
úÁ�ÉÓËÉ ÎÁÕÞÎÙÈÓÅÍÉÎÁÒÏ× ðïíé�ÏÍ 423, 2014 Ç.Edmond W. H. LeeINHERENTLY NON-FINITELY GENERATEDVARIETIES OF APERIODIC MONOIDS WITHCENTRAL IDEMPOTENTSAbstrat. Let A denote the lass of aperiodi monoids with en-tral idempotents. A subvariety of A that is not ontained in any�nitely generated subvariety of A is said to be inherently non-�nitely generated. A haraterization of inherently non-�nitely gen-erated subvarieties of A , based on identities that they annot satisfyand monoids that they must ontain, is given. It turns out that thereexists a unique minimal inherently non-�nitely generated subvarietyof A , the inlusion of whih is both neessary and suÆient for asubvariety of A to be inherently non-�nitely generated. Further, itis deidable in polynomial time if a �nite set of identities de�nes aninherently non-�nitely generated subvariety of A .
§1. IntrodutionReall that a monoid is aperiodi if all its subgroups are trivial. Theindex of an aperiodi monoid is the least positive integer n for whih theidentity xn+1 ≈ xn is satis�ed by the monoid. The lass A of aperiodimonoids with entral idempotents onstitutes an important soure of ex-amples in the study of the �nite basis problem; see Jakson [2℄, Jaksonand Sapir [4℄, Lee [5℄, Perkins [10℄, and Sapir [11℄. For eah n > 1, let Andenote the variety of monoids from A of index at most n. The variety Anis de�ned by the identitiesxn+1 ≈ xn; xny ≈ yxn (Nn)and the inlusions A1 ⊂ A2 ⊂ · · · ⊂ A hold and are proper. The lass

A is not a variety, but eah of its subvarieties is ontained in An for allsuÆiently large n.A �nitely based, �nitely generated variety that ontains �nitely manysubvarieties is alled a Cross variety. An almost Cross variety is a mini-mal non-Cross variety. By Zorn's lemma, eah non-Cross variety ontainsKey words and phrases: monoid, aperiodi monoid, entral idempotent, variety,�nitely generated, inherently non-�nitely generated.166



INHERENTLY NON-FINITELY GENERATED VARIETIES 167some almost Cross subvariety. Reent work of Jakson [3℄ and Lee [5, 6℄has led to a omplete desription of Cross subvarieties of A : there existpreisely three almost Cross subvarieties of A , denoted by J1, J2, and L,the exlusion of whih is both neessary and suÆient for a subvariety of
A to be Cross [9℄. The varieties J1 and J2 are �nitely generated [3℄ whilethe variety L is non-�nitely generated [9℄; the variety L is the subvarietyof A2 de�ned by the identitiesxyhxty ≈ yxhxty; xhxyty ≈ xhyxty; xhytxy ≈ xhytyxand it plays a ruial role in the present investigation.Unless otherwise spei�ed, all varieties in the present artile are sub-varieties of A . A subvariety V of A that is not ontained in any �nitelygenerated subvariety of A is said to be inherently non-�nitely generatedwithin A ; sine this artile onentrates only on subvarieties of A , it is un-ambiguous to refer to suh a variety V simply as an inherently non-�nitelygenerated subvariety of A .1 Although an inherently non-�nitely generatedsubvariety of A is vauously non-�nitely generated, the onverse is nottrue in general. A non-�nitely generated subvariety of A that is not in-herently non-�nitely generated within A is exhibited in Setion 6, and itis the �rst expliitly desribed example of its kind.The present artile is devoted to the desription of inherently non-�nitely generated subvarieties of A . After developing some preliminaryresults in Setion 2, some identities that are satis�ed by subvarieties of
A are introdued in Setion 3. Setion 4 is onerned with the investi-gation of the almost Cross variety L, its subvarieties, and the identitiesit satis�es. In partiular, the subvarieties of L are shown to onstitute aountably in�nite hain. Based on results from Setions 2{4, a harateri-zation of inherently non-�nitely generated subvarieties of A is establishedin Setion 5; it inludes identities that these varieties annot satisfy andmonoids that they must ontain. It follows that the inlusion of the varietyL is both neessary and suÆient for any subvariety of A to be inherentlynon-�nitely generated within A , whene L is the unique minimal inher-ently non-�nitely generated subvariety of A . A polynomial time algorithmis also presented that deides, given a �nite set � of identities that de�nes1Note that a subvariety of A that is inherently non-�nitely generated within Amay be ontained in a �nitely generated variety that is not a subvariety of A . SeeExample 5.3.



