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ON AN INFINITE-DIMENSIONAL LIMIT OF THE
STEINBERG REPRESENTATIONS

ABSTRACT. We present a construction of the Steinberg representa-
tion that allows for automatically passing to an infinite-dimensional
limit.

Recall that the representation theory of infinite-dimensional classical
groups and infinite symmetric groups is a relatively old well-developed
topic. For infinite-dimensional groups over finite fields, progress appeared
comparatively recently, in [3,9,10] and [6, 7]. This note contains a con-
struction intermediate between these works.

Notation. Denote by F, the field with ¢ elements, and let Fy' be the
coordinate n-dimensional linear space with the standard basis e;. Denote
by GL(n) the group of all invertible matrices of order n. It acts on ' by
the multiplication z + xg of a row x € F} by a matrix g € GL(n).

Denote by S, the symmetric group. It is generated by the transpositions
7j = (4,5 + 1), the relations being 77 = 1, (1;7j41)* = 1, and 7 7; = 7;7
for |k — j| > 2.

By ¢>(Z) we denote the space of complex functions on a finite set Z
equipped with the /> inner product.

1. Schubert cells. Denote by Fl(n) the space of complete flags V in Fy',
V:io=Wcwvc---CV,=Fy, dimV;=j.
Fix the standard flag
E:ECE C---CE,, E, :ZFM-
(59
Denote by B(n) C GL(n) the stabilizer of £. It consists of the lower trian-
gular matrices. For each o € S, we consider the flag
&7 Ef CE] C---CE] where Ef =Fye,q)® - @ Feqy)-
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Orbits of B(n) on Fl(n) are called Schubert cells; for details, see [2, 10.2].
They are enumerated by the elements o € S,,: each orbit contains a unique
flag £7, we denote this orbit by X°.

2. The Steinberg representation. Denote by Fl;(n) the space of in-
complete flags containing subspaces of all dimensions except j. Denote
by m; : Fl(n) — Fl;(n) the map forgetting V;. There is a natural map
Hj : Kg(Fl(n)) — 62 (Flj (n)), defined by

1
i) = - V:W_(ZV)Wf(m-

In fact, the summation is taken over all flags
WoC--CW;jo1 CY CWjy1 C-- CW,,

such flags are enumerated by the subspaces Y satisfying W;_; C Y C
Wj41; or, equivalently, over the set of lines in the two-dimensional space
Wi /Wit

Theorem 1. There exists a unique irreducible representation of GL(n)
that is contained in £2(F1(n)) and is not contained in the spaces (2 (Fl;(n)).

This representation is called the Steinberg representation; for its fasci-
nating properties, see the surveys [4, 8].

3. Definition of the Steinberg representation via reproducing ker-
nels. We define a function £(V, W) on Fl(n) x Fl(n) as the number of all
pairs (i,7), where ¢, j range in {0,1,...,n — 1}, such that

dim V; N W; = dim Vigr N Wit (1)
Define a kernel K (-,-) on Fl(n) by
K(V,W) = (-g) .
By definition, the kernel K(-,-) is GL(n)-invariant.
Proposition 1. The function
kW) = k(E,W)

is constant on Schubert cells X7. The value of k on X7 coincides with

the number I(o) of inversions of o. The number of points of X7 coincides

with ¢*EW)
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Note that (o) coincides with the length of a shortest decomposition of
o into a product of the generators 7;.

Proof. Let us evaluate the number of points of X?. Consider an example.
Let n =6,

000100
01000 0
000010

=11 00 0 0 0 (2)
000001
00100 0

The vectors e, are the rows of this matrix. A B(n)-orbit of the collection
{e,} consists of arbitrary collections of the type

( «x %« % o 0 0 ),
(«x o 0 0 0 0 ),
( x x % % o 0 ),
(o 00 0 0 0 ),
(%« % x % % o )
( x x o 0 0 0 ),

where * denotes arbitrary elements of IF, and o are nonzero elements. We
have o’s on the former positions of units and *’s on the positions to the left

of units. Elements of flags (subspaces) are linear combinations }_ cjeq(j).
i<k
Replacements of the form

€n(j) = o) T D Gi€a(i), AF0,
i<j
do not change the flag. Therefore, we can get 1 on the positions of o’s

and 0 under all units. Thus we see that any flag in the B(n)-orbit of £7 is
generated by a collection of vectors

(= % x 1 0 0 ),
(+ 10000 ),
(« 0 = 01 0 ),
(1000000 (3)
(00 %00 1),
(001000 )

Now for each star we have a unit under this star and a unit to the right
of the star. This pair of units corresponds to an inversion in o.
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Next, let us evaluate the number (i, ) of pairs satisfying (1). The di-
mension of E; N F} is the number of units in the left upper ¢ x j corner
of the matrix o. Condition (1) means that the ¢ x j and (i + 1) x (j + 1)
corners contain the same units. Therefore, units in the (i + 1)th row and
(4 + 1)th column are outside the (i +1) x (j + 1) corner. Hence we have x*
on the (i + 1)(j + 1)th place in (3). O

Lemma 1. The kernel K(-,-) is positive definite.*

Consider the Euclidean space H,, determined by the reproducing kernel?
KWY,W).

