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INHERENTLY NON-FINITELY GENERATED
VARIETIES OF APERIODIC MONOIDS WITH
CENTRAL IDEMPOTENTS

ABSTRACT. Let o/ denote the class of aperiodic monoids with cen-
tral idempotents. A subvariety of o/ that is not contained in any
finitely generated subvariety of ./ is said to be inherently non-
finitely generated. A characterization of inherently non-finitely gen-
erated subvarieties of .7, based on identities that they cannot satisfy
and monoids that they must contain, is given. It turns out that there
exists a unique minimal inherently non-finitely generated subvariety
of <7, the inclusion of which is both necessary and sufficient for a
subvariety of o/ to be inherently non-finitely generated. Further, it
is decidable in polynomial time if a finite set of identities defines an
inherently non-finitely generated subvariety of <.

§1. INTRODUCTION

Recall that a monoid is aperiodic if all its subgroups are trivial. The
indez of an aperiodic monoid is the least positive integer n for which the
identity "™ ~ z™ is satisfied by the monoid. The class &7 of aperiodic
monoids with central idempotents constitutes an important source of ex-
amples in the study of the finite basis problem; see Jackson [2], Jackson
and Sapir [4], Lee [5], Perkins [10], and Sapir [11]. For each n > 1, let A,
denote the variety of monoids from .o/ of index at most n. The variety A,
is defined by the identities

" 2y~ oy (Ay)

and the inclusions A; C Ay C --- C & hold and are proper. The class
o/ is not a variety, but each of its subvarieties is contained in A, for all
sufficiently large n.

A finitely based, finitely generated variety that contains finitely many
subvarieties is called a Cross variety. An almost Cross variety is a mini-
mal non-Cross variety. By Zorn’s lemma, each non-Cross variety contains

Key words and phrases: monoid, aperiodic monoid, central idempotent, variety,
finitely generated, inherently non-finitely generated.
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some almost Cross subvariety. Recent work of Jackson [3] and Lee [5, 6]
has led to a complete description of Cross subvarieties of .&7: there exist
precisely three almost Cross subvarieties of <7, denoted by Jq, Jo, and L,
the exclusion of which is both necessary and sufficient for a subvariety of
&/ to be Cross [9]. The varieties J; and Jo are finitely generated [3] while
the variety L is non-finitely generated [9]; the variety L is the subvariety
of A, defined by the identities

zyhzty ~ yrhxty, zhryty ~ chysty, xhytry ~ chytyz

and it plays a crucial role in the present investigation.

Unless otherwise specified, all varieties in the present article are sub-
varieties of 7. A subvariety V of &/ that is not contained in any finitely
generated subvariety of o7 is said to be inherently non-finitely generated
within </ ; since this article concentrates only on subvarieties of <7, it is un-
ambiguous to refer to such a variety V simply as an inherently non-finitely
generated subvariety of <71 Although an inherently non-finitely generated
subvariety of 7 is vacuously non-finitely generated, the converse is not
true in general. A non-finitely generated subvariety of .« that is not in-
herently non-finitely generated within .27 is exhibited in Section 6, and it
is the first explicitly described example of its kind.

The present article is devoted to the description of inherently non-
finitely generated subvarieties of . After developing some preliminary
results in Section 2, some identities that are satisfied by subvarieties of
&/ are introduced in Section 3. Section 4 is concerned with the investi-
gation of the almost Cross variety L, its subvarieties, and the identities
it satisfies. In particular, the subvarieties of L are shown to constitute a
countably infinite chain. Based on results from Sections 2—4, a characteri-
zation of inherently non-finitely generated subvarieties of o7 is established
in Section 5; it includes identities that these varieties cannot satisfy and
monoids that they must contain. It follows that the inclusion of the variety
L is both necessary and sufficient for any subvariety of <7 to be inherently
non-finitely generated within o/, whence L is the unique minimal inher-
ently non-finitely generated subvariety of /. A polynomial time algorithm
is also presented that decides, given a finite set X of identities that defines

INote that a subvariety of «/ that is inherently non-finitely generated within &/
may be contained in a finitely generated variety that is not a subvariety of <. See
Example 5.3.
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a subvariety V of &, if the variety V is inherently non-finitely generated
within 7.

