Edmond W. H. Lee

INHERENTLY NON-FINITELY GENERATED VARIETIES OF APERIODIC MONOIDS WITH CENTRAL IDEMPOTENTS

Abstract

Let \mathscr{A} denote the class of aperiodic monoids with central idempotents. A subvariety of \mathscr{A} that is not contained in any finitely generated subvariety of \mathscr{A} is said to be inherently nonfinitely generated. A characterization of inherently non-finitely generated subvarieties of \mathscr{A}, based on identities that they cannot satisfy and monoids that they must contain, is given. It turns out that there exists a unique minimal inherently non-finitely generated subvariety of \mathscr{A}, the inclusion of which is both necessary and sufficient for a subvariety of \mathscr{A} to be inherently non-finitely generated. Further, it is decidable in polynomial time if a finite set of identities defines an inherently non-finitely generated subvariety of \mathscr{A}.

§1. Introduction

Recall that a monoid is aperiodic if all its subgroups are trivial. The index of an aperiodic monoid is the least positive integer n for which the identity $x^{n+1} \approx x^{n}$ is satisfied by the monoid. The class \mathscr{A} of aperiodic monoids with central idempotents constitutes an important source of examples in the study of the finite basis problem; see Jackson [2], Jackson and Sapir [4], Lee [5], Perkins [10], and Sapir [11]. For each $n \geqslant 1$, let \mathbf{A}_{n} denote the variety of monoids from \mathscr{A} of index at most n. The variety \mathbf{A}_{n} is defined by the identities

$$
\begin{equation*}
x^{n+1} \approx x^{n}, \quad x^{n} y \approx y x^{n} \tag{n}
\end{equation*}
$$

and the inclusions $\mathbf{A}_{1} \subset \mathbf{A}_{2} \subset \cdots \subset \mathscr{A}$ hold and are proper. The class \mathscr{A} is not a variety, but each of its subvarieties is contained in \mathbf{A}_{n} for all sufficiently large n.

A finitely based, finitely generated variety that contains finitely many subvarieties is called a Cross variety. An almost Cross variety is a minimal non-Cross variety. By Zorn's lemma, each non-Cross variety contains

[^0]some almost Cross subvariety. Recent work of Jackson [3] and Lee [5, 6] has led to a complete description of Cross subvarieties of \mathscr{A} : there exist precisely three almost Cross subvarieties of \mathscr{A}, denoted by $\mathbf{J}_{\mathbf{1}}, \mathbf{J}_{\mathbf{2}}$, and \mathbf{L}, the exclusion of which is both necessary and sufficient for a subvariety of \mathscr{A} to be Cross [9]. The varieties $\mathbf{J}_{\mathbf{1}}$ and $\mathbf{J}_{\mathbf{2}}$ are finitely generated [3] while the variety \mathbf{L} is non-finitely generated [9]; the variety \mathbf{L} is the subvariety of \mathbf{A}_{2} defined by the identities
$$
x y h x t y \approx y x h x t y, \quad x h x y t y \approx x h y x t y, \quad x h y t x y \approx x h y t y x
$$
and it plays a crucial role in the present investigation.
Unless otherwise specified, all varieties in the present article are subvarieties of \mathscr{A}. A subvariety \mathbf{V} of \mathscr{A} that is not contained in any finitely generated subvariety of \mathscr{A} is said to be inherently non-finitely generated within \mathscr{A}; since this article concentrates only on subvarieties of \mathscr{A}, it is unambiguous to refer to such a variety \mathbf{V} simply as an inherently non-finitely generated subvariety of $\mathscr{A} .{ }^{1}$ Although an inherently non-finitely generated subvariety of \mathscr{A} is vacuously non-finitely generated, the converse is not true in general. A non-finitely generated subvariety of \mathscr{A} that is not inherently non-finitely generated within \mathscr{A} is exhibited in Section 6, and it is the first explicitly described example of its kind.

The present article is devoted to the description of inherently nonfinitely generated subvarieties of \mathscr{A}. After developing some preliminary results in Section 2, some identities that are satisfied by subvarieties of \mathscr{A} are introduced in Section 3. Section 4 is concerned with the investigation of the almost Cross variety \mathbf{L}, its subvarieties, and the identities it satisfies. In particular, the subvarieties of \mathbf{L} are shown to constitute a countably infinite chain. Based on results from Sections 2-4, a characterization of inherently non-finitely generated subvarieties of \mathscr{A} is established in Section 5; it includes identities that these varieties cannot satisfy and monoids that they must contain. It follows that the inclusion of the variety \mathbf{L} is both necessary and sufficient for any subvariety of \mathscr{A} to be inherently non-finitely generated within \mathscr{A}, whence \mathbf{L} is the unique minimal inherently non-finitely generated subvariety of \mathscr{A}. A polynomial time algorithm is also presented that decides, given a finite set Σ of identities that defines

[^1]a subvariety \mathbf{V} of \mathscr{A}, if the variety \mathbf{V} is inherently non-finitely generated within \mathscr{A}.

§2. Preliminaries

Let \mathcal{X} be a countably infinite alphabet throughout. For any subset \mathcal{Y} of \mathcal{X}, let \mathcal{Y}^{*} denote the free monoid over \mathcal{Y}. Elements of \mathcal{X} and \mathcal{X}^{*} are called letters and words, respectively. An identity is written as $\mathbf{u} \approx \mathbf{v}$ where \mathbf{u} and \mathbf{v} are nonempty words; this identity is nontrivial if $\mathbf{u} \neq \mathbf{v}$. A monoid M satisfies an identity $\mathbf{u} \approx \mathbf{v}$ if, for any substitution φ from \mathcal{X} into M, the elements $\mathbf{u} \varphi$ and $\mathbf{v} \varphi$ of M coincide. A class of monoids satisfies an identity if every monoid in the class satisfies the identity. The variety defined by a set Σ of identities is the class of monoids that satisfy all identities in Σ; in this case, Σ is a basis for the variety. A variety is finitely based if it possesses a finite basis.

Refer to the monograph of Burris and Sankappanavar [1] for more information on varieties of algebras in general.
2.1. Rees quotients of \mathcal{X}^{*}. For any set \mathcal{U} of words, let $\mathrm{S}(\mathcal{U})$ denote the Rees quotient monoid of \mathcal{X}^{*} over the ideal of all words that are not factors of any word in \mathcal{U}. Equivalently, $\mathrm{S}(\mathcal{U})$ can be treated as the monoid that consists of every factor of every word in \mathcal{U}, together with a zero element 0 , with binary operation \cdot given by

$$
\mathbf{u} \cdot \mathbf{v}= \begin{cases}\mathbf{u v} & \text { if } \mathbf{u v} \text { is a factor of some word in } \mathcal{U} \\ 0 & \text { otherwise }\end{cases}
$$

The empty factor, more conveniently written as 1 , is the identity of the monoid $\mathrm{S}(\mathcal{U})$. If $\mathcal{U}=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}\right\}$, then write $\mathrm{S}(\mathcal{U})=\mathrm{S}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}\right)$.

