
úÁ�ÉÓËÉ ÎÁÕÞÎÙÈÓÅÍÉÎÁÒÏ× ðïíé�ÏÍ 425, 2014 Ç.D. PaulyON CONSTANTS IN MAXWELL INEQUALITIESFOR BOUNDED AND CONVEX DOMAINSAbstra
t. For a bounded and 
onvex domain 
 ⊂ R
3 we showthat the Maxwell 
onstants are bounded from below and above byFriedri
hs' and Poin
ar�e's 
onstants of 
.

§1. Introdu
tionThroughout this paper we �x a bounded and 
onvex domain 
 ⊂ R
3.It is well known that, e.g., by Relli
h's sele
tion theorem using standardindire
t arguments, the Poin
ar�e1 inequalities

∃ 
p;0 > 0 ∀u ∈
◦H1 |u| 6 
p;0|∇u|; (1)

∃ 
p > 0 ∀u ∈ H1 ∩ R
⊥ |u| 6 
p|∇u| (2)hold. We assume to pi
k the best 
onstants, i.e.,1
p;0 := inf06=u∈◦H1 |∇u||u| ; 1
p := inf06=u∈H1∩R⊥

|∇u|
|u| :Then 
p;0 and 
p are the well known Friedri
hs and Poin
ar�e 
onstants,respe
tively, whi
h satisfy0 < 
2p;0 = 1�1 < 1�2 = 
2p;where �1 is the �rst Diri
hlet and �2 the se
ond Neumann eigenvalue ofthe Lapla
ian. By 〈 · ; · 〉 and | · | we denote the standard inner produ
t andindu
ed norm in L2 and we will write the usual L2-Sobolev spa
es as H1and ◦H1, the latter is de�ned as the 
losure in H1 of smooth and 
ompa
tlysupported test fun
tions. All spa
es and norms are de�ned on 
. Moreover,Key words and phrases: Maxwell's equations, Maxwell 
onstants, se
ond Maxwelleigenvalues, ele
tro stati
s, magneto stati
s, Poin
ar�e's inequality, Friedri
hs' inequality,Poin
ar�e's 
onstant, Friedri
hs' 
onstant.1The estimate (1) is often 
alled Friedri
hs'/Steklov inequality as well.46



ON MAXWELL-CONSTANTS FOR CONVEX DOMAINS 47we introdu
e the standard Sobolev spa
es for the rotation and divergen
eby R and D. More pre
isely,R := {E ∈ L2 : rotE ∈ L2}; D := {E ∈ L2 : divE ∈ L2}hold, where rot = 
url and div are to be understood in the usual distribu-tional or weak sense. As before, we will denote the 
losures of test ve
tor�elds in the respe
tive graph norms by ◦R and ◦D. An index zero at the lowerright 
orner of the latter spa
es indi
ates a vanishing derivative, e.g.,R0 := {E ∈ R : rotE = 0}; ◦D0 := {E ∈
◦D : divE = 0}:As 
 is 
onvex, it is espe
ially simply 
onne
ted and has got a 
onne
tedboundary. Hen
e, the Neumann and Diri
hlet �elds of 
 vanish, i.e.,

HN := R0 ∩ ◦D0 = {0} = ◦R0 ∩ D0 =: HD:By the Maxwell 
ompa
tness properties, see [5, 13, 6, 14, 7, 12℄, i.e., the
ompa
tness of the two embeddings
◦R ∩ D ,→ L2; R ∩

◦D ,→ L2;(and again by a standard indire
t argument) the Maxwell inequalities
∃ 
m;t > 0 ∀E ∈

◦R ∩D |E| 6 
m;t(| rotE|2 + |divE|2)1=2; (3)
∃ 
m;n > 0 ∀H ∈ R ∩

◦D |H | 6 
m;n(| rotH |2 + |divH |2)1=2 (4)hold. Again, we assume that we have 
hosen the best 
onstants, i.e.,1
2m;t := inf06=E∈
◦R∩D | rotE|2 + |divE|2

|E|2 ;1
2m;n := inf06=H∈R∩◦D| rotH |2 + |divH |2
|H |2 :The notation 
m;t and 
m;n should indi
ate the homogeneous tangential andnormal boundary 
ondition, respe
tively. To the best of the author's knowl-edge, general bounds for the Maxwell 
onstants 
m;t and 
m;n are missing.On the other hand, at least estimates for 
m;t and 
m;n from above are veryimportant from the point of view of appli
ations, su
h as pre
onditioningor a priori and a posteriori error estimation for numeri
al methods, seee.g. [10, 8℄.



