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ESTIMATES OF THE DISTANCE TO THE EXACT
SOLUTION OF PARABOLIC PROBLEMS BASED ON
LOCAL POINCARE TYPE INEQUALITIES

ABSTRACT. The goal of the paper is to derive two-sided bounds of
the distance between the exact solution of the evolutionary reaction-
diffusion problem with mixed Dirichlet—Robin boundary conditions
and any function in the admissible energy space. The derivation is
based upon special transformations of the integral identity, that de-
fines the generalized solution. In order to obtain estimates with eas-
ily computable local constants we exploit classical Poincaré inequal-
ities and Poincaré type inequalities for functions with zero mean
boundary traces. The corresponding constants are estimated in [10]
and [8]. Bounds of the distance to the exact solution contain only
these constants associated with subdomains. It is proved that the
bounds are equivalent to the energy norm of the error.

Dedicated to the 80th jubilee of V. A. Solonnikov

§1. PROBLEM STATEMENT

We consider the evolutionary reaction-diffusion problem: find u = u(x, t)
and p = p(z,t) such that

u —V-p+ou=f in Qr:=0x(0,7), (1.1)
p=AVu in Qp, (1.2)

u(-,0) = ug in Q, (1.3)

u=0 on Sp, (1.4)
p-n+o’u=F on Sg. (1.5)

Here, 2 is a bounded connected domain in R¢ (d > 2) with Lipchitz contin-
uous boundary 02, which consists of two measurable non-intersecting parts

Key words and phrases: parabolic equations, Poincare type inequalities, a posteriori
estimates.
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I'p and I'r # @ associated with the Dirichlet and Robin boundary condi-
tions, respectively, n denotes the unit normal vector to 9 directed out-
wards, T is a finite positive number, S := 9Qx]0, T is the lateral surface
of the space—time cylinder Qr, Sp := I'px]0,T[, and S := I'rx]0,T].
We assume that A is a symmetric matrix with coefficients in L*°(€2), which
for almost all = € Q) satisfies the condition

Aale? S A(x) €-€<Aalé’, VEERT, 0<Xy <Aa<+oo. (16)

Here, |¢| := /€&, and - stands for the scalar product in R?. Also, we
assume that f € L%(Q7), up € L*(Q), F € L*(Sg), and the coefficients
o(z) and o(x) are uniformly bounded by the constants C, and C, in Qr
and S, respectively.

Throughout the paper, the norms of L?(Q) and L?(Qr) are denoted by
|l-lle and || || o, respectively, H} () is a subspace of H'(2) containing the
functions vanishing on the Dirichlet part of the boundary, and H}(Qr) =
Vo. The generalized solution of (1.1)—(1.5) is a function u € Vp satisfying
the integral identity

/ (u(m,T)n(x,T) — u(z, 0)n(z, 0)) dz — /unt dedt

Q Qr
+ /AVU-VU da:dt+/92u77 dxdt+/02un dsdt
QT QT SR
= /fndxdt+/F77dsdt, Ve Ve (L7)
Qr Sr

Due to known results (see, e.g., [3, 5, 6, 15]), the solution of (1.7) exists
and is unique.

Assume that v € Vj is a function compared with v (e.g., it can be
an approximation generated by some numerical method). Our goal is to
deduce explicitly computable and realistic estimates of the error e := u —v
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in terms of the measure

T T
e = [ IVelliq et [ el de+ et DI
0 0

T
Ty / ol di, (18)
0

where ||Vel% o := [ AVe - Vedz, is the spatial error norm defined on ,
Q

and v, 8, (, x are positive weights. The first two terms present a measure
equivalent to the natural energy norm, the third term represents the er-
ror at t = T, and the last one measures possible violations of the Robin
boundary condition. The weights can be selected in order to balance dif-
ferent components of the error in desired proportions. In other words, the
quantity (1.8) generates a collection of different error measures, which can
be used for judging on the distance between u and v.

In this paper, we derive computable majorants of [e]?mg’ ¢,x) by means
of the method close to that has been originally suggested in [14] (see also
Section 9.3 of the monograph [12]). They are derived by special trans-
formations of the integral identity (1.7). However, in this paper we ap-
ply a somewhat new approach based on domain decomposition and local
Poincaré type inequalities for functions with zero mean boundary traces
(sharp constants in these inequalities has been recently found in [8]). As
a result, we obtain fully computable estimates, which are applicable for
problems with complicated geometry and non-trivial boundary conditions.

In Section 2, we deduce general two-sided bounds of the distance to the
exact solution. The error majorant (Theorems 1) contains the constants
Crq and Crg in the Friedrichs and trace type inequalities

[wlle < CrallVwlle, (1.9)
[wllr, < Crrl|Vwla, (1.10)

respectively, which are valid for the functions in Hg ().

