Edmond W. H. Lee

INHERENTLY NON-FINITELY GENERATED VARIETIES OF APERIODIC MONOIDS WITH CENTRAL IDEMPOTENTS

ABSTRACT. Let \mathscr{A} denote the class of aperiodic monoids with central idempotents. A subvariety of \mathscr{A} that is not contained in any finitely generated subvariety of \mathscr{A} is said to be *inherently non-finitely generated*. A characterization of inherently non-finitely generated subvarieties of \mathscr{A} , based on identities that they cannot satisfy and monoids that they must contain, is given. It turns out that there exists a unique minimal inherently non-finitely generated subvariety of \mathscr{A} , the inclusion of which is both necessary and sufficient for a subvariety of \mathscr{A} to be inherently non-finitely generated. Further, it is decidable in polynomial time if a finite set of identities defines an inherently non-finitely generated subvariety of \mathscr{A} .

§1. INTRODUCTION

Recall that a monoid is *aperiodic* if all its subgroups are trivial. The *index* of an aperiodic monoid is the least positive integer n for which the identity $x^{n+1} \approx x^n$ is satisfied by the monoid. The class \mathscr{A} of aperiodic monoids with central idempotents constitutes an important source of examples in the study of the finite basis problem; see Jackson [2], Jackson and Sapir [4], Lee [5], Perkins [10], and Sapir [11]. For each $n \ge 1$, let \mathbf{A}_n denote the variety of monoids from \mathscr{A} of index at most n. The variety \mathbf{A}_n is defined by the identities

$$x^{n+1} \approx x^n, \quad x^n y \approx y x^n \tag{(A_n)}$$

and the inclusions $\mathbf{A}_1 \subset \mathbf{A}_2 \subset \cdots \subset \mathscr{A}$ hold and are proper. The class \mathscr{A} is not a variety, but each of its subvarieties is contained in \mathbf{A}_n for all sufficiently large n.

A finitely based, finitely generated variety that contains finitely many subvarieties is called a *Cross variety*. An *almost Cross variety* is a minimal non-Cross variety. By Zorn's lemma, each non-Cross variety contains

166

Key words and phrases: monoid, aperiodic monoid, central idempotent, variety, finitely generated, inherently non-finitely generated.

some almost Cross subvariety. Recent work of Jackson [3] and Lee [5,6] has led to a complete description of Cross subvarieties of \mathscr{A} : there exist precisely three almost Cross subvarieties of \mathscr{A} , denoted by \mathbf{J}_1 , \mathbf{J}_2 , and \mathbf{L} , the exclusion of which is both necessary and sufficient for a subvariety of \mathscr{A} to be Cross [9]. The varieties \mathbf{J}_1 and \mathbf{J}_2 are finitely generated [3] while the variety \mathbf{L} is non-finitely generated [9]; the variety \mathbf{L} is the subvariety of \mathbf{A}_2 defined by the identities

 $xyhxty \approx yxhxty, \quad xhxyty \approx xhyxty, \quad xhytxy \approx xhytyx$

and it plays a crucial role in the present investigation.

Unless otherwise specified, all varieties in the present article are subvarieties of \mathscr{A} . A subvariety \mathbf{V} of \mathscr{A} that is not contained in any finitely generated subvariety of \mathscr{A} is said to be *inherently non-finitely generated* within \mathscr{A} ; since this article concentrates only on subvarieties of \mathscr{A} , it is unambiguous to refer to such a variety \mathbf{V} simply as an *inherently non-finitely* generated subvariety of \mathscr{A} .¹ Although an inherently non-finitely generated subvariety of \mathscr{A} is vacuously non-finitely generated, the converse is not true in general. A non-finitely generated subvariety of \mathscr{A} that is not inherently non-finitely generated within \mathscr{A} is exhibited in Section 6, and it is the first explicitly described example of its kind.

The present article is devoted to the description of inherently nonfinitely generated subvarieties of \mathscr{A} . After developing some preliminary results in Section 2, some identities that are satisfied by subvarieties of \mathscr{A} are introduced in Section 3. Section 4 is concerned with the investigation of the almost Cross variety **L**, its subvarieties, and the identities it satisfies. In particular, the subvarieties of **L** are shown to constitute a countably infinite chain. Based on results from Sections 2–4, a characterization of inherently non-finitely generated subvarieties of \mathscr{A} is established in Section 5; it includes identities that these varieties cannot satisfy and monoids that they must contain. It follows that the inclusion of the variety **L** is both necessary and sufficient for any subvariety of \mathscr{A} to be inherently non-finitely generated subvariety of \mathscr{A} . A polynomial time algorithm is also presented that decides, given a finite set Σ of identities that defines

¹Note that a subvariety of \mathscr{A} that is inherently non-finitely generated within \mathscr{A} may be contained in a finitely generated variety that is not a subvariety of \mathscr{A} . See Example 5.3.

a subvariety V of \mathscr{A} , if the variety V is inherently non-finitely generated within \mathscr{A} .

§2. Preliminaries

Let \mathcal{X} be a countably infinite alphabet throughout. For any subset \mathcal{Y} of \mathcal{X} , let \mathcal{Y}^* denote the free monoid over \mathcal{Y} . Elements of \mathcal{X} and \mathcal{X}^* are called *letters* and *words*, respectively. An identity is written as $\mathbf{u} \approx \mathbf{v}$ where \mathbf{u} and \mathbf{v} are nonempty words; this identity is *nontrivial* if $\mathbf{u} \neq \mathbf{v}$. A monoid M satisfies an identity $\mathbf{u} \approx \mathbf{v}$ if, for any substitution φ from \mathcal{X} into M, the elements $\mathbf{u}\varphi$ and $\mathbf{v}\varphi$ of M coincide. A class of monoids satisfies an identity if every monoid in the class satisfies the identity. The variety *defined* by a set Σ of identities is the class of monoids that satisfy all identities in Σ ; in this case, Σ is a *basis* for the variety. A variety is *finitely based* if it possesses a finite basis.

Refer to the monograph of Burris and Sankappanavar [1] for more information on varieties of algebras in general.

