some basi (elementary) domains has been eitherobtained by analyti methods or preomputed.In Setion 2, we dedue estimates of the distane to the set of divergenefree �elds for funtions vanishing on a part �D of the boundary � and showthat regardless of a partiular form of �D the orresponding estimate holdswith the same onstant as for �D = � provided that the funtion has zeromean divergene (this result generalizes Lemma 6.2.1 in [22℄). After that,a more sophistiated estimate is derived, whih provides an upper boundof the distane to the set of divergene free �elds without this zero meanondition. Setion 3 presents two advaned forms of Theorem 1 in whihthe mean value ondition is imposed for a olletion of subdomains (thesesubdomains over 
 and may be overlapping or non-overlapping). Therespetive estimates of the distane follow from these results. It an beuseful for polygonal domains, whih an be deomposed into simpliialand polyhedral subdomains (ells). If the onstants �
;q for these ellsare known, then the distane to the set of divergene free �elds is easy toestimate. Finally, in Setion 4 we disuss appliations of these results to aposteriori estimates for problems in the theory of visous inompressibleuids.
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§2. Estimates for funtions vanishing on a part of theboundaryAssume that � onsists of two measurable non-interseting parts �Dand �N , measd−1�D > 0, andv ∈W 1;q0;�D (
;Rd) := {v ∈ W 1;q(
;Rd) | v = 0 on �D}:We de�ne the setK�;�D (
) := w ∈W 1;q0;�D (
;Rd) |

∫
 divw dx = � ∈ R



 :Our goal is to �nd an upper bound ofd(v; S1;q0;�D (
;Rd)) := infv0∈S1;q0;�D (
;Rd) ‖∇(v − v0)‖q;
; (2.1)where S1;q0;�D (
;Rd) = {v ∈ W 1;q0;�D (
;Rd) | divv = 0} ;and to show that the estimate (1.4) holds for the funtions vanishing onlyon �D with the same onstant �
;q as in (1.4).Lemma 2. Let v ∈ K0;�D(
): Then,d(v; S1;q0;�D (
;Rd)) 6 �
;q‖divv‖q;
: (2.2)Indeed, the funtion f = divv has zero mean, so that Theorem 2 guar-antees existene of vf ∈W 1;q0 (
;Rd) suh that (1.3) holds. Sinev0 := v − vf ∈ S1;q0;�D(
;Rd);we arrive at (2.2).Lemma 2 generalizes results presented in [24℄ and Chapter 6 of [22℄,where it was shown that the ondition {divv}
 = 0 allows to apply theusual LBB onstant for problems with boundary onditions.Now we onsider estimates of the distane, whih use the same onstant�
;q and hold without the ondition ∫
 divv dx = 0.We begin with the most interesting ase q = 2 and �rst of all deduean upper bound of the quantityinfṽ∈K0;�D (
) ‖∇(ṽ − v)‖: (2.3)



104 S. REPINSine any funtion ṽ ∈ K0;�D(
) an be represented in the form ṽ = v−w̃,where w̃ ∈ K�;�D(
) and � = ∫
 divv dx, this task leads to the auxiliaryvariational probleminfw̃∈K�;�D (
) J(w̃); J(w̃) := 12‖∇w̃‖2; (2.4)whih is equivalent to the minimax probleminfw∈W 1;20;�D (
;Rd) sup�∈R





12‖∇w‖2 + �∫
 divwdx − � :The orresponding dual problem is generated by the funtionalG(�) = infw∈W 1;20;�D (
;Rd) 12‖∇w‖2 + � ∫
 divwdx− ��; (2.5)whih ontains a well posed onvex minimization problem. Let u∗ denotethe minimizer of this problem for � = 1. It meets the integral identity
∫
 ∇u∗ : ∇w dx+ ∫�N n · w ds = 0 ∀w ∈W 1;20;�D (
;Rd) (2.6)and solves the problem �u∗ = 0 in
;u∗ = 0 on�D;

∇u∗ n+ n = 0 on�N :It is easy to see that
‖∇u∗ ‖2 + ∫
 divu∗ dx = 0 (2.7)and �u∗ is the minimizer of the problem (2.5).We obtainG(�) = 12�2‖∇u∗ ‖2 + �� ∫
 divu∗ dx− � = −

12�2‖∇u∗ ‖2 − ��:



ESTIMATES OF THE DISTANCE 105Therefore, sup� G(�) is attained at � = �∗ := − �
‖∇u∗ ‖2 : By (2.6) we on-lude that ‖∇u∗ ‖ 6= 0 so that �∗ is a �nite real number andG(�∗ ) = 12 �2

