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SPECTRAL ESTIMATION PROBLEM IN INFINITE
DIMENSIONAL SPACES

ABSTRACT. We consider the generalized spectral estimation prob-
lem in infinite dimensional spaces. We solve this problem using the
boundary control approach to inverse theory and provide an applica-
tion to the initial boundary value problem for a hyperbolic system.

§1. INTRODUCTION

The classical spectral estimation problem consists of the recovery of the
coefficients a,, Ag, k=1,...,N, N € N of a signal

N
s(t) = Z are™t >0
n=1

from the given observations s(j), j =0,...,2N — 1, where the coefficients
ar, Ax may be arbitrary complex numbers. The literature describing vari-
uos methods for solving the spectral estimation problem is very extensive:
see for example the list of references in [6].

In papers [2,3] a new approach to this problem was proposed. In this
approach the signal s(t) was treated as a kernel of certain convolution
operator corresponding to an input-output map for some linear discrete-
time dynamical system. While the system realized from the input-output
map is not unique, the coefficients a,, and A\,, can be determined uniquely
using the non-selfadjoint version of the boundary control method [1].

Later on the infinite-dimensional version of this method has been devel-
oped in [6]. More precisely, the problem of the recovering the coefficients
ai, A\ € C, k € N, of the given signal

s(t) = ape™t, te(0,7),
k=1

Key words and phrases: spectral estimation problem, boundary control method,
identification problem.
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provided the sum converges in L2(0,7") was solved there. In the present
paper we solve the so-called generalized spectral estimation problem. It is
set up in the following way: to recover the coeflicients a(t), Ag, k € N, of
a signal

S(t) = i a (), te (0,T), (1.1)
k=1

from the given data S € L2(0,T). We assume that 7" ia a positive number,

L
Ar € C and for each k, ap(t) = Z’f att' are polynomials of the order Ly
=0

with complex valued coeflicients a}'c.

In Sec. 2, we recover the unknown parameters Ag. Ly, afc; 1=0,...,Lg,
k e N, from S(t), t € (0,T). In Sec. 3, as an application of the generalized
spectral estimation, we consider the continuation problem of the inverse
dynamical data in the identification problem for the first order hyperbolic
system.

§2. SPECTRAL ESTIMATION. THE CASE OF MULTIPLE POLES

We consider the dynamical system in a complex Hilbert space H:
z(t) = Az(t) + bf(t), te€(0,T), x(0)=0. (2.1)

Hereb e H, f € L2(0,T), and we assume that the spectrum of the operator
A, {\:}72, is not simple. We denote the algebraic multiplicity of Ag by Ly,
k € N, and assume also that the set of all root vectors {¢t},i=1,..., Ly,
k € N, forms a Riesz basis in H. Here the vectors from the chain {(;5}c iL:kl,
k € N, satisfy the equations

(A=) =0, (A=) ok =0l ", 2<i< L.

Along with (2.1), we consider the dynamical system for the adjoint oper-
ator:

y(t) = A*y(t) +dg(t), te€(0,T), y(0)=0, (2.2)
where d € H, g € L(0,T). The spectrum of A* is {\¢}?2, and the root
vectors {@/J,i}iL:’“l, i=1,...,Lg, k € N, also form a Riesz basis in H and

satisfy the equations

(A" = Xe) it =0, (A" =Ne)yp =it 1<i<Ly—1.
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Moreover, the root vectors of A and A* are normalized in accordance with
(G, 0) =0 if kAL or i#j;
<¢;€7¢;c> =1, ¢=1,...,L;, keN

We consider f and g as the inputs of the systems (2.1) and (2.2) and define
the outputs z and w by the formulas

z2(t) = (a(t),d), w(t) = (y(t),b).

o0 Lk

Suppose that the vector b has a representation b= . b2¢§c. We look
k=1 i=1

for the solution to (2.1) in the form

oo Ly

o(t) =D ch(t)gh. (2.3)

k=1 i=1

Plugging (2.3) into (2.1), multiplying by ¢, i = 1,..., Ly, k € N, we get
the following equations for c (t):

e () = e () + by f(1), ¢ (0) =0,
EL(t) = Mk (8) + et () + L f(1), ¢, (0)=0, i=1,...,L; 1.

