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D. Pauly

ON CONSTANTS IN MAXWELL INEQUALITIES
FOR BOUNDED AND CONVEX DOMAINS

ABSTRACT. For a bounded and convex domain © C R3 we show
that the Maxwell constants are bounded from below and above by
Friedrichs’ and Poincaré’s constants of Q.

§1. INTRODUCTION

Throughout this paper we fix a bounded and convex domain  C R3.
It is well known that, e.g., by Rellich’s selection theorem using standard
indirect arguments, the Poincaré! inequalities

Jepo >0 Vu € H! lu] < ¢p0|Vul, (1)
dep >0 Vu € H' NR* lu] < ¢p|Vu| (2)
hold. We assume to pick the best constants, i.e.,
1 \Y 1 \Y
— = inf M, — = inf M
DO iye [ul Cp  OAucHINRL |ul

Then c¢p 0 and ¢, are the well known Friedrichs and Poincaré constants,
respectively, which satisfy

2 _ _
0<CP7O—A—1<E—CP,
where A; is the first Dirichlet and ps the second Neumann eigenvalue of
the Laplacian. By (-, -) and | - | we denote the standard inner product and
induced norm in L2 and we will write the usual L?-Sobolev spaces as H!

and H!, the latter is defined as the closure in H! of smooth and compactly
supported test functions. All spaces and norms are defined on 2. Moreover,

Key words and phrases: Maxwell’s equations, Maxwell constants, second Maxwell
eigenvalues, electro statics, magneto statics, Poincaré’s inequality, Friedrichs’ inequality,
Poincaré’s constant, Friedrichs’ constant.

IThe estimate (1) is often called Friedrichs’/Steklov inequality as well.
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we introduce the standard Sobolev spaces for the rotation and divergence
by R and D. More precisely,

R:={Ecl®:rotEcl?®, D:={Ecl?:divEcL?}

hold, where rot = curl and div are to be understood in the usual distribu-
tional or weak sense. As before, we will denote the closures of test vector

fields in the respective graph norms by R and D. An index zero at the lower
right corner of the latter spaces indicates a vanishing derivative, e.g.,

Ro :={F € R:rot E =0}, [O)O:Z{Ee[o):divEZO}.

As Q is convex, it is especially simply connected and has got a connected
boundary. Hence, the Neumann and Dirichlet fields of € vanish, i.e.,

HNI:RomDOZ{O}:RomDOZZHD.

By the Maxwell compactness properties, see [5, 13, 6, 14, 7, 12], i.e., the
compactness of the two embeddings

RND—L* RND<L?
(and again by a standard indirect argument) the Maxwell inequalities
Jeay >0 VYEERND  |E|<cne(|rot B)? +[divE]?)?,  (3)
Elcm7n>0 VH eRND |H|<Cm,n(|rOtH|2+|divH|2)1/2 (4)

hold. Again, we assume that we have chosen the best constants, i.e.,

1 , |rot E|? + |div E|?
—— = inf 5 ,
Gt gxBEeRND E|

1 ) |rot H|? + |div H|?
— = inf -

2 |HJ?

o
mn  0£HERND

The notation ¢p,¢ and ¢y, should indicate the homogeneous tangential and
normal boundary condition, respectively. To the best of the author’s knowl-
edge, general bounds for the Maxwell constants cp¢ and ¢y, are missing.
On the other hand, at least estimates for cn+ and ¢y » from above are very
important from the point of view of applications, such as preconditioning
or a priori and a posteriori error estimation for numerical methods, see
e.g. [10, 8].
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In the paper at hand, we will prove
diam(Q)

Cp,0 < Cu,t < Can = Cp < T (5)

We note that (5) is already well known in two dimensions, where even

diam(Q)
cp,o<cm,t=cm,n=cp<T

holds?, see Appendix, but new in three dimensions. Furthermore, the last
inequality in (5) has been proved in the famous paper of Payne and Wein-
berger [9], where also the optimality of the estimate was shown.

§2. RESULTS AND PROOFS

We start with an inequality for irrotational fields.

Lemma 1. For all E€ VH' ND and oll H € VH' N D
|E| < ¢poldivE|, |H|< cpl|divH]|.