Example 2.1 (Jackson [3, Section 5]). The almost Cross varieties \mathbf{J}_{1} and $\mathbf{J}_{\mathbf{2}}$ introduced in Section 1 are generated by the monoids $\mathrm{S}(x h x y t y)$ and S (xhytxy, xyhxty), respectively. These varieties are non-finitely based.

A nonempty word \mathbf{u} is an isoterm for a variety \mathbf{V} if \mathbf{V} does not satisfy any nontrivial identity of the form $\mathbf{u} \approx \mathbf{v}$.

Lemma 2.2 (Jackson [3, Lemma 3.3]). For any set \mathcal{U} of words and any variety \mathbf{V}, the monoid $\mathrm{S}(\mathcal{U})$ belongs to \mathbf{V} if and only if every word in \mathcal{U} is an isoterm for \mathbf{V}.
2.2. The Straubing identities. A variety is finitely generated if it is generated by a single finite monoid. The Straubing identities

$$
\begin{equation*}
x \prod_{i=1}^{n-1}\left(h_{i} x\right) \approx x^{n} \prod_{i=1}^{n-1} h_{i} \tag{n}
\end{equation*}
$$

where $n \in\{2,3, \ldots\}$, play a significant role in the study of finitely generated subvarieties of \mathscr{A}.

Lemma 2.3 (Jackson and Sapir [4, Corollary 3.1]). For each $n \geqslant 2$, the variety defined by the identities $\left\{\mathbf{\Delta}_{n}, \boldsymbol{\star}_{n}\right\}$ is finitely generated.
Lemma 2.4 (Straubing [13]). Let \mathbf{V} be any subvariety of \mathscr{A}. If \mathbf{V} is finitely generated, then \mathbf{V} satisfies the identities $\left\{\mathbf{\Delta}_{n}, \star_{n}\right\}$ for some $n \geqslant 2$.

The converse of Lemma 2.4 does not hold in general since a subvariety of \mathscr{A} that satisfies the identities $\left\{\boldsymbol{\Delta}_{3}, \boldsymbol{\star}_{3}\right\}$ is shown in Section 6 to be non-finitely generated.

§3. Rigid words and Rigid identities

Results established in the present section are required in Sections 4 and 5 , where all subvarieties of \mathbf{L} and all inherently non-finitely generated subvarieties of \mathscr{A} are described.

Define a rigid word to be the word

$$
\mathbf{u}=x^{e_{0}} \prod_{i=1}^{m}\left(h_{i} x^{e_{i}}\right)
$$

where $m \geqslant 0$ and $e_{0}, \ldots, e_{m} \geqslant 0$; the number m is the level of the word \mathbf{u}. Note that a rigid word of level 0 is of the form x^{e}. The rigid word \mathbf{u} above is square-free if $e_{0}, \ldots, e_{m} \leqslant 1$. A rigid identity is an identity that is formed by a pair of rigid words of the same level. Note that each Straubing identity \star_{n} is a rigid identity formed by rigid words of level $n-1$.

Lemma 3.1. Let \mathbf{V} be any subvariety of \mathscr{A} that satisfies a nontrivial rigid identity

$$
x^{e_{0}} \prod_{i=1}^{m}\left(h_{i} x^{e_{i}}\right) \approx x^{f_{0}} \prod_{i=1}^{m}\left(h_{i} x^{f_{i}}\right)
$$

where at least one side of the identity is a square-free word. Suppose that at least one of the following conditions holds:
(a) $m=0$;
(b) $\left(e_{0}, \ldots, e_{m}\right)=(0, \ldots, 0)$;
(c) $\left(f_{0}, \ldots, f_{m}\right)=(0, \ldots, 0)$.

Then \mathbf{V} is commutative.
Proof. This lemma is routinely verified based on the assumption that the variety \mathbf{V} satisfies the identities $\boldsymbol{\Delta}_{n}$ for some $n \geqslant 1$.

Lemma 3.2. The variety \mathbf{A}_{n} satisfies the rigid identity

$$
\begin{equation*}
x^{e_{0}} \prod_{i=1}^{m}\left(h_{i} x^{e_{i}}\right) \approx x^{n} \prod_{i=1}^{m} h_{i} \tag{3.1}
\end{equation*}
$$

whenever $e_{j} \geqslant n$ for some $j \in\{0, \ldots, m\}$.
Proof. It is easily shown that the basis $\boldsymbol{\Delta}_{n}$ for \mathbf{A}_{n} implies the identity (3.1) whenever $e_{j} \geqslant n$ for some $j \in\{0, \ldots, m\}$.

Lemma 3.3. Suppose that \mathbf{V} is any subvariety of \mathscr{A} that satisfies some nontrivial rigid identity $\mathbf{u} \approx \mathbf{v}$ where either \mathbf{u} or \mathbf{v} is square-free. Then \mathbf{V} satisfies the Straubing identity \star_{k} for some $k \geqslant 2$.

Proof. By assumption, the variety V satisfies the identities $\boldsymbol{\Delta}_{n}$ for some $n \geqslant 2$ and

$$
\mathbf{u}=x^{e_{0}} \prod_{i=1}^{m}\left(h_{i} x^{e_{i}}\right) \quad \text { and } \quad \mathbf{v}=x^{f_{0}} \prod_{i=1}^{m}\left(h_{i} x^{f_{i}}\right)
$$

for some $e_{0}, f_{0}, \ldots, e_{m}, f_{m} \geqslant 0$ with $\left(e_{0}, \ldots, e_{m}\right) \neq\left(f_{0}, \ldots, f_{m}\right)$. Further, it suffices to assume that $m \geqslant 1$ and $\left(e_{0}, \ldots, e_{m}\right),\left(f_{0}, \ldots, f_{m}\right) \neq(0, \ldots, 0)$, since otherwise the variety \mathbf{V} is commutative by Lemma 3.1 and so satisfies the identity \star_{2}.

Let $e=e_{0}+\cdots+e_{m}$ and $f=f_{0}+\cdots+f_{m}$. Without loss of generality, assume that one of the following cases holds:
(a) \mathbf{u} is square-free and \mathbf{v} is not square-free;
(b) \mathbf{u} and \mathbf{v} are both square-free with $0<e \leqslant f$.