Solving the system of ODEs we find the coefficients ¢} (t):

t

cit(t) = [ T f(r)dr,
0
t r
N O R [ LA A N (O L
0
t r -
b2y = [ et (2T e (t—1)b* ' + bLk_2] f(r)dr
k - k k k ’
0

ch(t) = / Ault=T) -(7]5(;;?:)! Dk (Bt bi] f(r)dr.

o
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< Ly
Similarly, we represent the vector d in the form d = )" >" d},¢}. Then
k=11i=1
the output z can be written as
oo Ly t
() = (a(t),d) = >0 > ek = [ vt - 1))
k=1 1i=1 0
where 7(t) is defined as
o wt| o1, o 5 7
= k —
r(t) Ze [ak +ait +af, 5
k=1
th—Q th—l
.. Ly-1 Lk . (24
Toetas T @k—DJ 24
Here we introduced the notations
Ly Ly Ly
aj, = bidi, ap =) bidit, af =) b, ag
i=1 i=2 i=3
Ly )
= Y bidg MY afr =bprdh, ke (2.5)

i=Lp—1

It is important to notice that the response function r(t) has the form
of the series in (1.1).
Looking for the solution of (2.2) in the form

OOLk

y(t) => > hi(t)vi,
k=1 i=1
we derive the following system of ODEs for ki (t),i=1,...,Lg, k € N:
hi(t) = Xehip(t) + dig (1), hi(0) =0,
hi(t) = Xehip(t) + hi t(t) + dig(t), hi(0) =0, i=2,...,Ls.

Solving this system we obtain the coefficients hé ():

t
hk(t) = /exk(t—T)dkg(T) dr,
0
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o+

da(t) = /exk(t—ﬂ [(t —7)d}, + di] g(7) dr,

(==}

i) = [0 [ b -t + ] ) ar

(==}

Ly / by (t—T) (t - T)Lk_l 1 L —1 Ly,
hy, (t):/ek de+...+(t—7)dk +d.* | g(7)dr,

The output of the system (2.2) is given by

oo Ly ' t
w(t) = ZZh’ b, = /r( —7)g(7) dt.
k=1 i=1 0

We introduce now the connecting operator C1 : Ly(0,T) — L2(0,T)
defined through its bilinear form by the formula:

(CTf,9) = (a(T),y(T)).

Lemma 1. The connecting operator C1 has a representation (C1 f)(t) =

(Rf)(2T —t), or

T
Ct A r(2T —t — 1) f(7) dr.
=/

Proof. We introduce the function x(s,t) := (2(s),y(t)) 5. It is straight-
forward to check that for s,t > 0, this function satisfies the equation

Xe(s,t) = xs(s,8) = (rx f)(s)g(t) — (r* g)(£) f(s)

with the boundary conditions x(0,¢) = x(s,0) = 0. This initial boundary
value problem can be solved explicitly. Since z(7") and y(T') are indepen-
dent of the value of f(t) and g(t) for t > T', we may put f(t) = g(¢t) =0,
if + > T', when compute (CT f, g)m. Taking this into account, we obtain:

T 2T —~

«ﬂﬁmzxaﬂwz/'/7@T—v—ﬂﬂﬂmwmd%

0 0
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and therefore,
2T—t

T
CTH)(t) = /T(ZT—t—T / (2T —t — 1) f(7) dr. (2.65)
0 0

Next, we demonstrate how to find A\, Ly, and al, i =1,...,Lg, k € N,
given the function r(¢) in the form (1.1). To do that we use the ideas of
the boundary control method, more precisely, the possibility to extract
the spectral data from the dynamical data (see [7,8]). We assume that the
system (2.1) is spectrally controllable in time 7. This means that, for any
i € {1,...,Lx} and any k € N, there exists {f{} € Hg(0,T), such that
2% (T) = ¢L. By the definition of {f}},

#4(T) = Aal* (T) + bfH(T) = Adk = Mgl = Ma/* (T), keN, (2.7)
(1) = Ag) = Mo + ¢} = MalH (1) + 2T (D),
i=2,....,Ly, keN. (2.8)

The definition of the operator C1" and equations (2.7) imply that for any
g € Ly(0,T) one has

(CTfl,g) = (al(T),y*(T)) = (&7 (T),y*(T))
= (Ma® (T),y9(T)) = <A,cch,§,g>, keN.
Similarly, making use of (2.8) for k =1,...00, 2 < i < Ly, we obtain
(CT fi,g) = (aP%(1),y? (1)) = (&7(T),y*(T))
= (\ai(T) + 25 (T),9°(T)) = (MCT S+ CTfi ).