168 EDMOND W. H. LEEa subvariety V of A , if the variety V is inherently non-�nitely generatedwithin A .
§2. PreliminariesLet X be a ountably in�nite alphabet throughout. For any subset Y of

X , let Y∗ denote the free monoid over Y. Elements of X and X ∗ are alledletters and words, respetively. An identity is written as u ≈ v where uand v are nonempty words; this identity is nontrivial if u 6= v. A monoidM satis�es an identity u ≈ v if, for any substitution ' from X intoM , theelements u' and v' ofM oinide. A lass of monoids satis�es an identityif every monoid in the lass satis�es the identity. The variety de�ned bya set � of identities is the lass of monoids that satisfy all identities in�; in this ase, � is a basis for the variety. A variety is �nitely based if itpossesses a �nite basis.Refer to the monograph of Burris and Sankappanavar [1℄ for more in-formation on varieties of algebras in general.2.1. Rees quotients of X ∗. For any set U of words, let S(U) denote theRees quotient monoid of X ∗ over the ideal of all words that are not fatorsof any word in U . Equivalently, S(U) an be treated as the monoid thatonsists of every fator of every word in U , together with a zero element0, with binary operation · given byu · v = { uv if uv is a fator of some word in U ;0 otherwise:The empty fator, more onveniently written as 1, is the identity of themonoid S(U). If U = {u1; : : : ;um}, then write S(U) = S(u1; : : : ;um).Example 2.1 (Jakson [3, Setion 5℄). The almost Cross varieties J1 andJ2 introdued in Setion 1 are generated by the monoids S(xhxyty) andS(xhytxy; xyhxty), respetively. These varieties are non-�nitely based.A nonempty word u is an isoterm for a variety V if V does not satisfyany nontrivial identity of the form u ≈ v.Lemma 2.2 (Jakson [3, Lemma 3.3℄). For any set U of words and anyvariety V; the monoid S(U) belongs to V if and only if every word in U isan isoterm for V:



INHERENTLY NON-FINITELY GENERATED VARIETIES 1692.2. The Straubing identities. A variety is �nitely generated if it isgenerated by a single �nite monoid. The Straubing identitiesx n−1∏i=1(hix) ≈ xn n−1∏i=1 hi; (⋆n)where n ∈ {2; 3; : : :}, play a signi�ant role in the study of �nitely gener-ated subvarieties of A .Lemma 2.3 (Jakson and Sapir [4, Corollary 3.1℄). For eah n > 2; thevariety de�ned by the identities {Nn;⋆n} is �nitely generated.Lemma 2.4 (Straubing [13℄). Let V be any subvariety of A : If V is�nitely generated, then V satis�es the identities {Nn;⋆n} for some n > 2:The onverse of Lemma 2.4 does not hold in general sine a subvarietyof A that satis�es the identities {N3;⋆3} is shown in Setion 6 to benon-�nitely generated.
§3. Rigid words and rigid identitiesResults established in the present setion are required in Setions 4and 5, where all subvarieties of L and all inherently non-�nitely generatedsubvarieties of A are desribed.De�ne a rigid word to be the wordu = xe0 m∏i=1(hixei)where m > 0 and e0; : : : ; em > 0; the number m is the level of the wordu. Note that a rigid word of level 0 is of the form xe. The rigid word uabove is square-free if e0; : : : ; em 6 1. A rigid identity is an identity that isformed by a pair of rigid words of the same level. Note that eah Straubingidentity ⋆n is a rigid identity formed by rigid words of level n− 1.Lemma 3.1. Let V be any subvariety of A that satis�es a nontrivial rigididentity xe0 m∏i=1(hixei) ≈ xf0 m∏i=1(hixfi);where at least one side of the identity is a square-free word. Suppose thatat least one of the following onditions holds :(a) m = 0;



