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THE SANDPILE GROUPS OF CHAIN-CYCLIC
GRAPHS

ABSTRACT. Firstly, we consider the graphs obtained by gluing a
family of arbitrary finite graphs to the edges of a cyclic graph and
prove that the sandpile group of the resulting graph does not de-
pend on a specific way of doing that. Then, we define the class of
chain-cyclic graphs, which are the graphs obtained by connecting a
finite family of cyclic graphs along a line. Two kinds of formulas for
calculating the sandpile groups of chain-cyclic graphs are proved.

§1. NOTATIONS

Let M be an arbitrary square integer matrix. Denote the multiset of
numbers arranged on the diagonal of the Smith normal form of M (see [3])
by M.

We will use (as in [2]) the definition of the sandpile group of a graph in
terms of the Smith normal form of the Laplacian matrix of this graph:

Definition 1. The sandpile group of a graph G is the group S(G) =
& C., where M is a Laplacian matriz of G. (Here and below C,, is

a€(M\{0})

a cyclic group of order n.)

(More detailed information about the two classical definitions of the
sandpile groups can be found in [1].)

One can also write S(G) = @ C,, where M’ is obtained from M by

acM’

removing the row and column containing an arbitrary diagonal element
(due to the properties of the Laplacian matrix).

Also, A = B, where the matrix B is obtained from the matrix A by
a single operation of addition/subtraction of one column/row to another
(due to the properties of the Smith normal form). Hence, the permutation
of rows or columns of a matrix, as well as their multiplication by —1 does
not affect the Smith normal form of this matrix.

Key words and phrases: sandpile group, Smith normal form, chain-cyclic graph.
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§2. MAIN THEOREM

Let F and G be some graphs. Let fi, fo be non-negative integer-valued
functions on the set of vertices of F', and g1, g2 be non-negative integer-
valued functions on the set of vertices of GG. Denote by T a cyclic graph
consisting of n vertices. We can label the vertices of these graphs by natural
numbers as follows:

1. r vertices of F' are numbered from 1 to r;

2. n vertices of T are numbered from r + 1 to r + n in the order they
appear in the loop;

3. s vertices of G are numbered from r +n + 1 to r +n + s.

Now, for ¢ € Z,0 < i < n — 2 we construct a new graph H; as follows:

1. connect each vertex v of G with r + n — 1th vertex of T' by g1 (v)
edges;

2. connect each vertex v of G with 7 + nth vertex of T by g»(v) edges;

3. connect each vertex v of F with r + ith vertex of T by fi(v) edges
(if 1 <4 < n —2); or connect each vertex v of F' with r 4+ nth vertex of T'
by fi(v) edges (if i = 0);

4. connect each vertex v of F' with r+i+ 1th vertex of T by f2(v) edges.

For example, if the graphs F', T, G are as shown in Fig. 1 — —3 and
functions f1, f2, 91,92 are such that

[) =1, f1(2) =0, f1(3) =0,
f(1)=0, £(2)=0, f2(3) =2,

gl(lo) = ]-7 gl(]']') = ]-7

92(10) =1, go(11) =11
then the resulting graphs H; and H, are shown in Figs. 4 and 5.

5 7
9 .<I 10 0—e 11
1 6 8
Fig. 3. G

Theorem 1. The structure of the sandpile group of H; does not depend
on the choice of i.
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Fig. 4. H;

Proof. It suffices to show that S(Hy) = S(Hg4+1) for any k € Z, 0 < k <
n—3.

Here we only consider the case 1 < k < n — 4. (For the cases k = 0
and k = n — 3 the proof does not change, but the matrices are somewhat
different from those described below.)

We denote the Laplacian matrices of Hy, and Hy1 by A and B, respec-
tively:

Ain A A By Bz Bigs
A= |A4y1 Arp Ass ], B=|DBy1 Byz B3
As1 Asn Asgs B3, DBss Bsgz

Both matrices are divided into 9 blocks.
Block (1,1) is the Laplacian matrix of F', which is modified by subtrac-
tion of p; from the diagonal elements.

—Pp2
Ai1=Bi1 =

—Dr-1
—Dr

Block (3,3) is the Laplacian matrix of G, which is modified by subtrac-
tion of ¢; from the diagonal elements.

(In these formulas we only show the numbers that should be subtracted
from the diagonal elements of the corresponding matrices.)

Block (2,2) is the Laplacian matrix of 7', which is modified by sub-
traction of w’,xz’,y’, 2z’ from the diagonal elements corresponding to the
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A3 3 =B33 =

vertices connected to the vertices of F' and G.