Using (2.6), one gets the following integral eigenvalue equations for find-
ing A\g andf,i,léiéLk,kEN:

T
/r(2T —t— 1) fE(r) = M (2T —t — 7) fi (1) dr =0,

T
/r 2T —t—7) fi (1) = Ner (2T —t—7) fi (1) —r(2T —t — 1) fi ' (7) dr = 0.
0
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Integrating by parts we finally have:
T
/7*(2T =D (r) = (2T — £ — ) fL(r) dr = 0,

0
T

/f(2T—t—T)f,§(r)—Akr(QT—t—T)f,:(r)—r(2T—t—T) L(r) dr = 0.

This leads to the following conclusion: the set \g, fi, i =1,..., Ly, k € N,
are eigenvalues and root vectors of the following generalized eigenvalue
problem in Ly(0,7):

T
/7*(2T b D)f(r) — (2T — t — 7)f(r) dr = 0. (2.9)
0
Using the same arguments we can deduce that M, gi, k = 1,...00,
i=1,..., L are eigenvalues and root vectors of the eigenvalue problem
T
/ FOT —t—1)g(r) - \@T —t—)g(r)dr =0.  (2.10)
0

We notice that solving (2.9) and (2.10) yields eigenvalues A, their mul-
tiplicities Ly, k € N, and non-normalized functions fi and g} for which
2 (T) = aj ¢, y9% (T) = Biti, with some (unknown) constants o, 5.
Now we describe the algorithm of recovering ag,, . .. a,I;’“, k € N (see the
representation (2.4)). We normalize the solutions to (2.9), (2.10) by the
rule
(CTfi,gi) = 1. (2.11)
So if #7%(T) = ¢{ and y% (T') = i, then /% (T) = aigi and y(T) =

L 1¢. In the case we define
Q@

~i

b, = (y(T),b) = [ 7(T — 7)gi(r) dr, (2.12)

di, = (a7e(T),d) = [ v(T —7)fi(r)dr, (2.13)

/
/
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then (see (2.5))
Li
= bid. (2.14)
i=1
Denote by 0 and I the operator of differentiation and unitary operator.
Bearing in mind (2.9), which we rewrite as CT (8 — A\, 1) fi = CT fi7, we
evaluate
g
.
a
So, normalizing the solutions to (2.9), (2.10) by the rule

(CT@=ND) fingi M) =1,

(C" (@ =MD fiugi ) = i {CT g =

we can define

~.

T
2=/HT—ﬂ%@Mﬂ (2.15)
T

/\2 /r —T) 13 )dr. (2.16)
0

and compute ai = Z b’ d’ Loef. (2.5).

Notice that since C’T commutes with the differentiation, we have for
1 <i: [CT (0= M) fi = CTfi7". Then
T e T pi—l ~i—l aj,
(o7 @-xn)] Fhgi!) = ebl TR G = ok
k
Again, normalizing the solutions to (2.9), (2.10) (for ¢ > [) by the rule

([T @=-nD) Fhar") =1, (2.17)

we define bi, di by (2.12), (2.13) and evaluate

Ly,
aj, =Y bid; . (2.18)
i=l

We conclude this section with the algorithm for solving the spectral esti-
mation problem: suppose that we are given with the function r € Lo (0,27)
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of the form (2.4) and the family U {eMt .. thr=leAtl is minimal in

L,(0,T). Then to recover \g, Ly, and coefﬁ01ents of polynomials, one should
follow the
Algorithm

a) solve generalized eigenvalue problems (2.9), (2.10) to find A, Ly,
and non-normalized controls.
b) Normalize fi gk by (2.11), define b, di by (2.12), (2.13) to recover
a}. by (2. 14)(see (2.4), (2.5))
c) Normahze fk, gi by (2.17), define b}g, d’ by (2.15), (2.16) to recover
al. by (2.18)(see (2.4), (2.5))

§3. CONTINUATION OF THE INVERSE DATA FOR THE FIRST
ORDER HYPERBOLIC SYSTEM

We consider the initial boundary value problem

2 u _2 0 I\ (u) (P11 p12) [(u -0
ot \v oz \1 0/ \v Po1 Paz) \v)
0<z<l, t>0, (3.1)
=u(l,t) = (3.2)

o)) owrer o

Here p;; € C*([0,1]; (C) and dy,ds € L2(0,1;C). We fix some T > 0
and define R(t) := {v(0,t),v(1,t)}, 0 < t < T. The problem of the
recovering unknown potential p;; and initial state c; » has been consid-
ered in [9, 10], where the authors established the uniqueness result for
large enough T'. The inverse problem by one measurement for the one-
dimensional Schréodinger equation has been considered in [5], and the pro-
cedure of the recovering the potential and the initial state has been pro-
posed. Here we focus on the problem of the continuation of the inverse
data: we assume that R(t) is known on the interval (0,7") and recover it
on the whole real axis.
We introduce the notations B = <0 1), P = (pu p12) , D= <d1),
Lo P21 P22 do
and the operator A acting by the rule