170 EDMOND W. H. LEE(b) (e0; : : : ; em) = (0; : : : ; 0);() (f0; : : : ; fm) = (0; : : : ; 0).Then V is ommutative.Proof. This lemma is routinely veri�ed based on the assumption that thevariety V satis�es the identities Nn for some n > 1. �Lemma 3.2. The variety An satis�es the rigid identityxe0 m∏i=1(hixei) ≈ xn m∏i=1hi (3.1)whenever ej > n for some j ∈ {0; : : : ;m}.Proof. It is easily shown that the basis Nn forAn implies the identity (3.1)whenever ej > n for some j ∈ {0; : : : ;m}. �Lemma 3.3. Suppose that V is any subvariety of A that satis�es somenontrivial rigid identity u ≈ v where either u or v is square-free. Then Vsatis�es the Straubing identity ⋆k for some k > 2.Proof. By assumption, the variety V satis�es the identities Nn for somen > 2 and u = xe0 m∏i=1(hixei ) and v = xf0 m∏i=1(hixfi)for some e0; f0; : : : ; em; fm > 0 with(e0; : : : ; em) 6= (f0; : : : ; fm). Further, itsuÆes to assume that m > 1 and (e0; : : : ; em); (f0; : : : ; fm) 6= (0; : : : ; 0),sine otherwise the varietyV is ommutative by Lemma 3.1 and so satis�esthe identity ⋆2.Let e = e0+ · · ·+ em and f = f0+ · · ·+ fm. Without loss of generality,assume that one of the following ases holds:(a) u is square-free and v is not square-free;(b) u and v are both square-free with 0 < e 6 f .Then e0; : : : ; em 6 1 in both (a) and (b). Sine u is a square-free rigidword and x ours e times in u, there exists an appropriate deletion '1 ofthe letters hi suh thatu'1 = x · hj1x · hj2x · · ·hje−1x;



INHERENTLY NON-FINITELY GENERATED VARIETIES 171where 1 6 j1 < · · · < je−1 6 m. Let '2 denote the substitution thatrenames the letters hj1 ; : : : ; hje−1 by h1; : : : ; he−1. Thenu'1'2 = x e−1∏i=1(hix)is a square-free rigid word of level e − 1.2 Now perform the deletion '1on v followed by the substitution '2 on v'1 to obtain v'1'2. It is learthat in ase (a), the word v'1'2 is a rigid word of level e− 1 that is notsquare-free. In ase (b), sine the identity u ≈ v is nontrivial with e 6 f ,the word v'1'2 is also rigid and of level e − 1 that is not square-free.Therefore in both ases, v'1'2 = pxrq for some r > 2 and p;q ∈ X ∗,whene the identity u ≈ v implies the rigid identityx d∏i=1(hix) ≈ pxrq (3.2)where d = e − 1. The identity (3.2) learly implies a rigid identity of theform xr d∏i=1(hixr) ≈ p′xr2q′ (3.3)for some p′;q′ ∈ X ∗. Sinex d2+2d∏i=1 (hix) = (x d∏i=1(hix))hd+1(x 2d+1∏i=d+2(hix))h2d+2(x 3d+2∏i=2d+3(hix)) · · ·

· · ·hd2+d(x d2+2d∏i=d2+d+1(hix))(3.2)
≈ (· · ·xr · · · )hd+1(· · ·xr · · · )h2d+2(· · ·xr · · · ) · · ·hd2+d(· · ·xr · · · )(3.3)
≈ · · ·xr2 · · · ;the identity u ≈ v implies a rigid identity of the form (3.2) with r replaedby r2. The same argument an be repeated suÆiently many times so thatthe identity u ≈ v implies a rigid identity of the form (3.2) with r replaedsome number rs that is greater than n. Therefore generality is not lost by2For instane, if u = h1xh2h3xh4h5h6xh7x where e = 4 and m = 7, then u'1 =xh2xh4xh7x and u'1'2 = xh1xh2xh3x.