In general, finding global constants Crg and Crg may be not an easy
task (especially for geometrically complicated domains and mixed bound-
ary conditions). A way to overcome these difficulties is suggested in Sec-
tion 3, where we deduce new forms of majorants, which are based on de-
composition of € into a collection of non-overlapping convex sub-domains
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and local constants associated with these subdomains. Such constants are
defined either by means of the Payne-Weinberger estimate [10] related to
the Poincaré inequality for convex domains or due to the results of [8],
where sharp constants for Poincaré type inequalities for functions with
zero mean boundary traces has been found. Therefore, we obtain different
forms of the respective error majorants, which involve only local constants
and known functions. In Section 4, we prove that the majorants are equiv-
alent to the distance to the exact solution measured either in terms of the
measure (1.8) or in terms of a combined primal-dual energy norm.

§2. ESTIMATES BASED ON GLOBAL CONSTANTS

1. Majorant of [e](, 9. ). Let v € V be a function considered as an
approximation of the exact solution u. We transform (1.7) and arrive at
the relation

/||Ve||mdt+/|\geng at + e )3

/||Ue||F dt = /( — v — 0°v) edadt

/AVU Veda:dt—i—/( —o?v)edsdt + Lle(-,0)]|g, (2.1)
Qr Sr

which can be viewed as the basic error identity. In order to rearrange the
right hand side of (2.1), we introduce a vector valued function
y € Yaiv (Qr), where Yaiy (Q7) denotes the space of vector valued func-
tions y € L2(Q, R?) such that divy € L*(Q2) and y-n € L?(T'g) for almost
all t € (0,T). We introduce the quantities

I'f(l),y) = f — Ut — 92U + le Y, (2
ra(v,y) ==y — AV, (2.
I‘F(U,y) ::F,O—2U7y,n’ (2

o o
RN

)

which have clear meaning: they are residuals of (1.1), (1.2), and (1.5), re-
spectively. The theorem below shows that certain norms of these quantities
control the distance between v and v. Also, we define weighted residuals

ryu(v,y)i=pry and rpi-_,(v,y) = (1— p)ry. (2.5)
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Here, p(x,t) is a real-valued function taking values in [0, 1] (these weighted
quantities are motivated later).

Theorem 1. For any v € Vp, y € Yaiv (Q1), 6 € (0,2], and real-valued

function y(t) > %, we have the estimate

T

—2
(€ 510 < M (0,30, )= le(-,0) |3 + /(a1<t>|\m<v,y>||?4-1,g
0

1-u (I

L,y + an(t)Sia
0 fon Y Q 2 AA

—l—v‘

C2 ‘
+as ()G rr (), ) b, (26)
1
where v = 2 — 4, 0(x,t) = o(z) (2 — ﬁ) *, and a1 (t), as(t), as(t) are
arbitrary positive functions satisfying the relation

1(t) + 1(t) + L = 6 (27)

(%1 [ as (t)

Proof. We transform the right-hand side of (2.1) by means of the integral
identity

/ div ye dzdt + / y - Vedzdt = /y - ne dsdt, (2.8)
QT QT SR
which yields

/ IVelFyq dt + / leelfy dt+ e Tl + / Joell,

=S+ Iu+ Ir + Le(,0)3, (29)

where
/ (v,y)e dxdt, (2.10)
T = / - Ve dzdt, (2.11)
I = / (v,y)e dsdt. (2.12)
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It is easy to see that

| 24| </HrA||A_1,Q Vel 4,0 dt (2.13)

and (cf. (1.10))

T T
7| < / Ieplle, llellrs di < / Ieelle, S Vel agdt. (214
0 0

In order to estimate the term .#;, we apply the same method as in [13] and
introduce a function p(z,t), which takes values in [0, 1]. The idea behind is
to split the integral into two parts, which will be later subject to different
parts of the error norm. If the function ¢ has very different values and may
be close to zero, then the resulting estimate is much more accurate. We
can select p such that large factors of the type % (if o is small), arising in
the estimate are compensated. Hence, we obtain

T

e 1

12
ry
0

Combining (2.13)—(2.15), we find that

/ Vel dt + / Jeelly d + §le(- D / Joell,

< %Hemmnm/(ngfHQngenQ G (-

0
C
tlrallas g IVellao + 72 e, |

| el + S8 L= sl [Vellag ) dr. (215)

) dt.