Then $e_{0}, \ldots, e_{m} \leqslant 1$ in both (a) and (b). Since \mathbf{u} is a square-free rigid word and x occurs e times in \mathbf{u}, there exists an appropriate deletion φ_{1} of the letters h_{i} such that

$$
\mathbf{u} \varphi_{1}=x \cdot h_{j_{1}} x \cdot h_{j_{2}} x \cdots h_{j_{e-1}} x
$$

where $1 \leqslant j_{1}<\cdots<j_{e-1} \leqslant m$. Let φ_{2} denote the substitution that renames the letters $h_{j_{1}}, \ldots, h_{j_{e-1}}$ by h_{1}, \ldots, h_{e-1}. Then

$$
\mathbf{u} \varphi_{1} \varphi_{2}=x \prod_{i=1}^{e-1}\left(h_{i} x\right)
$$

is a square-free rigid word of level $e-1 .{ }^{2}$ Now perform the deletion φ_{1} on \mathbf{v} followed by the substitution φ_{2} on $\mathbf{v} \varphi_{1}$ to obtain $\mathbf{v} \varphi_{1} \varphi_{2}$. It is clear that in case (a), the word $\mathbf{v} \varphi_{1} \varphi_{2}$ is a rigid word of level $e-1$ that is not square-free. In case (b), since the identity $\mathbf{u} \approx \mathbf{v}$ is nontrivial with $e \leqslant f$, the word $\mathbf{v} \varphi_{1} \varphi_{2}$ is also rigid and of level $e-1$ that is not square-free. Therefore in both cases, $\mathbf{v} \varphi_{1} \varphi_{2}=\mathbf{p} x^{r} \mathbf{q}$ for some $r \geqslant 2$ and $\mathbf{p}, \mathbf{q} \in \mathcal{X}^{*}$, whence the identity $\mathbf{u} \approx \mathbf{v}$ implies the rigid identity

$$
\begin{equation*}
x \prod_{i=1}^{d}\left(h_{i} x\right) \approx \mathbf{p} x^{r} \mathbf{q} \tag{3.2}
\end{equation*}
$$

where $d=e-1$. The identity (3.2) clearly implies a rigid identity of the form

$$
\begin{equation*}
x^{r} \prod_{i=1}^{d}\left(h_{i} x^{r}\right) \approx \mathbf{p}^{\prime} x^{r^{2}} \mathbf{q}^{\prime} \tag{3.3}
\end{equation*}
$$

for some $\mathbf{p}^{\prime}, \mathbf{q}^{\prime} \in \mathcal{X}^{*}$. Since

$$
\begin{aligned}
& x \prod_{i=1}^{d^{2}+2 d}\left(h_{i} x\right)=\left(x \prod_{i=1}^{d}\left(h_{i} x\right)\right) h_{d+1}\left(x \prod_{i=d+2}^{2 d+1}\left(h_{i} x\right)\right) h_{2 d+2}\left(x \prod_{i=2 d+3}^{3 d+2}\left(h_{i} x\right)\right) \cdots \\
& \cdots h_{d^{2}+d}\left(x \prod_{i=d^{2}+d+1}^{d^{2}+2 d}\left(h_{i} x\right)\right) \\
& \quad \stackrel{(3.2)}{\approx}\left(\cdots x^{r} \cdots\right) h_{d+1}\left(\cdots x^{r} \cdots\right) h_{2 d+2}\left(\cdots x^{r} \cdots\right) \cdots h_{d^{2}+d}\left(\cdots x^{r} \cdots\right) \\
& \quad \stackrel{(3.3)}{\approx} \cdots x^{r^{2}} \cdots,
\end{aligned}
$$

the identity $\mathbf{u} \approx \mathbf{v}$ implies a rigid identity of the form (3.2) with r replaced by r^{2}. The same argument can be repeated sufficiently many times so that the identity $\mathbf{u} \approx \mathbf{v}$ implies a rigid identity of the form (3.2) with r replaced some number r^{s} that is greater than n. Therefore generality is not lost by

[^2]assuming that $r \geqslant n$ in (3.2) to begin with. Since $\mathbf{p} x^{r} \mathbf{q}$ is a rigid word of level d, it follows from Lemma 3.2 that
$$
x^{n} \prod_{i=1}^{d} h_{i} \stackrel{(3.1)}{\approx} \mathbf{p} x^{r} \mathbf{q} \stackrel{(3.2)}{\approx} x \prod_{i=1}^{d}\left(h_{i} x\right)
$$

The variety \mathbf{V} thus satisfies the identity

$$
\begin{equation*}
x \prod_{i=1}^{d}\left(h_{i} x\right) \approx x^{n} \prod_{i=1}^{d} h_{i} \tag{3.4}
\end{equation*}
$$

If $d=n-1$, then the identity (3.4) is \star_{n}. If $d>n-1$, then

$$
x \prod_{i=1}^{d}\left(h_{i} x\right) \stackrel{(3.4)}{\approx} x^{n} \prod_{i=1}^{d} h_{i} \stackrel{\mathbf{\Delta}_{n}}{\approx} x^{d+1} \prod_{i=1}^{d} h_{i}
$$

so that the variety \mathbf{V} satisfies the identity \star_{d}. If $d<n-1$, then

$$
x \prod_{i=1}^{n-1}\left(h_{i} x\right) \stackrel{(3.4)}{\approx}\left(x^{n} \prod_{i=1}^{d} h_{i}\right)\left(\prod_{i=d+1}^{n-1}\left(h_{i} x\right)\right) \stackrel{(3.1)}{\approx} x^{n} \prod_{i=1}^{n-1} h_{i}
$$

so that the variety \mathbf{V} satisfies the identity \star_{n}.

§4. The variety \mathbf{L}

This section is concerned with the almost Cross variety L. Recall from Section 1 that \mathbf{L} is defined by the identities $\mathbf{\Delta}_{2}$ and

$$
\begin{equation*}
\text { xyhxty } \approx y x h x t y, \quad x h x y t y \approx x h y x t y, \quad x h y t x y \approx x h y t y x . \tag{4.1}
\end{equation*}
$$

Subsection 4.1 provides a complete description of all subvarieties of \mathbf{L}. For this purpose, the reduced Straubing identities

$$
\begin{equation*}
x \prod_{i=1}^{n-1}\left(h_{i} x\right) \approx x^{2} \prod_{i=1}^{n-1} h_{i} \tag{n}
\end{equation*}
$$

where $n \in\{2,3, \ldots\}$, are required. Define the set $\mathcal{W}_{\infty}=\left\{\mathbf{w}_{2}, \mathbf{w}_{3}, \ldots\right\}$ where

$$
\mathbf{w}_{n}=x \prod_{i=1}^{n-1}\left(h_{i} x\right)
$$

is the word on the left side of the identity \star_{n}.
Subsection 4.2 demonstrates that it is decidable in polynomial time if an arbitrarily given identity is satisfied by \mathbf{L}.
4.1. Subvarieties of \mathbf{L}. For any set Σ of identities, let $\mathbf{L} \Sigma$ denote the subvariety of \mathbf{L} defined by Σ. For any set \mathcal{U} of words, let $\mathbf{S}(\mathcal{U})$ denote the variety generated by the monoid $\mathrm{S}(\mathcal{U})$. Let $\mathbf{0}$ denote the variety of trivial monoids.