172 EDMOND W. H. LEEassuming that r > n in (3.2) to begin with. Sine pxrq is a rigid word oflevel d, it follows from Lemma 3.2 thatxn d∏i=1hi (3.1)≈ pxrq (3.2)
≈ x d∏i=1(hix):The variety V thus satis�es the identityx d∏i=1(hix) ≈ xn d∏i=1hi: (3.4)If d = n− 1, then the identity (3.4) is ⋆n. If d > n− 1, thenx d∏i=1(hix) (3.4)

≈ xn d∏i=1 hi Nn
≈ xd+1 d∏i=1hiso that the variety V satis�es the identity ⋆d. If d < n− 1, thenx n−1∏i=1 (hix) (3.4)

≈

(xn d∏i=1 hi)( n−1∏i=d+1(hix)) (3.1)
≈ xn n−1∏i=1 hiso that the variety V satis�es the identity ⋆n. �

§4. The variety LThis setion is onerned with the almost Cross variety L. Reall fromSetion 1 that L is de�ned by the identities N2 andxyhxty ≈ yxhxty; xhxyty ≈ xhyxty; xhytxy ≈ xhytyx: (4.1)Subsetion 4.1 provides a omplete desription of all subvarieties of L. Forthis purpose, the redued Straubing identitiesx n−1∏i=1(hix) ≈ x2 n−1∏i=1 hi; (?n)where n ∈ {2; 3; : : :}, are required. De�ne the set W∞ = {w2;w3; : : : }where wn = x n−1∏i=1 (hix)is the word on the left side of the identity ?n.Subsetion 4.2 demonstrates that it is deidable in polynomial time ifan arbitrarily given identity is satis�ed by L.



INHERENTLY NON-FINITELY GENERATED VARIETIES 1734.1. Subvarieties of L. For any set � of identities, let L� denote thesubvariety of L de�ned by �. For any set U of words, let S(U) denote thevariety generated by the monoid S(U). Let 0 denote the variety of trivialmonoids.Proposition 4.1. The subvarieties of L onstitute the hain0 ⊂ S(∅) ⊂ S(x) ⊂ S(xy) ⊂ S(w2) ⊂ S(w3) ⊂ · · · ⊂ S(W∞) = L: (4.2)The proof of Proposition 4.1 is given at the end of the subsetion.Lemma 4.2. Let e0; : : : ; em > 0 and ` > 2 be suh that ` 6 e0+ · · ·+ em:Then the identities {N2; ?`} imply the identityxe0 m∏i=1(hixei ) ≈ x2 m∏i=1hi:Consequently, the following inlusions hold :L{?2} ⊆ L{?3} ⊆ · · · ⊆ L: (4.3)Proof. Let e = e0 + · · ·+ em. Then e0; : : : ; em > 0 and ` 6 e imply thatxe0 m∏i=1(hixei) = q0(x `−1∏i=1(qix))( e−1∏i=`(qix))qefor some q0; : : : ;qe ∈ X ∗ suh that q0 · · ·qe = h1 · · ·hm. Henexe0 m∏i=1(hixei) ?
≈̀ q0(x2 `−1∏i=1 qi)( e−1∏i=`(qix))qe (3.1)

≈ x2 e∏i=0qi = x2 m∏i=1hi;where the seond dedution holds by Lemma 3.2 with n = 2. �Lemma 4.3. The variety L satis�es a nontrivial rigid identity u ≈ v ifand only if both of the rigid words u and v are not square-free.Proof. This is easily veri�ed by Lemma 3.2 and has been performed inLee [9, Lemma 13℄. �Lemma 4.4 (Lee [7, Proposition 4.1℄). Let V be any variety that satis�esthe identities (4.1). Then eah nonommutative subvariety of V is de�nedby the identities (4.1) together with some set of rigid identities.Lemma 4.5. The nonommutative subvarieties of L are preisely the va-rieties in the hain (4.3).