‖∇u∗ ‖2 :Note that �∗ ∫
 divu∗ dx = �: (2.8)Hene, �∗ u∗ ∈ K�;�D(
). SineJ(�∗ u∗ ) = 12‖∇�∗ u∗ ‖2 = 12 �2
‖∇u∗ ‖2we see that the values of the primal and dual funtionals assoiated withthe auxiliary problem oinide and, therefore, �∗ u∗ is the minimizer ofthe auxiliary problem (2.4).We set in (2.3) ṽ = v∗ := v − �∗ u∗ and �nd thatinfṽ∈K0;�D (
) ‖∇(ṽ − v)‖ = 1

‖∇u∗ ‖ ∣∣∣∣∣∣ ∫
 divv dx ∣∣∣∣∣∣ : (2.9)Now infv0∈S1;20;�D (
;Rd) ‖∇(v − v0)‖ 6 infv0∈S1;20;�D (
;Rd) ‖∇(v∗ − v0)‖+ ‖�∗ ∇u∗ ‖
6 �
‖divv − �∗ divu∗ ‖+ 1

‖∇u∗ ‖ ∣∣∣∣∣∣ ∫
 divv dx ∣∣∣∣∣∣ : (2.10)In view of (2.8), we arrive at the following result.Lemma 3. For any v ∈ W 1;20;�D (
;Rd),d(v; S1;20;�D (
;Rd)) 6�

| {divu∗ }
 |

‖ {divu∗ }
divv − divu∗ {divv}
 ‖+ 1
‖∇u∗ ‖ ∣∣∣∣∣∣ ∫
 divv dx ∣∣∣∣∣∣ :(2.11)It is easy to see that this estimate onverts into (2.2) if {divv}
 = 0.



106 S. REPINCorollary 1. (2.10)implies a somewhat di�erent estimate:d(v; S1;20;�D (
;Rd)) 6 �
‖divv‖+ C∗

∣∣∣∣∣∣

∫
 divv dx ∣∣∣∣∣∣ ; (2.12)where C∗ = 1
‖∇u∗ ‖ (�
 ‖divu∗ ‖‖∇u∗ ‖ + 1) :

2A similar estimate an be derived for q ∈ (1;+∞). Let u∗ be the mini-mizer of the probleminfw∈W 1;q0;�D (
) 1q ‖∇w‖qq;
 + � ∫
 divwdx ; (2.13)whih meets the integral identity
∫
 (

| ∇u∗ |q−2∇u∗ : ∇w + divw) dx = 0 ∀w ∈W 1;q0;�D (
):Then,
‖∇u∗ ‖qq;
 + ∫
 divu∗ dx = 0:Set v∗ = v − �∗ u∗ , where�∗ = ∫
 divv dx

∫
 divu∗ dx = −

∫
 divv dx
‖∇u∗ ‖qq;
 :
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;Rd) ‖∇(v − v0)‖q;

6 infv0∈S1;q0;�D (
;Rd) ‖∇(v∗ − v0)‖q;
 + ‖�∗ ∇u∗ ‖q;


6 �
;q‖divv − �∗ divu∗ ‖q;
 + 1
‖∇u∗ ‖q−1q;
 ∣∣∣∣∣∣

∫
 divv dx ∣∣∣∣∣∣
6 �
;q‖divv‖q;
 + C∗;q ∣∣∣∣∣∣ ∫
 divv dx ∣∣∣∣∣∣ ; (2.14)where C∗;q = 1

‖∇u∗ ‖q−1q;
 (�
;q ‖divu∗ ‖q;

‖∇u∗ ‖q;
 + 1) :Remark 1. The onstant C∗ depends on the solution u∗ of the auxiliaryboundary value problem (2.6) (or problem (2.13)). In general, this funtionis unknown. It an be replaed by a �nite dimensional approximation u∗;h ,whih solves the problem (for the ase q = 2)

∫
 (∇u∗;h : ∇wh + divwh) dx = 0 ∀w ∈ Kh0;�D(
);where Kh0;�D is a ertain �nite dimensional subspae of K0;�D(
). Then,repeating above arguments, we �nd thatinfṽ∈K0;�D (
) ‖∇(ṽ − v)‖
6 ‖∇(v − u∗;h )‖ = 1

‖∇u∗;h ‖ ∣∣∣∣∣∣ ∫
 divv dx ∣∣∣∣∣∣ (2.15)and (2.12) holds with the fully omputable onstantC∗;h = 1
‖∇u∗;h ‖ (�
 ‖divu∗;h ‖

‖∇u∗;h ‖ + 1) :By applying known argumentation of the approximation theory one anprove that u∗;h tends to u∗ provided that standard regularity assumptions