Lemma 2. The representation of GL(n) in H, coincides with the Stein-
berg representation.

Proofs of the lemmas. By the Frobenius reciprocity, any subrepresen-
tation in £2(F1(n)) contains a B(n)-invariant vector. Denote by 1 a B(n)-
invariant function in the Steinberg subrepresentation St in ¢». Denote by
n[o] its value on a Schubert cell X7. By definition, 7 satisfies the equations
II;n = 0. It is easy to see that these equations have the form

qnirjo]l +nle] =0 if I(rjo) > I(0).

These recurrence relations have a unique (up to a constant factor) solution,
namely, 77[o] = (—¢)~7(?). This also proves Theorem 1.

Denote by M(-,-) the reproducing kernel determining the subspace St.
This means that the functions

(W) = MV, W)
are contained in St and for any function f on Fl(n) we have

f(V) = <f7 6V>€2(F1(n))-
Since St is GL(n)-invariant, the kernel M is GL(n)-invariant, M (gV, gW)
= M(V,W). Since the action of GL(n) on Fl(n) is transitive, the kernel
is determined by its values for ¥V = £, i.e., by the function d¢. Moreover,
0g(W) is B(n)-invariant, and therefore dg (W) = s - n(W). O

Remark. This construction of the Steinberg representation is a rephrasing

of [1, Theorem 10.2].

lll.e., for any collection of points V; € FI(n), we have det; j {K(V;,V;)} > 0.
2See, e.g., [5, Sec. 7.1].
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4. The infinite-dimensional limit. Preliminaries. Consider the linear
space L whose vectors are two-sided sequences

r = (...,513_1,330,1131,...)

such that x, = 0 for sufficiently large k. We represent operators in L
as infinite matrices g = g;;, where —oco < i,j < co. Denote by B(200)
the group of all infinite matrices g such that g;; = 0 for ¢ < j and gy
are invertible (i.e., we consider all invertible lower triangular matrices).
Denote by GL(200) the group of finitary® invertible matrices. Denote by
GLB(200) the group of matrices generated by GL(200) and B(200). The
group GLB(200) acts in L by the transformations x — xg.

Denote by E;, where —oo < j < oo, the subspace in L consisting of the
vectors

(...,:Uj,l,xj,O,O,...).
Thus we get the standard flag &:

- CE,CEyCE C---

We define the flag space F1(200) as the space of complete flags coinciding
with the standard flag in all but a finite number of terms. More precisely,
consider flags V having the following form. Fix M < N. Set V; = Ej if
Jj < M and j > N. Consider the finite-dimensional space Ey/Ey and a
complete flag in Enx/E)y,

0=FyCF; C -'-CFN,M:EN/EM.
For 0 < a < N — M, we set V44 equal to the preimage of F, under the
projection Ex — L/E);.
Setting M = —n, N = n, we see that the space F1(200) is an inductive
limit of the chain

.— Fl2n+1) — Fl2n+3) — ....

The group GLB(200) acts on the space F1(200).

3This means that g — 1 has finitely many nonzero matrix elements.
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5. The infinite-dimensional limit of the Steinberg representa-
tions. We define a function K (V, W) on F1(200) x F1(200) as the number
of pairs (i,j) € Z x Z such that

Vier " Wi =V, nW;.

The kernel K(V,W) = (—p)~*V"W) is positive definite on each space
F1(2n 4 1) and, therefore, on the inductive limit F1(200). We consider the
Hilbert space determined by the reproducing kernel K and the unitary
representation of GL(200) in this space.

6. Comparison with earlier papers. (a) Consider the space Ly con-
sisting of sequences (xg, 1, ...) such that z; = 0 for all but a finite number
of j. The same construction gives the Steinberg representation obtained
in [3].

(b) Grassmannians and flags in the space L were considered in [6].
However, the topic of [6] is the group of all continuous transformations of
(the locally compact Abelian group) L; this group is larger than GLB(200).
Also, [6] treats another space of flags, which has empty intersection
with Fl(200).
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