3auCKu HayIHBIX
cemuHapos [IOMU
Tom 421, 2014 r.

V. P. Gerdt, A. M. Khvedelidze, Yu. G. Palii

DESCRIBING ORBIT SPACE OF GLOBAL UNITARY
ACTIONS FOR MIXED QUDIT STATES

ABSTRACT. The unitary U(d)-equivalence relation between elements
of the space P4 of mixed states of d-dimensional quantum sys-
tem defines the orbit space P /U(d) and provides its description in
terms the ring R[P4]V(® of U(d)-invariant polynomials. We prove
that the semi-algebraic structure of PB4 /U(d) is determined com-
pletely by two basic properties of density matrices, their semi-posi-
tivity and Hermicity. Particularly, it is shown that the Processi—
Schwarz inequalities in elements of integrity basis for R[3;]Y(4)
defining the orbit space, are identically satisfied for all elements

of m+.

§1. INTRODUCTION

The basic symmetry of isolated quantum systems is the unitary invari-
ance. It sets the equivalence relations between the states and defines the
physically relevant factor space. For composite systems implementation
of this symmetry has very specific features leading to a such non-trivial
phenomenon as the entanglement of quantum states.

The space of mixed states, B , of d-dimensional binary quantum sys-
tem is locus in quo for two unitary groups action: the group U(d) and the
tensor product group U(d;) ® U(dz), where dj,d, stand for dimensions
of subsystems, d = did>. Both groups act on a state ¢ € ‘B4 in adjoint
manner

(Adg)e=geg™". (1)
As a result of this action one can consider two equivalent classes of p;
the global U(d)-orbit and the local U(d;) ® U(dz)-orbit. The collection
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of all U(d)-orbits, together with the quotient topology and differentiable
structure defines the “global orbit space”, B /U(d) , while the orbit space
PB+/U(d1) ® U(dy) represents the “local orbit space” , or the so-called en-
tanglement space E4, x 4,- The latter space is proscenium for manifestations
of the intriguing effects occurring in quantum information processing and
communications.

Both orbit spaces admit representations in terms of the elements of in-
tegrity basis for the corresponding ring of G-invariant polynomials, where
G is either G = U(d) or G = U(d;) ® U(dy). This can be done implement-
ing the Processi and Schwarz method, introduced in 80th of last century
for description of the orbit space of a compact Lie group action on a linear
space [1,2]. According to the Processi and Schwarz the orbit space is iden-
tified with the semi-algebraic variety, defined by the syzygy ideal for the
integrity basis and the semi-positivity condition of a special, so-called “gra-
dient matrix”, Grad(z) > 0, that is constructed from the integrity basis
elements. In the present note we address the question of application of this
generic approach to the construction of B4 /U(d) and PB4 /U(dy) @ U(ds).
Namely, we study whether the semi-positivity of Grad-matrix introduces
new conditions on the elements of the integrity basis for the correspond-
ing ring R[P,]“. Below it will be shown that for the global unitary in-
variance, G = U(d), the semi-algebraic structure of the orbit space is
determined solely from the physical conditions on density matrices, their
semi-positivity and Hermicity. The conditions Grad(z) > 0 do not bring
new restrictions on the elements of integrity basis for R[J,]V(9) . Opposite
to this case, for the local symmetries the Processi and Schwarz inequali-
ties impact on the algebraic and geometric properties of the entanglement
space.

Our presentation is organized as follows. In section 2 the Processi and
Schwarz method is briefly stated in the form applicable to analysis of
adjoint unitary action on the space of states. In section 3 the semi-algebraic
structure of PB4 /U(d) is discussed. The final section is devoted to a detailed
consideration of two examples, the orbit space of qutrit (d=3) and the
global orbit space of four-level quantum system (d=4).

