Yu. A. Neretin

ON AN INFINITE-DIMENSIONAL LIMIT OF THE STEINBERG REPRESENTATIONS

ABSTRACT. We present a construction of the Steinberg representation that allows for automatically passing to an infinite-dimensional limit

Recall that the representation theory of infinite-dimensional classical groups and infinite symmetric groups is a relatively old well-developed topic. For infinite-dimensional groups over finite fields, progress appeared comparatively recently, in [3, 9, 10] and [6, 7]. This note contains a construction intermediate between these works.

Notation. Denote by \mathbb{F}_q the field with q elements, and let \mathbb{F}_q^n be the coordinate n-dimensional linear space with the standard basis e_j . Denote by $\mathrm{GL}(n)$ the group of all invertible matrices of order n. It acts on \mathbb{F}_q^n by the multiplication $x \mapsto xg$ of a row $x \in \mathbb{F}_q^n$ by a matrix $g \in \mathrm{GL}(n)$.

the multiplication $x \mapsto xg$ of a row $x \in \mathbb{F}_q^n$ by a matrix $g \in \mathrm{GL}(n)$. Denote by S_n the symmetric group. It is generated by the transpositions $\tau_j = (j, j+1)$, the relations being $\tau_j^2 = 1$, $(\tau_j \tau_{j+1})^3 = 1$, and $\tau_k \tau_j = \tau_j \tau_k$ for $|k-j| \ge 2$.

By $\ell_2(Z)$ we denote the space of complex functions on a finite set Z equipped with the ℓ_2 inner product.

1. Schubert cells. Denote by Fl(n) the space of complete flags \mathcal{V} in \mathbb{F}_q^n ,

$$\mathcal{V}: 0 = V_0 \subset V_1 \subset \cdots \subset V_n = \mathbb{F}_q^n, \quad \dim V_j = j.$$

Fix the standard flag

$$\mathcal{E}: E_0 \subset E_1 \subset \cdots \subset E_n, \quad E_j = \sum_{i \leqslant j} \mathbb{F}_q e_i.$$

Denote by $B(n) \subset GL(n)$ the stabilizer of \mathcal{E} . It consists of the lower triangular matrices. For each $\sigma \in S_n$ we consider the flag

$$\mathcal{E}^{\sigma}: E_0^{\sigma} \subset E_1^{\sigma} \subset \cdots \subset E_n^{\sigma} \text{ where } E_j^{\sigma} = \mathbb{F}_q e_{\sigma(1)} \oplus \cdots \oplus \mathbb{F}_q e_{\sigma(j)}.$$

Key words and phrases: infinite-dimensional groups, Steinberg representation, classical groups over finite fields, unitary representations, reproducing kernels.

Supported by the grant FWF, Project P25142.

Orbits of B(n) on Fl(n) are called *Schubert cells*; for details, see [2, 10.2]. They are enumerated by the elements $\sigma \in S_n$: each orbit contains a unique flag \mathcal{E}^{σ} , we denote this orbit by X^{σ} .

2. The Steinberg representation. Denote by $\operatorname{Fl}_j(n)$ the space of incomplete flags containing subspaces of all dimensions except j. Denote by $\pi_j : \operatorname{Fl}(n) \to \operatorname{Fl}_j(n)$ the map forgetting V_j . There is a natural map $\Pi_j : \ell_2(\operatorname{Fl}(n)) \to \ell_2(\operatorname{Fl}_j(n))$, defined by

$$\Pi_j f(\mathcal{W}) = \frac{1}{q+1} \sum_{\mathcal{V}: \pi_j(\mathcal{V}) = \mathcal{W}} f(\mathcal{W}).$$

In fact, the summation is taken over all flags

$$W_0 \subset \cdots \subset W_{j-1} \subset Y \subset W_{j+1} \subset \cdots \subset W_n$$

such flags are enumerated by the subspaces Y satisfying $W_{j-1} \subset Y \subset W_{j+1}$; or, equivalently, over the set of lines in the two-dimensional space W_{j+1}/W_{j-1} .

Theorem 1. There exists a unique irreducible representation of GL(n) that is contained in $\ell_2(Fl(n))$ and is not contained in the spaces $\ell_2(Fl_j(n))$.

This representation is called the *Steinberg representation*; for its fascinating properties, see the surveys [4,8].

3. Definition of the Steinberg representation via reproducing kernels. We define a function $k(\mathcal{V}, \mathcal{W})$ on $\mathrm{Fl}(n) \times \mathrm{Fl}(n)$ as the number of all pairs (i,j), where i,j range in $\{0,1,\ldots,n-1\}$, such that

$$\dim V_i \cap W_j = \dim V_{i+1} \cap W_{j+1}. \tag{1}$$

Define a kernel $K(\cdot,\cdot)$ on Fl(n) by

$$K(\mathcal{V}, \mathcal{W}) = (-q)^{-k(\mathcal{V}, \mathcal{W})}.$$

By definition, the kernel $K(\cdot,\cdot)$ is $\mathrm{GL}(n)$ -invariant.