Proof. Let ¢ € H! with E = V. By (1) we get
B = (B, V) = —(div E, ¢)
< |div El|p| < ¢poldiv E||Vo| = ¢p0ldiv E||E|.

Let ¢ € H! with H = V¢ and ¢ LR. Since H € D and by (2), we obtain
|H|” = (H, Vi) = —(div H, ¢)
< |div H|p| < ¢p|div H||V| = ¢p|div H||H]. O

Remark 2. Lemma I extends to arbitrary Lipschitz domains Q@ C RV,
N eN.

As usual in the theory of Maxwell’s equations, we need another crucial
tool, the Helmholtz decompositions of vector fields into irrotational and
solenoidal vector fields. For convex domains, these decompositions are very
simple. We have

L?=VH!' @rotR, L*=VH!@rotR, (6)

2In 2D, the equality cn,t = cnn = cp holds even for general Lipschitz domains, see
Appendix.
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where @ denotes the orthogonal sum in L2. We note

R() = VHl, RO = VHl, D() =rot R7 DO =rotR.
Moreover, with
R:=RNrotR, R:=RNrotR

we have

] o] [e]

R=VH'@R, R=VH'@R (7)
and see
rotR=rotR, rotR =rotR.

We note that all occurring spaces of range-type are closed subspaces of L2,
which follows immediately by the estimates (1)-(4). More details about the
Helmholtz decompositions can be found e.g. in [5].

To get similar inequalities for solenoidal vector fields as in Lemma 1
we need a crucial lemma from [1, Theorem 2.17], see also [11, 4, 3, 2] for
related partial results.

Lemma 3. Let E belong to RND or RND. Then E € H! and
|VE|? < |rot E? 4 |div E[*. (8)

We emphasize that for F € H! and any domain Q C R?
IVE|* = |rot E|* + |div E|? (9)

holds since —A = rotrot —Vdiv. This formula is no longer valid if E has
just the tangential or normal boundary condition but for convex domains
the inequality (8) remains true.

Lemma 4. For all vector fields E in RNrotR or RNrotR
|E| < cp|rot E|.

Proof. Let E € rotR = rot R and ® € R with rot® = E. Then ® € H!
by Lemma 3 since R = RN Dg. Moreover, ® = rot ¥ can be represented

by some ¥ € R. Hence, for any constant vector a € R? we have (®,a) = 0.
Thus, ® belongs to H! N (R3)+. Then, for E € RNrotR and by Lemma 3
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we get

|E|* = (E,rot ®) = (rot E, ®)

< |rot E||®] < ¢p|rot E||VE| < cp|r0tE||r0t<I>|
hnry

If E € RNrot R, there exists ® € R with rot ® = E. As before, by Lemma 3
we see E € H!N(R3)* and |E| < ¢|VE| < ¢p| rot E|, which completes the
proof. O
Theorem 5. For all vector fields E € RND and H € RND

|E)? < PO|d1VE|2+CZ|I"OtE|2 |H|? <C§|diVH|2+Cz|I"OtH|2
hold, i.e., cnyx,Con < ¢p. Moreover, ¢po < Cny < Con = ¢p < diam(Q) /7.

Proof. By the Helmholtz decomposition (6) we have
RND 3 E = Ey + Euot € VH @ 10tR

with Ev € VH'ND and E,., € RNrotR and div Ey = div E as well as
rot Eyoy = rot E. By Lemma 1 and Lemma 4 and orthogonality we obtain

|E|? = |Ey|* + | Brot|? < Co, 2 o |div E|? + c2| rot F|?.

Similarly we have
RND > H = Hy + Hyoy € VH @ 1ot R

with Hy € VH' N D and H.ot € RNrotR and divHy = divH and
rot H,o; = rot H. As before,

[H? = |Hy|” + | Hroo|* < ¢5|div H|? + ¢3| rot H|”,

This shows the upper bounds. For the lower bounds, let A\; be the first
Dirichlet eigenvalue of the negative Laplacian —A | i.e.,
1 2
—— =X = inf Vel

2 92
Cp,O 07&96"'1 |90|

[e]
and let u € H! be an eigenfunction to A\;. Note that u satisfies

Vo eH' (Vu, V) = A (u, ).
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Then 0 # E := Vu € VH! D = Ry N D and —div E = —divVu = \u.
By (3) and (1) we have