2.1. Rees quotients of \mathcal{X}^* . For any set \mathcal{U} of words, let $S(\mathcal{U})$ denote the Rees quotient monoid of \mathcal{X}^* over the ideal of all words that are not factors of any word in \mathcal{U} . Equivalently, $S(\mathcal{U})$ can be treated as the monoid that consists of every factor of every word in \mathcal{U} , together with a zero element 0, with binary operation \cdot given by

$$\mathbf{u} \cdot \mathbf{v} = \begin{cases} \mathbf{u}\mathbf{v} & \text{if } \mathbf{u}\mathbf{v} \text{ is a factor of some word in } \mathcal{U}, \\ 0 & \text{otherwise.} \end{cases}$$

The empty factor, more conveniently written as 1, is the identity of the monoid $S(\mathcal{U})$. If $\mathcal{U} = \{\mathbf{u}_1, \ldots, \mathbf{u}_m\}$, then write $S(\mathcal{U}) = S(\mathbf{u}_1, \ldots, \mathbf{u}_m)$.

Example 2.1 (Jackson [3, Section 5]). The almost Cross varieties J_1 and J_2 introduced in Section 1 are generated by the monoids S(xhxyty) and S(xhytxy, xyhxty), respectively. These varieties are non-finitely based.

A nonempty word **u** is an *isoterm* for a variety **V** if **V** does not satisfy any nontrivial identity of the form $\mathbf{u} \approx \mathbf{v}$.

Lemma 2.2 (Jackson [3, Lemma 3.3]). For any set \mathcal{U} of words and any variety \mathbf{V} , the monoid $S(\mathcal{U})$ belongs to \mathbf{V} if and only if every word in \mathcal{U} is an isoterm for \mathbf{V} .

2.2. The Straubing identities. A variety is *finitely generated* if it is generated by a single finite monoid. The *Straubing identities*

$$x\prod_{i=1}^{n-1}(h_i x) \approx x^n \prod_{i=1}^{n-1} h_i, \qquad (\bigstar_n)$$

where $n \in \{2, 3, ...\}$, play a significant role in the study of finitely generated subvarieties of \mathscr{A} .

Lemma 2.3 (Jackson and Sapir [4, Corollary 3.1]). For each $n \ge 2$, the variety defined by the identities $\{ \blacktriangle_n, \bigstar_n \}$ is finitely generated.

Lemma 2.4 (Straubing [13]). Let V be any subvariety of \mathscr{A} . If V is finitely generated, then V satisfies the identities $\{\blacktriangle_n,\bigstar_n\}$ for some $n \ge 2$.

The converse of Lemma 2.4 does not hold in general since a subvariety of \mathscr{A} that satisfies the identities $\{\blacktriangle_3,\bigstar_3\}$ is shown in Section 6 to be non-finitely generated.

§3. RIGID WORDS AND RIGID IDENTITIES

Results established in the present section are required in Sections 4 and 5, where all subvarieties of \mathbf{L} and all inherently non-finitely generated subvarieties of \mathscr{A} are described.

Define a *rigid word* to be the word

$$\mathbf{u} = x^{e_0} \prod_{i=1}^m (h_i x^{e_i})$$

where $m \ge 0$ and $e_0, \ldots, e_m \ge 0$; the number m is the *level* of the word **u**. Note that a rigid word of level 0 is of the form x^e . The rigid word **u** above is *square-free* if $e_0, \ldots, e_m \le 1$. A *rigid identity* is an identity that is formed by a pair of rigid words of the same level. Note that each Straubing identity \bigstar_n is a rigid identity formed by rigid words of level n-1.

Lemma 3.1. Let \mathbf{V} be any subvariety of \mathscr{A} that satisfies a nontrivial rigid identity

$$x^{e_0} \prod_{i=1}^m (h_i x^{e_i}) \approx x^{f_0} \prod_{i=1}^m (h_i x^{f_i}),$$

where at least one side of the identity is a square-free word. Suppose that at least one of the following conditions holds:

(a) m = 0;

- (b) $(e_0, \ldots, e_m) = (0, \ldots, 0);$
- (c) $(f_0, \ldots, f_m) = (0, \ldots, 0).$
- Then V is commutative.

Proof. This lemma is routinely verified based on the assumption that the variety **V** satisfies the identities \blacktriangle_n for some $n \ge 1$.

Lemma 3.2. The variety A_n satisfies the rigid identity

$$x^{e_0} \prod_{i=1}^{m} (h_i x^{e_i}) \approx x^n \prod_{i=1}^{m} h_i$$
(3.1)

whenever $e_j \ge n$ for some $j \in \{0, \ldots, m\}$.

Proof. It is easily shown that the basis \blacktriangle_n for \mathbf{A}_n implies the identity (3.1) whenever $e_j \ge n$ for some $j \in \{0, \ldots, m\}$.

Lemma 3.3. Suppose that V is any subvariety of \mathscr{A} that satisfies some nontrivial rigid identity $\mathbf{u} \approx \mathbf{v}$ where either \mathbf{u} or \mathbf{v} is square-free. Then V satisfies the Straubing identity \bigstar_k for some $k \ge 2$.

Proof. By assumption, the variety **V** satisfies the identities \blacktriangle_n for some $n \ge 2$ and

$$\mathbf{u} = x^{e_0} \prod_{i=1}^m (h_i x^{e_i})$$
 and $\mathbf{v} = x^{f_0} \prod_{i=1}^m (h_i x^{f_i})$

for some $e_0, f_0, \ldots, e_m, f_m \ge 0$ with $(e_0, \ldots, e_m) \ne (f_0, \ldots, f_m)$. Further, it suffices to assume that $m \ge 1$ and $(e_0, \ldots, e_m), (f_0, \ldots, f_m) \ne (0, \ldots, 0)$, since otherwise the variety **V** is commutative by Lemma 3.1 and so satisfies the identity \bigstar_2 .

Let $e = e_0 + \cdots + e_m$ and $f = f_0 + \cdots + f_m$. Without loss of generality, assume that one of the following cases holds:

- (a) **u** is square-free and **v** is not square-free;
- (b) **u** and **v** are both square-free with $0 < e \leq f$.