-2 1

1 -2 1

1

Azp =

)

-2 1

-2 1

1

Here the numbers z’,y’

_2

-2 1
1

—q1
—q2
—Qs—1
—(s
1
1
—2—w’ 1
1 —2—z' 1
1 -2 1
1 -2 1
1
L2 1
1 —2—y 1
1 —2—2
1
-2 1
1 —2—w' 1
1 —2—z' 1
1 -2 1
1
L2 1
1 —2—y" 1
1 —2-2

, 2, w' are equal to the numbers of edges that

connect the graphs F' and G with the respective vertices of the cycle T'.

Note that

/
§ wi, T = E L,

1<i<r 1<i<r
r_
Yi, =z = Zi,
1<i<s 1<i<s
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Pi =x; +wi, ¢ =Y+ zi.

Blocks (1,2) and (2, 1) contain numbers z; and w;, which correspond to
the numbers of edges connecting different vertices of F' with two vertices
of T

Block (1,2):

0 - 0 w, #1 0 -+ 0
0 -+ 0 w, & 0 - 0
The nonzero columns of A;» are numbered as k and k + 1, and the
nonzero columns of B; », are numbered as k+ 1 and £+ 2. 4y, = ALZ,
By = BIT72.
Blocks (2,3) and (3,2) contain numbers y; and z;, which correspond to

the number of edges connecting different vertices of G' with two vertices
of T.

0 PR 0 yl Zl
Az2 = B3z = A£3 = BzT,g = : : :
0 0 ys zs
Blocks (1,3) and (3,1) are empty:
0 --- 0

Aig=Biz=A], =Bf, =|: -
0 --- 0

The main difference between these matrices (matrices A and B) is the
difference between numbers of rows and columns that contain numbers
Wi, Li,Yi> Zi-

Let us denote by A’ the matrix obtained from A by removing the
(n + r)th row and column:

! ! !
A1,1 A1,2 A1,3
r_ / / /
A= A2,1 Az,z A273
/ / i
A3,1 A3,2 A373

!/ —_ !/ —_ / _ / —
Here A171 = A171, A173 = A173, A3,1 = A371, A3’3 = A373.
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Block (1, 2):
0 - 0 w, , 0 -~ 0
A=Al =1 0 r
0 - 0 w, . 0 -~ 0
The nonzero columns of A , are numbered as k and k + 1.
Block (3, 2):

0 0 wn
A(3,2) = A, = :
0 0 ys
Block (2,2):
-2 1
1 -2 1
1
-2 1
o 1 —2—w 1
o5 = 1 —2—z' 1
2,2 1Y e
1 -2 1
1
L2 1

1 —2—y
Let us denote by B’ the matrix obtained from B by removing the
(r + 1)th row and column:
Bl, B, Bl
B' = B§,1 Bé,z B§,3
By, Bi, Biy

Here Bi,l = Bl,l: Bi,B = 3173, B§71 = B371, B§73 = B373.

Blocks (1,2) and (2,1) coincide with the respective blocks of the ma-
trix A’

B{,z = A/Lza B§71 = sz-

Block (3,2):

I _ T __
B3, =By =
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Block (2, 2):

B! . = 1 —2-2’ 1
2,2 1 21

1 —2—y 1

We need to show that A’ = B’. To do this, we perform a series of actions
with columns and rows of B’.

We add the last s + 1 rows to the (r + n — 2)th row. Only the blocks
(2,2) and (2, 3) get changed:

-2 1
1
-2 1
1 -2 1
9 9 1 —2—w 1
(2,2) = Lo
1
-2 1
1 -1 -1
1 —2—z
0O --- 0
(2,3) =
0O --- 0

z1 Zs
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We add the last s + 1 columns to the (r + n — 2)th column. Only the
blocks (2,2) and (3,2) get changed:

-2 1
1
-2 1
1 -2 1
1 —2—w 1
(2,2) = 1 22 1
1 -2 1
1
-2 1
1 -2 -1
-1 —2—2'
0 0 z1
G.2)=(: . 1
0 -+ 0 2z

We add the last s rows to the (r + n — 1)th row. Only the blocks (2, 2)
and (2,3) get changed:

-2 1
1
-2 1
1 -2 1
1 —2—w’ 1
(2,2) = PV
1 -2 1
1
=21
1 -2 -1
-1 -2
o .- 0
(2,3) =
o .- 0
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We add the last s columns to the (r +n — 1)th column. Only the blocks
(2,2) and (3,2) get changed:

-2 1
1
-2 1
1 -2 1
9 9 1 —2—w' 1
(2,2) = Lo L
1
-2 1
1 -2 -1
-1 —2—y/
0 0 —-n
(372): . - 8
0 -+ 0 —y,s

Finally, we change signs of (r +n — 1)th row and column to obtain the
matrix A’. Only the blocks (2,2), (2,3), and (3,2) get changed:

-2 1
1
-2 1
1 -2 1
1 —2—w 1 ,
(2,2) = 1 —21—x’ 1 = A, ,,
1
-2 1
1 -2 1
1 —2—y
(') 0 0 0
(2,3) = 6 - (:) =Aygr (32)=[: - 1 =45,
0 --- 0
Yoo Ys Ys

The blocks (1,1), (1,2), (2,1), (1,3), (3,1), (3,3) have not changed and
coincide with the corresponding blocks of the matrix A. So A’ = B’ and
the theorem is proved. (I
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There is also a weaker version of this theorem that is applicable to
a smaller class of graphs. The proof of the second theorem can be done
without cumbersome manipulations with matrices.

Let F' be an arbitrary planar graph and f is one of its edges that is
adjacent to the outer face of F'. Let G be an arbitrary planar graph and ¢
is one of its edges that is adjacent to the outer face of G. Let T" be a cyclic
planar graph on n vertices. The edges of T are marked as tg,t1,---,tn—1
in the order they appear on the loop.

Fori € Z,1 <i < n—1 we construct a planar graph J; as follows:

1. We merge the edges ¢y and ¢ in such a way that all vertices of G are
placed on the outer face of T'.

2. We merge the edges t; and f in such a way that all vertices of F' are
placed on the outer face of T'.

We assume that the structure of F' and G (as planar graphs) is preserved
and notice that the cycle of T now has exactly n—2 edges that are adjacent
to the outer face of J;.

Theorem 2. The structure of the sandpile group of J; does not depend
on the choice of 1.

Proof. It suffices to show that for every 2 < ¢ < n — 1 the sandpile groups
of J; and J; are isomorphic. There is a theorem which states that the
sandpile groups of a planar graph and its dual graph are isomorphic ( [4]). It
is obvious that the graphs J| and J/ (that are duals, respectively, of J; and
J;) are isomorphic, which implies that S(J;) =2 S(J;) = S(J)) = S(J;). O

§3. CHAIN-CYCLIC GRAPHS

The theorem proved above can be used to calculate the sandpile groups
for a class of graphs that we call chain-cyclic graphs. This is the union of
a countable family of finite sets of graphs denoted by CH(ay,as,. .., a,),
where a; € Z, a; > 2,4 € [L...n]. In order to give the exact definition,
we assume that every graph G belonging to this class has a distinguished
cycle L(G) = [v1,. .., vk].

Starting from n = 1, we declare that the class CH(a) contains only one
graph, namely, the cycle T, on a vertices vy,...,v, (numbered along the
cycle), and we set L(T,) = [v1, ..., V).

Then we proceed by induction. Every graph G € CH(ay,as,...,an41)
is constructed from some graph H € CH(ai,as,...,a,). Let L(H) =
[wy,ws,...,wg]. Fix an arbitrary integer 4, such that 1 < ¢ < k. Add
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to the graph H a linear chain of a,y1 — 2 vertices vy, ...,vq,,,—2, con-
nected by edges in accordance with the order of indices. Connect vertices
v1 and w; by one edge and connect vertices v,,,, 2 and w;;1 by another
edge. Now let L(G) = [wi,v1,...,Va, -2, Wit1]). (If apy1 = 2, we just
need to add one more edge between vertices w; and w;4+1 and suppose that
L(G) = [w;,wit+1].) At this point the construction of G is complete. For
example, Fig. 6 shows a graph of class CH(3,6,4,6) (here straight lines
denote the edges of the subgraph of class CH(3,6,4)).

7 v4

3 wd w3 v3

2
v2

1 wl w2

4 vl
Fig. 6. G € CH(3,6,4,6)
Less formally, any graph G € CH(ay,as,...,a,) consists of a “chain”,

obtained through a series of connection (by edges) of an ordered set of
cyclic graphs with lengths ay,as, ..., a,. For example Fig. 7-9 show three
different graphs belonging to the class CH(3,6,4,6).