Proposition 4.1. The subvarieties of \mathbf{L} constitute the chain

$$
\begin{equation*}
\mathbf{0} \subset \mathbf{S}(\varnothing) \subset \mathbf{S}(x) \subset \mathbf{S}(x y) \subset \mathbf{S}\left(\mathbf{w}_{2}\right) \subset \mathbf{S}\left(\mathbf{w}_{3}\right) \subset \cdots \subset \mathbf{S}\left(\mathcal{W}_{\infty}\right)=\mathbf{L} \tag{4.2}
\end{equation*}
$$

The proof of Proposition 4.1 is given at the end of the subsection.
Lemma 4.2. Let $e_{0}, \ldots, e_{m} \geqslant 0$ and $\ell \geqslant 2$ be such that $\ell \leqslant e_{0}+\cdots+e_{m}$. Then the identities $\left\{\mathbf{\Delta}_{2}, \star_{\ell}\right\}$ imply the identity

$$
x^{e_{0}} \prod_{i=1}^{m}\left(h_{i} x^{e_{i}}\right) \approx x^{2} \prod_{i=1}^{m} h_{i} .
$$

Consequently, the following inclusions hold:

$$
\begin{equation*}
\mathbf{L}\left\{\star_{2}\right\} \subseteq \mathbf{L}\left\{\star_{3}\right\} \subseteq \cdots \subseteq \mathbf{L} \tag{4.3}
\end{equation*}
$$

Proof. Let $e=e_{0}+\cdots+e_{m}$. Then $e_{0}, \ldots, e_{m} \geqslant 0$ and $\ell \leqslant e$ imply that

$$
x^{e_{0}} \prod_{i=1}^{m}\left(h_{i} x^{e_{i}}\right)=\mathbf{q}_{0}\left(x \prod_{i=1}^{\ell-1}\left(\mathbf{q}_{i} x\right)\right)\left(\prod_{i=\ell}^{e-1}\left(\mathbf{q}_{i} x\right)\right) \mathbf{q}_{e}
$$

for some $\mathbf{q}_{0}, \ldots, \mathbf{q}_{e} \in \mathcal{X}^{*}$ such that $\mathbf{q}_{0} \cdots \mathbf{q}_{e}=h_{1} \cdots h_{m}$. Hence

$$
x^{e_{0}} \prod_{i=1}^{m}\left(h_{i} x^{e_{i}}\right) \stackrel{\star_{\ell}}{\approx} \mathbf{q}_{0}\left(x^{2} \prod_{i=1}^{\ell-1} \mathbf{q}_{i}\right)\left(\prod_{i=\ell}^{e-1}\left(\mathbf{q}_{i} x\right)\right) \mathbf{q}_{e} \stackrel{(3.1)}{\approx} x^{2} \prod_{i=0}^{e} \mathbf{q}_{i}=x^{2} \prod_{i=1}^{m} h_{i}
$$

where the second deduction holds by Lemma 3.2 with $n=2$.
Lemma 4.3. The variety \mathbf{L} satisfies a nontrivial rigid identity $\mathbf{u} \approx \mathbf{v}$ if and only if both of the rigid words \mathbf{u} and \mathbf{v} are not square-free.

Proof. This is easily verified by Lemma 3.2 and has been performed in Lee [9, Lemma 13].

Lemma 4.4 (Lee [7, Proposition 4.1]). Let \mathbf{V} be any variety that satisfies the identities (4.1). Then each noncommutative subvariety of \mathbf{V} is defined by the identities (4.1) together with some set of rigid identities.

Lemma 4.5. The noncommutative subvarieties of \mathbf{L} are precisely the varieties in the chain (4.3).

Proof. Let \mathbf{V} be any noncommutative proper subvariety of \mathbf{L}. Then the variety \mathbf{V} is Cross because \mathbf{L} is almost Cross. Since the variety \mathbf{L} satisfies the identities (4.1), it follows from Lemma 4.4 that $\mathbf{V}=\mathbf{L} \Sigma$ for some set Σ of rigid identities that are not satisfied by \mathbf{L}. By Lemma 2.4, the variety \mathbf{V} satisfies the identity \star_{k} for some $k \geqslant 2$. The identities $\boldsymbol{\Delta}_{2}$ and \star_{k} clearly imply the identity \star_{k} so that the variety \mathbf{V} satisfies \star_{k}. Let ℓ be the least possible integer for which the identity \star_{ℓ} is satisfied by \mathbf{V}.

Let $\mathbf{u} \approx \mathbf{v}$ be any identity from Σ. Then

$$
\mathbf{u}=x^{e_{0}} \prod_{i=1}^{m}\left(h_{i} x^{e_{i}}\right) \quad \text { and } \quad \mathbf{v}=x^{f_{0}} \prod_{i=1}^{m}\left(h_{i} x^{f_{i}}\right)
$$

for some $e_{0}, f_{0}, \ldots, e_{m}, f_{m} \geqslant 0$ with $\left(e_{0}, \ldots, e_{m}\right) \neq\left(f_{0}, \ldots, f_{m}\right)$. Further, it suffices to assume that $m \geqslant 1$ and $\left(e_{0}, \ldots, e_{m}\right),\left(f_{0}, \ldots, f_{m}\right) \neq(0, \ldots, 0)$, since otherwise, the variety \mathbf{V} is commutative by Lemma 3.1, contradicting the assumption.

The identity $\mathbf{u} \approx \mathbf{v}$ is not satisfied by \mathbf{L} so that by Lemma 4.3 , either \mathbf{u} or \mathbf{v} is square-free. Let $e=e_{0}+\cdots+e_{m}$ and $f=f_{0}+\cdots+f_{m}$. Without loss of generality, assume that one of the following cases holds:
(a) \mathbf{u} is square-free and \mathbf{v} is not square-free;
(b) \mathbf{u} and \mathbf{v} are both square-free with $0<e \leqslant f$.

Following the arguments in the proof of Lemma 3.3, the identity $\mathbf{u} \approx \mathbf{v}$ implies the rigid identity

$$
\begin{equation*}
x \prod_{i=1}^{e-1}\left(h_{i} x\right) \approx \mathbf{p} x^{r} \mathbf{q} \tag{4.4}
\end{equation*}
$$

for some $\mathbf{p}, \mathbf{q} \in \mathcal{X}^{*}$ and $r \geqslant 2$. Since \mathbf{V} is a subvariety of \mathbf{A}_{2}, it follows that

$$
x \prod_{i=1}^{e-1}\left(h_{i} x\right) \stackrel{(4.4)}{\approx} \mathbf{p} x^{r} \mathbf{q} \stackrel{(3.1)}{\approx} x^{2} \prod_{i=1}^{e-1} h_{i}
$$

by Lemma 3.2 with $n=2$, whence \mathbf{V} satisfies the identity \star_{e}. The minimality of ℓ implies that $\ell \leqslant e$. In case (a), since $f_{j} \geqslant 2$ for some j, the deductions

$$
\mathbf{u}=x^{e_{0}} \prod_{i=1}^{m}\left(h_{i} x^{e_{i}}\right) \stackrel{\mathbf{\Delta}_{2, \varkappa_{\ell}}}{\approx} x^{2} \prod_{i=1}^{m} h_{i} \stackrel{(3.1)}{\approx} x^{f_{0}} \prod_{i=1}^{m}\left(h_{i} x^{f_{i}}\right)=\mathbf{v}
$$

hold, respectively, by Lemma 4.2 and Lemma 3.2 with $n=2$. In case (b), the deductions

