
úÁ�ÉÓËÉ ÎÁÕÞÎÙÈÓÅÍÉÎÁÒÏ× ðïíé�ÏÍ 423, 2014 Ç.Edmond W. H. LeeINHERENTLY NON-FINITELY GENERATEDVARIETIES OF APERIODIC MONOIDS WITHCENTRAL IDEMPOTENTSAbstra
t. Let A denote the 
lass of aperiodi
 monoids with 
en-tral idempotents. A subvariety of A that is not 
ontained in any�nitely generated subvariety of A is said to be inherently non-�nitely generated. A 
hara
terization of inherently non-�nitely gen-erated subvarieties of A , based on identities that they 
annot satisfyand monoids that they must 
ontain, is given. It turns out that thereexists a unique minimal inherently non-�nitely generated subvarietyof A , the in
lusion of whi
h is both ne
essary and suÆ
ient for asubvariety of A to be inherently non-�nitely generated. Further, itis de
idable in polynomial time if a �nite set of identities de�nes aninherently non-�nitely generated subvariety of A .
§1. Introdu
tionRe
all that a monoid is aperiodi
 if all its subgroups are trivial. Theindex of an aperiodi
 monoid is the least positive integer n for whi
h theidentity xn+1 ≈ xn is satis�ed by the monoid. The 
lass A of aperiodi
monoids with 
entral idempotents 
onstitutes an important sour
e of ex-amples in the study of the �nite basis problem; see Ja
kson [2℄, Ja
ksonand Sapir [4℄, Lee [5℄, Perkins [10℄, and Sapir [11℄. For ea
h n > 1, let Andenote the variety of monoids from A of index at most n. The variety Anis de�ned by the identitiesxn+1 ≈ xn; xny ≈ yxn (Nn)and the in
lusions A1 ⊂ A2 ⊂ · · · ⊂ A hold and are proper. The 
lass

A is not a variety, but ea
h of its subvarieties is 
ontained in An for allsuÆ
iently large n.A �nitely based, �nitely generated variety that 
ontains �nitely manysubvarieties is 
alled a Cross variety. An almost Cross variety is a mini-mal non-Cross variety. By Zorn's lemma, ea
h non-Cross variety 
ontainsKey words and phrases: monoid, aperiodi
 monoid, 
entral idempotent, variety,�nitely generated, inherently non-�nitely generated.166



INHERENTLY NON-FINITELY GENERATED VARIETIES 167some almost Cross subvariety. Re
ent work of Ja
kson [3℄ and Lee [5, 6℄has led to a 
omplete des
ription of Cross subvarieties of A : there existpre
isely three almost Cross subvarieties of A , denoted by J1, J2, and L,the ex
lusion of whi
h is both ne
essary and suÆ
ient for a subvariety of
A to be Cross [9℄. The varieties J1 and J2 are �nitely generated [3℄ whilethe variety L is non-�nitely generated [9℄; the variety L is the subvarietyof A2 de�ned by the identitiesxyhxty ≈ yxhxty; xhxyty ≈ xhyxty; xhytxy ≈ xhytyxand it plays a 
ru
ial role in the present investigation.Unless otherwise spe
i�ed, all varieties in the present arti
le are sub-varieties of A . A subvariety V of A that is not 
ontained in any �nitelygenerated subvariety of A is said to be inherently non-�nitely generatedwithin A ; sin
e this arti
le 
on
entrates only on subvarieties of A , it is un-ambiguous to refer to su
h a variety V simply as an inherently non-�nitelygenerated subvariety of A .1 Although an inherently non-�nitely generatedsubvariety of A is va
uously non-�nitely generated, the 
onverse is nottrue in general. A non-�nitely generated subvariety of A that is not in-herently non-�nitely generated within A is exhibited in Se
tion 6, and itis the �rst expli
itly des
ribed example of its kind.The present arti
le is devoted to the des
ription of inherently non-�nitely generated subvarieties of A . After developing some preliminaryresults in Se
tion 2, some identities that are satis�ed by subvarieties of
A are introdu
ed in Se
tion 3. Se
tion 4 is 
on
erned with the investi-gation of the almost Cross variety L, its subvarieties, and the identitiesit satis�es. In parti
ular, the subvarieties of L are shown to 
onstitute a
ountably in�nite 
hain. Based on results from Se
tions 2{4, a 
hara
teri-zation of inherently non-�nitely generated subvarieties of A is establishedin Se
tion 5; it in
ludes identities that these varieties 
annot satisfy andmonoids that they must 
ontain. It follows that the in
lusion of the varietyL is both ne
essary and suÆ
ient for any subvariety of A to be inherentlynon-�nitely generated within A , when
e L is the unique minimal inher-ently non-�nitely generated subvariety of A . A polynomial time algorithmis also presented that de
ides, given a �nite set � of identities that de�nes1Note that a subvariety of A that is inherently non-�nitely generated within Amay be 
ontained in a �nitely generated variety that is not a subvariety of A . SeeExample 5.3.