Then $e_0, \ldots, e_m \leq 1$ in both (a) and (b). Since **u** is a square-free rigid word and x occurs e times in **u**, there exists an appropriate deletion φ_1 of the letters h_i such that

$$\mathbf{u}\varphi_1 = x \cdot h_{j_1} x \cdot h_{j_2} x \cdots h_{j_{e-1}} x,$$

where $1 \leq j_1 < \cdots < j_{e-1} \leq m$. Let φ_2 denote the substitution that renames the letters $h_{j_1}, \ldots, h_{j_{e-1}}$ by h_1, \ldots, h_{e-1} . Then

$$\mathbf{u}\varphi_1\varphi_2 = x\prod_{i=1}^{e-1}(h_i x)$$

is a square-free rigid word of level e - 1.² Now perform the deletion φ_1 on **v** followed by the substitution φ_2 on $\mathbf{v}\varphi_1$ to obtain $\mathbf{v}\varphi_1\varphi_2$. It is clear that in case (a), the word $\mathbf{v}\varphi_1\varphi_2$ is a rigid word of level e - 1 that is not square-free. In case (b), since the identity $\mathbf{u} \approx \mathbf{v}$ is nontrivial with $e \leq f$, the word $\mathbf{v}\varphi_1\varphi_2$ is also rigid and of level e - 1 that is not square-free. Therefore in both cases, $\mathbf{v}\varphi_1\varphi_2 = \mathbf{p}x^r\mathbf{q}$ for some $r \geq 2$ and $\mathbf{p}, \mathbf{q} \in \mathcal{X}^*$, whence the identity $\mathbf{u} \approx \mathbf{v}$ implies the rigid identity

$$x \prod_{i=1}^{d} (h_i x) \approx \mathbf{p} x^r \mathbf{q}$$
(3.2)

where d = e - 1. The identity (3.2) clearly implies a rigid identity of the form

$$x^r \prod_{i=1}^d (h_i x^r) \approx \mathbf{p}' x^{r^2} \mathbf{q}'$$
(3.3)

for some $\mathbf{p}', \mathbf{q}' \in \mathcal{X}^*$. Since

$$x \prod_{i=1}^{d^{2}+2d} (h_{i}x) = \left(x \prod_{i=1}^{d} (h_{i}x)\right) h_{d+1} \left(x \prod_{i=d+2}^{2d+1} (h_{i}x)\right) h_{2d+2} \left(x \prod_{i=2d+3}^{3d+2} (h_{i}x)\right) \cdots \dots h_{d^{2}+d} \left(x \prod_{i=d^{2}+d+1}^{d^{2}+2d} (h_{i}x)\right)$$

$$\stackrel{(3.2)}{\approx} (\cdots x^{r} \cdots) h_{d+1} (\cdots x^{r} \cdots) h_{2d+2} (\cdots x^{r} \cdots) \cdots h_{d^{2}+d} (\cdots x^{r} \cdots)$$

$$\stackrel{(3.3)}{\approx} \cdots x^{r^{2}} \cdots,$$

the identity $\mathbf{u} \approx \mathbf{v}$ implies a rigid identity of the form (3.2) with r replaced by r^2 . The same argument can be repeated sufficiently many times so that the identity $\mathbf{u} \approx \mathbf{v}$ implies a rigid identity of the form (3.2) with r replaced some number r^s that is greater than n. Therefore generality is not lost by

²For instance, if $\mathbf{u} = h_1 x h_2 h_3 x h_4 h_5 h_6 x h_7 x$ where e = 4 and m = 7, then $\mathbf{u}\varphi_1 = x h_2 x h_4 x h_7 x$ and $\mathbf{u}\varphi_1 \varphi_2 = x h_1 x h_2 x h_3 x$.

assuming that $r \ge n$ in (3.2) to begin with. Since $\mathbf{p}x^r \mathbf{q}$ is a rigid word of level d, it follows from Lemma 3.2 that

$$x^n \prod_{i=1}^d h_i \stackrel{(3.1)}{\approx} \mathbf{p} x^r \mathbf{q} \stackrel{(3.2)}{\approx} x \prod_{i=1}^d (h_i x).$$

The variety \mathbf{V} thus satisfies the identity

$$x\prod_{i=1}^{d}(h_i x) \approx x^n \prod_{i=1}^{d} h_i.$$
(3.4)

If d = n - 1, then the identity (3.4) is \bigstar_n . If d > n - 1, then

$$x \prod_{i=1}^{d} (h_i x) \stackrel{(3.4)}{\approx} x^n \prod_{i=1}^{d} h_i \stackrel{\bigstar_n}{\approx} x^{d+1} \prod_{i=1}^{d} h_i$$

so that the variety V satisfies the identity \bigstar_d . If d < n-1, then

$$x\prod_{i=1}^{n-1}(h_ix) \stackrel{(3.4)}{\approx} \left(x^n\prod_{i=1}^d h_i\right) \left(\prod_{i=d+1}^{n-1}(h_ix)\right) \stackrel{(3.1)}{\approx} x^n\prod_{i=1}^{n-1}h_i$$

so that the variety **V** satisfies the identity \bigstar_n .

§4. The variety \mathbf{L}

This section is concerned with the almost Cross variety **L**. Recall from Section 1 that **L** is defined by the identities \blacktriangle_2 and

 $xyhxty \approx yxhxty, \quad xhxyty \approx xhyxty, \quad xhytxy \approx xhytyx.$ (4.1)

Subsection 4.1 provides a complete description of all subvarieties of \mathbf{L} . For this purpose, the *reduced Straubing identities*

$$x \prod_{i=1}^{n-1} (h_i x) \approx x^2 \prod_{i=1}^{n-1} h_i,$$
 (*_n)

where $n \in \{2, 3, ...\}$, are required. Define the set $\mathcal{W}_{\infty} = \{\mathbf{w}_2, \mathbf{w}_3, ...\}$ where

$$\mathbf{w}_n = x \prod_{i=1}^{n-1} (h_i x)$$

is the word on the left side of the identity \star_n .

Subsection 4.2 demonstrates that it is decidable in polynomial time if an arbitrarily given identity is satisfied by \mathbf{L} .