§2. PRELIMINARIES

Let X be a countably infinite alphabet throughout. For any subset ) of
X, let Y* denote the free monoid over ). Elements of X and X'* are called
letters and words, respectively. An identity is written as u ~ v where u
and v are nonempty words; this identity is nontriviel if u # v. A monoid
M satisfies an identity u = v if, for any substitution ¢ from X into M, the
elements uyp and vy of M coincide. A class of monoids satisfies an identity
if every monoid in the class satisfies the identity. The variety defined by
a set ¥ of identities is the class of monoids that satisfy all identities in
Y; in this case, X is a basis for the variety. A variety is finitely based if it
possesses a finite basis.

Refer to the monograph of Burris and Sankappanavar [1] for more in-
formation on varieties of algebras in general.

2.1. Rees quotients of X'*. For any set U of words, let S(/) denote the
Rees quotient monoid of X'* over the ideal of all words that are not factors
of any word in . Equivalently, S(/) can be treated as the monoid that
consists of every factor of every word in U, together with a zero element
0, with binary operation - given by

uv if uv is a factor of some word in U,
u-v= .
0  otherwise.

The empty factor, more conveniently written as 1, is the identity of the
monoid S(U). If U = {uy,...,uy}, then write S(U) = S(uy,. .., uy).

Example 2.1 (Jackson [3, Section 5]). The almost Cross varieties J; and
J> introduced in Section 1 are generated by the monoids S(zhzyty) and
S(zhytxy, zyhxty), respectively. These varieties are non-finitely based.

A nonempty word u is an isoterm for a variety V if V does not satisfy
any nontrivial identity of the form u ~ v.

Lemma 2.2 (Jackson [3, Lemma 3.3]). For any set U of words and any
variety V, the monoid S(U) belongs to V if and only if every word in U is
an isoterm for V.
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2.2. The Straubing identities. A variety is finitely generated if it is
generated by a single finite monoid. The Straubing identities

n—1 n—1
i=1 i=1

where n € {2,3,...}, play a significant role in the study of finitely gener-
ated subvarieties of .

Lemma 2.3 (Jackson and Sapir [4, Corollary 3.1]). For each n > 2, the
variety defined by the identities {A,, %n} is finitely generated.

Lemma 2.4 (Straubing [13]). Let V be any subvariety of <. If V is
finitely generated, then V satisfies the identities {An, %} for somen > 2.

The converse of Lemma 2.4 does not hold in general since a subvariety
of o/ that satisfies the identities {As, %3} is shown in Section 6 to be
non-finitely generated.

§3. RIGID WORDS AND RIGID IDENTITIES

Results established in the present section are required in Sections 4
and 5, where all subvarieties of L and all inherently non-finitely generated
subvarieties of &/ are described.

Define a rigid word to be the word

m

u=2z||(hz®)

i=1
where m > 0 and ey, ..., e, = 0; the number m is the level of the word
u. Note that a rigid word of level 0 is of the form z¢. The rigid word u
above is square-free if eq, ..., e, < 1. A rigid identity is an identity that is
formed by a pair of rigid words of the same level. Note that each Straubing
identity ¥, is a rigid identity formed by rigid words of level n — 1.

Lemma 3.1. Let V be any subvariety of <7 that satisfies a nontrivial rigid
identity

m m
2 [ [ (hszt) ~ 2fo H(hle),
=1 =1
where at least one side of the identity is a square-free word. Suppose that
at least one of the following conditions holds:

(a) m=0;
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(b) (eo,.--,em) =(0,...,0);
(C) (an---afm): (O,,O)

Then V is commutative.

Proof. This lemma is routinely verified based on the assumption that the
variety V satisfies the identities A, for some n > 1. O

Lemma 3.2. The variety A,, satisfies the rigid identity

m

2% | | (hiz®) =~ 2™ H h; (3.1)
i=1

i=1
whenever e; > n for some j € {0,...,m}.

