Н. Н. Осипов

НЕРАВЕНСТВО ЛИТЛВУДА-ПЭЛИ-РУБИО ДЕ ФРАНСИА В ПРОСТРАНСТВАХ МОРИ-КАМПАНАТО: АНОНС

§1. История вопроса

Настоящая заметка представляет собой анонс, за доказательствами можно обратиться к препринту [10].

Пусть $\Delta_m = [a_m, b_m]$ — попарно непересекающиеся интервалы на прямой $\mathbb R$ с длинами $l_m = b_m - a_m$. Здесь индекс m пробегает некоторое не более чем счетное множество $\mathcal M$. Введём операторы M_{Δ_m} формулой

$$M_{\Delta_m} f = (\widehat{f}\chi_{\Delta_m})^{\vee}.$$

В 1983 году Рубио де Франсиа доказал (см. [11]), что

$$\left\| \left(\sum_{m} |M_{\Delta_m} f|^2 \right)^{1/2} \right\|_{L^p(\mathbb{R})} \leqslant C_p \|f\|_{L^p(\mathbb{R})}, \quad 2 \leqslant p < \infty, \tag{1}$$

где константа C_p не зависит ни от функции f, ни от интервалов Δ_m . Из соображений двойственности вытекает, что эта оценка эквивалентна следующему неравенству:

$$\left\| \sum_{m} f_{m} \right\|_{L^{p}(\mathbb{R})} \leqslant C_{p} \left\| \left(\sum_{m} |f_{m}|^{2} \right)^{1/2} \right\|_{L^{p}(\mathbb{R})}, \quad 1 (2)$$

где $\{f_m\}$ — последовательность функций, таких что $\widehat{f}_m\subset \Delta_m$. В 1984 году Бургейн (см. [3]) доказал, используя иную технику, что оценка (2) остается верной при p=1. Однако в 2005 году Кисляков и Парилов, применив технику, сходную с той, которую использовал Рубио де Франсиа, установили (см. [2]), что оценка (2) выполняется для всех $0< p\leqslant 2$. Для $p\leqslant 1$ это скорее H^p - чем L^p -оценка: идея упомянутого доказательства в значительной мере опиралась на свойства

Ключевые слова: неравенство Литлвуда-Пэли, классы Гёльдера, пространства Мори-Кампанато.

Поддержано лабораторией им. П. Л. Чебышева СПбГУ (грант Правительства РФ дог. 11.G34.31.0026), РФФИ (грант No. 11-01-00526) и стипендией им. Рохлина.

операторов типа Кальдерона—Зигмунда, действующих на "вещественных" классах Харди H^p (см., например, [7, 12]).

Как известно, в качестве пространства, двойственного к классу H^1 , выступает ВМО, а пространствами, двойственными к классам H^p при p < 1, являются классы Гёльдера (см. [6,12]). Возникает естественный вопрос: существует ли двойственный вариант оценки (2) для показателей $p \in (0,1]$? В отличие от случая 1 , прямое доказательство "по двойственности" здесь не работает: в доказательстве неравенства <math>(2) классы H^p возникают непрямым образом. Функция f, спектр которой лежит в интервале [a,b], естественным образом порождает по крайней мере две функции из класса H^p — функцию $e^{-2\pi i\,ax}f(x)$ и функцию $e^{-2\pi i\,bx}f(x)$ (одна из них является "аналитической", другая — "антианалитической"). Обе эти функции используются в доказательстве оценки (2) для $p \in (0,1]$.

В [1,2,11] фактически рассматривались операторы вида

$$S^{1}f(x) = \left\{ e^{-2\pi i a_{m} x} M_{\Delta_{m}} f(x) \right\}_{m \in \mathcal{M}},$$

$$S^{2}f(x) = \left\{ e^{-2\pi i b_{m} x} M_{\Delta_{m}} f(x) \right\}_{m \in \mathcal{M}}$$

(или сопряженные к ним). Но хорошо известно (и легко проверяется), что эти операторы не ограничены на пространствах, двойственных к классам H^p при $0 . Объяснение для пространства ВМО = <math>(H^1)^*$, кстати, приведено в [10].