4.1. Subvarieties of L. For any set Σ of identities, let $\mathbf{L}\Sigma$ denote the subvariety of **L** defined by Σ . For any set \mathcal{U} of words, let $\mathbf{S}(\mathcal{U})$ denote the variety generated by the monoid $S(\mathcal{U})$. Let 0 denote the variety of trivial monoids.

Proposition 4.1. The subvarieties of L constitute the chain

$$\mathbf{0} \subset \mathbf{S}(\emptyset) \subset \mathbf{S}(x) \subset \mathbf{S}(xy) \subset \mathbf{S}(\mathbf{w}_2) \subset \mathbf{S}(\mathbf{w}_3) \subset \cdots \subset \mathbf{S}(\mathcal{W}_{\infty}) = \mathbf{L}.$$
(4.2)

The proof of Proposition 4.1 is given at the end of the subsection.

Lemma 4.2. Let $e_0, \ldots, e_m \ge 0$ and $\ell \ge 2$ be such that $\ell \le e_0 + \cdots + e_m$. Then the identities $\{ \blacktriangle_2, \star_\ell \}$ imply the identity

$$x^{e_0} \prod_{i=1}^m (h_i x^{e_i}) \approx x^2 \prod_{i=1}^m h_i$$

Consequently, the following inclusions hold:

 \mathbf{L}

$$\{\star_2\} \subseteq \mathbf{L}\{\star_3\} \subseteq \cdots \subseteq \mathbf{L}. \tag{4.3}$$

Proof. Let $e = e_0 + \cdots + e_m$. Then $e_0, \ldots, e_m \ge 0$ and $\ell \le e$ imply that

$$x^{e_0} \prod_{i=1}^m (h_i x^{e_i}) = \mathbf{q}_0 \left(x \prod_{i=1}^{\ell-1} (\mathbf{q}_i x) \right) \left(\prod_{i=\ell}^{e-1} (\mathbf{q}_i x) \right) \mathbf{q}_e$$

for some $\mathbf{q}_0, \ldots, \mathbf{q}_e \in \mathcal{X}^*$ such that $\mathbf{q}_0 \cdots \mathbf{q}_e = h_1 \cdots h_m$. Hence

$$x^{e_0} \prod_{i=1}^{m} (h_i x^{e_i}) \stackrel{\star_{\ell}}{\approx} \mathbf{q}_0 \left(x^2 \prod_{i=1}^{\ell-1} \mathbf{q}_i \right) \left(\prod_{i=\ell}^{e-1} (\mathbf{q}_i x) \right) \mathbf{q}_e \stackrel{(3.1)}{\approx} x^2 \prod_{i=0}^{e} \mathbf{q}_i = x^2 \prod_{i=1}^{m} h_i,$$

where the second deduction holds by Lemma 3.2 with $n = 2$.

where the second deduction holds by Lemma 3.2 with n = 2.

Lemma 4.3. The variety L satisfies a nontrivial rigid identity $\mathbf{u} \approx \mathbf{v}$ if and only if both of the rigid words \mathbf{u} and \mathbf{v} are not square-free.

Proof. This is easily verified by Lemma 3.2 and has been performed in Lee [9, Lemma 13].

Lemma 4.4 (Lee [7, Proposition 4.1]). Let V be any variety that satisfies the identities (4.1). Then each noncommutative subvariety of V is defined by the identities (4.1) together with some set of rigid identities.

Lemma 4.5. The noncommutative subvarieties of L are precisely the varieties in the chain (4.3).

Proof. Let **V** be any noncommutative proper subvariety of **L**. Then the variety **V** is Cross because **L** is almost Cross. Since the variety **L** satisfies the identities (4.1), it follows from Lemma 4.4 that $\mathbf{V} = \mathbf{L}\Sigma$ for some set Σ of rigid identities that are not satisfied by **L**. By Lemma 2.4, the variety **V** satisfies the identity \bigstar_k for some $k \ge 2$. The identities \blacktriangle_2 and \bigstar_k clearly imply the identity \bigstar_k so that the variety **V** satisfies \bigstar_k . Let ℓ be the least possible integer for which the identity \bigstar_ℓ is satisfied by **V**.

Let $\mathbf{u} \approx \mathbf{v}$ be any identity from Σ . Then

$$\mathbf{u} = x^{e_0} \prod_{i=1}^{m} (h_i x^{e_i}) \text{ and } \mathbf{v} = x^{f_0} \prod_{i=1}^{m} (h_i x^{f_i})$$

for some $e_0, f_0, \ldots, e_m, f_m \ge 0$ with $(e_0, \ldots, e_m) \ne (f_0, \ldots, f_m)$. Further, it suffices to assume that $m \ge 1$ and $(e_0, \ldots, e_m), (f_0, \ldots, f_m) \ne (0, \ldots, 0)$, since otherwise, the variety **V** is commutative by Lemma 3.1, contradicting the assumption.

The identity $\mathbf{u} \approx \mathbf{v}$ is not satisfied by \mathbf{L} so that by Lemma 4.3, either \mathbf{u} or \mathbf{v} is square-free. Let $e = e_0 + \cdots + e_m$ and $f = f_0 + \cdots + f_m$. Without loss of generality, assume that one of the following cases holds:

- (a) \mathbf{u} is square-free and \mathbf{v} is not square-free;
- (b) **u** and **v** are both square-free with $0 < e \leq f$.

Following the arguments in the proof of Lemma 3.3, the identity $\mathbf{u} \approx \mathbf{v}$ implies the rigid identity

$$x \prod_{i=1}^{e-1} (h_i x) \approx \mathbf{p} x^r \mathbf{q}$$
(4.4)

for some $\mathbf{p}, \mathbf{q} \in \mathcal{X}^*$ and $r \ge 2$. Since **V** is a subvariety of \mathbf{A}_2 , it follows that

$$x \prod_{i=1}^{e-1} (h_i x) \stackrel{(4.4)}{pprox} \mathbf{p} x^r \mathbf{q} \stackrel{(3.1)}{pprox} x^2 \prod_{i=1}^{e-1} h_i$$

by Lemma 3.2 with n = 2, whence **V** satisfies the identity \star_e . The minimality of ℓ implies that $\ell \leq e$. In case (a), since $f_j \geq 2$ for some j, the deductions