Proof. It is easily shown that the basis A, for A,, implies the identity (3.1)
whenever e; > n for some j € {0,...,m}. (I

Lemma 3.3. Suppose that V is any subvariety of </ that satisfies some
nontrivial rigid identity u ~ v where either u or v is square-free. Then V
satisfies the Straubing identity Y for some k > 2.

Proof. By assumption, the variety V satisfies the identities A,, for some
n > 2 and

m m
u=z|[(hizt) and v =z H(hza:f)

i=1 i=1
for some eq, fo,...,em, fm = 0 with(eg,...,em) # (fo, ..., fm). Further, it
suffices to assume that m > 1 and (e, ..., em), (fo,---, fm) # (0,...,0),
since otherwise the variety V is commutative by Lemma 3.1 and so satisfies
the identity %o.

Lete=eg+ - +ey, and f = fo+-- -+ fin. Without loss of generality,

assume that one of the following cases holds:

(a) u is square-free and v is not square-free;
(b) u and v are both square-free with 0 < e < f.

Then eg,...,e,n < 1in both (a) and (b). Since u is a square-free rigid
word and z occurs e times in u, there exists an appropriate deletion ¢, of
the letters h; such that

upy =z - hjx-hjz---hj 2,
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where 1 < j1 < -+ < jJe—1 < m. Let o denote the substitution that
renames the letters hj,,...,hj._, by hi,...,he—1. Then

e—1
upipe: = H(hlar)
i=1
is a square-free rigid word of level e — 1.2 Now perform the deletion ¢,
on v followed by the substitution ¢s on vy to obtain vgis. It is clear
that in case (a), the word v¢q s is a rigid word of level e — 1 that is not
square-free. In case (b), since the identity u = v is nontrivial with e < f,
the word vy is also rigid and of level e — 1 that is not square-free.
Therefore in both cases, vy = pz"q for some r > 2 and p,q € X*,
whence the identity u =~ v implies the rigid identity
d
x H(hlx) ~pz'q (3.2)
i=1
where d = e — 1. The identity (3.2) clearly implies a rigid identity of the
form

(hiz") ~ p'z" d (3.3)
1

T

d
X

2

for some p’,q’ € X*. Since

T = (=TT (= 11 1Yo T )

i=1 i=d+2 i=2d+3
d*+2d
ce h’d2+d (JI H (h2$))
i=d?+d+1
(3.2) r r T r
~ (x ...)hd+1(...x ~~~)h2d+2(~~~$ "')"'hd2+d("'x )
(3.3) 2
~ ---I s,

the identity u &~ v implies a rigid identity of the form (3.2) with r replaced
by r2. The same argument can be repeated sufficiently many times so that
the identity u & v implies a rigid identity of the form (3.2) with r replaced
some number r° that is greater than n. Therefore generality is not lost by

2For instance, if u = hixhohsxhahshexhrx where e = 4 and m = 7, then uyp; =
zharhszhr7r and upi92 = rhixhazrhsz.



172 EDMOND W. H. LEE

assuming that » > n in (3.2) to begin with. Since pz"q is a rigid word of
level d, it follows from Lemma 3.2 that

R

d (3.1) (3.2)
" H hi =~ pz'q ~ z
i=1

=1

The variety V thus satisfies the identity
d d
 [J(hiz) ~ 2™ ] ] hs. (3.4)
i=1 i=1

If d = n — 1, then the identity (3.4) is %,. If d > n — 1, then

d d d
3.4 N
T H(hlx) (z) z" H h; R g+t Hhi
i=1 i=1 i=1
so that the variety V satisfies the identity 4. If d < n — 1, then
n—1 d n—1 n—1
(3.4) (3.1)
i=1 i=1 i=d+1 i=1
so that the variety V satisfies the identity ¥,. O
§4. THE VARIETY L

This section is concerned with the almost Cross variety L. Recall from
Section 1 that L is defined by the identities A and

zyhzty ~ yrhoty, xhzyty ~ chyrty, xhytry ~ chytyz. (4.1)

Subsection 4.1 provides a complete description of all subvarieties of L. For
this purpose, the reduced Straubing identities

n—1 n—1
i=1 i=1

where n € {2,3,...}, are required. Define the set Woo = {wo,w3,...}
where

n—1
W, = H (h;z)
i=1

is the word on the left side of the identity *.
Subsection 4.2 demonstrates that it is decidable in polynomial time if
an arbitrarily given identity is satisfied by L.
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4.1. Subvarieties of L. For any set ¥ of identities, let LY denote the
subvariety of L defined by X. For any set U of words, let S(I/) denote the
variety generated by the monoid S(U). Let 0 denote the variety of trivial
monoids.