(2.16)

The second term on the right-hand side of (2.16) can be estimated by the
Young—Fenchel inequality

T T
t
e Neela dt < [ (#H%r
0 0

2
i+ lecti) ar. - @an
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where 7(t) is an arbitrary real-valued function taking values in [%, +00 [

Analogously,
T
Cra ||(1 —
[g=ia-u
0
T
<4 [ (@G 10— sl + Vel o) a
0
T
<3 [ (ax®lrallionn + Sl Vel o) d,
0
and
T
[ el Sveln i
0
T
C2 2
<4 [ (a5 e, + st Velfin) dt. (219)

0

Here, ay(t), aa(t), and as(t) are positive functions satisfying (2.7). Then,
the estimate (2.6) follows from (2.17)—(2.18). O

Remark 1. The function y can be viewed as an approximation of the
exact flux AVu. If it is defined (e.g., by means of some reconstruction of
a numerical solution v), then the functions

ri(t) = [lra(v, y)lla-r 0, (2.19)
ra(t) := \C}Fillrfl w0,y (2.20)
r3(t) := %llrF(vyy)llrn (2.21)

are known. In this case, the majorant M?(v,y;&,%,u) can be minimized
with respect to ay (t), a2(t), as(t). The optimal functions o (t) (i = 1,2, 3)
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can be easily found by the method of Lagrangian multipliers and are de-
fined by the relation

S rilt)
al(t) = W (2.22)

However, if we wish to minimize the majorant with respect to y, then it is
more advantageous to keep the quadratic structure of (2.6). In this case,
we can apply iterative minimization procedures similar to those used in
[7, 12] and some other publications cited therein.

Remark 2. The majorant Mf(v, ¥;0,7, 1) has a clear structure. The first
term contains the error in the initial condition and vanishes if the function
v exactly satisfies it. Other terms are formed by norms of the residuals
ra, rs, and rr and weight factors formed by the global constants Cra
and Crg related to 2. Since v satisfies the boundary condition on I'p, the
majorant vanishes if and only if all the residuals are equal to zero, i.e., if
and only if v coincides with » and y coincides with AVu.

2.2. Minorant of [e],¢,¢,y). Computable minorants of the deviations
from the exact solution of partial differential equations provide useful in-
formation, which allows us to judge on the quality of error majorants.
For elliptic variational problems, a minorant can be derived fairly easily
by means of variational arguments (see [9]). Another derivation method
(which does not exploit variational arguments) was suggested in [12]. Be-
low, we apply this method to the considered class of parabolic problems
and deduce computable minorants of the distance to the exact solution.

Theorem 2. Let v € Vy and n € H(Qr), then the following estimate
holds:

=

5
Mg(v) = sup { ZGi(navaK‘i) +G0(777f7 F7 Uo)} < [e]?g,ﬁ,c,x
n€H(Qr) | =1 -



ESTIMATES OF THE DISTANCE TO THE EXACT SOLUTION 15

where

Gi(v,n, k1) :== / ( —Vn-AVv — ﬁAVﬂ . Vn) dzdt,
Qr

Ga(v,m, K2) == / (mv - ﬁlle) dadt,
Qr

G3(U7777K‘3) = / 92( —un— ﬁhﬂg) dl’dt,
Qr

Gatwn)i= [ (= vl T T) = gl lnfa, T)F) da,
Q

Gs(v,m, Kk5) == /02(— v — imﬁ) dsdt, (2.24)
Sr

Go(n, f, F,ug) := /fn dzdt + /Fn dsdt + /uon(~,0) dz, (2.25)

QT Sr Q

1
and v = 5, B(z) = (%(/{2 +/s3g(x)2))2, (=%, x = %, and &
(i=1,...,5) are arbitrary positive numbers.

Proof. Consider the functional

n€EHI(Qr)

M(e):= sup {Q/(Vn - AVe — ﬁAVﬂ -Vn —ne

T

~ sl 2 en = shlnP) ) dadt

+/ (e(x,T)n(x,T) - ﬁm(x,T)F) do + /J(en - ﬁmﬁ) dsdt}.
Q

Sr
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It is not difficult to see that for any n € Vy

/ (vn - AVe — 51— AVn - vn) dadt < IVel% dt,

T
ﬂ
2
0
T
. K .
[ (= me = smP) dode < 32 [ el at,
0
T
K3
2
0

Qr

Qr

[ & (en— sinl) dode < %5 [ el a,

Qr
1 2 K4 2
[ (et Dnte. 1) = ot D) de < 5 et D,

Q

T
. K5 I,
[o(en- ghP)asae < % [Joself, dt.
Sr 0

Hence, we find that
M(e) < [e]?&g&@-

By means of (1.7) we rewrite M(e) in the form

n€H(Qr) | =1

5
M(e) = sup {ZGi(%Ua/ﬂi)+G0(777f7F7U0)}7

and arrive at (2.23).

Remark 3. M(v) vanishes if and only if v coincides with u.

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

§3. ESTIMATES BASED ON DOMAIN DECOMPOSITION AND LOCAL

CONSTANTS

3.1. Estimates of constants in local Poincaré type inequalities.
The majorant defined in Theorem 1 contains global constants Crq and
Crr- In general, finding these constants may be not an easy task (which is
equivalent to deriving a guaranteed lower bound of the minimal eigenvalue
for the respective differential operator). Below, we suggest the method,
which allows us to overcome this difficulty. The key idea is to decompose
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Q (which may have a complicated structure) into a collection of simple sub-
domains and derive such an estimate of the distance to the exact solution
that uses only local constants associated with subdomains (a close method
for elliptic problems is considered in [15]). We note that for the minorant
M such a procedure is not required because it does not contain constants
arising in functional inequalities.