$$
\mathbf{u}=x^{e_{0}} \prod_{i=1}^{m}\left(h_{i} x^{e_{i}}\right) \stackrel{\mathbf{\Delta}_{2, \star \ell \ell}}{\approx} x^{2} \prod_{i=1}^{m} h_{i} \stackrel{\mathbf{\Delta}_{2, \star \ell}}{\approx} x^{f_{0}} \prod_{i=1}^{m}\left(h_{i} x^{f_{i}}\right)=\mathbf{v}
$$

hold by Lemma 4.2. In both cases, the identities $\left\{\mathbf{\Lambda}_{2}, \star_{\ell}\right\}$ imply the identity $\mathbf{u} \approx \mathbf{v}$. Since the identity $\mathbf{u} \approx \mathbf{v}$ from Σ is arbitrarily chosen,

$$
\mathbf{L}\left\{\star_{\ell}\right\}=\mathbf{L} \Sigma=\mathbf{V}
$$

Proof of Proposition 4.1. It is easily shown that the variety $\mathbf{S}(\varnothing)$ of semilattice monoids and the variety $\mathbf{S}(x)$ are the only nontrivial commutative subvarieties of \mathbf{L}. By Lemma 4.5, the subvarieties of \mathbf{L} constitute the chain

$$
\mathbf{0} \subset \mathbf{S}(\varnothing) \subset \mathbf{S}(x) \subset \mathbf{L}\left\{\star_{2}\right\} \subseteq \mathbf{L}\left\{\star_{3}\right\} \subseteq \cdots \subseteq \mathbf{L}
$$

It is known that $\mathbf{S}(x y)=\mathbf{L}\left\{\star_{2}\right\}$ [3, Lemma 4.5]. For each $n \geqslant 2$, it is routinely shown that the monoid $S\left(\mathbf{w}_{n}\right)$ satisfies the identities $\left\{\boldsymbol{\Delta}_{2},(4.1), \star_{n+1}\right\}$ but does not satisfy the identity \star_{n}, whence

$$
\mathbf{S}\left(\mathbf{w}_{n}\right)=\mathbf{L}\left\{\star_{n+1}\right\} \neq \mathbf{L}\left\{\star_{n}\right\} \quad \text { and } \quad \mathbf{S}\left(\mathcal{W}_{\infty}\right)=\mathbf{L} \neq \mathbf{L}\left\{\star_{n}\right\} .
$$

Consequently, the subvarieties of \mathbf{L} constitute the chain (4.2).
4.2. Identities satisfied by L. The content of a word \mathbf{u}, denoted by con (u), is the set of letters occurring in \mathbf{u}. A letter of a word \mathbf{u} is simple if it occurs exactly once in \mathbf{u}; otherwise, it is non-simple in \mathbf{u}.

Suppose that the simple letters of a word \mathbf{u} are h_{1}, \ldots, h_{m} when listed in order of first occurrence, and that the distinct non-simple letters of \mathbf{u} are x_{1}, \ldots, x_{r} when listed in alphabetical order. Then the word \mathbf{u} is in canonical form if

$$
\begin{equation*}
\mathbf{u}=\mathbf{u}^{\prime} \mathbf{u}_{0} \prod_{i=1}^{m}\left(h_{i} \mathbf{u}_{i}\right) \tag{4.5}
\end{equation*}
$$

where
(CF1) $\mathbf{u}^{\prime}=x_{1}^{e_{1}} \cdots x_{r}^{e_{r}}$ for some $e_{1}, \ldots, e_{r} \in\{0,2\}$;
(CF2) $\mathbf{u}_{0}, \ldots, \mathbf{u}_{m} \in\left\{x_{1}^{f_{1}} \cdots x_{r}^{f_{r}} \mid f_{1}, \ldots, f_{r} \in\{0,1\}\right\} ;$
(CF3) $\operatorname{con}\left(\mathbf{u}^{\prime}\right) \cap \operatorname{con}\left(\mathbf{u}_{0} \cdots \mathbf{u}_{m}\right)=\varnothing$.
Note that if the word \mathbf{u} in (4.5) contains only simple letters, then $\mathbf{u}=$ $\prod_{i=1}^{m} h_{i}$; if it contains only non-simple letters, then $\mathbf{u}=\mathbf{u}^{\prime}=x_{1}^{2} \cdots x_{r}^{2}$.

Lemma 4.6. For any word \mathbf{u}, there exists some word $\widehat{\mathbf{u}}$ in canonical form such that the identities $\left\{\mathbf{\Delta}_{2},(4.1)\right\}$ imply the identity $\mathbf{u} \approx \widehat{\mathbf{u}}$.

Proof. It suffices to convert the word \mathbf{u}, using the identities $\left\{\mathbf{\Delta}_{2},(4.1)\right\}$, into a word in canonical form. Without loss of generality, assume that the simple letters of \mathbf{u} are h_{1}, \ldots, h_{m} when listed in order of first occurrence, and that the distinct non-simple letters of \mathbf{u} are x_{1}, \ldots, x_{r} when listed in alphabetical order. Then

$$
\mathbf{u}=\mathbf{u}_{0} \prod_{i=1}^{m}\left(h_{i} \mathbf{u}_{i}\right)
$$

for some $\mathbf{u}_{0}, \ldots, \mathbf{u}_{m} \in\left\{x_{1}, \ldots, x_{r}\right\}^{*}$.
(I) For each $i \in\{0, \ldots, m\}$, since the letters of \mathbf{u}_{i} are non-simple in \mathbf{u}, they can be alphabetically ordered within \mathbf{u}_{i} by the identities (4.1). Hence each \mathbf{u}_{i} can be converted to a word of the form $x_{1}^{f_{1}} \cdots x_{r}^{f_{r}}$ with $f_{1}, \ldots, f_{r} \geqslant 0$.
(II) For each $j \in\{1, \ldots, r\}$, if a square x_{j}^{2} occurs as a factor in some of $\mathbf{u}_{0}, \ldots, \mathbf{u}_{m}$, then the identities $\mathbf{\Delta}_{2}$ can be used to gather every x_{j} in \mathbf{u} to the left. This forms the prefix $\mathbf{u}^{\prime}=x_{1}^{e_{1}} \cdots x_{r}^{e_{r}}$ with $e_{1}, \ldots, e_{r} \in$ $\{0,2,3, \ldots\}$ such that (CF3) is satisfied. Further, (CF2) is satisfied since all squares are removed from $\mathbf{u}_{0}, \ldots, \mathbf{u}_{m}$.
(III) If an exponent e_{j} in \mathbf{u}^{\prime} is 3 or greater, then apply the identity $x^{3} \approx x^{2}$ from $\boldsymbol{\Delta}_{2}$ to reduce e_{j} to 2 . Hence (CF1) is satisfied.

Lemma 4.7. Given any identity $\mathbf{u} \approx \mathbf{v}$, there exists a polynomial time algorithm that decides if the variety \mathbf{L} satisfies the identity $\mathbf{u} \approx \mathbf{v}$.