§2. THE PROCESSI-SCHWARZ METHOD

Here we briefly state the above mentioned method for the orbit space
construction elaborated by Processi and Schwartz for the case of compact
Lie group action on a linear space [1,2].
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Consider a compact Lie group G acting linearly on the real d-dimensi-
onal vector space V. Let R[V]% is the corresponding ring of the G-invariant
polynomials on V. Assume P = (p1,pa,...,Pq) I8 a set of homogeneous
polynomials that form the integrity basis,

R[ﬂ?l,ﬂfz, s 7$d]G = R[plap27 s 7pq] .

Elements of the integrity basis define the polynomial mapping;:

p: V—)Rq, (;Ul,CUQ,...,ZUd)_>(p1;p27-"7pq)' (2)

Since p is constant on the orbits of G it induces a homeomorphism of the
orbit space V/G and the image X of p-mapping; V/G ~ X [1,2]. In order
to describe X in terms of P uniquely, it is necessary to take into account
the syzygy ideal of P, i.e.,

IP = {h S R[ylay%"';yq] : h(p17p27"'7pq) = 0} - R[V] .

Let Z C R? denote the locus of common zeros of all elements of Ip , then
Z is affine variety in R? such that X C Z. Denote by R[Z] the coordinate
ring of Z, that is, the ring of polynomial functions on Z. Then the following
isomorphism takes place [3]

R[Z] ~ R[y1,y2,---,yq]/Ip = R[V]G .

Therefore, the subset Z essentially is determined by R[V]Y, but to de-
scribe X the further steps are required. According to [1,2] the necessary
information on X is encoded in the semi-positivity of ¢ X ¢ matrix with
elements given by the inner products of gradients, grad(p;) :

||Grad||ij = (grad (pz) ,grad (pj)) :

Briefly summarizing all above, the G-orbit space can be identified with
the semi-algebraic variety, defined as points, satisfying two conditions:

a) z € Z, where Z is the surface defined by the syzygy ideal for the
integrity basis of R[V]%;
b) Grad(z) > 0.

Having in mind these basic facts one can pass to the construction of
the orbit space PB4 /U(d). At first we describe the generic semi-algebraic
structure and further exemplify it considering two simple, three and four
level quantum systems.
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§3. SEMI-ALGEBRAIC STRUCTURE OF P, /U(d)

The first step making the Procesi-Schwarz method applicable to the
case we are interested in consists in the linearization of the adjoint U(d)-
action (1). For the unitary action one can achieve this as follows. Consider
the space Hyxq of d x d Hermitian matrices and define the mapping

d2
Haxa — R ;
Q11 = V1, 012 =0V2,...,01d = Ud, Q21 =Ud+1---, Qdd = Vq2-

Then it can be easily verified that the linear representation on R®

v'=Lv, LeU(d)®Ud),
where a line over expression means the complex conjugation, is isomorphic
to the initial adjoint U(d) action (1).

Now the corresponding integrity basis P = (p1,ps,-..,pq) for the ring
of invariant polynomials is required for the mapping (2). For its con-
struction the following observation is in order. Starting from the center
Z(su(d)) of the universal enveloping algebra ${(su(d)), according to the
well-known Gelfand’s theorem, one can define an isomorphic commutative
symmetrized algebra of invariants S(su(d)), which by turn is isomorphic
to the algebra of invariant polynomials over su(d) [4]. The later provides
the required resource for coordinates that can be used to parameterize
the orbit space PB4 /U(d). For our purpose it is convenient to choose the
integrity basis that is formed by the so-called trace invariants. Namely,

we use below the polynomial ring R[vi, vy, ..., vg2]" D = R[t1,ta,. .., t4],
with n basis elements
te=tr(o"), k=12.....d. (3)
In terms of the integrity basis (3) the Grad—matrix reads
d 2t1 3t2 te dtd—l
2t 2%ty 2-3tg .-+ 2-diy
Grad(ty, ba, ... tg)=| Stz 2:3ts 3% o Bedtaps | - (g)
dtg—1 2-dty 3-dtgyr --- d’tag_»