168 EDMOND W. H. LEEa subvariety V of A , if the variety V is inherently non-�nitely generatedwithin A .
§2. PreliminariesLet X be a 
ountably in�nite alphabet throughout. For any subset Y of

X , let Y∗ denote the free monoid over Y. Elements of X and X ∗ are 
alledletters and words, respe
tively. An identity is written as u ≈ v where uand v are nonempty words; this identity is nontrivial if u 6= v. A monoidM satis�es an identity u ≈ v if, for any substitution ' from X intoM , theelements u' and v' ofM 
oin
ide. A 
lass of monoids satis�es an identityif every monoid in the 
lass satis�es the identity. The variety de�ned bya set � of identities is the 
lass of monoids that satisfy all identities in�; in this 
ase, � is a basis for the variety. A variety is �nitely based if itpossesses a �nite basis.Refer to the monograph of Burris and Sankappanavar [1℄ for more in-formation on varieties of algebras in general.2.1. Rees quotients of X ∗. For any set U of words, let S(U) denote theRees quotient monoid of X ∗ over the ideal of all words that are not fa
torsof any word in U . Equivalently, S(U) 
an be treated as the monoid that
onsists of every fa
tor of every word in U , together with a zero element0, with binary operation · given byu · v = { uv if uv is a fa
tor of some word in U ;0 otherwise:The empty fa
tor, more 
onveniently written as 1, is the identity of themonoid S(U). If U = {u1; : : : ;um}, then write S(U) = S(u1; : : : ;um).Example 2.1 (Ja
kson [3, Se
tion 5℄). The almost Cross varieties J1 andJ2 introdu
ed in Se
tion 1 are generated by the monoids S(xhxyty) andS(xhytxy; xyhxty), respe
tively. These varieties are non-�nitely based.A nonempty word u is an isoterm for a variety V if V does not satisfyany nontrivial identity of the form u ≈ v.Lemma 2.2 (Ja
kson [3, Lemma 3.3℄). For any set U of words and anyvariety V; the monoid S(U) belongs to V if and only if every word in U isan isoterm for V:



INHERENTLY NON-FINITELY GENERATED VARIETIES 1692.2. The Straubing identities. A variety is �nitely generated if it isgenerated by a single �nite monoid. The Straubing identitiesx n−1∏i=1(hix) ≈ xn n−1∏i=1 hi; (⋆n)where n ∈ {2; 3; : : :}, play a signi�
ant role in the study of �nitely gener-ated subvarieties of A .Lemma 2.3 (Ja
kson and Sapir [4, Corollary 3.1℄). For ea
h n > 2; thevariety de�ned by the identities {Nn;⋆n} is �nitely generated.Lemma 2.4 (Straubing [13℄). Let V be any subvariety of A : If V is�nitely generated, then V satis�es the identities {Nn;⋆n} for some n > 2:The 
onverse of Lemma 2.4 does not hold in general sin
e a subvarietyof A that satis�es the identities {N3;⋆3} is shown in Se
tion 6 to benon-�nitely generated.
§3. Rigid words and rigid identitiesResults established in the present se
tion are required in Se
tions 4and 5, where all subvarieties of L and all inherently non-�nitely generatedsubvarieties of A are des
ribed.De�ne a rigid word to be the wordu = xe0 m∏i=1(hixei)where m > 0 and e0; : : : ; em > 0; the number m is the level of the wordu. Note that a rigid word of level 0 is of the form xe. The rigid word uabove is square-free if e0; : : : ; em 6 1. A rigid identity is an identity that isformed by a pair of rigid words of the same level. Note that ea
h Straubingidentity ⋆n is a rigid identity formed by rigid words of level n− 1.Lemma 3.1. Let V be any subvariety of A that satis�es a nontrivial rigididentity xe0 m∏i=1(hixei) ≈ xf0 m∏i=1(hixfi);where at least one side of the identity is a square-free word. Suppose thatat least one of the following 
onditions holds :(a) m = 0;