Proof. By Lemma 4.6, there exist words $\widehat{\mathbf{u}}$ and $\widehat{\mathbf{v}}$ in canonical form such that the identities $\left\{\mathbf{\Delta}_{2},(4.1)\right\}$ imply the identities $\mathbf{u} \approx \widehat{\mathbf{u}}$ and $\mathbf{v} \approx \widehat{\mathbf{v}}$. Hence the variety \mathbf{L} satisfies the identity $\mathbf{u} \approx \mathbf{v}$ if and only if it satisfies the identity $\widehat{\mathbf{u}} \approx \widehat{\mathbf{v}}$. By Lemma 2.2 and Proposition 4.1 , the words $\left\{x, x^{2}\right\} \cup \mathcal{W}_{\infty}$ are all isoterms for \mathbf{L}. It is then routinely shown that the variety \mathbf{L} satisfies the identity $\widehat{\mathbf{u}} \approx \widehat{\mathbf{v}}$ if and only if the words $\widehat{\mathbf{u}}$ and $\widehat{\mathbf{v}}$ are identical.

Steps (I)-(III) in the proof of Lemma 4.6 provide a polynomial time algorithm that converts the words \mathbf{u} and \mathbf{v}, using the identities $\left\{\mathbf{\Delta}_{2},(4.1)\right\}$, into the words $\widehat{\mathbf{u}}$ and $\widehat{\mathbf{v}}$ in canonical form.

§5. Main RESULTS

Theorem 5.1. The following statements on any subvariety \mathbf{V} of \mathscr{A} are equlvalent:
(a) \mathbf{V} is inherently non-finitely generated within \mathscr{A};
(b) for any $n \geqslant 2$, the Straubing identity

$$
\star_{n}: x \prod_{i=1}^{n-1}\left(h_{i} x\right) \approx x^{n} \prod_{i=1}^{n-1} h_{i}
$$

is not satisfied by \mathbf{V};
(c) for any $n \geqslant 2$, the word

$$
\mathbf{w}_{n}=x \prod_{i=1}^{n-1}\left(h_{i} x\right)
$$

is an isoterm for \mathbf{V};
(d) for any $n \geqslant 2$, the monoid $\mathrm{S}\left(\mathbf{w}_{n}\right)$ belongs to \mathbf{V};
(e) the almost Cross variety \mathbf{L} is a subvariety of \mathbf{V}.

Proof. (a) \Rightarrow (b). Suppose that for some $n \geqslant 2$, the variety \mathbf{V} satisfies the identity \star_{n}. Then \mathbf{V} satisfies the identities $\left\{\boldsymbol{\Delta}_{k}, \star_{k}\right\}$ for all sufficiently large k. By Lemma 2.3, the variety defined by $\left\{\boldsymbol{\Delta}_{k}, \boldsymbol{\star}_{k}\right\}$ is a finitely generated subvariety of \mathbf{A}_{k}. Therefore \mathbf{V} is a subvariety of \mathbf{A}_{k} and so is not inherently non-finitely generated within \mathscr{A}.
(b) \Rightarrow (c). Suppose that for some $n \geqslant 2$, the word \mathbf{w}_{n} is not an isoterm for \mathbf{V}. Then the variety \mathbf{V} satisfies some nontrivial identity

$$
x \prod_{i=1}^{n-1}\left(h_{i} x\right) \approx \mathbf{v}
$$

Case 1. The following conditions hold:

- $\operatorname{con}(\mathbf{v})=\left\{x, h_{1}, \ldots, h_{n-1}\right\} ;$
- h_{1}, \ldots, h_{n-1} are simple in \mathbf{v};
- for any i, the letter h_{i} occurs before h_{i+1} in \mathbf{v}.

Then

$$
\mathbf{v}=x^{e_{0}} \prod_{i=1}^{n-1}\left(h_{i} x^{e_{i}}\right)
$$

for some $e_{0}, \ldots, e_{n} \geqslant 0$ with $\left(e_{0}, \ldots, e_{n}\right) \neq(1, \ldots, 1)$. By Lemma 3.3, the variety \mathbf{V} satisfies the identity \star_{k} for some $k \geqslant 2$.

Case 2. Any one of the three conditions in Case 1 fails. Then it is straightforwardly shown that the variety \mathbf{V} is either commutative or idempotent, whence it satisfies the identity
$(c) \Leftrightarrow(\mathrm{d}) \Leftrightarrow(\mathrm{e})$. These follow from Lemma 2.2 and Proposition 4.1.
(e) \Rightarrow (a). Suppose that the variety \mathbf{V} is not inherently non-finitely generated within \mathscr{A}. Then it follows from Lemma 2.4 that \mathbf{V} satisfies the identities $\left\{\boldsymbol{\Lambda}_{n}, \star_{n}\right\}$ for some $n \geqslant 2$. But by Lemma 4.3, the variety \mathbf{L} does not satisfy the identity \star_{n} and so cannot be a subvariety of \mathbf{V}.

Corollary 5.2. The almost Cross variety \mathbf{L} is the unique minimal inherently non-finitely generated subvariety of \mathscr{A}.

The following example demonstrates that subvarieties of \mathscr{A} that are inherently non-finitely generated within \mathscr{A} need not be inherently nonfinitely generated within the class \mathscr{M} of all monoids. (Another explicit example can be found in Lee [8, Proposition 6.9].)
Example 5.3. Let \mathbf{B}_{2}^{1} denote the variety generated by the Brandt monoid

$$
B_{2}^{1}=\left\langle a, b \mid a^{2}=b^{2}=0, a b a=a, b a b=b\right\rangle \cup\{1\}
$$

of order six. Then \mathbf{L} is a subvariety of \mathbf{B}_{2}^{1}, but \mathbf{B}_{2}^{1} is not a subvariety of \mathscr{A}.
Proof. The idempotent $a b$ of B_{2}^{1} is not central since $a b \cdot a \neq a \cdot a b$. Hence \mathbf{B}_{2}^{1} is not a subvariety of \mathscr{A}. It is routinely verified that for each $n \geqslant 2$, the word \mathbf{w}_{n} is an isoterm for the variety $\mathbf{B}_{\mathbf{2}}^{\mathbf{1}}$ so that by Lemma 2.2, the monoid $S\left(\mathbf{w}_{n}\right)$ belongs to \mathbf{B}_{2}^{1}. It follows from Proposition 4.1 that \mathbf{L} is a subvariety of $\mathbf{B}_{\mathbf{2}}^{\mathbf{1}}$.

Presently, the variety of idempotent monoids is the only known example of a variety of monoids that is minimal with respect to being inherently non-finitely generated within \mathscr{M} [12].
Theorem 5.4. Suppose that Σ is any finite set of identities that defines a subvariety \mathbf{V} of \mathscr{A}. Then there exists a polynomial time algorithm that decides if \mathbf{V} is inherently non-finitely generated within \mathscr{A}.

Proof. By assumption, the variety \mathbf{V} is a subvariety of \mathbf{A}_{n} for some $n \geqslant 1$. Hence generality is not lost by assuming that Σ contains the identities $\boldsymbol{\Delta}_{n}$. By Lemma 4.7, there exists a polynomial time algorithm that decides if the variety \mathbf{L} satisfies the identities in Σ. The result now follows from Theorem 5.1.