It is obvious (by main theorem) that for any G, H € CH(aq, az, - .., ay)
we have S(G) = S(H). For example, the sandpile group of each of three
graphs shown in Fig. 7-9 has the structure of Csrs.

For each class CH(ay,as,...,a,) we choose a canonical representa-
tive of this class — a graph that is arranged in such a way that all of
its n main cycles have a common vertex. We will denote this graph by
Ch(ai,as,...,ay). For example, the canonical representative of the class
CH(3,6,4,6) is shown in Fig. 10.

Now our task is to calculate the sandpile group of each of these canonical
representatives.

What is the Laplacian matrix of the graph Ch(ay,as, ..., a,)? Suppose
that it has k& + 1 vertices. Let us enumerate them as follows. The only
common vertex of all cycles is assigned the number £+ 1. All other vertices
are given the numbers from 1 to k& to match the order they appear in the
“outer” cycle of the whole graph. An example of numbering of the vertices
in Ch(3,6,4,6) is shown in Fig. 10.
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Fig. 7. G € CH(3,6,4,6)
Fig. 8. G € CH(3,6,4,6)

Fig. 9. G € CH(3,6,4,6)

11 3 5

Fig. 10. Ch(3,6,4,6)

Obviously, in such a numbering the Laplacian matrix of the graph
Ch(ay,as,...,a,) looks as follows:

hl 1 z1
1 h2 1 2)
1 .

hg—1 | 1| 21

z1 | 22 | | Zr—1 | 2k | bt
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We remove the last column and the last row of the matrix and denote
the resulting matrix by M:

hi | 1
1 |he| 1
1
hr—1| 1
1 I,

To calculate the sandpile group of the graph Ch(aq,as,...,a,) it is
sufficient to compute the Smith normal form of the matrix M.

We transform M as follows:

1. From the second row we substract the first row hy times. The second
row takes the form (r9,0,1,0,...,0), where, ro =1 —rihy, 11 = hy.

2. For i from 3 to k we repeat the following procedure:

From the the ¢th row we substract the ¢;th row h; times, then once from
the ith row we subtract the (i — 2)th row.

As aresult, the ith row becomes (r;,0,...,0,1,0,...,0), where the num-
ber 1 is in the (¢ + 1)th position. r; = —r;_1h; — ri_2.

3. Finally we move the last line to the first position.

Now, the matrix takes the form:

Tk
r1 1

Tp—2 1
Tr—1 1

It is clear that the “unwanted” elements of the first column can be
removed by manipulation with other columns. Therefore, the Smith normal
form of the matrix M looks like

1

Tk

So the group of the graph Ch(ay,as,...,a,) is cyclic and we need only
to determine its cardinality.
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We use the well-known statement about the cardinality of the sandpile
group of a graph. Namely, the cardinality of the sandpile group of a graph
equals the number of spanning trees of this graph ([1]).

Let us count the number of spanning trees of a graph of class
CH(al, as,...,0an, an+1).

We define a series of functions F;(x1,xa,...,x;), i€N:

F,(a1,...,a,) =|Ch(ay,...,a,)|

Next, recall that our graph is obtained from the graph of class
CH(ay, a9, ...,a,) by adding of a,4+; — 2 vertices and a,4+1 — 1 edges.
These additional edges together with edge u (which previously belonged
to the graph of class CH(a1, az, - ..,ay)) constitute a cycle of length a,41.
(For example, Fig. 11 shows a graph of class CH(3,6,4,6) with its edge
u.)

To obtain a spanning tree, we need to remove some edges belonging to
this cycle. Here we have two options:

1. Remove exactly one of ap+1 — 1 edges (which differ from u) in
the cycle of length a, (edge that did not belong to the graph of class
CH(ay, a9, ...,a,)). (Example of the result of such an operation on the
graph of class CH(3,6,4,6) is shown in Fig. 12.) It is clear that we can
not remove more edges from this set, if we are going to get a spanning
tree. We get a graph with number of spanning trees equal to the number

of spanning trees of Ch(ay,as,...,a,), which means that here we have
(ant1 —1) - F,(ay,as,...,a,) opportunities to construct a spanning tree.
Fig. 11. The
graph of class Fig. 12. CH(3,6,4,6) — CH(3,6,4)
CH(3,6,4,6)