. Cn
|E| < cneldiv E| = cnei|u] < cnrdicpolVu| = —cp’t |E],
,0
yielding ¢p0 < cn,t- Now, let s be the second Neumann eigenvalue of the
negative Laplacian —A| i.e.,
1 . [Vel?
= o = inf

and let u € H' N R+ be an eigenfunction to ps. Note that u satisfies
Vo e H'NRT  (Vu, Vi) = pa(u, o)
and that this relation holds even for all ¢ € H!. Then 0 # H := Vu

belongs to VH! N D = Ry N D and satisfies —div H = —div Vu = psu. By
(4) and (2) we have

. Cn
|H| < cun|div H| = cnnpiz|u| < cnnpzcp|Vu| = c—’n|H|,
P

yielding ¢ < cnn and completing the proof. O

Remark 6. Looking at the proof, the lower bounds cp 0 < cny as well as
Cp < Copn Temain true in more general situations, i.e., for bounded Lips-
chit? domains Q C RV.

APPENDIX §A. THE 2D CASE

In 2D there are two rotations rot = div R and rot = V- = RV, a scalar
and vector valued one. The scalar valued one is just the divergence div
after a 90°-rotation

R [ 0 1]
=1 0|’

and the vector valued one is actually the gradient V followed by the same
rotation R. Hence, applying the Poincaré estimates to the potentials gen-
erated by the Helmholtz decompositions yields immediately the desired
estimates. Of course, this special trick works just in 2D.

More precisely, let  C R? be a Lipschitz domain. Then Lemma, 1 holds
by Remark 2. Moreover, even a stronger version of Lemma 4 is true.

5The Lipschitz assumption can also be weakened. It is sufficient that Q admits the
Maxwell compactness properties.
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Lemma 7. For all vector fields E € RNrotH! and H € RN rot H!
|E| < cp|rot E|, |H| < ¢po| rot H.

This follows immediately from Lemma 1 by the following arguments.
Proof. Let E € RNrotH! = RN RVH!. Then H := RE € D VH!. By
Lemma 1 we get

|E| = |H| < ¢p|div H| = ¢p| rot E|.
If H e RNrotH! = RN RVH!, then E := RH € DN VH!. By Lemma 1

we obtain
|H| = |E| < ¢po|div E| = ¢p 0| rot H.

We note that in 2D the Helmholtz decompositions read
o 5 ‘ 5, ©

L2 = VH! & Hp & rot Hl, L2 = VH! & Hy & rot Hl,
where due to the possibly non-trivial topology (We do not assume 2 to be
convex.) non-vanishing Dirichlet or Neumann fields may exist.
Theorem 8. For all vector fields E € RNDNHy and H € RNDNH;

|E)? < c§70|div E)? + c§| rot B>, |H|? < c§|div H? + c§70| rot H|?

hold, i.e., cut,Can < cp- Moreover, even cpo < Cnt = Cnn = Cp.

Proof. Following the proof of Theorem 5 yields for E € RN D N Hg by
the Helmholtz decomposition

E =FEv + Epot € VH @ rot H!

with By € VH! N D and E,; € RN rotH! and divEy = divE and
rot By = rot E. Hence, by Lemma 1 and Lemma 7 and orthogonality we
obtain

|E|? = |Ev|? + | Ecot|* < cio|divE|2 + c§| rot E|?,
and the estimate for H follows analogously. For the lower bounds, we
look again at the second Neumann eigenvalue ps = 1 /cﬁ of —A and a

corresponding eigenfunction u € H! "R+ with Vu € D and —Au = pau.
Then, as before, 0 # H := Vu belongs to VH' N D = Ry N D N Hy with
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—div H = —div Vu = pou. By the definition of ¢y, and (2) (for non-convex
) we have

|H| < anldiv H| = canpiz]u] < cnnpizcy|Vu| = 22| H]|
P

yielding ¢, < ¢nn. On the other hand, E := RH € DgNRN ’HDL and
. Cn
|E| < cne|rot E| = cn|div H| = engpz|ul < engpac|Vul = flEla

showing ¢, < cp- O
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