Assume that

Q= J % unQ=2, i#jij=1,...,N, (3.1)
Q;COq
where 2; are convex subdomains with Lipschitz boundaries, and Ogq is
the partition formed by Q; (in practice {Q;}Y, are typically presented
by simplicial or polyhedral cells). Henceforth, we use the notation I';; =
ﬁ,’ ﬂﬁj, I'p; = ﬁl NIp, and I'g; = ﬁ, NIg.
For any 2; we have the classical Poincaré inequality [11]

vw' Qi (32)

|wlle; < Cpa,

which holds for any function
we H'(Q) := {w € Hl(ﬂl)‘{w}Q = 0},

where {w}q, := QL | w dz. Due to [10], we know that Cpo, < % This
Q;
estimate of the Poincaré constant admits various generalizations (see, e.g.,
[1, 2]; similar estimates for spaces of vector-valued functions are considered
in [4]).
Poincaré type estimates also hold for functions having zero mean traces
on the boundary. Let

H'(,7) = {w e H'()|{w}, =0}, (3.3)

where 7 is a measurable part of the boundary 0€);, which coincides with I';;
or I'r; (we assume that 7 has a positive measure). For any w € H'(Q;,7T),
we have the estimate

Vu|

o (3.4)

Sharp values of Crq, are found in [8] for some classes of domains. For
our subsequent analysis, we need results related to the cases, where Q; is
either a triangle or a quadrilateral and 7 is one side of it. We can extend
these results to the case of d = 3 and ; presented by parallelepiped (or

wlr < Cre;
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domains obtained by affine transformations of parallelepiped). Below, for
the convenience of the reader, we recall some of these results.
1. If d = 2, Q; is the right quadrilateral IIy := (0, h1) x (0, ko), and
T is the face z; = 0, then

Crm, = <hl tan (5) > (3.5)

Analogously, if d = 3, U3 := (0,h1) x (0,hs) X (0,h3), and T is
again the face defied by the condition x; = 0, then

Crm, = (ﬁ tanh (%) ) . hy = max {hs, hs} . (3.6)

2. If d = 2, Q; is the triangle T := conv{(O, 0), (0, h), (h, 0)}, and 7
1

is the leg defined by the condition z; = 0, then Crp = (i)g,

g1
where 01 = (3 tanh({1), and (; is the unique root of the equation
tan(z) + tanh(z) = 0 in (0, ).
3. Also, we may use another result of [8] related to the case, where
functions have zero mean values on the hypotenuse of the isosceles
1
right triangle 7' with legs h. In this case, Crr = (%)2.
By means of 2 and 3 and standard affine transformation of the coordinates,
we can obtain estimates of C'rr for any non-degenerate triangle.

Proposition 3.1. Let T be the triangle with the nodes
{(0,0), (1,0), (3 cosa, ho sin )}

and
T .= {xl €10,h]; x2 = O}.

Then, for any v € HY(T) with zero mean trace on T we have the estimate

vl < Crrhi||Vollr, Crr = CrrCip,a), (3.7)

where
Clp,a) = (ﬁ%) oulp) = %(1—|—p2—|—(1+p4+2 cos(2a)p2)5), p= Z_T’
(3.8)

and GTT is the corresponding constant for the basic right triangle.
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Remark 4. It is clear that for the inequality (3.4), we have a certain
monotonicity property, which allows us to easily estimate the constant Crq.
Namely, if Q1 and Qs have a common part T' and Q1 C Qs, then

lwll < Co, [[Vwlla, < Co,[[Vuwlla,- (3.9)

Therefore, Cra, < Cra, -

3.2. The first estimate. Let the sub-domains be collected into two dif-
ferent sets

Op == U Q, OP::{QICOQ‘Q|Ql>P,l:].,...,NP} and

Q;COp
(3.10)
ﬁo:z U ﬁk, Oolz{ﬂk COQ‘Q|Q}G<P,]§:1,...,N0},
QL COg
(3.11)

which contain regions with relatively large and small reaction, respectfully.
For the sub-domains in Oy, we impose an additional condition, namely,

{rﬁl,u(v,y)}gkcoo =0, foraa. tel0,T]. (3.12)

Since y is in our disposal, then selecting it in such a way that the mean
value condition (3.12) holds is technically not difficult.

We impose similar local type conditions on I'g, which is decomposed
into FR]‘ :8QjﬁFR,j: 1,...,M, M <N.