170 EDMOND W. H. LEE(b) (e0; : : : ; em) = (0; : : : ; 0);(
) (f0; : : : ; fm) = (0; : : : ; 0).Then V is 
ommutative.Proof. This lemma is routinely veri�ed based on the assumption that thevariety V satis�es the identities Nn for some n > 1. �Lemma 3.2. The variety An satis�es the rigid identityxe0 m∏i=1(hixei) ≈ xn m∏i=1hi (3.1)whenever ej > n for some j ∈ {0; : : : ;m}.Proof. It is easily shown that the basis Nn forAn implies the identity (3.1)whenever ej > n for some j ∈ {0; : : : ;m}. �Lemma 3.3. Suppose that V is any subvariety of A that satis�es somenontrivial rigid identity u ≈ v where either u or v is square-free. Then Vsatis�es the Straubing identity ⋆k for some k > 2.Proof. By assumption, the variety V satis�es the identities Nn for somen > 2 and u = xe0 m∏i=1(hixei ) and v = xf0 m∏i=1(hixfi)for some e0; f0; : : : ; em; fm > 0 with(e0; : : : ; em) 6= (f0; : : : ; fm). Further, itsuÆ
es to assume that m > 1 and (e0; : : : ; em); (f0; : : : ; fm) 6= (0; : : : ; 0),sin
e otherwise the varietyV is 
ommutative by Lemma 3.1 and so satis�esthe identity ⋆2.Let e = e0+ · · ·+ em and f = f0+ · · ·+ fm. Without loss of generality,assume that one of the following 
ases holds:(a) u is square-free and v is not square-free;(b) u and v are both square-free with 0 < e 6 f .Then e0; : : : ; em 6 1 in both (a) and (b). Sin
e u is a square-free rigidword and x o

urs e times in u, there exists an appropriate deletion '1 ofthe letters hi su
h thatu'1 = x · hj1x · hj2x · · ·hje−1x;



INHERENTLY NON-FINITELY GENERATED VARIETIES 171where 1 6 j1 < · · · < je−1 6 m. Let '2 denote the substitution thatrenames the letters hj1 ; : : : ; hje−1 by h1; : : : ; he−1. Thenu'1'2 = x e−1∏i=1(hix)is a square-free rigid word of level e − 1.2 Now perform the deletion '1on v followed by the substitution '2 on v'1 to obtain v'1'2. It is 
learthat in 
ase (a), the word v'1'2 is a rigid word of level e− 1 that is notsquare-free. In 
ase (b), sin
e the identity u ≈ v is nontrivial with e 6 f ,the word v'1'2 is also rigid and of level e − 1 that is not square-free.Therefore in both 
ases, v'1'2 = pxrq for some r > 2 and p;q ∈ X ∗,when
e the identity u ≈ v implies the rigid identityx d∏i=1(hix) ≈ pxrq (3.2)where d = e − 1. The identity (3.2) 
learly implies a rigid identity of theform xr d∏i=1(hixr) ≈ p′xr2q′ (3.3)for some p′;q′ ∈ X ∗. Sin
ex d2+2d∏i=1 (hix) = (x d∏i=1(hix))hd+1(x 2d+1∏i=d+2(hix))h2d+2(x 3d+2∏i=2d+3(hix)) · · ·

· · ·hd2+d(x d2+2d∏i=d2+d+1(hix))(3.2)
≈ (· · ·xr · · · )hd+1(· · ·xr · · · )h2d+2(· · ·xr · · · ) · · ·hd2+d(· · ·xr · · · )(3.3)
≈ · · ·xr2 · · · ;the identity u ≈ v implies a rigid identity of the form (3.2) with r repla
edby r2. The same argument 
an be repeated suÆ
iently many times so thatthe identity u ≈ v implies a rigid identity of the form (3.2) with r repla
edsome number rs that is greater than n. Therefore generality is not lost by2For instan
e, if u = h1xh2h3xh4h5h6xh7x where e = 4 and m = 7, then u'1 =xh2xh4xh7x and u'1'2 = xh1xh2xh3x.