In (4), polynomials ¢ with k& > d are expressed as polynomials in
(t1,t2,...,tq). From (4) one can easily obtain that

Grad(ty, ta, ..., tq) =xDisc (t1,ta, ..., tq) X° , (5)
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where x = (1,2,...,d) and Disc (t1,t2,...,tq) denotes the matrix

d t1 to et
t1 to t3 e tq
Disc (t1,ta,... tg)=| t2 ts ta - tap | (6)
tg—1 ta tar1 - t2q—2

In one’s turn the matrix (6) can be written as “square” of the Vandermonde
matrix, Disc (t1,%2,...,t4) = AAT,

1 z; a2 =t
1 2o 23 ... 207!
2 -1
A(;Ul; 7$d) =|1 @ e T3 ) (7)
1 x4 :1:3 .. ng

whose columns are determined by powers of roots (z1,%2,...xq) of the
characteristic equation:

detfle - of = 2% — S1a" " 4 Spa 2 — o (<15 =0, (8)

The semi-positivity condition of the matrix (6) guaranties reality of the
roots of (8). Thus, semi-positivity of the Grad-matrix is equivalent to the
reality condition of eigenvalues of the density matrix ¢ written in terms
of the U(d) polynomial scalars. Finally, noting that the density matrices
by construction are Hermitian, we convinced that the Procesi—-Schwarz
inequalities are satisfied identically on B .

Summarizing, the algebraic structure of the orbit space P /U(d) is
completely determined by the inequalities in elements of the integrity basis
for polynomial ring R[t1,ta,...,t4] originating from the Hermicity and
semi-positivity requirements on density matrices.

§4. TWO EXAMPLES

Algebraic structure of the orbit space of quantum systems is highly in-
tricate. The examples of d=3 (qutrit) and d=4, considered below, demon-
strate the degree of its complexity even for the low dimensional systems.
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4.1. Orbit space of qutrit. Qutrit is 3-dimensional quantum system

and the integrity basis for U(3)-invariant polynomial consist from first,

second and third order trace polynomials; t1,%2,t3. For a visibility below

we consider the case of normalized density matrices, supposing t; = 1.1
The condition of the eigenvalues reality is

1
0<3 (3t5 — 21t5 + 36t3ts + 9t, — 18t — 8t5 — 1) , (9)

while the semi-positivity of density matrices formulated as non-negativity
of coefficients of characteristic equation (8) reads

0< 1(1 ty) < 1
X 2 2) X 37
0<1(1 3t -|-2t)<1
X 6 2 3) X 9 .
Resolving the inequalities
1
- <ty <1
3 Sk
3t L <3 < 3t L
2 2 2 X3 X 2 2 6
—4 4+ 18ty — V2(3ty — 1)%/% < 18t3 < —4 + 18t + V2(3ty — 1)%/2

we get the intersection domain shown on Fig. 1. The triangle domain A-
B-C, bounded by the lines:

1
A-B  t3 = —(—4+ 18ty + V2(3t, — 1)*/?)

18
1

A-C t3= 1—8(—4 + 18ty — V/2(3ty — 1)%/2)
3 1

B—C t3 = §t2 - 5

11t is worth to note that description of the qutrit orbits is similar to the studies of
the flavor symmetries of hadrons, performed more than forty ears ago by by Michel and
Radicati [5] (cf. the method adaptation to the analysis of space of quantum states [6-8]).
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with vertexes *: A(%, ), B(1,1) and C(3,$), represents the orbit space
of qutrit in parametrization of trace polynomial coordinates.

3
1.0
0.8
0.6
0.4

0.2

-
0.0 0.2 0.4 0.6 08 1.0

Fig. 1. Triangle domain A-B-C as the orbit space of qutrit.