§6. A non-finitely generated subvariety of \mathbf{A}_{2}

Let \mathbf{N} denote the variety defined by the identities $\boldsymbol{\Delta}_{2}, \star_{3}$, and

$$
\begin{align*}
& x h y t x y \approx x h y t y x \tag{6.1}\\
& x y h x t y \approx y x h x t y \tag{6.2}
\end{align*}
$$

The main aim of the present section is to show that the variety \mathbf{N} is nonfinitely generated. But since the variety \mathbf{N} satisfies the identities $\left\{\boldsymbol{\Delta}_{3}, \star_{3}\right\}$, it follows from Lemma 2.3 that \mathbf{N} is not inherently non-finitely generated within \mathscr{A}.

Lemma 6.1. The variety \mathbf{N} satisfies the identities

$$
\begin{align*}
x^{2} h x t x \approx x h x^{2} t x & \approx x h x t x^{2} \approx x h x t x \tag{6.3}\\
x h^{2} y x t y & \approx x^{2} h^{2} y x^{2} t y \tag{6.4}\\
x h y x t^{2} y & \approx x h y^{2} x t^{2} y^{2} . \tag{6.5}
\end{align*}
$$

Proof. It is easily shown that the variety \mathbf{N} satisfies the identities (6.3). Since

$$
\begin{aligned}
& x h^{2} y x t y \approx h^{2} x y x t y \stackrel{\left(\underset{\boldsymbol{\Lambda}_{2}}{2}\right)}{\approx} h^{2} y x^{2} t y \approx h^{2} y x^{4} t y \approx x^{2} h^{2} y x^{2} t y, \\
& x h y x t^{2} y \approx x h y x y t^{\left(\frac{\boldsymbol{\Lambda}_{2}}{\approx}\right.} \stackrel{\boldsymbol{\Lambda}_{2}}{\approx} x h y^{2} x t^{2} \approx x h y^{4} x t^{2} \stackrel{\boldsymbol{\Delta}_{2}}{\approx} x h y^{2} x t^{2} y^{2},
\end{aligned}
$$

the variety \mathbf{N} satisfies the identities (6.4) and (6.5).
Lemma 6.2. For each $n \geqslant 2$, the variety \mathbf{N} does not satisfy the identity

$$
\mathbf{z}_{n} \approx \mathbf{z}_{n}^{\prime}
$$

where

$$
\begin{aligned}
& \mathbf{z}_{n}=x_{0} h\left(\prod_{i=0}^{n}\left(x_{i+1} x_{i}\right)\right) t x_{n+1}=x_{0} h \cdot x_{1} x_{0} \cdot x_{2} x_{1} \cdots x_{n+1} x_{n} \cdot t x_{n+1} \\
& \mathbf{z}_{n}^{\prime}=x_{0} h x_{0}\left(\prod_{i=1}^{n} x_{i}^{2}\right) x_{n+1} t x_{n+1}=x_{0} h x_{0} \cdot x_{1}^{2} x_{2}^{2} \cdots x_{n}^{2} \cdot x_{n+1} t x_{n+1}
\end{aligned}
$$

Proof. First observe that
(a) any letter occurs at most twice in the word \mathbf{z}_{n};
(b) the word \mathbf{z}_{n} does not contain any factor of the form \mathbf{x}^{2};
(c) the word \mathbf{z}_{n} does not contain any factor of the form xhytxy or xyhxty, where $\mathbf{x}, \mathbf{y}, \mathbf{h}, \mathbf{t} \in \mathcal{X}^{*}$ with $\mathbf{x}, \mathbf{y} \neq \varnothing$.

It is then easily seen that it is impossible to convert the word \mathbf{z}_{n} into a different word by applying only the identities $\boldsymbol{\Delta}_{2}, \star_{3},(6.1)$, and (6.2). It follows that the variety \mathbf{N} does not satisfy the identity $\mathbf{z}_{n} \approx \mathbf{z}_{n}^{\prime}$.

Lemma 6.3. Any finite monoid in the variety \mathbf{N} satisfies the identity $\mathbf{z}_{n} \approx \mathbf{z}_{n}^{\prime}$ for all sufficient large $n \geqslant 2$.

Proof. Let M be any finite monoid in the variety \mathbf{N} and fix any $n>|M|$. Suppose that φ is any substitution into the monoid M. Then it is shown in the following that $\mathbf{z}_{n} \varphi=\mathbf{z}_{n}^{\prime} \varphi$ in M. Consequently, the monoid M satisfies the identity $\mathbf{z}_{n} \approx \mathbf{z}_{n}^{\prime}$.

For notational brevity, write $x \varphi=\widehat{x}$. Since $n>|M|$, the list $\widehat{x}_{1}, \ldots, \widehat{x}_{n}$ of elements from M must contain some repetition, say $\widehat{x}_{i}=\widehat{x}_{j}$ with $1 \leqslant$ $i<j \leqslant n$.

Case $1.1<i<j \leqslant n$. Note that the letter x_{i} occurs twice in the word \mathbf{z}_{n}. Since $\widehat{x}_{i}=\widehat{x}_{j}$, the element \widehat{x}_{i} occurs at least thrice in the product $\mathbf{z}_{n} \varphi$, whence the identities (6.3) can be applied to replace any \widehat{x}_{i} in $\mathbf{z}_{n} \varphi$ by \widehat{x}_{i}^{2} :

$$
\begin{aligned}
& \mathbf{z}_{n} \varphi= \cdots \widehat{x}_{i-1} \widehat{x}_{i-2} \cdot \widehat{x}_{i} \widehat{x}_{i-1} \cdot \widehat{x}_{i+1} \widehat{x}_{i} \cdot \widehat{x}_{i+2} \widehat{x}_{i+1} \cdots \\
& \quad \stackrel{(6.3)}{=} \cdots \widehat{x}_{i-1} \widehat{x}_{i-2} \cdot \widehat{x}_{i}^{2} \widehat{x}_{i-1} \cdot \widehat{x}_{i+1} \widehat{x}_{i}^{2} \cdot \widehat{x}_{i+2} \widehat{x}_{i+1} \cdots
\end{aligned}
$$

Then the identity (6.4) can be applied to replace \widehat{x}_{i+1} by \widehat{x}_{i+1}^{2}, and the identity (6.5) can be applied to replace \widehat{x}_{i-1} by \widehat{x}_{i-1}^{2} :

$$
\begin{array}{r}
\cdots \widehat{x}_{i-1} \widehat{x}_{i-2} \cdot \widehat{x}_{i}^{2} \widehat{x}_{i-1} \cdot \widehat{x}_{i+1} \widehat{x}_{i}^{2} \cdot \widehat{x}_{i+2} \widehat{x}_{i+1} \cdots \\
\stackrel{(6.4)}{=} \cdots \widehat{x}_{i-1} \widehat{x}_{i-2} \cdot \widehat{x}_{i}^{2} \widehat{x}_{i-1} \cdot \widehat{x}_{i+1}^{2} \widehat{x}_{i}^{2} \cdot \widehat{x}_{i+2} \widehat{x}_{i+1}^{2} \cdots \\
\stackrel{(6.5)}{=} \cdots \widehat{x}_{i-1}^{2} \widehat{x}_{i-2} \cdot \widehat{x}_{i}^{2} \widehat{x}_{i-1}^{2} \cdot \widehat{x}_{i+1}^{2} \widehat{x}_{i}^{2} \cdot \widehat{x}_{i+2} \widehat{x}_{i+1}^{2} \cdots .
\end{array}
$$