Proposition 4.1. The subvarieties of L constitute the chain
0 C S(@) C S(x) C S(zy) C S(w2) CS(w3) C--- CSWs)=L. (4.2)
The proof of Proposition 4.1 is given at the end of the subsection.

Lemma 4.2. Leteg,...,em = 0 and £ > 2 be such that £ < eg+ -+ epm.
Then the identities { Ao, *¢} imply the identity

m

2z | [(hiz®) =~ 2? H h;.

=1 =1

Consequently, the following inclusions hold:
L{x} CL{x3} C--- (4.3)

CL.
Proof. Lete=eyg+--- 4+ €y,- Then eg,...,e,, > 0 and £ < e imply that

’ m(hiwe”)zqo( qzar)(e]:[l qz:r)qe

i=1 i=f
for some qg,...,qe € X'* such that qp---q. = - hm. Hence
m e—1
(hiz) ~qo(2qu)(H qzw) Zqu—w th,
i=1 i=L
where the second deduction holds by Lemma 3.2 with n = 2. O

Lemma 4.3. The variety L satisfies a nontrivial rigid identity u ~ v if
and only if both of the rigid words u and v are not square-free.

Proof. This is easily verified by Lemma 3.2 and has been performed in
Lee [9, Lemma 13]. O

Lemma 4.4 (Lee [7, Proposition 4.1]). Let V be any variety that satisfies
the identities (4.1). Then each noncommautative subvariety of V is defined
by the identities (4.1) together with some set of rigid identities.

Lemma 4.5. The noncommutative subvarieties of L are precisely the va-
rieties in the chain (4.3).
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Proof. Let V be any noncommutative proper subvariety of L. Then the
variety V is Cross because L is almost Cross. Since the variety L satisfies
the identities (4.1), it follows from Lemma 4.4 that V = LY. for some set ¥
of rigid identities that are not satisfied by L. By Lemma 2.4, the variety V
satisfies the identity ¥ for some k > 2. The identities Ay and %, clearly
imply the identity % so that the variety V satisfies x;. Let £ be the least
possible integer for which the identity %, is satisfied by V.
Let u = v be any identity from X. Then

m m
u= 2% [[(hiz®) and v =zl H(hle)

i=1 i=1

for some e, fo,...,€m, fm = 0 with (eo,...,em) # (fo,-.., fm). Further,
it suffices to assume that m > 1 and (eq, ..., em), (fo,.--, fm) # (0,...,0),
since otherwise, the variety V is commutative by Lemma 3.1, contradicting
the assumption.

The identity u &~ v is not satisfied by L so that by Lemma 4.3, either u
or v is square-free. Let e = eg + - -- + e, and f = fo + -+ + f,,. Without
loss of generality, assume that one of the following cases holds:

(a) u is square-free and v is not square-free;
(b) u and v are both square-free with 0 < e < f.

Following the arguments in the proof of Lemma 3.3, the identity u =~ v
implies the rigid identity

e—1

x H(hza:) ~ pr'q (4.4)

i=1

for some p,q € X* and r > 2. Since V is a subvariety of As, it follows
that

e—1 e—1
4.4 3.1
L para 2 T
i=1 =1

by Lemma 3.2 with n = 2, whence V satisfies the identity x.. The min-
imality of ¢ implies that ¢ < e. In case (a), since f; > 2 for some j, the
deductions

m . m (3.1) m
u=z [[(hizt) "B 22 Hhi ~ gl H(hle) =v

i=1 i=1 i=1
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hold, respectively, by Lemma 4.2 and Lemma 3.2 with n = 2. In case (b),
the deductions

i Azx Ao i
u=2z||(hz) 2%”13321_[}1,- X gl H(hixfi):v
i=1 i=1 i=1
hold by Lemma 4.2. In both cases, the identities { A2, *;} imply the identity
u ~ v. Since the identity u & v from X is arbitrarily chosen,