$$\mathbf{u} = x^{e_0} \prod_{i=1}^m (h_i x^{e_i}) \stackrel{\bullet_{2,\star_{\ell}}}{\approx} x^2 \prod_{i=1}^m h_i \stackrel{(3.1)}{\approx} x^{f_0} \prod_{i=1}^m (h_i x^{f_i}) = \mathbf{v}$$

hold, respectively, by Lemma 4.2 and Lemma 3.2 with n = 2. In case (b), the deductions

$$\mathbf{u} = x^{e_0} \prod_{i=1}^m (h_i x^{e_i}) \stackrel{\bullet_{2,\star_{\ell}}}{\approx} x^2 \prod_{i=1}^m h_i \stackrel{\bullet_{2,\star_{\ell}}}{\approx} x^{f_0} \prod_{i=1}^m (h_i x^{f_i}) = \mathbf{v}$$

hold by Lemma 4.2. In both cases, the identities $\{\Delta_2, \star_\ell\}$ imply the identity $\mathbf{u} \approx \mathbf{v}$. Since the identity $\mathbf{u} \approx \mathbf{v}$ from Σ is arbitrarily chosen,

$$\mathbf{L}\{\star_{\ell}\} = \mathbf{L}\Sigma = \mathbf{V}.$$

Proof of Proposition 4.1. It is easily shown that the variety $\mathbf{S}(\emptyset)$ of semilattice monoids and the variety $\mathbf{S}(x)$ are the only nontrivial commutative subvarieties of **L**. By Lemma 4.5, the subvarieties of **L** constitute the chain

$$\mathbf{0} \subset \mathbf{S}(\varnothing) \subset \mathbf{S}(x) \subset \mathbf{L}\{\star_2\} \subseteq \mathbf{L}\{\star_3\} \subseteq \cdots \subseteq \mathbf{L}.$$

It is known that $\mathbf{S}(xy) = \mathbf{L}\{\star_2\}$ [3, Lemma 4.5]. For each $n \ge 2$, it is routinely shown that the monoid $\mathbf{S}(\mathbf{w}_n)$ satisfies the identities $\{\mathbf{A}_2, (4.1), \star_{n+1}\}$ but does not satisfy the identity \star_n , whence

$$\mathbf{S}(\mathbf{w}_n) = \mathbf{L}\{\star_{n+1}\} \neq \mathbf{L}\{\star_n\} \text{ and } \mathbf{S}(\mathcal{W}_\infty) = \mathbf{L} \neq \mathbf{L}\{\star_n\}.$$

Consequently, the subvarieties of \mathbf{L} constitute the chain (4.2).

4.2. Identities satisfied by L. The *content* of a word \mathbf{u} , denoted by $con(\mathbf{u})$, is the set of letters occurring in \mathbf{u} . A letter of a word \mathbf{u} is *simple* if it occurs exactly once in \mathbf{u} ; otherwise, it is *non-simple* in \mathbf{u} .

Suppose that the simple letters of a word \mathbf{u} are h_1, \ldots, h_m when listed in order of first occurrence, and that the distinct non-simple letters of \mathbf{u} are x_1, \ldots, x_r when listed in alphabetical order. Then the word \mathbf{u} is in *canonical form* if

$$\mathbf{u} = \mathbf{u}' \mathbf{u}_0 \prod_{i=1}^m (h_i \mathbf{u}_i) \tag{4.5}$$

where

(CF1) $\mathbf{u}' = x_1^{e_1} \cdots x_r^{e_r}$ for some $e_1, \ldots, e_r \in \{0, 2\}$; (CF2) $\mathbf{u}_0, \ldots, \mathbf{u}_m \in \{x_1^{f_1} \cdots x_r^{f_r} \mid f_1, \ldots, f_r \in \{0, 1\}\}$; (CF3) $\operatorname{con}(\mathbf{u}') \cap \operatorname{con}(\mathbf{u}_0 \cdots \mathbf{u}_m) = \emptyset$.

Note that if the word **u** in (4.5) contains only simple letters, then $\mathbf{u} = \prod_{i=1}^{m} h_i$; if it contains only non-simple letters, then $\mathbf{u} = \mathbf{u}' = x_1^2 \cdots x_r^2$.

Lemma 4.6. For any word \mathbf{u} , there exists some word $\hat{\mathbf{u}}$ in canonical form such that the identities $\{\mathbf{A}_2, (4.1)\}$ imply the identity $\mathbf{u} \approx \hat{\mathbf{u}}$.

Proof. It suffices to convert the word \mathbf{u} , using the identities $\{\mathbf{\Delta}_2, (4.1)\}$, into a word in canonical form. Without loss of generality, assume that the simple letters of \mathbf{u} are h_1, \ldots, h_m when listed in order of first occurrence, and that the distinct non-simple letters of \mathbf{u} are x_1, \ldots, x_r when listed in alphabetical order. Then

$$\mathbf{u} = \mathbf{u}_0 \prod_{i=1}^m (h_i \mathbf{u}_i)$$

for some $u_0, ..., u_m \in \{x_1, ..., x_r\}^*$.

- (I) For each $i \in \{0, \ldots, m\}$, since the letters of \mathbf{u}_i are non-simple in \mathbf{u} , they can be alphabetically ordered within \mathbf{u}_i by the identities (4.1). Hence each \mathbf{u}_i can be converted to a word of the form $x_1^{f_1} \cdots x_r^{f_r}$ with $f_1, \ldots, f_r \ge 0$.
- (II) For each $j \in \{1, \ldots, r\}$, if a square x_j^2 occurs as a factor in some of $\mathbf{u}_0, \ldots, \mathbf{u}_m$, then the identities \mathbf{A}_2 can be used to gather every x_j in \mathbf{u} to the left. This forms the prefix $\mathbf{u}' = x_1^{e_1} \cdots x_r^{e_r}$ with $e_1, \ldots, e_r \in \{0, 2, 3, \ldots\}$ such that (CF3) is satisfied. Further, (CF2) is satisfied since all squares are removed from $\mathbf{u}_0, \ldots, \mathbf{u}_m$.
- (III) If an exponent e_j in \mathbf{u}' is 3 or greater, then apply the identity $x^3 \approx x^2$ from \blacktriangle_2 to reduce e_j to 2. Hence (CF1) is satisfied.