§2. ПРЕДВАРИТЕЛЬНАЯ ФОРМУЛИРОВКА

Оказывается, что после небольшого исправления операторы S^1 и S^2 все же становятся ограниченными на пространстве ВМО и на классах Гёльдера. Нужно лишь сгладить каждый мультипликатор χ_{Δ_m} на odnom из концов отрезка Δ_m .

Сначала мы сформулируем упрощенную версию основной теоремы. Для этого потребуются некоторые новые объекты. Пусть ψ^1 и ψ^2 – функции из $C^{\infty}([0,1])$, такие что

$$\mathrm{supp}\,\psi^1\subset \left[0,\tfrac23\right],\quad \mathrm{supp}\,\psi^2\subset \left[\tfrac13,1\right],$$

$$\psi^1+\psi^2\equiv 1\quad \mathrm{нa}\quad [0,1].$$

Продолжим эти функции нулем на всю вещественную прямую $\mathbb R$. Используя сдвиги и растяжения, мы можем построить функции ψ_m^1 и ψ_m^2 , такие что $\psi_m^1+\psi_m^2\equiv\chi_{\Delta_m}$:

$$\psi_m^{\sigma}(\xi) = \psi^{\sigma} \left(\frac{\xi - a_m}{l_m} \right), \quad \sigma = 1, 2.$$

Каждая такая функция — гладкая на одном из концов соответствующего интервала. Переопределим операторы S^1 и S^2 , используя вместо мультипликаторов χ_{Δ_m} функции ψ_m^σ :

$$S^{1}f(x) = \left\{ e^{-2\pi i a_{m} x} \left(\widehat{f} \psi_{m}^{1} \right)^{\vee}(x) \right\}_{m \in \mathcal{M}},$$

$$S^{2}f(x) = \left\{ e^{-2\pi i b_{m}x} \left(\widehat{f} \psi_{m}^{2} \right)^{\vee}(x) \right\}_{m \in \mathcal{M}}.$$

Теорема 1. Если $f \in L^2(\mathbb{R}) \cap BMO(\mathbb{R})$, то $S^{\sigma}f \in BMO(\mathbb{R})$ и

$$||S^{\sigma}f||_{\text{BMO}} \leqslant C||f||_{\text{BMO}}, \quad \sigma = 1, 2.$$

Утверждение останется верным, если заменить пространство ВМО на любой из классов Γ ёль дера $\mathrm{Lip}_s(\mathbb{R}),\ 0 < s < 1,$ норма в котором определяется формулой

$$||f||_{\text{Lip}_s} = \sup_{x \neq y} \frac{|f(x) - f(y)|}{|x - y|^s}.$$

Замечание. Более того, если функция f удовлетворяет условию Гёльдера порядка $s,\ 0 < s < 1$, лишь в одной точке, то функция $S^{\sigma}f$ удовлетворяет некоему интегральному аналогу условия Гёльдера в той же точке.

§3. Окончательная формулировка

Для формулирования окончательного варианта теоремы нам потребуется некоторая подготовка. Через \mathcal{P}_i мы обозначим пространство алгебраических полиномов степени строго меньше чем i и положим $\mathcal{P}_0 = \{0\}$. Для l^2 -значных полиномов будем использовать обозначение $\mathcal{P}_i(l^2)$. Дадим определение пространств Мори–Кампанато $\dot{C}_{p}^{s,i}(\mathbb{R}^n)$.

Определение 1. Рассмотрим параметры $i \in \mathbb{Z}_+, p \in [1,\infty)$ и $s \in (-n/p,i]$. Пусть f – локально суммируемая функция на \mathbb{R}^n (скалярная

 $^{^{1}}$ С этого момента мы считаем, что если специально не оговорено иное, то числа i, p и s лежат в указанных пределах.

или l^2 -значная). Мы говорим, что $f \in \dot{C}^{s,i}_n(\mathbb{R}^n)$, если

$$||f||_{i,p,s} = \sup_{Q} \inf_{P} \frac{1}{|Q|^{s/n}} \left(\frac{1}{|Q|} \int_{Q} |f - P|^{p}\right)^{1/p} < \infty,$$

где супремум берется по всем кубам в \mathbb{R}^n , а инфимум – по всем полиномам из \mathcal{P}_i (или из $\mathcal{P}_i(l^2)$).