Proposition 1. The function

$$\kappa(\mathcal{W}) := k(\mathcal{E}, \mathcal{W})$$

is constant on Schubert cells X^{σ} . The value of κ on X^{σ} coincides with the number $I(\sigma)$ of inversions of σ . The number of points of X^{σ} coincides with $q^{k(\mathcal{E},\mathcal{W})}$.

Note that $I(\sigma)$ coincides with the length of a shortest decomposition of σ into a product of the generators τ_j .

Proof. Let us evaluate the number of points of X^{σ} . Consider an example. Let n = 6,

The vectors e_{σ} are the rows of this matrix. A B(n)-orbit of the collection $\{e_{\sigma}\}$ consists of arbitrary collections of the type

$$\begin{pmatrix} * & * & * & \circ & 0 & 0 & 0 \\ (& * & \circ & 0 & 0 & 0 & 0 & 0 \\ (& * & * & * & * & \circ & 0 & 0 \\ (& \circ & 0 & 0 & 0 & 0 & 0 & 0 \\ (& * & * & * & * & * & \circ & 0 \\ (& * & * & \circ & 0 & 0 & 0 & 0 & 0 \\), \\ (& * & * & \circ & 0 & 0 & 0 & 0 & 0 \\),$$

where * denotes arbitrary elements of \mathbb{F}_q and \circ are nonzero elements. We have \circ 's on the former positions of units and *'s on the positions to the left of units. Elements of flags (subspaces) are linear combinations $\sum_{i \leq k} c_i e_{\sigma(j)}$.

Replacements of the form

$$e_{\sigma(j)} \to \lambda e_{\sigma(j)} + \sum_{i < j} a_i e_{\sigma(i)}, \quad \lambda \neq 0,$$

do not change the flag. Therefore, we can get 1 on the positions of o's and 0 under all units. Thus we see that any flag in the B(n)-orbit of \mathcal{E}^{σ} is generated by a collection of vectors

Now for each star we have a unit under this star and a unit to the right of the star. This pair of units corresponds to an inversion in σ .

Next, let us evaluate the number (i,j) of pairs satisfying (1). The dimension of $E_i \cap F_j$ is the number of units in the left upper $i \times j$ corner of the matrix σ . Condition (1) means that the $i \times j$ and $(i+1) \times (j+1)$ corners contain the same units. Therefore, units in the (i+1)th row and (j+1)th column are outside the $(i+1) \times (j+1)$ corner. Hence we have * on the (i+1)(j+1)th place in (3).

Lemma 1. The kernel $K(\cdot,\cdot)$ is positive definite.¹

Consider the Euclidean space H_n determined by the reproducing kernel² $K(\mathcal{V}, \mathcal{W})$.

Lemma 2. The representation of GL(n) in H_n coincides with the Steinberg representation.

Proofs of the lemmas. By the Frobenius reciprocity, any subrepresentation in $\ell^2(\operatorname{Fl}(n))$ contains a B(n)-invariant vector. Denote by η a B(n)-invariant function in the Steinberg subrepresentation St in ℓ_2 . Denote by $\eta[\sigma]$ its value on a Schubert cell X^{σ} . By definition, η satisfies the equations $\Pi_i \eta = 0$. It is easy to see that these equations have the form

$$q\eta[\tau_i\sigma] + \eta[\sigma] = 0 \text{ if } I(\tau_i\sigma) > I(\sigma).$$

These recurrence relations have a unique (up to a constant factor) solution, namely, $\eta[\sigma] = (-q)^{-I(\sigma)}$. This also proves Theorem 1.

Denote by $M(\cdot,\cdot)$ the reproducing kernel determining the subspace St. This means that the functions

$$\delta_{\mathcal{V}}(\mathcal{W}) = M(\mathcal{V}, \mathcal{W})$$

are contained in St and for any function f on Fl(n) we have

$$f(\mathcal{V}) = \langle f, \delta_{\mathcal{V}} \rangle_{\ell_2(\mathrm{Fl}(n))}$$

Since St is GL(n)-invariant, the kernel M is GL(n)-invariant, M(gV, gW) = M(V, W). Since the action of GL(n) on Fl(n) is transitive, the kernel is determined by its values for $V = \mathcal{E}$, i.e., by the function $\delta_{\mathcal{E}}$. Moreover, $\delta_{\mathcal{E}}(W)$ is B(n)-invariant, and therefore $\delta_{\mathcal{E}}(W) = s \cdot \eta(W)$.

Remark. This construction of the Steinberg representation is a rephrasing of [1, Theorem 10.2].

¹I.e., for any collection of points $\mathcal{V}_i \in \mathrm{Fl}(n)$, we have $\det_{i,j}\{K(\mathcal{V}_i,\mathcal{V}_j)\} \geqslant 0$.

²See, e.g., [5, Sec. 7.1].