Assume that

{rp(u,y)}FR_CsR =0, fora.a. tel0,7], (3.13)

holds. Here, Sg denotes a collection of non-overlapping faces I'g;.
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Using the idea of Proposition 3.1, we deduce another form of the error
majorant, which involves constants in Poincaré type inequalities. Hence-
forth, we use the following quantities based on localized residuals

2

Q
Rop1 )= > B{riuwm)} (3.14)
2 COp '
C, 2
Rop () == > S rpa—u(v,9)llg, » (3.15)
Q;COp
Cra}
Roy(t) =Y F%|rp-u(,9)l, - (3.16)
QL COo
C;
Rsp(t):= ) Gra, St e, 9, - (3.17)
FRJCSR

Theorem 3. (i) Assume that (3.12) and (3.13) hold, then for any v € Vj
and y € Yaiv (QT), 6 € (0,2], p2(t) = 1, p1(t) > 1, we have the estimate

—2
[e]?u,G,l,Q) < MI,N(%%(S’ p1,s P2, 1)
T

— [(o]|m )| + 2o 2
0

+ a1(8)[ra (v, 9)[3 1,0 + 02() (Rop,p (1)

+ Ro, (t)) +a3(t)Rs, (t)) dt, (3.18)

where vy (v,y), vr1-,(,y) andry,(v,y), ra(v,y), rr(v,y) are defined in
(2.2), (2.5), (2.3), and (2.4), respectively, v =2 — ¢,

1

b(@) = o) (2 555 — 7w )

are positive weights, p(z,t) is a real-valued function taking values in [0,1],
the reaction function o(x) > 0, oy (t), a2(t), as(t) are positive scalar-valued
functions satisfying the relation (2.7).

(ii) For any ¢ € (0,2], p1(t) = 1, p2(t) > 1, and a real-valued function
w(x,t) taking values in [0,1], the upper bound of the variation problem
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generated by the majorant

lnlf M?,N(vay;(sa PlaPZaN) (319)
v € Hy(Qr)

y € Yaiv (Q7)

is zero, and it is attained if and only if v = u and y = AVu.

Proof. We consider (2.9) and estimate #4 and #r analogously to the
proof of Theorem 1. The term .#; is decomposed as follows:

T
Fy :/( /rﬁ”edx—i—/rﬁluedx)dt
0

Q

Q
T

:/< /rf,”edx—i—/rf,l”edx+/rf71uedx)dt
0

Q Qp Qo
O O
=Irut I, I, (3.20)

Each term on the right-hand side of (3.20) is estimated by different meth-
ods. We use the Hélder inequality, to estimate & ,. If (3.12) holds, the
term ff(?ff” can be estimated by (3.2)

T

1
Il < /R(Qoo Vel a.qo dt. (3.21)

0
After the representation

T
‘]f(?lpuz/< Z /?fyl—uedi’?‘*‘ Z {rf,1_u}gl/eda:> dt,
0

QZCOPQZ Q;COp o)
(3.22)
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we estimate this term by the inequalities

1
‘/ 3 /rf1 uedxdt‘ /Rgm”_” IVellaqy dt, (3.23)

2COp g,

I'fl u} /edmdt‘ / Z % I"f,1—u}m||96||9l dt

QzCO Q,COp

/!

T
1
< / RZ, ., [lee], dt (3.24)
0

By means of the Minkowski inequality, the sum of right-hand sides of (3.21)
and (3.23) is estimated as follows:

T

T

1
/Rggo Vel dt—i—/R“"
0

0

dt

T
1
g/(ROO + Roy ) [ Vellagdt. (3.25)
0

We recall (3.13) and apply (3.4) to obtain

T T
1
Ir=[ > / fredsdt < /R;R (3.26)
0 TrjCSRPY . 0
In view of the Young—Fenchel inequalities, we have
T
<3 [ (a@lraliog + 1 Vellio) at
0
(3.27)

T

brg leelly dt < 5 [ (10

0

2 2
Leru + gk leelld ) at

(3.28)

fli
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T
1
/Rgp,{.}llgeuQ dt < L (Pz(t)RoP7{.} + p%(t)HQeH;) dt, (3.29)

0

T

B, e
0

andt <5 [ (as(ORs, (1) + T Velg) at,

(3.30)

L
2

St — 5 T —

and

T
/(Rop,||~|| +Ro,)* [|Vellaqdt
0

T
<4 [ (ce®(Rouyy + Bo) + I VelPyo) dt. (331
0
By combining (3.27)—(3.31), we arrive at (3.18).

(ii) Existence of the pair (v,y) € Hy(Qr) x Y3, (Qr) minimizing the
functional MIZ’N(v,y; J, p1,p2, 1) can be proven straightforwardly. Indeed,
let v = u and y = AVu. Since div (AVu) € L?>(Qr), we see that y €
Y3, (Q7). In this case (cf. (1.1)-(1.5)),

e(z,0) = (u—v)(z,0) = ug(z) — v(z,0) =0,
ry(u, AVu) = f—u — 0’u+div AVu =0,
ra(u, AVu) = AVu— AVu =0,
rr(u,AVu) =F —o’v— AVu-n=0,
Thus, we see that MLN = 0. Since the majorant is nonnegative, the func-

tions u and AVu 1 rglinimize it.
Assume that My y = 0. Then, the following relations hold:

y=AVv a.a. (z,t) €Qr, (3.32)
f—v—0v+divy=0 aa (z,t)€Qx(0,T), Q COq, (3.33)
v(,0) =up a.a. z €, (3.34)

v=0 aa. (z,t)€Sp, (3.35)

y-n+ov=F aa. (z,t)€lg;x(0,T), Tg;C Sk
(3.36)
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From (3.33)—(3.36), it follows that for any n € H}(Qr)