48 D. PAULYIn the paper at hand, we will prove
p;0 6 
m;t 6 
m;n = 
p 6
diam(
)� : (5)We note that (5) is already well known in two dimensions, where even
p;0 < 
m;t = 
m;n = 
p 6
diam(
)�holds2, see Appendix, but new in three dimensions. Furthermore, the lastinequality in (5) has been proved in the famous paper of Payne and Wein-berger [9℄, where also the optimality of the estimate was shown.

§2. Results and ProofsWe start with an inequality for irrotational �elds.Lemma 1. For all E ∈ ∇
◦H1 ∩ D and all H ∈ ∇H1 ∩ ◦D

|E| 6 
p;0|divE|; |H | 6 
p|divH |:Proof. Let ' ∈
◦H1 with E = ∇'. By (1) we get

|E|2 = 〈E;∇'〉 = −〈divE;'〉
6 |divE||'| 6 
p;0|divE||∇'| = 
p;0|divE||E|:Let ' ∈ H1 with H = ∇' and '⊥R. Sin
e H ∈

◦D and by (2), we obtain
|H |2 = 〈H;∇'〉 = −〈divH;'〉

6 |divH ||'| 6 
p|divH ||∇'| = 
p|divH ||H |: �Remark 2. Lemma 1 extends to arbitrary Lips
hitz domains 
 ⊂ R
N ,N ∈ N.As usual in the theory of Maxwell's equations, we need another 
ru
ialtool, the Helmholtz de
ompositions of ve
tor �elds into irrotational andsolenoidal ve
tor �elds. For 
onvex domains, these de
ompositions are verysimple. We have L2 = ∇

◦H1 ⊕ rotR; L2 = ∇H1 ⊕ rot ◦R; (6)2In 2D, the equality 
m;t = 
m;n = 
p holds even for general Lips
hitz domains, seeAppendix.



ON MAXWELL-CONSTANTS FOR CONVEX DOMAINS 49where ⊕ denotes the orthogonal sum in L2. We note
◦R0 = ∇

◦H1; R0 = ∇H1; D0 = rotR; ◦D0 = rot ◦R:Moreover, with
◦

R := ◦R ∩ rotR; R := R ∩ rot ◦Rwe have
◦R = ∇

◦H1 ⊕ ◦

R; R = ∇H1 ⊕R (7)and see rot ◦R = rot ◦

R; rotR = rotR:We note that all o

urring spa
es of range-type are 
losed subspa
es of L2,whi
h follows immediately by the estimates (1)-(4). More details about theHelmholtz de
ompositions 
an be found e.g. in [5℄.To get similar inequalities for solenoidal ve
tor �elds as in Lemma 1we need a 
ru
ial lemma from [1, Theorem 2.17℄, see also [11, 4, 3, 2℄ forrelated partial results.Lemma 3. Let E belong to ◦R ∩ D or R ∩
◦D. Then E ∈ H1 and

|∇E|2 6 | rotE|2 + |divE|2: (8)We emphasize that for E ∈
◦H1 and any domain 
 ⊂ R

3
|∇E|2 = | rotE|2 + |divE|2 (9)holds sin
e −� = rot rot−∇div . This formula is no longer valid if E hasjust the tangential or normal boundary 
ondition but for 
onvex domainsthe inequality (8) remains true.Lemma 4. For all ve
tor �elds E in ◦R ∩ rotR or R ∩ rot ◦R

|E| 6 
p| rotE|:Proof. Let E ∈ rotR = rotR and � ∈ R with rot� = E. Then � ∈ H1by Lemma 3 sin
e R = R ∩
◦D0. Moreover, � = rot	 
an be representedby some 	 ∈