Lemma 4.7. Given any identity $\mathbf{u} \approx \mathbf{v}$, there exists a polynomial time algorithm that decides if the variety \mathbf{L} satisfies the identity $\mathbf{u} \approx \mathbf{v}$.

Proof. By Lemma 4.6, there exist words $\hat{\mathbf{u}}$ and $\hat{\mathbf{v}}$ in canonical form such that the identities $\{ \mathbf{\Delta}_2, (4.1) \}$ imply the identities $\mathbf{u} \approx \hat{\mathbf{u}}$ and $\mathbf{v} \approx \hat{\mathbf{v}}$. Hence the variety \mathbf{L} satisfies the identity $\mathbf{u} \approx \mathbf{v}$ if and only if it satisfies the identity $\hat{\mathbf{u}} \approx \hat{\mathbf{v}}$. By Lemma 2.2 and Proposition 4.1, the words $\{x, x^2\} \cup \mathcal{W}_{\infty}$ are all isoterms for \mathbf{L} . It is then routinely shown that the variety \mathbf{L} satisfies the identity $\hat{\mathbf{u}} \approx \hat{\mathbf{v}}$ if and only if the words $\hat{\mathbf{u}}$ and $\hat{\mathbf{v}}$ are identical.

Steps (I)-(III) in the proof of Lemma 4.6 provide a polynomial time algorithm that converts the words \mathbf{u} and \mathbf{v} , using the identities $\{\mathbf{A}_2, (4.1)\}$, into the words $\hat{\mathbf{u}}$ and $\hat{\mathbf{v}}$ in canonical form.

§5. Main results

Theorem 5.1. The following statements on any subvariety V of \mathscr{A} are equivalent:

- (a) **V** is inherently non-finitely generated within \mathscr{A} ;
- (b) for any $n \ge 2$, the Straubing identity

$$\bigstar_n \colon x \prod_{i=1}^{n-1} (h_i x) \approx x^n \prod_{i=1}^{n-1} h_i$$

is not satisfied by \mathbf{V} ;

(c) for any $n \ge 2$, the word

$$\mathbf{w}_n = x \prod_{i=1}^{n-1} (h_i x)$$

is an isoterm for \mathbf{V} ;

(d) for any $n \ge 2$, the monoid $S(\mathbf{w}_n)$ belongs to \mathbf{V} ;

(e) the almost Cross variety \mathbf{L} is a subvariety of \mathbf{V} .

Proof. (a) \Rightarrow (b). Suppose that for some $n \ge 2$, the variety **V** satisfies the identity \bigstar_n . Then **V** satisfies the identities $\{\blacktriangle_k, \bigstar_k\}$ for all sufficiently large k. By Lemma 2.3, the variety defined by $\{\bigstar_k, \bigstar_k\}$ is a finitely generated subvariety of \aleph_k . Therefore **V** is a subvariety of \aleph_k and so is not inherently non-finitely generated within \mathscr{A} .

(b) \Rightarrow (c). Suppose that for some $n \ge 2$, the word \mathbf{w}_n is not an isoterm for **V**. Then the variety **V** satisfies some nontrivial identity

$$x\prod_{i=1}^{n-1}(h_ix)\approx\mathbf{v}.$$

CASE 1. The following conditions hold:

- $\operatorname{con}(\mathbf{v}) = \{x, h_1, \dots, h_{n-1}\};$
- h_1, \ldots, h_{n-1} are simple in **v**;

• for any *i*, the letter h_i occurs before h_{i+1} in **v**. Then

$$\mathbf{v} = x^{e_0} \prod_{i=1}^{n-1} (h_i x^{e_i})$$

for some $e_0, \ldots, e_n \ge 0$ with $(e_0, \ldots, e_n) \ne (1, \ldots, 1)$. By Lemma 3.3, the variety **V** satisfies the identity \bigstar_k for some $k \ge 2$.

CASE 2. Any one of the three conditions in Case 1 fails. Then it is straightforwardly shown that the variety \mathbf{V} is either commutative or idempotent, whence it satisfies the identity \bigstar_2 .

(c) \Leftrightarrow (d) \Leftrightarrow (e). These follow from Lemma 2.2 and Proposition 4.1.

(e) \Rightarrow (a). Suppose that the variety **V** is not inherently non-finitely generated within \mathscr{A} . Then it follows from Lemma 2.4 that **V** satisfies the identities $\{\blacktriangle_n, \bigstar_n\}$ for some $n \ge 2$. But by Lemma 4.3, the variety **L** does not satisfy the identity \bigstar_n and so cannot be a subvariety of **V**.

Corollary 5.2. The almost Cross variety \mathbf{L} is the unique minimal inherently non-finitely generated subvariety of \mathscr{A} .

The following example demonstrates that subvarieties of \mathscr{A} that are inherently non-finitely generated within \mathscr{A} need not be inherently nonfinitely generated within the class \mathscr{M} of all monoids. (Another explicit example can be found in Lee [8, Proposition 6.9].)

Example 5.3. Let \mathbf{B}_2^1 denote the variety generated by the Brandt monoid

$$B_2^1 = \langle a, b \mid a^2 = b^2 = 0, aba = a, bab = b \rangle \cup \{1\}$$

of order six. Then L is a subvariety of \mathbf{B}_2^1 , but \mathbf{B}_2^1 is not a subvariety of \mathscr{A} .

Proof. The idempotent ab of B_2^1 is not central since $ab \cdot a \neq a \cdot ab$. Hence B_2^1 is not a subvariety of \mathscr{A} . It is routinely verified that for each $n \ge 2$, the word \mathbf{w}_n is an isoterm for the variety B_2^1 so that by Lemma 2.2, the monoid $S(\mathbf{w}_n)$ belongs to B_2^1 . It follows from Proposition 4.1 that \mathbf{L} is a subvariety of B_2^1 .

Presently, the variety of idempotent monoids is the only known example of a variety of monoids that is minimal with respect to being inherently non-finitely generated within \mathcal{M} [12].

Theorem 5.4. Suppose that Σ is any finite set of identities that defines a subvariety \mathbf{V} of \mathscr{A} . Then there exists a polynomial time algorithm that decides if \mathbf{V} is inherently non-finitely generated within \mathscr{A} .