Now it is in order to discuss correspondence between the above algebraic
results and known classification of orbits with respect to their stability
group. Having in mind this issue consider the Bloch parametrization for
qutrit

p=3 (s+V3E-N), (10)

where & = (£,&, -+ ,&) € R3 denote the Bloch vector and X is the
vector, whose components are elements (A1, A2,---,Ag) of su(3) algebra

2Note that the straight line B-C is tangent to the curve A-B at the point B

dts 1 3/2
D51 (3t —1)%2,
a, TR

dt3| o 3
dto =1 = 2°
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basis, say the Gell-Mann matrices,

01 0 0 —i 0
=10 0o x=|i 0 0] x=
0 0 0 0 0 0
0
1 (11)
0

obeying
i, ] = 20fijp e, tr(Aidg) = 2055, (12)
with non-vanishing structure constants
f123 = 2f1a7 = 2f216 = 2f257 = 2f315 = —2f156

2 2

= —2f367 = ﬁfﬁg = %.]%78 =1. (13)
To analyse the adjoint orbit O, that passes through the point g, we define
the set of tangent vectors:

3 0

P = 017021}%8_)0 8_01 [U (91,92, .- 08) QU(91,02,. . 08)] = ’L[)\,',g] - (14)

By definition, the dimension of orbit dim(Q,) is given by the dimension of
the tangent space to the orbit Tp, and therefore equals to the the number
of linearly independent vectors among eight tangent vectors ly,ls,...,ls.
This number depends on the point ¢ and according to the well-known
theorem from linear algebra is given by the rank of the so-called Gram
matrix

1
Ay = 5 e @ly)]) - (15)

In the Bloch parameterization (10) we easily find that

4
Aij = g fimsfjnsfmfn . (16)
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To estimate the rank of matrix (15) it is convenient to pass to the
diagonal representative of the matrix p:

Tl 0 0
o=W |0 z, 0]|Wt, (17)
0 0 I3

where W € SU(3)/Ss and the descending order for o matrix eigenvalues
1>z 222 223 20,

is chosen. The later constraints allow to avoid a double counting due to
the S3 C U(3) symmetry of permutation of the density matrix eigen-
values. Using the principal axis transformation (17) and taking into ac-
count the adjoint properties of Gell-Mann matrices W \,W = O;;\; with
O € SO(8), the matrix A;; can be written as

Aij = O ABOL . (18)

Matrix A% in (18) is the matrix (15) constructed from vectors
l?iag = [\, 0diag] tangent to the orbit of the diagonal matrix o0giag =
diag(z1, z2, 3) .

Since we are interesting in determination of rank|A|, the relation (18)
allows to reduce this question to the evaluation of the rank of the diagonal
representative gqiag . For diagonal matrices the Bloch vector is gdias —
(0,0,0,&3,0,0,0,&s). Taking into account the values for structure constants

from (13), the expression for | A4128| reads

Ading _ %diag(4£§,4£§,0, (€ + V3652, (& + V3Es)?,
(6 — V3&)*, (€ — V36)%,0) . (19)

From (19), we conclude that there are orbits of three different dimensions:

e the orbits of maximal dimension, dim(0,) =6,
e the orbits of dimension, dim(0,) = 4,
e zero dimensional orbit, one point € =0.

These orbits are in agreement with their classification based on the
group of transformations G, — the isotropy group (or stability group),
which stabilize point p € O,. The orbits of different dimensions have a
different stability groups; for the points lying on the orbit of maximal
dimension the stability group is the Cartan subgroup U(1) ® U(1) ® U(1),
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while the stability group of points with diagonal representative Ag is U(2)®
U(1). The dimensions of listed orbits agrees with the general formula

dim O, = dimG — dimG, . (20)

Since the isotropy group of any two points on the orbit are the same up to
conjugation, the orbits can be partitioned into sets with equivalent isotropy
groups 3. This set is known as “strata”.

Concluding we refer to the relations between the triangle A-B-C, de-
picted on the Figure 1, and the corresponding strata. The domain inside
the triangle ABC corresponds to the principal strata with the stability
group U(1) x U(1) x U(1). The discriminant is positive |Disc| > 0 and the
density matrix has three different real eigenvalues, the representative ma-
trix reads %(Hg +/3 (&3 + &Ag)), with & and & subject to the following
constraints

0<1-&-&6<1,
0< (26 —1)(1—V3&G +&)(1+ V3G + &) < 1.