172 EDMOND W. H. LEEassuming that r > n in (3.2) to begin with. Sin
e pxrq is a rigid word oflevel d, it follows from Lemma 3.2 thatxn d∏i=1hi (3.1)≈ pxrq (3.2)
≈ x d∏i=1(hix):The variety V thus satis�es the identityx d∏i=1(hix) ≈ xn d∏i=1hi: (3.4)If d = n− 1, then the identity (3.4) is ⋆n. If d > n− 1, thenx d∏i=1(hix) (3.4)

≈ xn d∏i=1 hi Nn
≈ xd+1 d∏i=1hiso that the variety V satis�es the identity ⋆d. If d < n− 1, thenx n−1∏i=1 (hix) (3.4)

≈

(xn d∏i=1 hi)( n−1∏i=d+1(hix)) (3.1)
≈ xn n−1∏i=1 hiso that the variety V satis�es the identity ⋆n. �

§4. The variety LThis se
tion is 
on
erned with the almost Cross variety L. Re
all fromSe
tion 1 that L is de�ned by the identities N2 andxyhxty ≈ yxhxty; xhxyty ≈ xhyxty; xhytxy ≈ xhytyx: (4.1)Subse
tion 4.1 provides a 
omplete des
ription of all subvarieties of L. Forthis purpose, the redu
ed Straubing identitiesx n−1∏i=1(hix) ≈ x2 n−1∏i=1 hi; (?n)where n ∈ {2; 3; : : :}, are required. De�ne the set W∞ = {w2;w3; : : : }where wn = x n−1∏i=1 (hix)is the word on the left side of the identity ?n.Subse
tion 4.2 demonstrates that it is de
idable in polynomial time ifan arbitrarily given identity is satis�ed by L.



INHERENTLY NON-FINITELY GENERATED VARIETIES 1734.1. Subvarieties of L. For any set � of identities, let L� denote thesubvariety of L de�ned by �. For any set U of words, let S(U) denote thevariety generated by the monoid S(U). Let 0 denote the variety of trivialmonoids.Proposition 4.1. The subvarieties of L 
onstitute the 
hain0 ⊂ S(∅) ⊂ S(x) ⊂ S(xy) ⊂ S(w2) ⊂ S(w3) ⊂ · · · ⊂ S(W∞) = L: (4.2)The proof of Proposition 4.1 is given at the end of the subse
tion.Lemma 4.2. Let e0; : : : ; em > 0 and ` > 2 be su
h that ` 6 e0+ · · ·+ em:Then the identities {N2; ?`} imply the identityxe0 m∏i=1(hixei ) ≈ x2 m∏i=1hi:Consequently, the following in
lusions hold :L{?2} ⊆ L{?3} ⊆ · · · ⊆ L: (4.3)Proof. Let e = e0 + · · ·+ em. Then e0; : : : ; em > 0 and ` 6 e imply thatxe0 m∏i=1(hixei) = q0(x `−1∏i=1(qix))( e−1∏i=`(qix))qefor some q0; : : : ;qe ∈ X ∗ su
h that q0 · · ·qe = h1 · · ·hm. Hen
exe0 m∏i=1(hixei) ?
≈̀ q0(x2 `−1∏i=1 qi)( e−1∏i=`(qix))qe (3.1)

≈ x2 e∏i=0qi = x2 m∏i=1hi;where the se
ond dedu
tion holds by Lemma 3.2 with n = 2. �Lemma 4.3. The variety L satis�es a nontrivial rigid identity u ≈ v ifand only if both of the rigid words u and v are not square-free.Proof. This is easily veri�ed by Lemma 3.2 and has been performed inLee [9, Lemma 13℄. �Lemma 4.4 (Lee [7, Proposition 4.1℄). Let V be any variety that satis�esthe identities (4.1). Then ea
h non
ommutative subvariety of V is de�nedby the identities (4.1) together with some set of rigid identities.Lemma 4.5. The non
ommutative subvarieties of L are pre
isely the va-rieties in the 
hain (4.3).