4. The infinite-dimensional limit. Preliminaries. Consider the linear space L whose vectors are two-sided sequences

$$x = (\dots, x_{-1}, x_0, x_1, \dots)$$

such that $x_k = 0$ for sufficiently large k. We represent operators in L as infinite matrices $g = g_{ij}$, where $-\infty < i, j < \infty$. Denote by $B(2\infty)$ the group of all infinite matrices g such that $g_{ij} = 0$ for i < j and g_{ii} are invertible (i.e., we consider all invertible lower triangular matrices). Denote by $GL(2\infty)$ the group of finitary³ invertible matrices. Denote by $GL(2\infty)$ the group of matrices generated by $GL(2\infty)$ and $B(2\infty)$. The group $GLB(2\infty)$ acts in L by the transformations $x \mapsto xg$.

Denote by E_j , where $-\infty < j < \infty$, the subspace in L consisting of the vectors

$$(\ldots, x_{j-1}, x_j, 0, 0, \ldots).$$

Thus we get the standard flag \mathcal{E} :

$$\cdots \subset E_{-1} \subset E_0 \subset E_1 \subset \cdots$$
.

We define the flag space $\operatorname{Fl}(2\infty)$ as the space of complete flags coinciding with the standard flag in all but a finite number of terms. More precisely, consider flags $\mathcal V$ having the following form. Fix $M\leqslant N$. Set $V_j=E_j$ if $j\leqslant M$ and $j\geqslant N$. Consider the finite-dimensional space E_N/E_M and a complete flag in E_N/E_M ,

$$0 = F_0 \subset F_1 \subset \cdots \subset F_{N-M} = E_N/E_M$$
.

For $0 \le \alpha \le N - M$, we set $V_{M+\alpha}$ equal to the preimage of F_{α} under the projection $E_N \to L/E_M$.

Setting $M=-n,\,N=n,$ we see that the space $\mathrm{Fl}(2\infty)$ is an inductive limit of the chain

$$\dots \longrightarrow \operatorname{Fl}(2n+1) \longrightarrow \operatorname{Fl}(2n+3) \longrightarrow \dots$$

The group $GLB(2\infty)$ acts on the space $Fl(2\infty)$.

 $^{^3}$ This means that g-1 has finitely many nonzero matrix elements.

5. The infinite-dimensional limit of the Steinberg representations. We define a function $K(\mathcal{V},\mathcal{W})$ on $\mathrm{Fl}(2\infty) \times \mathrm{Fl}(2\infty)$ as the number of pairs $(i,j) \in \mathbb{Z} \times \mathbb{Z}$ such that

$$V_{i+1} \cap W_{j+1} = V_i \cap W_j.$$

The kernel $K(\mathcal{V}, \mathcal{W}) = (-p)^{-k(\mathcal{V}, \mathcal{W})}$ is positive definite on each space $\mathrm{Fl}(2n+1)$ and, therefore, on the inductive limit $\mathrm{Fl}(2\infty)$. We consider the Hilbert space determined by the reproducing kernel K and the unitary representation of $\mathrm{GL}(2\infty)$ in this space.

- **6. Comparison with earlier papers.** (a) Consider the space L_+ consisting of sequences (x_0, x_1, \ldots) such that $x_j = 0$ for all but a finite number of j. The same construction gives the Steinberg representation obtained in [3].
- (b) Grassmannians and flags in the space L were considered in [6]. However, the topic of [6] is the group of all continuous transformations of (the locally compact Abelian group) L; this group is larger than $GLB(2\infty)$. Also, [6] treats another space of flags, which has empty intersection with $Fl(2\infty)$.

References

- C. W. Curtis, N. Iwahori, R. Kilmoyer, Hecke algebras and characters of parabolic type of finite groups with (B, N)-pairs. — Publ. Math. Inst. Hautes Études Sci. 40 (1971), 81-116.
- 2. W. Fulton, Young Tableaux: with Applications to Representation Theory and Geometry. Cambridge Univ. Press, Cambridge (1997).
- V. Gorin, S. Kerov, A. Vershik, Finite traces and representations of the group of infinite matrices over a finite field; arXiv:1209.4945.
- 4. J. E. Humphreys, The Steinberg representation. Bull. Amer. Math. Soc. (N. S.) 16, no. 2 (1987), 237–263.
- Yu. A. Neretin, Lectures on Gaussian Integral Operators and Classical Groups. EMS, Zürich (2011).
- Yu. A. Neretin, The space L² on semi-infinite Grassmannian over finite field. Adv. Math. 250 (2014), 320-350.
- Yu. A. Neretin, On multiplication of double cosets for GL(∞) over a finite field; arXiv:1310.1596.
- R. Steinberg, Collected Papers. Amer. Math. Soc., Providence, Rhode Island (1997), pp. 580-586.
- 9. A. M. Vershik, S. V. Kerov, On an infinite-dimensional group over a finite field. Funct. Anal. Appl. 32, no. 3 (1998), 3-10.

 A. M. Vershik, S. V. Kerov, Four drafts on the representation theory of the group of infinite matrices over a finite field. — J. Math. Sci. (N.Y.) 147, no. 6 (2007), 7129-7144.

University of Vienna, Vienna, Austria; Institute for Theoretical and Experimental Physics, Moscow; Moscow State University, Moscow, Russia

E-mail: neretin@mccme.ru

Поступило 9 декабря 2013 г.