Proof. By assumption, the variety **V** is a subvariety of \mathbf{A}_n for some $n \ge 1$. Hence generality is not lost by assuming that Σ contains the identities \blacktriangle_n . By Lemma 4.7, there exists a polynomial time algorithm that decides if the variety **L** satisfies the identities in Σ . The result now follows from Theorem 5.1. §6. A non-finitely generated subvariety of \mathbf{A}_2

Let N denote the variety defined by the identities $\blacktriangle_2, \bigstar_3$, and

$$xhytxy \approx xhytyx,$$
 (6.1)

$$xyhxty \approx yxhxty.$$
 (6.2)

The main aim of the present section is to show that the variety N is nonfinitely generated. But since the variety N satisfies the identities $\{ \blacktriangle_3, \bigstar_3 \}$, it follows from Lemma 2.3 that N is not inherently non-finitely generated within \mathscr{A} .

Lemma 6.1. The variety N satisfies the identities

$$x^2 hxtx \approx xhx^2 tx \approx xhxtx^2 \approx xhxtx, \tag{6.3}$$

$$xh^2yxty \approx x^2h^2yx^2ty, \tag{6.4}$$

$$xhyxt^2y \approx xhy^2xt^2y^2. \tag{6.5}$$

Proof. It is easily shown that the variety N satisfies the identities (6.3). Since

$$xh^2yxty \stackrel{\blacktriangle_2}{\approx} h^2xyxty \stackrel{(6.2)}{\approx} h^2yx^2ty \stackrel{\blacktriangle_2}{\approx} h^2yx^4ty \stackrel{\bigstar_2}{\approx} x^2h^2yx^2ty,$$

$$xhyxt^2y \stackrel{\bigstar_2}{\approx} xhyxyt^2 \stackrel{(6.1)}{\approx} xhy^2xt^2 \stackrel{\bigstar_2}{\approx} xhy^4xt^2 \stackrel{\bigstar_2}{\approx} xhy^2xt^2y^2,$$

the variety N satisfies the identities (6.4) and (6.5).

Lemma 6.2. For each $n \ge 2$, the variety N does not satisfy the identity

$$\mathbf{z}_n \approx \mathbf{z}'_n$$

where

$$\mathbf{z}_{n} = x_{0}h\bigg(\prod_{i=0}^{n} (x_{i+1}x_{i})\bigg)tx_{n+1} = x_{0}h \cdot x_{1}x_{0} \cdot x_{2}x_{1} \cdots x_{n+1}x_{n} \cdot tx_{n+1},$$
$$\mathbf{z}_{n}' = x_{0}hx_{0}\bigg(\prod_{i=1}^{n} x_{i}^{2}\bigg)x_{n+1}tx_{n+1} = x_{0}hx_{0} \cdot x_{1}^{2}x_{2}^{2} \cdots x_{n}^{2} \cdot x_{n+1}tx_{n+1}.$$

Proof. First observe that

- (a) any letter occurs at most twice in the word \mathbf{z}_n ;
- (b) the word \mathbf{z}_n does not contain any factor of the form \mathbf{x}^2 ;
- (c) the word \mathbf{z}_n does not contain any factor of the form \mathbf{xhytxy} or \mathbf{xyhxty} , where $\mathbf{x}, \mathbf{y}, \mathbf{h}, \mathbf{t} \in \mathcal{X}^*$ with $\mathbf{x}, \mathbf{y} \neq \emptyset$.

It is then easily seen that it is impossible to convert the word \mathbf{z}_n into a different word by applying only the identities \mathbf{A}_2 , $\mathbf{\star}_3$, (6.1), and (6.2). It follows that the variety \mathbf{N} does not satisfy the identity $\mathbf{z}_n \approx \mathbf{z}'_n$.

Lemma 6.3. Any finite monoid in the variety N satisfies the identity $\mathbf{z}_n \approx \mathbf{z}'_n$ for all sufficient large $n \ge 2$.

Proof. Let M be any finite monoid in the variety **N** and fix any n > |M|. Suppose that φ is any substitution into the monoid M. Then it is shown in the following that $\mathbf{z}_n \varphi = \mathbf{z}'_n \varphi$ in M. Consequently, the monoid M satisfies the identity $\mathbf{z}_n \approx \mathbf{z}'_n$.

For notational brevity, write $x\varphi = \hat{x}$. Since n > |M|, the list $\hat{x}_1, \ldots, \hat{x}_n$ of elements from M must contain some repetition, say $\hat{x}_i = \hat{x}_j$ with $1 \leq i < j \leq n$.

CASE 1. $1 < i < j \leq n$. Note that the letter x_i occurs twice in the word \mathbf{z}_n . Since $\hat{x}_i = \hat{x}_j$, the element \hat{x}_i occurs at least thrice in the product $\mathbf{z}_n \varphi$, whence the identities (6.3) can be applied to replace any \hat{x}_i in $\mathbf{z}_n \varphi$ by \hat{x}_i^2 :

$$\mathbf{z}_{n}\varphi = \cdots \widehat{x}_{i-1}\widehat{x}_{i-2} \cdot \widehat{x}_{i}\widehat{x}_{i-1} \cdot \widehat{x}_{i+1}\widehat{x}_{i} \cdot \widehat{x}_{i+2}\widehat{x}_{i+1} \cdots$$

$$\stackrel{(6.3)}{=} \cdots \widehat{x}_{i-1}\widehat{x}_{i-2} \cdot \widehat{x}_{i}^{2}\widehat{x}_{i-1} \cdot \widehat{x}_{i+1}\widehat{x}_{i}^{2} \cdot \widehat{x}_{i+2}\widehat{x}_{i+1} \cdots$$