174 EDMOND W. H. LEEProof. Let V be any non
ommutative proper subvariety of L. Then thevariety V is Cross be
ause L is almost Cross. Sin
e the variety L satis�esthe identities (4.1), it follows from Lemma 4.4 that V = L� for some set �of rigid identities that are not satis�ed by L. By Lemma 2.4, the variety Vsatis�es the identity ⋆k for some k > 2. The identities N2 and ⋆k 
learlyimply the identity ?k so that the variety V satis�es ?k. Let ` be the leastpossible integer for whi
h the identity ?` is satis�ed by V.Let u ≈ v be any identity from �. Thenu = xe0 m∏i=1(hixei ) and v = xf0 m∏i=1(hixfi)for some e0; f0; : : : ; em; fm > 0 with (e0; : : : ; em) 6= (f0; : : : ; fm). Further,it suÆ
es to assume that m > 1 and (e0; : : : ; em); (f0; : : : ; fm) 6= (0; : : : ; 0),sin
e otherwise, the varietyV is 
ommutative by Lemma 3.1, 
ontradi
tingthe assumption.The identity u ≈ v is not satis�ed by L so that by Lemma 4.3, either uor v is square-free. Let e = e0 + · · ·+ em and f = f0 + · · ·+ fm. Withoutloss of generality, assume that one of the following 
ases holds:(a) u is square-free and v is not square-free;(b) u and v are both square-free with 0 < e 6 f .Following the arguments in the proof of Lemma 3.3, the identity u ≈ vimplies the rigid identity x e−1∏i=1(hix) ≈ pxrq (4.4)for some p;q ∈ X ∗ and r > 2. Sin
e V is a subvariety of A2, it followsthat x e−1∏i=1(hix) (4.4)
≈ pxrq (3.1)

≈ x2 e−1∏i=1 hiby Lemma 3.2 with n = 2, when
e V satis�es the identity ?e. The min-imality of ` implies that ` 6 e. In 
ase (a), sin
e fj > 2 for some j, thededu
tionsu = xe0 m∏i=1(hixei ) N2;?`
≈ x2 m∏i=1 hi (3.1)≈ xf0 m∏i=1(hixfi) = v



INHERENTLY NON-FINITELY GENERATED VARIETIES 175hold, respe
tively, by Lemma 4.2 and Lemma 3.2 with n = 2. In 
ase (b),the dedu
tionsu = xe0 m∏i=1(hixei) N2;?`
≈ x2 m∏i=1hi N2;?`

≈ xf0 m∏i=1(hixfi ) = vhold by Lemma 4.2. In both 
ases, the identities {N2; ?`} imply the identityu ≈ v. Sin
e the identity u ≈ v from � is arbitrarily 
hosen,L{?`} = L� = V: �Proof of Proposition 4.1. It is easily shown that the variety S(∅) ofsemilatti
e monoids and the variety S(x) are the only nontrivial 
ommu-tative subvarieties of L. By Lemma 4.5, the subvarieties of L 
onstitutethe 
hain 0 ⊂ S(∅) ⊂ S(x) ⊂ L{?2} ⊆ L{?3} ⊆ · · · ⊆ L:It is known that S(xy) = L{?2} [3, Lemma 4.5℄. For ea
h n > 2, it is rou-tinely shown that the monoid S(wn) satis�es the identities {N2; (4.1); ?n+1}but does not satisfy the identity ?n, when
eS(wn) = L{?n+1} 6= L{?n} and S(W∞) = L 6= L{?n}:Consequently, the subvarieties of L 
onstitute the 
hain (4.2). �4.2. Identities satis�ed by L. The 
ontent of a word u, denoted by
on(u), is the set of letters o

urring in u. A letter of a word u is simpleif it o

urs exa
tly on
e in u; otherwise, it is non-simple in u.Suppose that the simple letters of a word u are h1; : : : ; hm when listedin order of �rst o

urren
e, and that the distin
t non-simple letters of uare x1; : : : ; xr when listed in alphabeti
al order. Then the word u is in
anoni
al form if u = u′u0 m∏i=1(hiui) (4.5)where(CF1) u′ = xe11 · · ·xerr for some e1; : : : ; er ∈ {0; 2};(CF2) u0; : : : ;um ∈
{xf11 · · ·xfrr ∣∣ f1; : : : ; fr ∈ {0; 1}};(CF3) 
on(u′) ∩ 
on(u0 · · ·um) = ∅.Note that if the word u in (4.5) 
ontains only simple letters, then u =∏mi=1 hi; if it 
ontains only non-simple letters, then u = u′ = x21 · · ·x2r .