T T
> /((ffvrgzv)nfyvn) dx+/ > Fndsdt =0,
0 QiCOQQi 0 FR]'CSRFR]_
or, equally,

/ ((f—vt —0*v)n—y-Vn)dz+ / Fndsdt =0, Vi€ Hy(Qr). (3.37)
Qr Sr
In view of (3.32), the identity (3.37) is equivalent to (1.7), whence it follows
that v = w and y = AVu.
We conclude that the exact lower bound of MiN is equal to zero and

it is attained only on the pair (v,y), which presents the exact solution of
(1.1)—(1.5) and the respective flux. O

3.3. Equivalence of MLN and the primal-dual error norm. Now,
we are aimed to show that the majorant is equivalent to the error measure
in terms of a combined (primal-dual) norm. This fact justifies the majorant
as an adequate tool of error control.

Consider the solution of (1.1)—(1.5) as a pair (u,p) € Vo X Ygiv (Q7). In
order to measure the deviation of the approximation (v,y) € Vo x Yaiy (Q7)
from (u,p), we use the following form of combined primal-dual norm

I[(u,p) — (U7y)]|‘?17,é,f,k,>’(,1§,1b)

T T
= [ 190 = ol g de+ 5 [lotu— o)l de+ Xl — o) T)IR
0 0
T T
48 [l = plsq dt+ [ Idiv (o) = (= only de
0 0

T T
i / lo(u — v)|2, dt + / Ip—y)-nl2, dt. (3.38)
0 0

It is easy to see that the first three terms of (3.38) present an energy norm
of the error in the primal variable, the forth can be viewed as an error as-
sociated with the flux. The fifth term is generated by both errors in primal
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and dual variables. The last two terms are related to errors in boundary
conditions. For simplicity, further (3.38) is used as ||[(u, p)

2

) - (U7 y)]” .
From Theorem 1 (with ay, as, a3 = const, p = 0, and exactly satisfied
initial condition ug = v(+,0)), the estimate can be written in the form

T T
<2f®/MVﬂig+@f%[/Mﬂa+wmﬂw@

T

+2/H0€||F dt < MIN(’U y) W/ROP{}dt

0

T
+O¢1/HI'A||124_1’Q dt+a2/<ROP7||.||+ROO) dt+a3/RSR dt. (3.39)
0 0
Set,
“p ) O g o)
Cop : ernca(%(P{Pg , Cpq: Qrinca(%cn Cpai r) (3.40)
Crq = F}?jl%)é}z {CI‘Q]‘}, Cyo = max{y,as}, (3.41)
then
My <

B

T
el T+ [ lly = AV g
0

+ —7—2; max {6?39,09}’} / |f —ve +divy — o®v||3 dt

0
?2
+ o 3te —o*v—y-n|, dt. (3.42)
For further simplification, let
- =2
Cmax = %L—Q max {Cig, CQP}a Clogr = a3 SE2




26 S. MATCULEVICH, S. REPIN

By means of (1.1) and (1.5), the right-hand side of (3.42) can be decom-
posed as follows:

_2 B ¢ .
My < el T3 + s /ny—pnifl@ dt+/||V<ufv>Hi,Q at
0 0

T T 9
+ o [ v =)+ (=0l e+ [ [P} )
) 0

T
+ Ca,r / Haz(u — v)‘
0

We recall that ¢ and o are uniformly bounded by the constants C, and
C,, respectively, and estimate the right-hand side of the latter inequality
as

dt+/||(P*l/)'"H%R t
R
0

_2 B ¢ .
My < el T3 + /ny—pnifl@ dt+/||V<ufv>Hi,Q at

Cona /||dwy p) + (u— o) ||th+02/||9 o3, dt
T
+ Coor / lo(u— w3, dt + / 1o —y) - nll2, dt
0

= [[w0) = @ oe iz 349

Here, on the right-hand side we have the error measured in terms of (3.38)
with positive weights

~ 2] hL ~ 2
V==0=a, C = Chax, k= Cgcmaxy

(3.45)
=1, §=C%Coyr, @ = Cayr-

Next, we combine four terms related to the energy error norm of the primal
variable on the right-hand side of (3.44) and estimate it by using (3.39).
The rest of the terms related to dual component can be estimated by the
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technique used above. Therefore, we obtain

[ p) = (0, )]II* < CrrMy y

T T
var | [ly=AVol g dt+ [ 19—l de
0 0
T T
+Cmax(/||f+divy — vy — QQUH?Z dt—i—C;/Hg(u—v)Ha dt)
0 0