Then the identity (6.4) can be applied to replace \hat{x}_{i+1} by \hat{x}_{i+1}^2 , and the identity (6.5) can be applied to replace \hat{x}_{i-1} by \hat{x}_{i-1}^2 :

$$\cdots \widehat{x}_{i-1} \widehat{x}_{i-2} \cdot \widehat{x}_{i}^{2} \widehat{x}_{i-1} \cdot \widehat{x}_{i+1} \widehat{x}_{i}^{2} \cdot \widehat{x}_{i+2} \widehat{x}_{i+1} \cdots$$

$$\stackrel{(6.4)}{=} \cdots \widehat{x}_{i-1} \widehat{x}_{i-2} \cdot \widehat{x}_{i}^{2} \widehat{x}_{i-1} \cdot \widehat{x}_{i+1}^{2} \widehat{x}_{i}^{2} \cdot \widehat{x}_{i+2} \widehat{x}_{i+1}^{2} \cdots$$

$$\stackrel{(6.5)}{=} \cdots \widehat{x}_{i-1}^{2} \widehat{x}_{i-2} \cdot \widehat{x}_{i}^{2} \widehat{x}_{i-1}^{2} \cdot \widehat{x}_{i+1}^{2} \widehat{x}_{i}^{2} \cdot \widehat{x}_{i+2} \widehat{x}_{i+1}^{2} \cdots$$

This procedure can be repeated until $\hat{x}_1, \ldots, \hat{x}_n$ are replaced by $\hat{x}_1^2, \ldots, \hat{x}_n^2$. Hence

$$\mathbf{z}_{n}\varphi = \widehat{x}_{0}\widehat{h}\cdot\widehat{x}_{1}^{2}\widehat{x}_{0}\cdot\widehat{x}_{2}^{2}\widehat{x}_{1}^{2}\cdot\widehat{x}_{3}^{2}\widehat{x}_{2}^{2}\cdots\widehat{x}_{n}^{2}\widehat{x}_{n-1}^{2}\cdot\widehat{x}_{n+1}\widehat{x}_{n}^{2}\cdot\widehat{t}\widehat{x}_{n+1}$$
$$\stackrel{\blacktriangle}{=}\widehat{x}_{0}\widehat{h}\widehat{x}_{0}\cdot\widehat{x}_{1}^{2}\cdots\widehat{x}_{n}^{2}\cdot\widehat{x}_{n+1}\widehat{t}\widehat{x}_{n+1} = \mathbf{z}_{n}^{\prime}\varphi.$$

CASE 2. $1 = i < j \leq n$. Note that the letter x_1 occurs twice in the word \mathbf{z}_n . Since $\hat{x}_1 = \hat{x}_j$, the element \hat{x}_1 occurs at least thrice in the product $\mathbf{z}_n \varphi$, whence the identities (6.3) can be applied to replace any \hat{x}_1 in $\mathbf{z}_n \varphi$ by \hat{x}_1^2 :

$$\mathbf{z}_n \varphi = \widehat{x}_0 \widehat{h} \cdot \widehat{x}_1 \widehat{x}_0 \cdot \widehat{x}_2 \widehat{x}_1 \cdot \widehat{x}_3 \widehat{x}_2 \cdots \stackrel{(6.3)}{=} \widehat{x}_0 \widehat{h} \cdot \widehat{x}_1^2 \widehat{x}_0 \cdot \widehat{x}_2 \widehat{x}_1^2 \cdot \widehat{x}_3 \widehat{x}_2 \cdots$$

The identity (6.4) can then be applied to replace \hat{x}_2 by \hat{x}_2^2 :

$$\widehat{x}_0\widehat{h}\cdot\widehat{x}_1^2\widehat{x}_0\cdot\widehat{x}_2\widehat{x}_1^2\cdot\widehat{x}_3\widehat{x}_2\cdots \stackrel{(6.4)}{=}\widehat{x}_0\widehat{h}\cdot\widehat{x}_1^2\widehat{x}_0\cdot\widehat{x}_2^2\widehat{x}_1^2\cdot\widehat{x}_3\widehat{x}_2^2\cdots$$

This procedure can be repeated until $\hat{x}_1, \ldots, \hat{x}_n$ are replaced by $\hat{x}_1^2, \ldots, \hat{x}_n^2$. The equality $\mathbf{z}_n \varphi = \mathbf{z}'_n \varphi$ is then deduced in the same manner as in Case 1.

Theorem 6.4. The variety N is non-finitely generated.

Proof. If the variety **N** is finitely generated, then by Lemma 6.3, it satisfies the identity $\mathbf{z}_n \approx \mathbf{z}'_n$ for some $n \ge 1$. But this contradicts Lemma 6.2.

References

- S. Burris, H. P. Sankappanavar, A Course in Universal Algebra. Springer Verlag, New York (1981).
- M. Jackson, On the finite basis problem for finite Rees quotients of free monoids. — Acta Sci. Math. (Szeged) 67 (2001), 121–159.
- M. Jackson, Finiteness properties of varieties and the restriction to finite algebras.
 Semigroup Forum 70 (2005), 159–187.
- M. Jackson, O. Sapir, Finitely based, finite sets of words. Internat. J. Algebra Comput. 10 (2000), 683-708.
- 5. E. W. H. Lee, Finitely generated limit varieties of aperiodic monoids with central idempotents. J. Algebra Appl. 8 (2009), 779-796.
- E. W. H. Lee, Cross varieties of aperiodic monoids with central idempotents. Port. Math. 68 (2011), 425-429.
- E. W. H. Lee, Maximal Specht varieties of monoids. Mosc. Math. J. 12 (2012), 787-802.
- E. W. H. Lee, Varieties generated by 2-testable monoids. Studia Sci. Math. Hungar. 49 (2012), 366-389.
- 9. E. W. H. Lee, Almost Cross varieties of aperiodic monoids with central idempotents.
 Beitr. Algebra Geom. 54 (2013), 121–129.
- P. Perkins, Bases for equational theories of semigroups. J. Algebra 11 (1969), 298-314.
- 11. O. Sapir, Finitely based words. Internat. J. Algebra Comput. 10 (2000), 457-480.

- 12. O. Sapir, The variety of idempotent semigroups is inherently non-finitely generated. — Semigroup Forum **71** (2005), 140–146.
- 13. H. Straubing, The variety generated by finite nilpotent monoids. Semigroup Forum **24** (1982), 25–38.

Division of Math, Science, and Technology, Nova Southeastern University, 3301 College Avenue, Fort Lauderdale, Florida 33314, USA

Поступило October 3, 2013

E-mail: edmond.lee@nova.edu