174 EDMOND W. H. LEEProof. Let V be any nonommutative proper subvariety of L. Then thevariety V is Cross beause L is almost Cross. Sine the variety L satis�esthe identities (4.1), it follows from Lemma 4.4 that V = L� for some set �of rigid identities that are not satis�ed by L. By Lemma 2.4, the variety Vsatis�es the identity ⋆k for some k > 2. The identities N2 and ⋆k learlyimply the identity ?k so that the variety V satis�es ?k. Let ` be the leastpossible integer for whih the identity ?` is satis�ed by V.Let u ≈ v be any identity from �. Thenu = xe0 m∏i=1(hixei ) and v = xf0 m∏i=1(hixfi)for some e0; f0; : : : ; em; fm > 0 with (e0; : : : ; em) 6= (f0; : : : ; fm). Further,it suÆes to assume that m > 1 and (e0; : : : ; em); (f0; : : : ; fm) 6= (0; : : : ; 0),sine otherwise, the varietyV is ommutative by Lemma 3.1, ontraditingthe assumption.The identity u ≈ v is not satis�ed by L so that by Lemma 4.3, either uor v is square-free. Let e = e0 + · · ·+ em and f = f0 + · · ·+ fm. Withoutloss of generality, assume that one of the following ases holds:(a) u is square-free and v is not square-free;(b) u and v are both square-free with 0 < e 6 f .Following the arguments in the proof of Lemma 3.3, the identity u ≈ vimplies the rigid identity x e−1∏i=1(hix) ≈ pxrq (4.4)for some p;q ∈ X ∗ and r > 2. Sine V is a subvariety of A2, it followsthat x e−1∏i=1(hix) (4.4)
≈ pxrq (3.1)

≈ x2 e−1∏i=1 hiby Lemma 3.2 with n = 2, whene V satis�es the identity ?e. The min-imality of ` implies that ` 6 e. In ase (a), sine fj > 2 for some j, thededutionsu = xe0 m∏i=1(hixei ) N2;?`
≈ x2 m∏i=1 hi (3.1)≈ xf0 m∏i=1(hixfi) = v



INHERENTLY NON-FINITELY GENERATED VARIETIES 175hold, respetively, by Lemma 4.2 and Lemma 3.2 with n = 2. In ase (b),the dedutionsu = xe0 m∏i=1(hixei) N2;?`
≈ x2 m∏i=1hi N2;?`

≈ xf0 m∏i=1(hixfi ) = vhold by Lemma 4.2. In both ases, the identities {N2; ?`} imply the identityu ≈ v. Sine the identity u ≈ v from � is arbitrarily hosen,L{?`} = L� = V: �Proof of Proposition 4.1. It is easily shown that the variety S(∅) ofsemilattie monoids and the variety S(x) are the only nontrivial ommu-tative subvarieties of L. By Lemma 4.5, the subvarieties of L onstitutethe hain 0 ⊂ S(∅) ⊂ S(x) ⊂ L{?2} ⊆ L{?3} ⊆ · · · ⊆ L:It is known that S(xy) = L{?2} [3, Lemma 4.5℄. For eah n > 2, it is rou-tinely shown that the monoid S(wn) satis�es the identities {N2; (4.1); ?n+1}but does not satisfy the identity ?n, wheneS(wn) = L{?n+1} 6= L{?n} and S(W∞) = L 6= L{?n}:Consequently, the subvarieties of L onstitute the hain (4.2). �4.2. Identities satis�ed by L. The ontent of a word u, denoted byon(u), is the set of letters ourring in u. A letter of a word u is simpleif it ours exatly one in u; otherwise, it is non-simple in u.Suppose that the simple letters of a word u are h1; : : : ; hm when listedin order of �rst ourrene, and that the distint non-simple letters of uare x1; : : : ; xr when listed in alphabetial order. Then the word u is inanonial form if u = u′u0 m∏i=1(hiui) (4.5)where(CF1) u′ = xe11 · · ·xerr for some e1; : : : ; er ∈ {0; 2};(CF2) u0; : : : ;um ∈
{xf11 · · ·xfrr ∣∣ f1; : : : ; fr ∈ {0; 1}};(CF3) on(u′) ∩ on(u0 · · ·um) = ∅.Note that if the word u in (4.5) ontains only simple letters, then u =∏mi=1 hi; if it ontains only non-simple letters, then u = u′ = x21 · · ·x2r .