T T
+ Cour /||ng2v7y.n||12ﬂR dt—i—Cg/Ha(vfu)HpR de |, (3.46)
0 0

where
Crr = max {(;Té) T 2O, 1. %cgcasp}. (3.47)
By using constants
Cpq = erél(rglQ {Cpq;}, and Cro = g;;’,
where
Crq = nglic%R {Cra;},

we rewrite the right-hand side of (3.46) and obtain the following result:

T
i) — @I < / IV — v)|q dt
0
T
+c§cmx/||g<ufv>|\édt+ e T)II%
0

T T
- J— -
+C§CQSF/||U(%U)H§R dt+CERMLN+a1/|\yfAVvHi,_1’Q dt
0 0

T

T T
+ % /R@P7||.|| dt + /Roo dt | + agépg /RSR dt. (3.48)
0 0 0
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Finally, the terms related to the error norm of primal component on the
right-hand side of (3.48) can be estimated by the majorant (3.39):

T

[(us p) — (v, 9)]||< / (a1 (2Cer + Dly — AVv[% -1 o +2CERYRop {1}
0

+ s (QCER + o ‘E‘S" ) (R@P7||.|| + Roo)

+ as <2CER + érsz) RsR) dt < CMAJMiNu

where

CMAJ:maX{QCER—i-l, 2CER, QCER‘FO[E’SX, 20ER+6I‘Q}

(3.49)
Therefore, we obtain the double inequality

My x <[, p) — (v, ) H R S < Crnias M xs (3.50)

which shows that the majorant introduced in Theorem 3 is equivalent to a

certain form of combined (primal-dual) error norm. In other words, MI{N
(which contains only known functions and parameters) adequately reflects
the distance between (v,y) € Vy x Yaiy (Q7) and the exact solution (u,p).
In particular, this means that if (up,pp) is the sequence of approximations
computed on a certain set of meshes F, which converges to (u,p) with
the rate h®, then the values of the majorant tend to zero with the same
rate.

3.4. The second estimate. Now, we deduce another estimate, which is
in general sharper than (3.18), but contains an additional free function
w € H}(Qr). The corresponding residuals of (1.2), (1.1), and (1.5) are
presented as

ri(v,y,w) == f — (v+w), — 0°(v — w) +divy, (3.51)
rru(v,y,w) = prp(v,y,w), (3.52)
rri-u(v,y,w) = (1— )I'f(U y,w), (3.53)
ra(v,y,w):=y — AV(v —w), (3.54)
rr(v,y,w) :=F —o*(v —w) —y-n, (3.55)



ESTIMATES OF THE DISTANCE TO THE EXACT SOLUTION 29

respectively. On collections Oy and Sg, we impose the mean conditions
similar to (3.12) and (3.13), namely,

{I’fyl_u(v,y,w)}ﬂkcoo =0, foraa tel0,7], (3.56)

and

{rF(v,y,w)}FR.CSR =0, foraa. tel0,T]. (3.57)

Correspondingly, the complexes Ro, (r;,_,1(t), Rop r;._,11(), Ro,(t),
Rs,, (t) are defined analogously (3.14)-(3.17) and depend on residuals
(3.51)—(3.55) related to free functions v, y, and w.

Theorem 4. (i) Assume that conditions (3.56) and (3.57) are satisfied.
Then, f07’ any v € Vba w e H&(QT) and ye Yaiv (QT)7 NS (072]} €= 1;
p2(t) =1, p1(t) = 1, the error has the following estimate:

—2
[e]?y,G,C,Q) < MII,N (Uu Yy, w; 67 €, P1, P2, ,u’)
= ellw(z, T)[|§ + 2L (v, w) + (v, w)

T
2 B
+f (m(t)Hirf,ﬂ(v,y,w)HQ + (O Roy, () + a1 (D ra(v,y,w) 30
P
0

+ as (t) (ROP,||~|| (t) + Roo (t)) + Oé(t)RsR (t)>dt, (3.58)

L(v,w) := / (Utw + AVv - Vu + o*vw — fw) dxdt — /(F — o%v)w dsdt,

Qr Sr
(3.59)

l(v,w) := / [v(z,0) — ug(z)[> — 2w(z,0)(uo(z) —v(0,2)) dz,  (3.60)
Q

1

2 .,
v =2-9, 0zt = o(x) (27#@)7%) , (=1 f% are positive
parameters, pu(x,t) € [0,1] is real-valued function, oy (t), as(t), as(t) are
positive functions satisfying (2.7).
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(if) For any d € (0,2], p1(t) > (21—L), p2=1,e>21, and p € [0,1], the

lower bound of the variation problem generated by the majorant

. —2
inf My n(v,y,w;6,¢ p1,p2,1t) (3.61)
veVy ’

weH; (Qr)
y€Yaiv (QT)

is zero, and it is attained if and only if v =u, y = AVu, and w = 0.