This procedure can be repeated until $\widehat{x}_{1}, \ldots, \widehat{x}_{n}$ are replaced by $\widehat{x}_{1}^{2}, \ldots, \widehat{x}_{n}^{2}$. Hence

$$
\begin{aligned}
\mathbf{z}_{n} \varphi & =\widehat{x}_{0} \widehat{h} \cdot \widehat{x}_{1}^{2} \widehat{x}_{0} \cdot \widehat{x}_{2}^{2} \widehat{x}_{1}^{2} \cdot \widehat{x}_{3}^{2} \widehat{x}_{2}^{2} \cdots \widehat{x}_{n}^{2} \widehat{x}_{n-1}^{2} \cdot \widehat{x}_{n+1} \widehat{x}_{n}^{2} \cdot \widehat{t}_{x+1} \\
& \stackrel{\mathbf{\Delta}_{2}}{=} \widehat{x}_{0} \widehat{h} \widehat{x}_{0} \cdot \widehat{x}_{1}^{2} \cdots \widehat{x}_{n}^{2} \cdot \widehat{x}_{n+1} \widehat{t}^{x_{n+1}}=\mathbf{z}_{n}^{\prime} \varphi .
\end{aligned}
$$

Case 2. $1=i<j \leqslant n$. Note that the letter x_{1} occurs twice in the word \mathbf{z}_{n}. Since $\widehat{x}_{1}=\widehat{x}_{j}$, the element \widehat{x}_{1} occurs at least thrice in the product $\mathbf{z}_{n} \varphi$, whence the identities (6.3) can be applied to replace any \widehat{x}_{1} in $\mathbf{z}_{n} \varphi$ by \widehat{x}_{1}^{2} :

$$
\mathbf{z}_{n} \varphi=\widehat{x}_{0} \widehat{h} \cdot \widehat{x}_{1} \widehat{x}_{0} \cdot \widehat{x}_{2} \widehat{x}_{1} \cdot \widehat{x}_{3} \widehat{x}_{2} \cdots \stackrel{(6.3)}{=} \widehat{x}_{0} \widehat{h} \cdot \widehat{x}_{1}^{2} \widehat{x}_{0} \cdot \widehat{x}_{2} \widehat{x}_{1}^{2} \cdot \widehat{x}_{3} \widehat{x}_{2} \cdots
$$

The identity (6.4) can then be applied to replace \widehat{x}_{2} by \widehat{x}_{2}^{2} :

$$
\widehat{x}_{0} \widehat{h} \cdot \widehat{x}_{1}^{2} \widehat{x}_{0} \cdot \widehat{x}_{2} \widehat{x}_{1}^{2} \cdot \widehat{x}_{3} \widehat{x}_{2} \cdots \stackrel{(6.4)}{=} \widehat{x}_{0} \widehat{h} \cdot \widehat{x}_{1}^{2} \widehat{x}_{0} \cdot \widehat{x}_{2}^{2} \widehat{x}_{1}^{2} \cdot \widehat{x}_{3} \widehat{x}_{2}^{2} \cdots
$$

This procedure can be repeated until $\widehat{x}_{1}, \ldots, \widehat{x}_{n}$ are replaced by $\widehat{x}_{1}^{2}, \ldots, \widehat{x}_{n}^{2}$. The equality $\mathbf{z}_{n} \varphi=\mathbf{z}_{n}^{\prime} \varphi$ is then deduced in the same manner as in Case 1.

Theorem 6.4. The variety \mathbf{N} is non-finitely generated.

Proof. If the variety \mathbf{N} is finitely generated, then by Lemma 6.3, it satisfies the identity $\mathbf{z}_{n} \approx \mathbf{z}_{n}^{\prime}$ for some $n \geqslant 1$. But this contradicts Lemma 6.2.

References

1. S. Burris, H. P. Sankappanavar, A Course in Universal Algebra. Springer Verlag, New York (1981).
2. M. Jackson, On the finite basis problem for finite Rees quotients of free monoids. - Acta Sci. Math. (Szeged) 67 (2001), 121-159.
3. M. Jackson, Finiteness properties of varieties and the restriction to finite algebras. - Semigroup Forum 70 (2005), 159-187.
4. M. Jackson, O. Sapir, Finitely based, finite sets of words. - Internat. J. Algebra Comput. 10 (2000), 683-708.
5. E. W. H. Lee, Finitely generated limit varieties of aperiodic monoids with central idempotents. - J. Algebra Appl. 8 (2009), 779-796.
6. E. W. H. Lee, Cross varieties of aperiodic monoids with central idempotents. Port. Math. 68 (2011), 425-429.
7. E. W. H. Lee, Maximal Specht varieties of monoids. - Mosc. Math. J. 12 (2012), 787-802.
8. E. W. H. Lee, Varieties generated by 2-testable monoids. - Studia Sci. Math. Hungar. 49 (2012), 366-389.
9. E. W. H. Lee, Almost Cross varieties of aperiodic monoids with central idempotents. - Beitr. Algebra Geom. 54 (2013), 121-129.
10. P. Perkins, Bases for equational theories of semigroups. - J. Algebra 11 (1969), 298-314.
11. O. Sapir, Finitely based words. - Internat. J. Algebra Comput. 10 (2000), 457-480.
12. O. Sapir, The variety of idempotent semigroups is inherently non-finitely generated. - Semigroup Forum 71 (2005), 140-146.
13. H. Straubing, The variety generated by finite nilpotent monoids. - Semigroup Forum 24 (1982), 25-38.

Division of Math, Science, and Technology,
Поступило October 3, 2013
Nova Southeastern University,
3301 College Avenue, Fort Lauderdale,
Florida 33314, USA
E-mail: edmond.lee@nova.edu

[^0]: Key words and phrases: monoid, aperiodic monoid, central idempotent, variety, finitely generated, inherently non-finitely generated.

[^1]: ${ }^{1}$ Note that a subvariety of \mathscr{A} that is inherently non-finitely generated within \mathscr{A} may be contained in a finitely generated variety that is not a subvariety of \mathscr{A}. See Example 5.3.

[^2]: ${ }^{2}$ For instance, if $\mathbf{u}=h_{1} x h_{2} h_{3} x h_{4} h_{5} h_{6} x h_{7} x$ where $e=4$ and $m=7$, then $\mathbf{u} \varphi_{1}=$ $x h_{2} x h_{4} x h_{7} x$ and $\mathbf{u} \varphi_{1} \varphi_{2}=x h_{1} x h_{2} x h_{3} x$.