176 EDMOND W. H. LEELemma 4.6. For any word u; there exists some word û in 
anoni
al formsu
h that the identities {N2; (4.1)} imply the identity u ≈ û.Proof. It suÆ
es to 
onvert the word u, using the identities {N2; (4.1)},into a word in 
anoni
al form. Without loss of generality, assume that thesimple letters of u are h1; : : : ; hm when listed in order of �rst o

urren
e,and that the distin
t non-simple letters of u are x1; : : : ; xr when listed inalphabeti
al order. Then u = u0 m∏i=1(hiui)for some u0; : : : ;um ∈ {x1; : : : ; xr}∗.(I) For ea
h i ∈ {0; : : : ;m}, sin
e the letters of ui are non-simple in u,they 
an be alphabeti
ally ordered within ui by the identities (4.1).Hen
e ea
h ui 
an be 
onverted to a word of the form xf11 · · ·xfrrwith f1; : : : ; fr > 0.(II) For ea
h j ∈ {1; : : : ; r}, if a square x2j o

urs as a fa
tor in some ofu0; : : : ;um, then the identities N2 
an be used to gather every xj inu to the left. This forms the pre�x u′ = xe11 · · ·xerr with e1; : : : ; er ∈
{0; 2; 3; : : :} su
h that (CF3) is satis�ed. Further, (CF2) is satis�edsin
e all squares are removed from u0; : : : ;um.(III) If an exponent ej in u′ is 3 or greater, then apply the identity x3 ≈ x2from N2 to redu
e ej to 2. Hen
e (CF1) is satis�ed. �Lemma 4.7. Given any identity u ≈ v; there exists a polynomial timealgorithm that de
ides if the variety L satis�es the identity u ≈ v.Proof. By Lemma 4.6, there exist words û and v̂ in 
anoni
al form su
hthat the identities {N2; (4.1)} imply the identities u ≈ û and v ≈ v̂.Hen
e the variety L satis�es the identity u ≈ v if and only if it satis�es theidentity û ≈ v̂. By Lemma 2.2 and Proposition 4.1, the words {x; x2}∪W∞are all isoterms for L. It is then routinely shown that the variety L satis�esthe identity û ≈ v̂ if and only if the words û and v̂ are identi
al.Steps (I){(III) in the proof of Lemma 4.6 provide a polynomial timealgorithm that 
onverts the words u and v, using the identities {N2; (4.1)},into the words û and v̂ in 
anoni
al form. �
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§5. Main resultsTheorem 5.1. The following statements on any subvariety V of A areequlvalent :(a) V is inherently non-�nitely generated within A ;(b) for any n > 2; the Straubing identity

⋆n : x n−1∏i=1 (hix) ≈ xn n−1∏i=1 hiis not satis�ed by V;(
) for any n > 2; the word wn = x n−1∏i=1 (hix)is an isoterm for V;(d) for any n > 2; the monoid S(wn) belongs to V;(e) the almost Cross variety L is a subvariety of V:Proof. (a)⇒ (b). Suppose that for some n > 2, the variety V satis�es theidentity ⋆n. Then V satis�es the identities {Nk;⋆k} for all suÆ
ientlylarge k. By Lemma 2.3, the variety de�ned by {Nk;⋆k} is a �nitely gen-erated subvariety of Ak. Therefore V is a subvariety of Ak and so is notinherently non-�nitely generated within A .(b)⇒ (
). Suppose that for some n > 2, the word wn is not an isotermfor V. Then the variety V satis�es some nontrivial identityx n−1∏i=1(hix) ≈ v:Case 1. The following 
onditions hold:
• 
on(v) = {x; h1; : : : ; hn−1};
• h1; : : : ; hn−1 are simple in v;
• for any i, the letter hi o

urs before hi+1 in v.Then v = xe0 n−1∏i=1(hixei )for some e0; : : : ; en > 0 with (e0; : : : ; en) 6= (1; : : : ; 1). By Lemma 3.3, thevariety V satis�es the identity ⋆k for some k > 2.