Оказывается, что меняя показатель p, мы будем получать эквивалентные нормы. Также хорошо известно, что при неотрицательных s пространства Мори–Кампанато совпадают либо с ВМО, либо с классами гладких функций. Сформулируем соответствующий результат для $s \in [0,1]$.

Лемма 1. Зафиксируем любое $p \in [1, \infty)$. Тог да

- пространство $\dot{C}^{0,1}_p(\mathbb{R}^n)$ совпадает с $\mathrm{BMO}(\mathbb{R}^n)$ (в смысле эквивалентности норм);
- если $0 < s \leqslant 1$, то пространство $\dot{C}^{s,1}_p(\mathbb{R}^n)$ совпадает с классом Γ ёль дера $\mathrm{Lip}_s(\mathbb{R}^n)$.

Первая часть леммы является хорошо известным следствием неравенства Джона—Ниренберга. Доказательство второй части можно найти в работах [4,9] (также см. §1.1.2 в книге [8]). Отметим, что на самом деле все пространства Кампанато (пространства $\dot{C}_p^{s,i}$ при s>0) могут быть перенормированы в терминах конечных разностей (подробности см. в §4.1.1 книги [8]).

Поскольку окончательный вариант теоремы будет описывать поточечные свойства интересующих нас объектов, нам понадобятся максимальные функции, соответствующие нормам Мори–Кампанато.

Определение 2. Пусть h — локально суммируемая функция на \mathbb{R}^n (скалярная или l^2 -значная). Тогда максимальная функция $M_{i,p,s}h$ определяется по формуле

$$M_{i,p,s}h(x) = \sup_{Q \ni x} \inf_{P} \frac{1}{|Q|^{s/n}} \left(\frac{1}{|Q|} \int_{Q} |h - P|_{l^{2}}^{p}\right)^{1/p},$$

где супремум берется по всем кубам, содержащим x, а инфимум – по всем полиномам из \mathcal{P}_i (или из $\mathcal{P}_i(l^2)$).

Такие максимальные операторы были подробно изучены в [5].

Следующая лемма, неявно доказанная в $\S4.4.1$ книги [8], поможет нам избавиться от требования $f\in L^2$, которое фигурировало в теореме 1.

Лемма 2. Пусть β – положительное число, такое что

$$\beta > \max\{s, i-1\}.$$

Рассмотрим локально суммируемую на \mathbb{R}^n функцию f (скалярную или l^2 -значную), такую что функция $M_{i,p,s}f$ конечна хотя бы в одной точке. При перечисленных условиях функция

$$|f(x)|(1+|x|^{n+\beta})^{-1}$$

окажется суммируемой.

Теперь рассмотрим локально суммируемую функцию f, такую что соответствующая максимальная функция $M_{i,p,s}f$ конечна хотя бы в одной точке. Пусть φ — функция из класса Шварца \mathcal{S} . Тогда из леммы 2 вытекает следующее: преобразование Фурье функции f корректно определено, $f * \varphi \in C^{\infty}$, $f * \varphi \in \mathcal{S}'$ и $\widehat{f} * \varphi = \widehat{f} \widehat{\varphi}$. Теперь мы готовы сформулировать нашу основную теорему в окончательном варианте, в котором отсутствует требование $f \in L^2$, а вместо оценок на нормы фигурируют поточечные оценки максимальных функций.

Теорема 2. Рассмотрим интервалы $\{\Delta_m\}_{m\in\mathcal{M}}$ и функции ψ_m^σ , $\sigma=1,2$, введенные ранее. Пусть f – функция из пространства $L^1_{\mathrm{loc}}(\mathbb{R})$, такая что максимальная функция $M_{i,2,s}f$ конечна в некоторой точке. Тогда для каждого индекса т существуют две последовательности функций $\psi_{m,\nu}^\sigma \in \mathcal{S}$ (выбор которых не зависит от f) и две последовательности полиномов $p_{m,\nu}^\sigma \in \mathcal{P}_r$ (которые зависят от f)², такие что