A@:(Bi+P><p, 0<z«l1
dx
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with the domain

o) = {p = (£) e MO.LE) 0O =a ) =0}

2
The adjoint operator

A% = <—Bi+PT) Y, 0<z<l,
dx

has the domain
D) = {v= (1) e B OLE) 00 =hw =0}

The spectrum of the operator A has the following structure (see [9,10]):
o(A) = X1 UZXy, where ¥; N Yy = & and there exists N; € N such that

1) X, consists of 2N; — 1 eigenvalues including algebraical multiplic-
ities;

2) X, consists of infinite number of eigenvalues of multiplicity one;

3) root vectors of A form a Riesz basis in L (0, 1; C?).

Let m denote the algebraical multiplicity of eigenvalue A\, and we intro-
duce the notations e; = ((1)),

L={\N€eo), m>2 1<i<N},
Yo ={\, €0(4), A, issimple, n € Z}.
The root vectors are introduced by the following way:
(;5;(0):61, (b;ED(A); 1<]<mz
For the adjoint operator the following equalities are valid:
(A*_Xz) ,ini:(), (A*_Xz>¢;::¢;’+1; I<j<sm—1,
Pi(0) = ey, 1/);' € D(A"), 1<j<m,.

j
For the simple eigenvalues we have:

(A=) dn =0, (A" =X,) ¢, =0,

¢n(0) = ¢n(0) =e1, ¢n€ D(A), Y € D(A*)
Moreover, the following biorthigonality conditions hold:

( 3;1/}11) =0, ((lsn;'(/);) =0, ((ﬁk,'(/)n) =0,
(b, 9f) =0 if i#k or j#L
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Then we set

o= (800), i=i N, G=1mp
Pn = (¢n;7/1n); nEZ,

and introduce the spectral data:

. Sy Ijsmg
S(P) = {Xmipi} U {Awpa) e

~
1<iKN

We represent the initial state as the series:

N m;
D= digi(z)+ > dudn(®). (3.4)
i=1 j=1 neZ

We are looking for the solution to (3.1)—(3.3) in the form
w N m; ) )
(1) @0 =X d0s@ + X enénta)
=1 j=1 neZ

Using the method of moments we can derive the system of ODe’s for c§,
ief{l,...,N},je{l,...,m;}; ¢n, n € Z solving which we obtain

i) = N g d b+ d t* & i
¢Gt) = |dj F djat+ dipo oo d i |

cn(t) = dyet.

Notice that the response {v(0,t),v(1,¢)} has a form depicted in (1.1):

N

v(0,8) =) eNad(t) + ) My (6a(0)),, (3.5)
i=1 nez
N

v(1,1) =Y eMal(t) + Y eMldy (¢n(1)),, (3.6)
i=1 ne”Z

mi—1
where the coefficients of a?(t) = Y. ait* are given by
k=0
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of =D di (4](0),, of =D di (¢]-1(0)),,
=1 =2

A RN : I &
% =52 4 (a0)y 0= =gy D di (#40);, -
1=3 [=k+1

. 1 - ;
i1 = T y1ms (A1),

The coefficients a} (t), i = 1,..., N are defined by the similar formulaes.
We introduce the following

Definition 1. The state D € Lo ((0, 1);((:2) is generic if all the Fourier
coefficients in the expansion (3.4) are not equal to zero.

We assume below that the initial state D is generic. The meaning of
this restriction is clear — if the initial state is not generic, say d; = 0 for
some k € Z, the response (3.5), (3.6) does not contain any information
on )\k.

We introduce the notation U := (:}‘) and consider the dynamical system
with the boundary control f € Ly(Ry)

U, — AU =0, 0<z<1, t>0,
u(0,8) = £(t), u(l,t)=0, t>0,
U(z,0) = 0.

It is not difficult to show that this system is exactly controllable in time
N

T > 2. This implies (see [4]) that the family |J{e*?,... tmi~terit} U
i=1

{eiA=t} 7 forms a Riesz basis in a closure of its linear span in Lo ((0,7'); C).

Because of this and the fact that each component of the response {v(0,t),

v(1,t)} has the form of (1.1), we can apply the method from the previous

section and recover A\’, m;, coefficients of polynomials a?’l(t) i=1,...,N,

An, n € Z. The latter allows one to extend the inverse data R(t) to all

values of t € R by formulas (3.5), (3.6). This is important for solving the

identification problem, see [10].
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