178 EDMOND W. H. LEECase 2. Any one of the three 
onditions in Case 1 fails. Then it is straight-forwardly shown that the variety V is either 
ommutative or idempotent,when
e it satis�es the identity ⋆2.(
)⇔ (d)⇔ (e). These follow from Lemma 2.2 and Proposition 4.1.(e)⇒ (a). Suppose that the variety V is not inherently non-�nitely gen-erated within A . Then it follows from Lemma 2.4 that V satis�es theidentities {Nn;⋆n} for some n > 2. But by Lemma 4.3, the variety L doesnot satisfy the identity ⋆n and so 
annot be a subvariety of V. �Corollary 5.2. The almost Cross variety L is the unique minimal inher-ently non-�nitely generated subvariety of A .The following example demonstrates that subvarieties of A that areinherently non-�nitely generated within A need not be inherently non-�nitely generated within the 
lass M of all monoids. (Another expli
itexample 
an be found in Lee [8, Proposition 6.9℄.)Example 5.3. Let B12 denote the variety generated by the Brandt monoidB12 = 〈a; b | a2 = b2 = 0; aba = a; bab = b〉 ∪ {1}of order six. Then L is a subvariety of B12, but B12 is not a subvariety of A .Proof. The idempotent ab of B12 is not 
entral sin
e ab · a 6= a · ab. Hen
eB12 is not a subvariety of A . It is routinely veri�ed that for ea
h n > 2,the word wn is an isoterm for the variety B12 so that by Lemma 2.2, themonoid S(wn) belongs to B12. It follows from Proposition 4.1 that L is asubvariety of B12. �Presently, the variety of idempotent monoids is the only known exampleof a variety of monoids that is minimal with respe
t to being inherentlynon-�nitely generated within M [12℄.Theorem 5.4. Suppose that � is any �nite set of identities that de�nesa subvariety V of A : Then there exists a polynomial time algorithm thatde
ides if V is inherently non-�nitely generated within A :Proof. By assumption, the varietyV is a subvariety ofAn for some n > 1.Hen
e generality is not lost by assuming that � 
ontains the identities Nn.By Lemma 4.7, there exists a polynomial time algorithm that de
ides ifthe variety L satis�es the identities in �. The result now follows fromTheorem 5.1. �
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§6. A non-finitely generated subvariety of A2Let N denote the variety de�ned by the identities N2, ⋆3, andxhytxy ≈ xhytyx; (6.1)xyhxty ≈ yxhxty: (6.2)The main aim of the present se
tion is to show that the variety N is non-�nitely generated. But sin
e the varietyN satis�es the identities {N3;⋆3},it follows from Lemma 2.3 that N is not inherently non-�nitely generatedwithin A .Lemma 6.1. The variety N satis�es the identitiesx2hxtx ≈ xhx2tx ≈ xhxtx2 ≈ xhxtx; (6.3)xh2yxty ≈ x2h2yx2ty; (6.4)xhyxt2y ≈ xhy2xt2y2: (6.5)Proof. It is easily shown that the variety N satis�es the identities (6.3).Sin
e xh2yxty N2

≈ h2xyxty (6.2)
≈ h2yx2ty N2

≈ h2yx4ty N2
≈ x2h2yx2ty;xhyxt2y N2

≈ xhyxyt2 (6.1)
≈ xhy2xt2 N2

≈ xhy4xt2 N2
≈ xhy2xt2y2;the variety N satis�es the identities (6.4) and (6.5). �Lemma 6.2. For ea
h n > 2; the variety N does not satisfy the identityzn ≈ z′n;wherezn = x0h( n∏i=0(xi+1xi))txn+1 = x0h · x1x0 · x2x1 · · ·xn+1xn · txn+1;z′n = x0hx0( n∏i=1x2i)xn+1txn+1 = x0hx0 · x21x22 · · ·x2n · xn+1txn+1:Proof. First observe that(a) any letter o