- 1) последовательности $\psi_{m,\nu}^{\sigma}$ сходятся κ функциям ψ_{m}^{σ} в пространстве $L^{2}(\mathbb{R})$ при $\nu \to \infty$;
- 2) существуют две функции $g^{\sigma}=\{g_m^{\sigma}\}_{m\in\mathcal{M}}$ из пространства $L^2_{\mathrm{loc}}(\mathbb{R},l^2),$ такие что

$$\begin{split} &\left\{e^{-2\pi i\,a_mx}\left(\widehat{f}\psi^1_{m,\nu}\right)^\vee(x)-p^1_{m,\nu}(x)\right\}_{m\in\mathcal{M}}\to g^1,\\ &\left\{e^{-2\pi i\,b_mx}\left(\widehat{f}\psi^2_{m,\nu}\right)^\vee(x)-p^2_{m,\nu}(x)\right\}_{m\in\mathcal{M}}\to g^2 \end{split}$$

 $^{^2}$ Здесь мы не требуем, чтобы $\{p_{m,\nu}^{\sigma}\}_{m\in\mathcal{M}}\in\mathcal{P}_r(l^2).$

при $\nu \to \infty$, где пределы могут быть взяты в пространстве $L^2(I, l^2)$ для любого отрезка I:

3) положив

$$\widetilde{S}^{\sigma} f = g^{\sigma}$$
,

мы придем к оценкам

$$M_{r,2,s}(\widetilde{S}^{\sigma}f) \leqslant CM_{i,2,s}f,$$

где константа C не зависит ни от функции f, ни от интервалов Δ_m .

Нетрудно понять, что из теоремы 2 сразу же вытекает теорема 1 и замечание к ней. Доказательство теоремы 2, как уже говорилось, доступно в препринте [10].

Литература

- 1. С. В. Кисляков, Теорема Литлвуда-Пэли для произвольных интервалов: весовые оценки. Зап. научн. семин. ПОМИ **355** (2008), 180-198.
- 2. С. В. Кисляков, Д. В. Парилов, О теореме Литлвуда-Пэли для произвольных интервалов. Зап. научн. семин. ПОМИ **327** (2005), 98-114.
- 3. J. Bourgain, On square functions on the trigonometric system. Bull. Soc. Math. Belg. 37, No. 1 (1985), 20-26.
- S. Campanato, Proprietà di hölderianità di alcune classi di funzioni. Ann. Scuola Norm. Sup. Pisa 17 (1963), 175–188.
- Ronald A. DeVore, Robert C. Sharpley, Maximal functions measuring smoothness.
 Mem. of the Amer. Math. Soc. 47, No. 293 (1984).
- 6. P. L. Duren, B. W. Romberg, and A. L. Shields, Linear functionals on H^p spaces with 0 . J. reine angew. Math.**238**(1969), 32–60.
- C. Fefferman and E. M. Stein, H^p spaces of several variables. Acta Math. 129 (1972), 137-193.
- Sergey Kislyakov and Natan Kruglyak, Extremal Problems in Interpolation Theory, Whitney-Besicovitch Coverings, and Singular Integrals. Monografie Matematyczne, Instytut Matematyczny PAN, Vol. 74 (New Series), Birkhäuser, 2013.
- G. N. Meyers, Mean oscillation over cubes and Hölder continuity. Proc. Amer. Math. Soc. 15, 1964, 717-721.
- Nikolay N. Osipov, Littlewood-Paley-Rubio de Francia inequality in Morrey-Campanato spaces, http://arxiv.org/abs/1211.0696
- José L. Rubio de Francia, A Littlewood-Paley inequality for arbitrary intervals. Rev. Mat. Iberoamer. 1, No. 2 (1985), 1-14.
- Elias M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton, New Jersey (1993).

Osipov N. N. Littlewood–Paley–Rubio de Francia inequality in Morrey–Campanato spaces: an announcement.

A one-sided Littlewood–Paley-type L^p -inequality, $2 \le p < \infty$, for arbitrary intervals was proved in 1983 by Rubio de Francia. By a refinement of his methods, it is possible to prove an analog of this inequality for "exponents beyond infinity", i.e., for BMO and Hölder classes.

С.-Петербургское отделение Математического института им. В.А.Стеклова РАН, Фонтанка 27, 191023 Санкт-Петербург, Россия E-mail: nicknick@pdmi.ras.ru

Поступило 7 июля 2013 г.