◦R. Hen
e, for any 
onstant ve
tor a ∈ R
3 we have 〈�; a〉 = 0.Thus, � belongs to H1 ∩ (R3)⊥. Then, for E ∈

◦R ∩ rotR and by Lemma 3



50 D. PAULYwe get
|E|2 = 〈E; rot�〉 = 〈rotE;�〉

6 | rotE||�| 6 
p| rotE||∇�| 6 
p| rotE|| rot�
︸ ︷︷ ︸=E |:If E ∈ R∩rot ◦R, there exists � ∈

◦R with rot� = E. As before, by Lemma 3we see E ∈ H1∩ (R3)⊥ and |E| 6 
p|∇E| 6 
p| rotE|, whi
h 
ompletes theproof. �Theorem 5. For all ve
tor �elds E ∈
◦R ∩ D and H ∈ R ∩

◦D
|E|2 6 
2p;0|divE|2 + 
2p| rotE|2; |H |2 6 
2p|divH |2 + 
2p | rotH |2hold, i.e., 
m;t; 
m;n 6 
p. Moreover, 
p;0 6 
m;t 6 
m;n = 
p 6 diam(
)=�.Proof. By the Helmholtz de
omposition (6) we have

◦R ∩ D ∋ E = E∇ +Erot ∈ ∇
◦H1 ⊕ rotRwith E∇ ∈ ∇

◦H1 ∩ D and Erot ∈ ◦R ∩ rotR and divE∇ = divE as well asrotErot = rotE. By Lemma 1 and Lemma 4 and orthogonality we obtain
|E|2 = |E∇|2 + |Erot|2 6 
2p;0|divE|2 + 
2p| rotE|2:Similarly we haveR ∩

◦D ∋ H = H∇ +Hrot ∈ ∇H1 ⊕ rot ◦Rwith H∇ ∈ ∇H1 ∩
◦D and Hrot ∈ R ∩ rot ◦R and divH∇ = divH androtHrot = rotH . As before,

|H |2 = |H∇|
2 + |Hrot|2 6 
2p |divH |2 + 
2p| rotH |2:This shows the upper bounds. For the lower bounds, let �1 be the �rstDiri
hlet eigenvalue of the negative Lapla
ian −�, i.e.,1
2p;0 = �1 = inf06='∈◦H1 |∇'|2|'|2 ;and let u ∈

◦H1 be an eigenfun
tion to �1. Note that u satis�es
∀' ∈

◦H1 〈∇u;∇'〉 = �1〈u; '〉:



ON MAXWELL-CONSTANTS FOR CONVEX DOMAINS 51Then 0 6= E := ∇u ∈ ∇
◦H1 ∩ D = ◦R0 ∩ D and −divE = −div∇u = �1u.By (3) and (1) we have

|E| 6 
m;t|divE| = 
m;t�1|u| 6 
m;t�1
p;0|∇u| = 
m;t
p;0 |E|;yielding 
p;0 6 
m;t. Now, let �2 be the se
ond Neumann eigenvalue of thenegative Lapla
ian −�, i.e.,1
2p = �2 = inf06='∈H1∩R⊥

|∇'|2
|'|2 ;and let u ∈ H1 ∩ R

⊥ be an eigenfun
tion to �2. Note that u satis�es
∀' ∈ H1 ∩ R

⊥ 〈∇u;∇'〉 = �2〈u; '〉and that this relation holds even for all ' ∈ H1. Then 0 6= H := ∇ubelongs to ∇H1 ∩ ◦D = R0 ∩ ◦D and satis�es −divH = −div∇u = �2u. By(4) and (2) we have
|H | 6 
m;n|divH | = 
m;n�2|u| 6 
m;n�2
p|∇u| = 
m;n
p |H |;yielding 
p 6 
m;n and 
ompleting the proof. �Remark 6. Looking at the proof, the lower bounds 
p;0 6 
m;t as well as
p 6 
m;n remain true in more general situations, i.e., for bounded Lips-
hitz3 domains 
 ⊂ R