Proof. (i) We rewrite the right-hand side of (2.1) by inserting functions
w € H(Qr) and y € Yaiv (Qr), which implies the following relation

/ IVelP,q dt + / leelf dt + 3l T3 + / el

= /e(x,T) (z,T) dx—i—/( 2(z,0) — e(m,O)w(x,O)) dx

Q Q
+ A+ I+ S+ L(U, w), (3.62)

where S, J4, JF are quite analogous to (2.10)—(2.12) and depend on
(3.51)-(3.55). As in the proof of Theorem 3, the term .#y can be repre-
sented as

Ty = Tpu+ I+ I (3.63)

where each of the summands is estimated as follows:

Sl < / e loelg . (3.64

=

T
1
at + /Répy{'}ngHQ &, (3.65)
0

Op 2
75l /Rop,nw
0

1
o0 < / R2 [[Ve| 0, dt. (3.66)
0
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The term .Z4 is estimated by the Hdélder inequality, and #F is bounded
analogously to (3.26). By applying Yong’s inequalities, we obtain the esti-
mates

[ et Tyt 1) dode < 3 (et TR + o, DIF),  (367)
Q
T

NEZ RS
0

2 .
(o1 | brra, + & Neeld ) at,  368)

(bR, )+ & lee]l3) dt (3.69)

T — iy T

T

1
[ RE el e < 3
0

(a1 ®)lIraldor o + 1 Velg) dt,

(3.70)

Ot~

T
[lralasolVelande < 4
0

l B
[ R IVelaade< b [ (aRs, + I Velfio) @t (37)
0

Ot~

and

T
1
/ (Rop,|-| + Ro,) 2 | Vellagn dt
0

T
< %/(QS(t)(RopAl-ll + Ro,) + ﬁ(t)HWHi,n) dt. (3.72)
By combining (3.67)—(3.71), we obtain the required estimate (3.58).

(if) The proof is similar to the proof of (ii) in Theorem 3. O

3.5. Equivalence of My and [e](,9,c,y). Finally, we prove that M?LN
is equivalent to the error measure (1.8). For this purpose, we estimate
(3.58) from above and show that this upper bound is equivalent to the
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error norm. Henceforth, we assume that p = 0 (this is done for the sake of
simplicity only), y = AVu € Yy, (Qr), and w = e, then

ri(v,AVu,e) = 20%e, ra(v,AVu,e)=2AVe, rp(v,AVu,e)=20.

The functional (3.59) can be represented as follows:

L(v,e) = / (vte + AV - Ve + g*ve — fe) dzdt — /(F — o*v)e dsdt
Qr Sr
= / (ute + AVu - Ve + o*ue — fe) dzdt + /(F — o%u)e dsdt
Qr Sr
- / (AVe - Ve + ese + o’e?) dzdt — /0'262 dsdt.  (3.73)
Qr Sr

In view of (1.7), the first two terms in the right-hand side of (3.73) vanishes,
and we find that

L(v,e) = — / (AVe- Ve + ee + Q2€2) dedt — /0262 dsdt.  (3.74)
Qr Sr
Next,

l(v,e) = / (|U(ZL’,0) - U0($)|2 - 26($a0)(uo($) - ’U(O,ZL’))) dx
Q

= —Jle(z,0)[3- (3.75)

By means of differentiation by part and (3.75), we obtain the estimate

T T
—2 . 2 .
Migx < (s ~2) [ [Vellqdttdar [ 37 G0t foel}, a
0 0 SuCOp
T T
Cra? 2
f2/||ge||?2 dt + 4as Z AF—AQJHaeHFRJ_m dt
0 o Tr;iCSr

T
3 / loel2, dt + elle(, T3 — 2 / ere dzdt — |le(z, 0)[3
0 Qr
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T T
. =2
<2(2a0-1) [ Vel gt +2 (20052 - 1) [ el
0 0

T
2, ‘
+2 (2005 ~ 1) [floeli, + (e~ DlleC- DI, (376)
0

where Cpq = max {Cpq;}, Cro = max {Crq,}. Therefore, for any
Q;COp T'r;Cr

v € Vp we arrive at double inequality

2 2 2 2
[€]tv0.c0 < Min < el or.0r0) < Kll0.¢.0)0 (3.77)

with parameters
1
62 2
V' =22~ 1), @ = g<2 (2aliﬂ 1)> ,
=2
C=e—1, X':2(2a3%—1),

1
V:2757 9:Q<27%)27 C:]-*%u X:27

and
-2
< 2
. 201 5% 1 —2
22021 ) c
K = max (2(1%6), 2 2:4‘1 , €, 20[3&5’—1
Bt

The relation (3.77) shows that M?LN is equivalent to the error measure
(1.8).

Therefore, we obtain fully computable error majorants (presented in
Theorems 3 and 4), which generate fully computable and realistic estimates
of the distance to exact solution.
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