176 EDMOND W. H. LEELemma 4.6. For any word u; there exists some word û in anonial formsuh that the identities {N2; (4.1)} imply the identity u ≈ û.Proof. It suÆes to onvert the word u, using the identities {N2; (4.1)},into a word in anonial form. Without loss of generality, assume that thesimple letters of u are h1; : : : ; hm when listed in order of �rst ourrene,and that the distint non-simple letters of u are x1; : : : ; xr when listed inalphabetial order. Then u = u0 m∏i=1(hiui)for some u0; : : : ;um ∈ {x1; : : : ; xr}∗.(I) For eah i ∈ {0; : : : ;m}, sine the letters of ui are non-simple in u,they an be alphabetially ordered within ui by the identities (4.1).Hene eah ui an be onverted to a word of the form xf11 · · ·xfrrwith f1; : : : ; fr > 0.(II) For eah j ∈ {1; : : : ; r}, if a square x2j ours as a fator in some ofu0; : : : ;um, then the identities N2 an be used to gather every xj inu to the left. This forms the pre�x u′ = xe11 · · ·xerr with e1; : : : ; er ∈
{0; 2; 3; : : :} suh that (CF3) is satis�ed. Further, (CF2) is satis�edsine all squares are removed from u0; : : : ;um.(III) If an exponent ej in u′ is 3 or greater, then apply the identity x3 ≈ x2from N2 to redue ej to 2. Hene (CF1) is satis�ed. �Lemma 4.7. Given any identity u ≈ v; there exists a polynomial timealgorithm that deides if the variety L satis�es the identity u ≈ v.Proof. By Lemma 4.6, there exist words û and v̂ in anonial form suhthat the identities {N2; (4.1)} imply the identities u ≈ û and v ≈ v̂.Hene the variety L satis�es the identity u ≈ v if and only if it satis�es theidentity û ≈ v̂. By Lemma 2.2 and Proposition 4.1, the words {x; x2}∪W∞are all isoterms for L. It is then routinely shown that the variety L satis�esthe identity û ≈ v̂ if and only if the words û and v̂ are idential.Steps (I){(III) in the proof of Lemma 4.6 provide a polynomial timealgorithm that onverts the words u and v, using the identities {N2; (4.1)},into the words û and v̂ in anonial form. �



INHERENTLY NON-FINITELY GENERATED VARIETIES 177
§5. Main resultsTheorem 5.1. The following statements on any subvariety V of A areequlvalent :(a) V is inherently non-�nitely generated within A ;(b) for any n > 2; the Straubing identity

⋆n : x n−1∏i=1 (hix) ≈ xn n−1∏i=1 hiis not satis�ed by V;() for any n > 2; the word wn = x n−1∏i=1 (hix)is an isoterm for V;(d) for any n > 2; the monoid S(wn) belongs to V;(e) the almost Cross variety L is a subvariety of V:Proof. (a)⇒ (b). Suppose that for some n > 2, the variety V satis�es theidentity ⋆n. Then V satis�es the identities {Nk;⋆k} for all suÆientlylarge k. By Lemma 2.3, the variety de�ned by {Nk;⋆k} is a �nitely gen-erated subvariety of Ak. Therefore V is a subvariety of Ak and so is notinherently non-�nitely generated within A .(b)⇒ (). Suppose that for some n > 2, the word wn is not an isotermfor V. Then the variety V satis�es some nontrivial identityx n−1∏i=1(hix) ≈ v:Case 1. The following onditions hold:
• on(v) = {x; h1; : : : ; hn−1};
• h1; : : : ; hn−1 are simple in v;
• for any i, the letter hi ours before hi+1 in v.Then v = xe0 n−1∏i=1(hixei )for some e0; : : : ; en > 0 with (e0; : : : ; en) 6= (1; : : : ; 1). By Lemma 3.3, thevariety V satis�es the identity ⋆k for some k > 2.