N .Appendix §A. The 2D CaseIn 2D there are two rotations rot = divR and ~rot = ∇⊥ = R∇, a s
alarand ve
tor valued one. The s
alar valued one is just the divergen
e divafter a 90◦-rotation R := [ 0 1
−1 0] ;and the ve
tor valued one is a
tually the gradient ∇ followed by the samerotation R. Hen
e, applying the Poin
ar�e estimates to the potentials gen-erated by the Helmholtz de
ompositions yields immediately the desiredestimates. Of 
ourse, this spe
ial tri
k works just in 2D.More pre
isely, let 
 ⊂ R

2 be a Lips
hitz domain. Then Lemma 1 holdsby Remark 2. Moreover, even a stronger version of Lemma 4 is true.3The Lips
hitz assumption 
an also be weakened. It is suÆ
ient that 
 admits theMaxwell 
ompa
tness properties.



52 D. PAULYLemma 7. For all ve
tor �elds E ∈
◦R ∩ ~rotH1 and H ∈ R ∩ ~rot ◦H1

|E| 6 
p| rotE|; |H | 6 
p;0| rotH |:This follows immediately from Lemma 1 by the following arguments.Proof. Let E ∈
◦R ∩ ~rotH1 = ◦R ∩ R∇H1. Then H := RE ∈

◦D ∩∇H1. ByLemma 1 we get
|E| = |H | 6 
p|divH | = 
p| rotE|:If H ∈ R ∩ ~rot ◦H1 = R ∩ R∇

◦H1, then E := RH ∈ D ∩ ∇
◦H1. By Lemma 1we obtain

|H | = |E| 6 
p;0|divE| = 
p;0| rotH |:
�We note that in 2D the Helmholtz de
ompositions readL2 = ∇

◦H1 ⊕HD ⊕ ~rotH1; L2 = ∇H1 ⊕HN ⊕ ~rot ◦H1;where due to the possibly non-trivial topology (We do not assume 
 to be
onvex.) non-vanishing Diri
hlet or Neumann �elds may exist.Theorem 8. For all ve
tor �elds E ∈
◦R ∩ D ∩H⊥D and H ∈ R ∩

◦D ∩H⊥N
|E|2 6 
2p;0|divE|2 + 
2p| rotE|2; |H |2 6 
2p |divH |2 + 
2p;0| rotH |2hold, i.e., 
m;t; 
m;n 6 
p. Moreover, even 
p;0 < 
m;t = 
m;n = 
p.Proof. Following the proof of Theorem 5 yields for E ∈

◦R ∩ D ∩ H⊥D bythe Helmholtz de
ompositionE = E∇ +Erot ∈ ∇
◦H1 ⊕ ~rotH1with E∇ ∈ ∇

◦H1 ∩ D and Erot ∈
◦R ∩ ~rotH1 and divE∇ = divE androtErot = rotE. Hen
e, by Lemma 1 and Lemma 7 and orthogonality weobtain

|E|2 = |E∇|2 + |Erot|2 6 
2p;0|divE|2 + 
2p| rotE|2;and the estimate for H follows analogously. For the lower bounds, welook again at the se
ond Neumann eigenvalue �2 = 1=
2p of −� and a
orresponding eigenfun
tion u ∈ H1 ∩ R
⊥ with ∇u ∈

◦D and −�u = �2u.Then, as before, 0 6= H := ∇u belongs to ∇H1 ∩ ◦D = R0 ∩ ◦D ∩ H⊥N with
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−divH = −div∇u = �2u. By the de�nition of 
m;n and (2) (for non-
onvex
) we have

|H | 6 
m;n|divH | = 
m;n�2|u| 6 
m;n�2
p|∇u| = 
m;n
p |H |;yielding 
p 6 
m;n. On the other hand, E := RH ∈ D0 ∩ ◦R ∩H⊥D and
|E| 6 
m;t| rotE| = 
m;t|divH | = 
m;t�2|u| 6 
m;t�2
p|∇u| = 
m;t
p |E|;showing 
p 6 
m;t. �A
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