108 S. REPINon the struture of subspaes K0;�D(
) are satis�ed. Then, C∗;h tendsto C∗.
§3. Estimates based upon deomposition of 
First, we prove a modi�ed version of Theorem 2, whih is adapted tothe ase where 
 is divided into a olletion of non-overlapping Lipshitzsubdomains 
i, i = 1; 2; : : :N .Theorem 3. Let f ∈ Lq(
). If f satis�es the onditions {f}
i = 0 fori = 1; 2; : : : ; N , then there exists vf ∈ W 1;q0 (
;Rd) suh thatdivvf = f and ‖∇vf‖qq;
 6

N∑i=1 �q
i;q‖f‖qq;
; (3.1)where �
i;q are positive onstants assoiated with subdomains 
i.Proof. In view of Theorem 2, for any 
i there exists vf;i ∈ W 1;q0 (
i;Rd)suh thatdivvf;i = f in 
i and ‖∇vf;i‖q;
i 6 �
i;q‖f‖q;
i : (3.2)We de�ne vf as the funtion, whih is equal to vf;i in 
i. Sine vf;i vanisheson �
i, the funtion vf belongs to W 1;q0 (
i;Rd). By raising (3.2) to thepower q and summing over i, we arrive at (3.1). �Theorem 3 implies an estimate of the distane to the set of divergenefree �elds, whih instead of one global onstant operates with the onstants�
i (for q = 2, this estimate has been earlier established in [23℄).Lemma 4. Let v ∈W 1;q0;�D (
;Rd) and
{divv}
i = 0 i = 1; 2; : : : ; N: (3.3)Then, d(v; S1;q0;�D (
)) 6

( N∑i=1 �q
i;q‖divv‖q
i)1=q : (3.4)Proof. We set f = divv. Then, there exists vf ∈ W 1;q0 (
;Rd) satisfying(3.1). The funtion v0 = v − vf is divergene free and
‖∇(v − v0)‖qq;
 = ‖∇vf‖qq;
 6

N∑i=1 �qq;
i‖divv‖qq;
i ;whih implies (3.4). �



ESTIMATES OF THE DISTANCE 109Now we present another version of the estimate based on domain de-omposition. It requires values of onstants � for a olletion of overlappingLipshitz subdomains Dk, k = 1; 2; : : : ;m, whih onsist of smaller subdo-mains 
i. Assume that q = 2,
 = m⋃k=1Dk = n⋃i=1
i; 
i ∩ 
j = ∅ if i 6= j (3.5)and for any 
i there exists Dk suh that 
i ⊂ Dk: (3.6)Theorem 4. Let f ∈ H2(
) be suh that
{f}
i = 0; i = 1; 2; : : : ; n (3.7)and deomposition of 
 satis�es (3.5) and (3.6). Then, there exists a fun-tion vf ∈ H10 (
;Rd) suh thatdivv = f in 
 (3.8)and
‖∇v‖
 6

n∑i=1 �i‖f‖
i (3.9)where �i = infk=1;:::;m �k; �k = { �Dk if 
i ⊂ Dk;+∞ if 
i 6⊂ Dk: (3.10)Proof. De�ne fi(x) = { f if x ∈ 
i;0 if x 6∈ 
i:Let Mi denote the number k of Dk ontaining 
i with minimal �Dk . Sine
{fi}DMi = 0, we an �nd v(i;Mi) suh that v(i;Mi) = 0 on �DMi ,divv(i;Mi) = fi in DMi (3.11)and

‖∇v(i;Mi)‖Dk 6 �i‖fi‖DMi = �i‖f‖
i : (3.12)We extend v(i;Mi) by zero to 
 \ DMi and �nd that (3.11) holds for thewhole 
. Moreover,
‖∇v(i;Mi)‖
 6 �i‖f‖
i : (3.13)



110 S. REPINSet vf = n∑i=1 v(i;Mi) ∈ H10 (
;Rd). Then divvf = f . Sine
‖∇vf‖
 6

n∑i=1 ‖∇v(i;Mi)‖DMi 6

n∑i=1 �i‖fi‖DMi = n∑i=1 �i‖fi‖
i ;we arrive at (3.9). �Corollary 2. Assume that the onstants �Dk are known. Then Theorem 4yields omputable estimate of the distane to the set of divergene free �eldsfor any v ∈ H1(
;Rd) suh that v vanishes on �D and {divv}
i = 0,i = 1; 2; : : : ; n.Set f = divv. There exists vf ∈ H1(
;Rd) vanishing on the boundarysuh that (3.8) and (3.9) hold. Then v0 = v − vf is a divergene free �eldsuh that v0 = 0 on �D. We haved(v; S1;20;�D (
)) 6 ‖∇(v − v0)‖
 6 ‖∇vf‖
 6