L{x} =LY =V. O

Proof of Proposition 4.1. It is easily shown that the variety S(&) of
semilattice monoids and the variety S(z) are the only nontrivial commu-
tative subvarieties of L. By Lemma 4.5, the subvarieties of L constitute
the chain

0 C S(2) CS(x) C L{xx} CL{*3} C---CL.

It is known that S(zy) = L{*2} [3, Lemma 4.5]. For each n > 2, it is rou-
tinely shown that the monoid S(w,,) satisfies the identities { Az, (4.1), %, 41}
but does not satisfy the identity *,, whence

S(wy,) = L{xpt1} # L{*,} and S(W) =L # L{x,}.
Consequently, the subvarieties of L constitute the chain (4.2). (I

4.2. Identities satisfied by L. The content of a word u, denoted by
con(u), is the set of letters occurring in u. A letter of a word u is simple
if it occurs exactly once in u; otherwise, it is non-simple in u.

Suppose that the simple letters of a word u are hy, ..., h,, when listed
in order of first occurrence, and that the distinct non-simple letters of u
are xi,...,o, when listed in alphabetical order. Then the word u is in
canonical form if

u=uu H(hiui) (4.5)
i=1
where
(CF1) u’' = z{' -- -2t for some eq,...,e, € {0,2};
(CF2) ug,...,uy, € {a:{l ceal| fu,o fr € {01}
(CF3) con(u’)Ncon(ug---uy,) = 2.
Note that if the word u in (4.5) contains only simple letters, then u =

[T" hi; if it contains only non-simple letters, then u = u’ = z7 - - - 22,
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Lemma 4.6. For any word u, there exists some word U in canonical form
such that the identities { A=, (4.1)} imply the identity u ~ u.

Proof. It suffices to convert the word u, using the identities {42, (4.1)},
into a word in canonical form. Without loss of generality, assume that the
simple letters of u are hq, ..., h,;, when listed in order of first occurrence,
and that the distinct non-simple letters of u are x1,...,x, when listed in
alphabetical order. Then

u = Up ﬁ(hzuz)
i=1

for some uy, ..., u,y, € {z1,...,2,.}".

(I) For each i € {0,...,m}, since the letters of u; are non-simple in u,
they can be alphabetically ordered within u; by the identities (4.1).
Hence each u; can be converted to a word of the form z]' ---zf"
with fi,..., fr > 0.

(IT) For each j € {1,...,r}, if a square x? occurs as a factor in some of
up, ..., Uy, then the identities A can be used to gather every z; in
u to the left. This forms the prefix u’ = 7' - - 2t~ with e,...,e, €
{0,2,3,...} such that (CF3) is satisfied. Further, (CF2) is satisfied
since all squares are removed from ug, ..., u,,.

(ITI) If an exponent e; in u’ is 3 or greater, then apply the identity z° ~
from A, to reduce e; to 2. Hence (CF1) is satisfied. O

2

Lemma 4.7. Given any identity u ~ v, there exists a polynomial time
algorithm that decides if the variety L satisfies the identity u ~ v.

Proof. By Lemma 4.6, there exist words 1 and v in canonical form such
that the identities {4, (4.1)} imply the identities u ~ U and v ~ V.
Hence the variety L satisfies the identity u ~ v if and only if it satisfies the
identity 4 ~ V. By Lemma 2.2 and Proposition 4.1, the words {z, 2>} UW,,
are all isoterms for L. It is then routinely shown that the variety L satisfies
the identity u ~ v if and only if the words u and v are identical.

Steps (I)—(III) in the proof of Lemma 4.6 provide a polynomial time
algorithm that converts the words u and v, using the identities { A2, (4.1)},
into the words 1 and ¥ in canonical form. O
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§5. MAIN RESULTS
Theorem 5.1. The following statements on any subvariety V of &7 are
equlvalent:

(a) V is inherently non-finitely generated within <7
(b) for any n > 2, the Straubing identity

n—1 n—1
*n: T H(h,az) ~ " H h;
i=1 i=1

is not satisfied by V;
(c) for any n > 2, the word

n—1
Wy =2 H (h;z)
i=1

is an isoterm for V,;
(d) for any n > 2, the monoid S(wy,) belongs to V;
(e) the almost Cross variety L is a subvariety of V.