The Ss3 coefficient vanishes at line B-C. The boundary line B-C, excluding
vertices B and C also belongs to the principal stratum, while points B and
C belong to the stratum of lower dimension. On the sides A-B and A-C
the discriminant is zero |Disc| = 0, hence, the density matrix has three real
eigenvalues and two of them are equal. At point B two eigenvalues of o
are zero. The lines (A-B)/{A} and (A-C)/{A} represent the degenerate 4-
dimensional orbits whose stability group is U(2) ® U(1). Finally, the point
A is the zero dimensional stratum corresponding to the maximally mixed
state 0 = %]I3. The details of the orbit types are collected in the nable
below.

4.2, Orbit space of a four-level quantum system. The density ma-
trix o of a 4-level quantum system in the Bloch form reads

P:i(ﬂ4+¢65'X), (21)

where the traceless part of g is given by scalar product of 15-dimensional
Bloch vector £ = {&,...,&15} € R with A-vector whose components are

3The isotropy group of a point g depends only on the algebraic multiplicity of the
eigenvalues of the matrix p.
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dim © | Strata Stability group Representative matrix Constraints

6 Interior  of | U(1)@U(1)@U (1) | +(3+v3(£3A3+EsAg)) | Disc>0,82>0,53>0
triangle ABC

BRI | thermeu) | 2(ls+v3(gsAs+1As)) | Disc>0, 55 >0, 53=0

1 (13+Vv3egag)

Boundary:

4 (A-B)/{A} U(2) ® U(1) L+ (13+v3¢s(VBAz+Ag)) | Disc=0,S2>0,S3>0
(a-orta 1 (134v3eg (= VvBag+2g))

0 Point: {A} U (3) 113 Disc = Sy = S3 =0

Table 1. The stratum decomposition for the orbit space of qutrit.

elements of the Hermitian basis of the Lie algebra su(4)
1 . .
/\i/\j = §5ijﬂ4+(dijk "‘Zfijk)/\k; 1,7, k=1,...,15.

The corresponding integrity basis for for polynomial ring R[‘I}+]U(4) can
be fixed by three U(4)-invariant polynomials, the Casimir scalars €2, €3, €4

-

& =E€ €= \/gdijkfifjfk , €= %dijkdlmkfifjflfm; (22)

The semi-positivity of (21) formulated as non-negativity of coefficients
Sy, 83 and Sy of the characteristic polynomial (8) *

Sy =3(1-¢,)>0 (23)

=(1- @z +2¢3) > (24)

Sy = detp = 5= ((1 — 3¢,)% + 8¢5 — 12@4) >0 (25)

Now we are in position to compute the Grad-matrix in terms of the SU(4)

Casimir scalars:

4@2 6@3 864
Grad = 6@3 9@:4 12@2@3 . (26)
8C, 12¢,¢5 4(€2 + 3¢,C,)

4For details we refer to [9].
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Passing to the equivalent matrix @ Grad Q7 , with Q = diag(2,3,2), we
arrive at the following form for the Processi-Schwarz inequalities

¢+ @é +36,¢C,+¢, >0, (27)
€3 (—4C3 + € 4 €4 — 1) + €4 (3¢5 + 38,84 + €, — 4¢4) >0, (28)
—4€3¢3 + 3¢3€T + 6¢,C3¢, — €F —4¢5 > 0. (29)

The domains describing the semi-positivity of p (23)-(25), and its resid-
ually part after imposing condition of the semi-positivity of Grad-matrix
(27)—-(29) are depicted on Fig. 2.

G ot ¢ 03
0.5 - 0.2
D1~
oo

03

00

[

0

Fig. 2. On the left side: p > 0. On the right side: p >
0N Grad > 0.
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