178 EDMOND W. H. LEECase 2. Any one of the three onditions in Case 1 fails. Then it is straight-forwardly shown that the variety V is either ommutative or idempotent,whene it satis�es the identity ⋆2.()⇔ (d)⇔ (e). These follow from Lemma 2.2 and Proposition 4.1.(e)⇒ (a). Suppose that the variety V is not inherently non-�nitely gen-erated within A . Then it follows from Lemma 2.4 that V satis�es theidentities {Nn;⋆n} for some n > 2. But by Lemma 4.3, the variety L doesnot satisfy the identity ⋆n and so annot be a subvariety of V. �Corollary 5.2. The almost Cross variety L is the unique minimal inher-ently non-�nitely generated subvariety of A .The following example demonstrates that subvarieties of A that areinherently non-�nitely generated within A need not be inherently non-�nitely generated within the lass M of all monoids. (Another expliitexample an be found in Lee [8, Proposition 6.9℄.)Example 5.3. Let B12 denote the variety generated by the Brandt monoidB12 = 〈a; b | a2 = b2 = 0; aba = a; bab = b〉 ∪ {1}of order six. Then L is a subvariety of B12, but B12 is not a subvariety of A .Proof. The idempotent ab of B12 is not entral sine ab · a 6= a · ab. HeneB12 is not a subvariety of A . It is routinely veri�ed that for eah n > 2,the word wn is an isoterm for the variety B12 so that by Lemma 2.2, themonoid S(wn) belongs to B12. It follows from Proposition 4.1 that L is asubvariety of B12. �Presently, the variety of idempotent monoids is the only known exampleof a variety of monoids that is minimal with respet to being inherentlynon-�nitely generated within M [12℄.Theorem 5.4. Suppose that � is any �nite set of identities that de�nesa subvariety V of A : Then there exists a polynomial time algorithm thatdeides if V is inherently non-�nitely generated within A :Proof. By assumption, the varietyV is a subvariety ofAn for some n > 1.Hene generality is not lost by assuming that � ontains the identities Nn.By Lemma 4.7, there exists a polynomial time algorithm that deides ifthe variety L satis�es the identities in �. The result now follows fromTheorem 5.1. �
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§6. A non-finitely generated subvariety of A2Let N denote the variety de�ned by the identities N2, ⋆3, andxhytxy ≈ xhytyx; (6.1)xyhxty ≈ yxhxty: (6.2)The main aim of the present setion is to show that the variety N is non-�nitely generated. But sine the varietyN satis�es the identities {N3;⋆3},it follows from Lemma 2.3 that N is not inherently non-�nitely generatedwithin A .Lemma 6.1. The variety N satis�es the identitiesx2hxtx ≈ xhx2tx ≈ xhxtx2 ≈ xhxtx; (6.3)xh2yxty ≈ x2h2yx2ty; (6.4)xhyxt2y ≈ xhy2xt2y2: (6.5)Proof. It is easily shown that the variety N satis�es the identities (6.3).Sine xh2yxty N2

≈ h2xyxty (6.2)
≈ h2yx2ty N2

≈ h2yx4ty N2
≈ x2h2yx2ty;xhyxt2y N2

≈ xhyxyt2 (6.1)
≈ xhy2xt2 N2

≈ xhy4xt2 N2
≈ xhy2xt2y2;the variety N satis�es the identities (6.4) and (6.5). �Lemma 6.2. For eah n > 2; the variety N does not satisfy the identityzn ≈ z′n;wherezn = x0h( n∏i=0(xi+1xi))txn+1 = x0h · x1x0 · x2x1 · · ·xn+1xn · txn+1;z′n = x0hx0( n∏i=1x2i)xn+1txn+1 = x0hx0 · x21x22 · · ·x2n · xn+1txn+1:Proof. First observe that(a) any letter ours at most twie in the word zn;(b) the word zn does not ontain any fator of the form x2;() the word zn does not ontain any fator of the form xhytxy or xyhxty,where x;y;h; t ∈ X ∗ with x;y 6= ∅.