n∑i=1 �i‖divv‖
i : (3.14)A quite similar estimate for d(v; S1;q0;�D (
)) with q ∈ (1;+∞) and�i = infk=1;:::;m �k; �k = { �Dk;q if 
i ⊂ Dk;+∞ if 
i 6⊂ Dk;is obviously true and an be justi�ed by repeating the above arguments.Remark 2. Lemma 4 answers the question stated in the introdution.It says that if 
 is deomposed into a set of "simple" subdomains (forwhih the onstants �
;q are known), then an upper bound of the distaneis easy to ompute provided that mean values of the divergene in eahsubdomain are zero.It should be noted that satisfation of a ertain amount of integralonditions (3.3) an be performed without essential diÆulties unlike themethods based on onstruting a suÆiently wide subspae of divergenefree funtions and omputing the estimate diretly (espeially in the threedimensional ase). Indeed, if v does not satisfy (3.3), then the orrespond-ing orretion an be done be hangingN parameters in the representationof this funtion. Sine∫
i divv dx = ∫�
i v · ni ds i = 1; 2; : : : ; N;



ESTIMATES OF THE DISTANCE 111where ni is the outward normal to the boundary �
i, hanging the pa-rameters should be done suh that all the boundary integrals vanish. If Nis not very large, then this requirement do not lead to essential diÆulties(espeially if v is presented by edge based approximations suh as, e.g.,Raviart{Thomas elements).Moreover, we an dedue fully omputable estimates of the distane,whih are valid without the onditions or (3.3). Indeed, let �i = ∫
i divv dxand w ∈W 1;q0;�D (
) be a \orretion funtion" suh that
∫
i divw dx = �i for i = 1; 2; : : : ; N:Then d(v; S1;q0;�D (
)) 6 d(v − w; S1;q0;�D (
)) + ‖∇w‖q;
and (3.4) yields a simple estimated(v; S1;q0;�D (
)) 6

( N∑i=1 �q
i‖div(v − w)‖q
i)1=q + ‖∇w‖q;
: (3.15)This estimate provides an upper bound of the distane to the set of di-vergene free �elds for any w ∈ W 1;q0;�D (
). In order to obtain the bestestimate, w should be seleted in suh a way that the right hand side of(3.15) be minimal. For this purpose, we should use a generalized versionof the method exposed in Lemma 3.
§4. Estimates of the distane to the exat solutions ofboundary value problemsFinally, we onsider appliations of the above derived estimates to quan-titative analysis of mathematial models arising in the theory of visousinompressible uids. For the sake of simpliity, we onsider only station-ary models with the Dirihl'et boundary onditions (i.e., u = u0 on �,where u0 is a given divergene free vetor funtion). For this lass of prob-lems, a generalized solution u is de�ned as a divergene free �eld satisfyingthe integral identity

∫
 (�∇u− �(u)) : ∇w dx = ∫
 f · w dx ∀w ∈ S1;20 (
;Rd); (4.1)



112 S. REPINwhere � is a positive onstant (visosity), �(u) = 0 for the Stokes prob-lem, �(u) = a ⊗ u for the Oseen problem (where a is a ertain boundeddivergene free vetor funtion), and �(u) = u ⊗ u for the Navier{Stokesproblem (in the latter ase, we assume that u is a ertain weak solution).Let v be a solenoidal vetor funtion satisfying the Dirihl�et boundaryonditions, whih we view as an approximation of u. In order to get anestimate of the distane between v and u we rewrite (4.1) as follows:
∫
 (�∇(u− v) + �(v) − �(u)) : ∇w dx = Lv(w); (4.2)where
Lv(w) = ∫
 (f · w − �∇v : ∇w + �(v) : ∇w) dxis the residual funtional assoiated with v. This relation yields the generalerror identitysupw∈S1;20 (
;Rd) ∫
 (�∇(u− v) + �(v) − �(u)) : ∇w dx

‖∇w‖ =: ℜ(u; v) = | Lv |:(4.3)Here, ℜ(u; v) is a measure of the distane between u and v. It is easyto see that the measure is symmetri and satis�es the triangle inequality.Sine | Lv | is the norm of the residual funtional (whih ontains all theavailable information onerning the quality of the approximate solution),the identity (4.3) shows that ℜ(u; v) is the auray measure to be usedfor this lass of problems (see also [23℄).For the Stokes problem, ℜ(u; v) = �‖∇(u− v)‖.For the Oseen problem, we have
∫
 (a⊗ w) : ∇w dx = −

12 ∫
 a · ∇(|w|2) dx = 0: (4.4)Therefore,supw∈S1;20 (
;Rd)∫
 (�∇(u− v) : ∇w − (a⊗ (u− v) : ∇w) dx
‖∇w‖ >�‖∇(u− v)‖and ℜ(u; v) > �‖∇(u− v)‖.



