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SOME HOMOLOGY REPRESENTATIONS FOR
GRASSMANNIANS IN CROSS-CHARACTERISTICS

ABSTRACT. Let F be the finite field of ¢ elements and let P(n,q)
denote the projective space of dimension n — 1 over F. We const-
ruct a family H,:L,i of combinatorial homology modules associated
to P(n,q) for coefficient fields of positive characteristic co-prime
to ¢. As FGL(n,q) -representations these modules are obtained
from the permutation action of GL(n,q) on the Grassmannians of
F™ . We prove a branching rule for H}', and use this to determine
the homology representations completel’y. Our results include a dual-
ity theorem and the characterisation of H;;j,i through the standard
irreducibles of GL(n,q) over F .

Nikolai Vavilov zum 60. Geburtstag Gewidmet

§1. INCIDENCE HOMOLOGY

Let P be a finite ranked partially ordered set and let F' be a field. In
this situation one may construct a family of homology modules associated
to P with F as coefficient domain. In the current paper we determine
this homology when P is a finite projective space and F has positive
characteristic co-prime to the characteristic of the space.

The homology modules appear in the following fashion. We assume
that the rank function rk: P — NU{0} is adjusted so that min{rk(z) : =
€ P} = 0. For the integer k& > 0 let P, denote the elements of rank
k in P and let M} := FP; be the F -vector space with basis Py ; in
particular My =0 if P, = @.

The partial order on P now provides a linear incidence map 0: My, —
Mj,_, defined by 9(z) = Y y for & € P, where the sum runs over all

Key words and phrases: incidence homology in partially ordered sets, finite pro-
jective spaces, representations of GL(n,q) in nondefining characteristic, homology
representations.
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y € Pr—1 covered by x . This gives rise to the sequence

M : ()<i]\40<_‘9...<_6]\4k_2<_6]\4k71
oMy L My 2 200 1)

Since P is finite M has only finitely many nonzero terms, and in par-
ticular, O is nilpotent. Therefore we may choose an integer m such that

0™ =0 on @ M. The options for m depend on both P and F'. If we
kEZ
fix some k£ and 0 <4 < m then (1) gives rise to the “subsequence”

a* o a*
My Oe— o= My, — My,

<iAIIC <iAIIchmfi(i]M-ker<i"'<8_*0 (2)
in which 9* denotes the appropriate power of 0. Since 9*9* = 9™ =0
it follows that My ; is homological. For instance, when m = 2 then
M = My ; is homological in the usual way. The homology at M, _; «
M, <~ M, ,,_; ,denoted by

Hy ;= (ker o' N M) / O (Myyn—i) s

is the incidence homology of P with coefficient field F' for parameters
k and . This construction is canonical in the sense that if G is a group
of automorphisms of P then H ; is an F'G-module. This homology has
appeared in various guises before, often under additional restrictions. We
mention only some papers [6, 5, 2, 7, 10, 8, 12]. The full details of this
construction are explained in Section 3.

Here we are interested in this homology for finite projective spaces.
Let ¢ be a prime power and F the field of ¢ elements. For n > 0
let P = P(n,q) be the projective space of dimension n — 1 over F.
As a partially ordered set P consists of all subspaces of F" ordered by
containment.

We assume that the coefficient field F' has positive characteristic p not
dividing ¢ . Here the natural choice for m is the quantum characteristic
m = m(p,q) of ¢ in F | see Section 2. We denote G, := GL(n,q) and
let S, 1 be a Singer cycle of G,_1, of order |S,_ 1| = ¢" ! — 1. For
0 <i<m=m(p,q) denote H; := Hy; and put Hy'y =0 = HY, .
The following branching rule is the key to the incidence homology.
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Theorem 1 (Homology Decomposition). Let Hy'; denote the incidence
homology of P(n,q) over a field F of characteristic p > 0 not divid-
ing q. Suppose that 0 < k <n with 1 <n and 0 <i <m =m(p,q) .
Then

Hl?,z‘ = Hl?,i_il & Hl?:ll,i—l & HI?—_IQ,i Sn—1
as FG,_1 -modules.

We prove a more general version of this theorem in Section 3. It contains
an important rule for the index pairs (k,7) . We call (k,7) a middle index
for n provided that n < 2k +m — ¢ < n + m . This inequality for the
parameters is preserved when passing from one side of the isomorphism
to the other. By induction we are able to conclude that Hy'; is nonzero
if and only if (k,7) is a middle index, see Theorem 3 below. The main
properties of the homology of projective spaces in co-prime characteristics
are summed up in the following two theorems.

Theorem 2 (Duality). Assume that (k,i) is a middle index for n and
let j:=2k—n+m—1i where m =m(p,q). Then
(1) Hl?,z n—k,m—i
(i) Hy; = Hy;

as FG,, -modules.

" and

IR IR

In Section 5 we provide an example that illustrates the two dualities.
The first part of the theorem can be interpreted as saying that the duality
between k -dimensional and (n — k) -dimensional subspaces in projective
space remains in place for homology. At a formal level this can also be
understood as a Poincaré duality. The second duality appears to have no
immediate geometric interpretation as far as we are aware.