2. Do not delete any of a,+1 — 1 edges (which differ from u) of cycle of
length n (edges that did not belong to the graph of class CH(ay, as, . . ., a)).
In this case, the only way to get rid of the cycle is to remove the edge u. Af-
ter removing it, we get a graph of class CH(ay, a2, .. .,an—1, @n+apy1 —2).
(Fig.13 shows a graph obtained from the graph of class CH(3, 6,4, 6) by re-
moving the edge u. The edges, which we agreed not to remove, are marked
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by curved lines. Fig.14 shows the graph, obtained from the graph of class
CH(3,6,8) by “contraction” of fixed edges.) But since we have agreed not
to touch the a,+1 — 1 edges, then it is clear that the number of span-
ning trees that we can get is the same as the number of spanning trees
of the graph Ch(ay,as,...,an—1,a, — 1), which means that here we have
F,(a1,a2,...,a,—1) opportunities to construct a spanning tree. Generally
speaking, there is an inaccuracy. There is no description of how to act in
the case a,, = 2. This inaccuracy will be corrected later.

LIt L

Fig. 13. A graph Fig. 14. A graph
of class CH(3,6,8) of class CH(3, 6, 3)

It is also clear that the cyclic graph Ch(a) has exactly a spanning trees.
So now the functions F; are defined as follows:

Fl(l'l) = $1,Fi+1($1,$2, . ,;L'i,il,'i+1)
= Fi(z1,20,...,2; — 1) + (x41 — 1) - Fi(z1,20,...,2;). (1)

Generally speaking, such a definition of the functions F,, is “redun-
dant” in the sense that their values are determined by including the cases
where some of the arguments are equal to 1 (despite the fact that in
the description of Ch(ay,...,a,) all the arguments are larger than 1).
This feature is used to eliminate the inaccuracies that arose in count-
ing the spanning trees of a graph. Suppose we have a graph of the class
CH(a, a9, ...,ax,2,2,...,2,2,m), where ar > 2. We can calculate the
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corresponding value of F,, using the new recursive definition:

F.(a1,az,...,0,,2,2,...,2,2,m)
=(m—1) F_1(a1,a9,...,a,2,2,...,2,2)
+ Fh_1(a1,a2,...,05,2,2,...,2,1)
=(m-1)-F,_1(a1,a9,...,ax,2,2,...,2,2)
+(1-1)-F,—2(a1,a2,...,0,,2,2,...,2)
+ Fh_2(a1,a2,...,0%,2,2,...,1)
=--=(m-1)-F_1(a1,a2,...,a,2,2,...,2,2)
+ Fi(a1,as,...,ar —1).

This result is consistent with the process of counting the spanning trees:

1. The number (m — 1) - F,,_1(a1,az,...,a,2,2,...,2,2) corresponds
to the case when we remove one of m — 1 edges (which differ from ) in a
cycle of length m.

2. When we intend to save the m —1 edges, we are obliged to remove not
only the u, but all other edges connecting vertices that are connected by the
edge u. When we do that, we get a graph of class CH(ay, as, . .., ar+m—2).
Since we have agreed not to touch m — 1 of its edges, then the number of
spanning trees that we can get equals the number of spanning trees of the
graph Ch(aq, az, . ..,ar—1). This number is precisely Fi (a1, az,-..,a;—1).

Hence the functions F,, are well-defined.

Now we find a non-recursive representation of functions F,,. To do this,
we need some auxiliary objects.

For non-negative integers ¢, j define the set C; ;.

I € C;; if and only if all of the following conditions are true:

1.ICN.

2. I = .

.zel=1<z<].

4. (a,bela<b| (Vte(a,b)=t¢I)=(b—a=1 (mod2)).

5. j —max(I) =0 (mod 2).

We also define the sets A; ; and B; ; as follows:

1. Ci’j = Ai’j |_|Bi’j.

2.I€Bi7j<:>j€.[.

We define the functions a; j, 8;,j,7i,; and ] ;:

Oé,'J(.’,L'l,...,;I,'j) = Z 1% H L.

I€A;; el
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Bij(@,...,x;)) = > 1x]]a.