urs at most twi
e in the word zn;(b) the word zn does not 
ontain any fa
tor of the form x2;(
) the word zn does not 
ontain any fa
tor of the form xhytxy or xyhxty,where x;y;h; t ∈ X ∗ with x;y 6= ∅.
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onvert the word zn into adi�erent word by applying only the identities N2, ⋆3, (6.1), and (6.2). Itfollows that the variety N does not satisfy the identity zn ≈ z′n. �Lemma 6.3. Any �nite monoid in the variety N satis�es the identityzn ≈ z′n for all suÆ
ient large n > 2:Proof. Let M be any �nite monoid in the variety N and �x any n > |M |.Suppose that ' is any substitution into the monoidM . Then it is shown inthe following that zn' = z′n' in M . Consequently, the monoid M satis�esthe identity zn ≈ z′n.For notational brevity, write x' = x̂. Sin
e n > |M |, the list x̂1; : : : ; x̂nof elements from M must 
ontain some repetition, say x̂i = x̂j with 1 6i < j 6 n.Case 1. 1 < i < j 6 n. Note that the letter xi o

urs twi
e in the word zn.Sin
e x̂i = x̂j , the element x̂i o

urs at least thri
e in the produ
t zn',when
e the identities (6.3) 
an be applied to repla
e any x̂i in zn' by x̂2i :zn' = · · · x̂i−1x̂i−2 · x̂ix̂i−1 · x̂i+1x̂i · x̂i+2x̂i+1 · · ·(6.3)= · · · x̂i−1x̂i−2 · x̂2i x̂i−1 · x̂i+1x̂2i · x̂i+2x̂i+1 · · · :Then the identity (6.4) 
an be applied to repla
e x̂i+1 by x̂2i+1, and theidentity (6.5) 
an be applied to repla
e x̂i−1 by x̂2i−1:
· · · x̂i−1x̂i−2 · x̂2i x̂i−1 · x̂i+1x̂2i · x̂i+2x̂i+1 · · ·(6.4)= · · · x̂i−1x̂i−2 · x̂2i x̂i−1 · x̂2i+1x̂2i · x̂i+2x̂2i+1 · · ·(6.5)= · · · x̂2i−1x̂i−2 · x̂2i x̂2i−1 · x̂2i+1x̂2i · x̂i+2x̂2i+1 · · · :This pro
edure 
an be repeated until x̂1; : : : ; x̂n are repla
ed by x̂21; : : : ; x̂2n.Hen
e zn' = x̂0ĥ · x̂21x̂0 · x̂22x̂21 · x̂23x̂22 · · · x̂2nx̂2n−1 · x̂n+1x̂2n · t̂x̂n+1

N2= x̂0ĥx̂0 · x̂21 · · · x̂2n · x̂n+1t̂x̂n+1 = z′n':Case 2. 1 = i < j 6 n. Note that the letter x1 o

urs twi
e in the word zn.Sin
e x̂1 = x̂j , the element x̂1 o

urs at least thri
e in the produ
t zn',when
e the identities (6.3) 
an be applied to repla
e any x̂1 in zn' by x̂21:zn' = x̂0ĥ · x̂1x̂0 · x̂2x̂1 · x̂3x̂2 · · · (6.3)= x̂0ĥ · x̂21x̂0 · x̂2x̂21 · x̂3x̂2 · · · :
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an then be applied to repla
e x̂2 by x̂22:x̂0ĥ · x̂21x̂0 · x̂2x̂21 · x̂3x̂2 · · · (6.4)= x̂0ĥ · x̂21x̂0 · x̂22x̂21 · x̂3x̂22 · · · :This pro
edure 
an be repeated until x̂1; : : : ; x̂n are repla
ed by x̂21; : : : ; x̂2n.The equality zn' = z′n' is then dedu
ed in the same manner as in Case 1.
�Theorem 6.4. The variety N is non-�nitely generated.Proof. If the variety N is �nitely generated, then by Lemma 6.3, it satis-�es the identity zn ≈ z′n for some n > 1. But this 
ontradi
ts Lemma 6.2.
�
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