180 EDMOND W. H. LEEIt is then easily seen that it is impossible to onvert the word zn into adi�erent word by applying only the identities N2, ⋆3, (6.1), and (6.2). Itfollows that the variety N does not satisfy the identity zn ≈ z′n. �Lemma 6.3. Any �nite monoid in the variety N satis�es the identityzn ≈ z′n for all suÆient large n > 2:Proof. Let M be any �nite monoid in the variety N and �x any n > |M |.Suppose that ' is any substitution into the monoidM . Then it is shown inthe following that zn' = z′n' in M . Consequently, the monoid M satis�esthe identity zn ≈ z′n.For notational brevity, write x' = x̂. Sine n > |M |, the list x̂1; : : : ; x̂nof elements from M must ontain some repetition, say x̂i = x̂j with 1 6i < j 6 n.Case 1. 1 < i < j 6 n. Note that the letter xi ours twie in the word zn.Sine x̂i = x̂j , the element x̂i ours at least thrie in the produt zn',whene the identities (6.3) an be applied to replae any x̂i in zn' by x̂2i :zn' = · · · x̂i−1x̂i−2 · x̂ix̂i−1 · x̂i+1x̂i · x̂i+2x̂i+1 · · ·(6.3)= · · · x̂i−1x̂i−2 · x̂2i x̂i−1 · x̂i+1x̂2i · x̂i+2x̂i+1 · · · :Then the identity (6.4) an be applied to replae x̂i+1 by x̂2i+1, and theidentity (6.5) an be applied to replae x̂i−1 by x̂2i−1:
· · · x̂i−1x̂i−2 · x̂2i x̂i−1 · x̂i+1x̂2i · x̂i+2x̂i+1 · · ·(6.4)= · · · x̂i−1x̂i−2 · x̂2i x̂i−1 · x̂2i+1x̂2i · x̂i+2x̂2i+1 · · ·(6.5)= · · · x̂2i−1x̂i−2 · x̂2i x̂2i−1 · x̂2i+1x̂2i · x̂i+2x̂2i+1 · · · :This proedure an be repeated until x̂1; : : : ; x̂n are replaed by x̂21; : : : ; x̂2n.Hene zn' = x̂0ĥ · x̂21x̂0 · x̂22x̂21 · x̂23x̂22 · · · x̂2nx̂2n−1 · x̂n+1x̂2n · t̂x̂n+1

N2= x̂0ĥx̂0 · x̂21 · · · x̂2n · x̂n+1t̂x̂n+1 = z′n':Case 2. 1 = i < j 6 n. Note that the letter x1 ours twie in the word zn.Sine x̂1 = x̂j , the element x̂1 ours at least thrie in the produt zn',whene the identities (6.3) an be applied to replae any x̂1 in zn' by x̂21:zn' = x̂0ĥ · x̂1x̂0 · x̂2x̂1 · x̂3x̂2 · · · (6.3)= x̂0ĥ · x̂21x̂0 · x̂2x̂21 · x̂3x̂2 · · · :



INHERENTLY NON-FINITELY GENERATED VARIETIES 181The identity (6.4) an then be applied to replae x̂2 by x̂22:x̂0ĥ · x̂21x̂0 · x̂2x̂21 · x̂3x̂2 · · · (6.4)= x̂0ĥ · x̂21x̂0 · x̂22x̂21 · x̂3x̂22 · · · :This proedure an be repeated until x̂1; : : : ; x̂n are replaed by x̂21; : : : ; x̂2n.The equality zn' = z′n' is then dedued in the same manner as in Case 1.
�Theorem 6.4. The variety N is non-�nitely generated.Proof. If the variety N is �nitely generated, then by Lemma 6.3, it satis-�es the identity zn ≈ z′n for some n > 1. But this ontradits Lemma 6.2.
�
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