IeB; ; icl

’}/,'73'(;1,'1,...,.’1,'3') = Z 1% H ZLj-

I1eC;,; icl

l{,j(xh . ,.’L'j_l) = Bm(xl, . ,iEj_l, ].)
Thus, for example, with ¢ = 3, j = 7 these functions are:
a3 7(T1,...,T7) = T1T2%3 + T1T2T5 + T1T4T5 + T3T4T5
Bar(Ty,. .., 27) = T1T2T7 + 10427 + T1T6T7 + T3T4T7 + T3T6T7 + T5TeT7
7377(:1:1, ceey :C7) = T1T203 +T1T2T5 +T1T2T7 +T1T4T5 +T1T4T7 +T1TeT7 +
T3L4T5 + T3T4T7 + T3T6T7 + T5T6l7
By 7(w1,...,06) = T1T2 + T1T4 + T1T6 + T3T4 + T3T6 + T5T6

It is clear that v; ; = a; j + B ;.
It is also easy to check that for any positive ¢, the following equation
is true:

Yig = Tj Yie1,j-1 + Biv1j1- (2)
For n € N we define a function G,:
Gn(xla ce :xn) =Yn,n — Tn—2,n + Yn—4n — Yn—6n ", (3)

where the sum extends while the first subscript is non-negative.
To be more specific:
1. Gag = Yak,ak — Yak—2,4k + -+ Y0,4k5
2. Gak41 = Vakt1,4k4+1 — Vak—1,4k+1 + = + V1 4k+1;
3. Gakt2 = Yak+2,4k+2 — Vak,dk+2 = Y0,4k+25
4. Gapqs = Yak+3,4k+3 — Vdk+1,4k+3 T 00— V1,4k+3-

Theorem 3. G, (z1,...,z,) = F(z1,...,2,)
Proof. Gi(z1) =711 =21 = Fi(x).

Suppose that G; = F;. We must show that G;11 = F;y1. To do this,
according to (1), it suffices to show that

Gip1(z1, 02, .-, @i, Tip1) = Fi(xy,m2,.. . 2 — 1)
+(zit1 — 1) - Fi(z1, 22, ...,2;) = [by the induction hypothesis]

= Gi(l‘l,xg,...,l'i — ].) + (iU,'_H — ].) . Gi(:El,LEQ,...,;L'i).
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Indeed, consider, for example, the case ¢ = 4k (for the remaining cases
the chain of equalities is built in a similar way):

Gi(w1,m2,.. ., — 1) + (w341 — 1) - Gi(w1, 72, ..., T3)

= Gup(z1, 22, ..., Tar, — 1) + (Tap41 — 1) - Gag(x1, 22, ..., Tag)

= (Vak,ak — Vak—2.4k + - + Yo,45) (X1, T2, . .., Tar — 1)

+ (Tak+1 - Vakak — Tak+1 - Vak—2,4k + - — Tak+1 - V2 4k

+ Tagt1 - Y0,ak) — (Vak,ak — Vak—2,ak + - — Y24k + Y0,4k)

= (oukak — Cak—24k + -+ @oar)(T1,T2, . .., Tap — 1)

+ (Bak,ak — Bak—2,4k + -+ Boar)(®1, T2, ..., Tap — 1)

+ (Tag+1 - Vak,ak — Takt1 - Vak—2,4k + - — Tag1 - V2,48 + Tak+1 - Y0,4k)
— (Vag,ak — Vak—2,ak + - — V2,48 + Y0,4k)

= (Qak,ak — Cuk—2,4k + - + o ar) + (Bar,ar — Bak—2,46 + - + Bo,ak)

(Biar — Bag—2.ax + -+ Bo.ax)
+ (3341c+1 “Yak,dk — Tdk+1 - Yak—2,4k T 0 — Tak+1 * V2,4k
+ Tagt1 - Y0,ak) — (Vak,ak — Vak—2,ak + - — Y24k + Y0,4k)
= (Yakak — Vak—2,4k + - — V2,4 + Y0,4k)
+ (Bagar — Bag—2,ar + -+ Bo.ax)
+ (Tak+1 - Vak ak — Tdk+1 - Vak—2,4k + - — Takt1 - V2,4k + Tak41 - Y0,4k)
— (Vag,ak — Vak—2,ak + - — V2,4 + Y0,4k)
= (Bigar — Bar—oar + -+ Boar)
+ (Tag+1 - Vak,ak — Takt1 - Vak—2,4k + - — Tap1 - V2,48 + Tak+1 - Y0,4k)

= Zart1 - Varak — (Bagap + Tart1 - Yar—2,4k) + - + (B ap,

+ Typ41 "70,4k) - /8674]9 = [by (2)] =T1T2...T4pTak+1 — Vak—1,4k+1

+- o+ 74k41 — 0

= Vakt14k+1 — Vak+1,4k41 o F V1 ak+1 = Gargr = Gigr. O

Thus, we can formulate the last theorem.

Theorem 4. S(Ch(ai,...,an)) = Cp,(ay,...an) = Car(ar,....an), Where Fy,
G, are defined by (1), (3).
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