Proof. (a)=-(b). Suppose that for some n > 2, the variety V satisfies the
identity %,. Then V satisfies the identities {Ay, ¥} for all sufficiently
large k. By Lemma 2.3, the variety defined by {A, %} is a finitely gen-
erated subvariety of Aj. Therefore V is a subvariety of Ay and so is not
inherently non-finitely generated within 7.

(b) = (c). Suppose that for some n > 2, the word w,, is not an isoterm
for V. Then the variety V satisfies some nontrivial identity

n—1
i=1

CAsE 1. The following conditions hold:
e con(v) ={z,h1,...,hn_1};

® hy,...,h, 1 are simple in v;
e for any i, the letter h; occurs before h;y; in v.
Then
n—1
v =z H (h;z®)
i=1

for some eg,...,e, > 0 with (eg,...,e,) # (1,...,1). By Lemma 3.3, the
variety V satisfies the identity ¥ for some k& > 2.
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CASE 2. Any one of the three conditions in Case 1 fails. Then it is straight-
forwardly shown that the variety V is either commutative or idempotent,
whence it satisfies the identity 2.

(c) & (d)  (e). These follow from Lemma 2.2 and Proposition 4.1.

(e) = (a). Suppose that the variety V is not inherently non-finitely gen-
erated within o/. Then it follows from Lemma 2.4 that V satisfies the
identities { Ay, %, } for some n > 2. But by Lemma 4.3, the variety L does
not satisfy the identity %, and so cannot be a subvariety of V. O

Corollary 5.2. The almost Cross variety L is the unique minimal inher-
ently non-finitely generated subvariety of < .

The following example demonstrates that subvarieties of &7 that are
inherently non-finitely generated within &/ need not be inherently non-
finitely generated within the class .# of all monoids. (Another explicit
example can be found in Lee [8, Proposition 6.9].)

Example 5.3. Let B denote the variety generated by the Brandt monoid
By = {(a,b| a® = b*> =0, aba = a, bab = b) U {1}
of order six. Then L is a subvariety of B3, but B3 is not a subvariety of <.

Proof. The idempotent ab of B} is not central since ab-a # a - ab. Hence
B3 is not a subvariety of 7. It is routinely verified that for each n > 2,
the word w,, is an isoterm for the variety B so that by Lemma 2.2, the
monoid S(w,) belongs to Bi. It follows from Proposition 4.1 that L is a
subvariety of B3. O

Presently, the variety of idempotent monoids is the only known example
of a variety of monoids that is minimal with respect to being inherently
non-finitely generated within .# [12].

Theorem 5.4. Suppose that X2 is any finite set of identities that defines
a subvariety V of o/. Then there exists a polynomial time algorithm that
decides if 'V is inherently non-finitely generated within < .

Proof. By assumption, the variety V is a subvariety of A, for some n > 1.
Hence generality is not lost by assuming that ¥ contains the identities A,,.
By Lemma 4.7, there exists a polynomial time algorithm that decides if
the variety L satisfies the identities in X. The result now follows from
Theorem 5.1. (|
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§6. A NON-FINITELY GENERATED SUBVARIETY OF A,
Let N denote the variety defined by the identities As, %3, and
zhytry ~ zhytyx, (6.1)
xyhxty ~ yxhxty. (6.2)

The main aim of the present section is to show that the variety N is non-
finitely generated. But since the variety N satisfies the identities { A3, %3},
it follows from Lemma 2.3 that N is not inherently non-finitely generated
within <.

Lemma 6.1. The variety N satisfies the identities
2?hatr ~ rhx’te ~ xhatr? ~ zhatr, 6.3)

6.4)

6.5)

ch’yxty ~ z?hiyz’ty,

~ o~

chyxt’y ~ zhy’zt>y>.