ESTIMATES OF THE DISTANCE 113In general, suh a simple bound does not take plae for the Navier{Stokes problem. We an only prove (see [21℄) that ℜ(u; v) is bounded frombelow by �‖∇(u− v)‖ (where � is a positive multiplier) provided that ∇vis suÆiently small.The residual funtional an be deomposed into two physially mean-ingful parts by means of known methods using suitable integration by partsrelations (see [22℄). Let q ∈ L2(
) and� ∈ H(
;Div) := {� ∈ L2(
;M2×2) | Div� ∈ L2(
;R2)} :Then,
Lv(w) = ∫
 (f −Div�) · w dx+ ∫
 (�∇v + �(v)− � − qI) : ∇w dx: (4.5)Hene, we �nd that

|Lv| 6 ‖�∇v + �(v)− � − qI‖+ CF
‖f −Div�‖; (4.6)where CF
 is a onstant in the Friedrih's type inequality
‖v‖ 6 CF
‖∇v‖ ∀v ∈W 1;20 (
;Rd):Now, (4.3) and (4.6) yield an upper bound of ℜ(u; v) for any v∈S1;20 (
;Rd).Using results of Setions 2 and 3, we an extend this estimate to fun-tions, whih do not satisfy the divergene free ondition.Let v ∈ W 1;20 (
;Rd) but v 6∈ S1;20 (
;Rd). Note that

ℜ(u; v) 6 ℜ(u; v0) + �(v − v0); (4.7)where v0 is an arbitrary funtion in S1;20 (
;Rd) and � is a nonnegativefuntional de�ned by the relation �(v−v0) := �‖∇(v0−v)‖+‖�(v)−�(v0)‖.In view of (4.6), we �nd that
ℜ(u; v) 6 ‖�∇v + �(v) − � − qI‖+ CF
‖f −Div�‖+ 2 infv0∈S1;20 (
;Rd)�(v − v0): (4.8)For the Stokes problem �(v − v0) = �‖∇(v − v0)‖ and we obtain�‖∇(u− v)‖6 ‖�+p̃I−�∇v‖++ CF
‖Div�+f‖+ 2�d(v; S1;20 (
;Rd)); (4.9)where q is an approximation of the pressure p and � is an approximationof the stress � = �∇u− pI.



114 S. REPINIf the onstant �
 is known, then d(v; S1;2(
;Rd) 6 �
‖divv‖ and weobtain a fully omputable upper bound of the error (f. [19,20,22℄). If theonstant �
 is unknown, then we an split 
 and represent it as a union of"simple" non-overlapping domains 
i for whih the respetive onstants�
i are known. Let v satisfy the onditions
∫
i divv dx = 0; i = 1; 2; : : : ; N:Then,�‖∇(u−v)‖6 ‖�+p̃I−�∇v‖+CF
‖Div�+f‖+2�( N∑i=1 �2
;i‖divv‖2
i)1=2 :(4.10)Analogously, for the Oseen probleminfv0∈S1;20 (
;Rd)�(v − v0) 6 COs d(v; S1;2(
;Rd)) 6 COs�
‖divv‖; (4.11)where COs = (�+‖a‖∞;
CF
). If the onstant �
 is unknown, then insteadof (4.11) we an use the estimateinfv0∈S1;20 (
;Rd)�(v − v0) 6 COs( N∑i=1 �2
;i‖divv‖2
i)1=2 ; (4.12)whih together with (4.8) yields an error majorant.For the Navier{Stokes problem, we need more sophistiated estimates.First, we note that ‖�(v)−�(v0)‖2 6

∫
 (2|v|2|v−v0|2+ |v−v0|4) dx, whihdue to embedding of H1 to L4 yields the estimateinfv0∈S1;20 (
;Rd)�(v − v0)
6 (� + �(
)(2‖v‖24;
 + �2(
)d2(v; S1;2(
; Rd)))1=2)d(v; S1;2(
;Rd))(4.13)where �(
) is the onstant in the inequality ‖w‖4;
 6 �(
)‖∇w‖
 forfuntions vanishing on the boundary. Then, (4.8) yields the orrespondingerror majorant, in whih the term related to the distane to the set ofdivergene free �eld is either estimated by a single global onstant of bymeans of a olletion of loal onstants �
;i.
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