=2

Proof. Tt is easily shown that the variety N satisfies the identities (
Since

6.2 ‘
zhlyxty ~ h2xyxty (m) h2yxz?ty £ h2yztty B 22 h2ya’ty,

6.1 Ao

zhyzt’y B chyzyt® (%) chy’zt® = chytst? B zhy’zt’y?,

the variety N satisfies the identities (6.4) and (6.5). O

Lemma 6.2. For each n > 2, the variety N does not satisfy the identity
7y N7,

where

n
Zp = xOh(H(fEiHi’?i))thnH =z0h - T1%T0 - T2T1 - Tt 1Tn  ETng1,

=0

n

z;1 = xohxo < H xf)xnﬂtxnﬂ = xohxg - x%xﬁ . x% c L1t
i=1

Proof. First observe that

(a) any letter occurs at most twice in the word zy;

(b) the word z, does not contain any factor of the form x2;

(c) the word z,, does not contain any factor of the form xhytxy or xyhxty,

where x,y,h,t € X* with x,y # @.
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It is then easily seen that it is impossible to convert the word z, into a
different word by applying only the identities A2, %3, (6.1), and (6.2). It
follows that the variety N does not satisfy the identity z, =~ z,. (|

Lemma 6.3. Any finite monoid in the variety N satisfies the identity
7y, = 7, for all sufficient large n > 2.

Proof. Let M be any finite monoid in the variety N and fix any n > |M|.
Suppose that ¢ is any substitution into the monoid M. Then it is shown in
the following that z,¢ = z,,¢ in M. Consequently, the monoid M satisfies
the identity z,, ~ z/,.

For notational brevity, write xp = Z. Since n > |M|, the list Z1,...,Z,
of elements from M must contain some repetition, say z; = Z; with 1 <
1< 3 <n.

CASE 1. 1 < i < j < n. Note that the letter x; occurs twice in the word z,,.
Since Z; = T, the element Z; occurs at least thrice in the product z,y,
whence the identities (6.3) can be applied to replace any Z; in z,¢ by T2:
Znp = T 1Ti2 Tl i1 T BigaPiy -
63) 2 P BP PN
= Ti-1T—2 T; X1 Tip1 Ty - Ti4p2Tq41 " -
Then the identity (6.4) can be applied to replace Z;1y by Z7,,, and the
identity (6.5) can be applied to replace Z;_1 by z7_;:

~ ~ ~2 ~ ~2 o~ ~
L1 Li—2 Ly Ti—1 - L1 Xy - TiaLi4l

(6.4) ~ o~ PO 9 A2 o~ D
(6.5) ~2 A D ~D ~2 A2 A~ ~2
= T T2 Tyl Ty Ty T2l g
This procedure can be repeated until Z1, . . ., Z,, are replaced by 77, ..., 72.

Hence

~ T A2 A2 A~D A2 AD ~2 ~D ~ ~2 T
Z,p — xoh 1T XXy - XgToy T pTy_ " Tp41Ty, tanrl

Il

TohZ - T2+ 72 - By lBng1 = 2,0
CASE 2. 1 =1 < j < n. Note that the letter 1 occurs twice in the word z,,.
Since 71 = Z;, the element Ty occurs at least thrice in the product z,y,

whence the identities (6.3) can be applied to replace any 7; in z,¢ by Z3:

AT AA A A A (63) . 3 2~ A~ A2 ~ ~
Znp = Toh - T1To - TaX1 - T3ZTa -+ = Toh - T1To - T2T] - T3Ta - .
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The identity (6.4) can then be applied to replace Zo by 73:

P PO PO G (64) L 2 2~ 2.2 ~ ~
Toh - T2%g - ToZ2 - T3Bo--- = Toh - Tiko - Tk - T3a - - -
This procedure can be repeated until 7y, . .., Z,, are replaced by 73,...,72.

The equality z, = 7}, is then deduced in the same manner as in Case 1.

O

Theorem 6.4. The variety N is non-finitely generated.

Proof. If the variety N is finitely generated, then by Lemma 6.3, it satis-
fies the identity z, & z!, for some n > 1. But this contradicts Lemma 6.2.

O
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