In Section 5 we provide the complete decomposition of the H k; into
standard irreducibles of GL(n,q) over F . To state this result let (k,1)
be a middle index for n and define the following parameter intervals

Tei:={t: k<t<n—-k+i—1} if k}%n andié%(m—n)—}—k,
Tei:={t: k<t<k+m-—i—1} if k}%n andi>%(m—n)—}—k7
Tei={t:n—k<t<n—-k+i—1} if k<%n and ig%(m—n)—}—k,
Tei:={t:n—k<t<k+m—i—1} if k<%n and i>%(m—n)+k.
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Let A be a composition of n and let D* denote the head of the Specht
module S* over F'.In Sections 4.1 and 5.2, we prove

Theorem 3 (Irreducibles). Let 0 < k < n and 0 < i < m =m(p,q).
Then

(i) Hi,; # 0 if and only if (k,i) is a middle index;
(ii) Let (k,i) be a middle index. Then HJ'; = @ D™~4Y) where the
summation runs over all t in Ty ; .

We mention that all three theorems above remain true in the limit
case ¢ = 1 where the general linear group GL(n,F) is replaced by the
symmetric group Sym(n) and the ‘Singer cycle’ of order ¢"* —1 =0
vanishes.

In the case of finite projective spaces, the sequence My ; in (2) has
a remarkable property: For every (k,i) it is almost exact, in the sense
that it is exact in all but at most one position, the details are given in
Section 4. This property is specific to projective spaces. Already for finite
polar spaces the M, ; may fail to be almost exact.

We mention some consequences of the above theorems. From a standard
application of the trace formula it follows that every nonzero homology
appears as an alternating sum (in the Burnside ring) of the permutation
modules involved in (2), see Corollary 4.3. This in particular provides an
explicit character formula for every irreducible GL(n,q) -representation
appearing in Theorem 3 in terms of permutation characters, and it also
gives an explicit formula for Betti numbers. This is shown in Theorem 4.5.
In the same context we mention also the rank modulo p of the incidence
matrix of s-versus t-dimensional subspaces of F™. This has been de-
termined in Frumkin and Yakir [3]. In a forthcoming paper [13] we show
that this question has a natural interpretation in terms of the incidence
homology of a certain rank-selected poset obtained from the projective
space. Another application [9] concerns the multiplicities of irreducible
FG -characters when G is an arbitrary subgroup of GL(n,F) acting on
subspaces of F™. This question was raised by Stanley [14] for ordinary
representations over C.

The methods of the paper are elementary, and we use the standard
theory of GL(n,F) representations in cross-characteristics from James’
book [4] wherever possible.

We thank Alexandre Zalesskii for helpful comments on an earlier version
of this paper.
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§2. NOTATION AND PREREQUISITES

Let ¢ be a prime power and F the field of ¢ elements and let n > 0
be an integer. For the integer i > 1 let [i], :== 14+ g+ ---+ ¢~ !. Then
(g :==[i]qg-[¢ —1)g-.-.-[1]y is the g-factorial of ¢. If n > k > 0
are integers then the ¢-binomial coefficient, or Gaussian polynomial, is
denoted by

<”> gty n—k+1] [(n)Yq
k)y [Klg - [k = 1]g -~ [1]g [(n —k)1g - [(R)Yg

This is the number of & -dimensional subspaces of F" .

Let p be a prime not dividing ¢ and F := GF(p). Then the integer
m=m(p,q) :=min{i>1:[i,=0 in F} (3)
is the (quantum) characteristic of F in F . In other words, m is the order

of ¢ in F* if p does not divide g — 1 while m =p if p divides ¢—1.
In particular, m is the least integer such that [(m)!], =0 in F.

2.1. Permutation action of GL(n,F) on the set of subspaces of
F*. Let n, ¢ and F be as above and denote G, := GL(n,q). Then
G, acts on V := F" (written as row vectors) via the matrix product
g:v—wvg for v in V and ¢g in G, . We view G,,_1 as the subgroup

Gt = {(é ;) . ¢ € GL(n — 1,q) }

in G, and embed G,_2 C GG,,—1 correspondingly. The affine linear group
A,—1 is the subgroup

1 0 _

Ap_1 = {( ,) cac (PHT ¢ G }
a g

For matrices it is our convention that 1 always stands for a 1 x 1 sub-

matrix while a 0-entry stands for an appropriate column or row of zeros.

Let vy, va,...,v, be the standard basis of V. If x is a subspace of V'
n
with basis zi,...,z; we express the basis vectors as x; = > x5 vj in

i=1
terms of the standard basis. In this way =z is represented by the
k x n matrix (x;;) of rank k. It is clear now that G, acts on the set of
subspaces of V' via the matrix product

g: x—xg = (iy)y.
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Another k x n matrix (zj;) represents the same z for some other basis
zy,...,x) if and only if (z};) is of the form (z};) = h(zi;) for some h
in GL(k,q) .

For 0 <k <n let L} denote the set of all subspaces of dimension &
in V =TF". It is convenient to specify

Vol o= (vy, ..., vp) V2= (v3,..., v,) and

Ly ti={zel}:aCVvnt}, L2 ={zeLl} :aCV2}.

2.2. Permutation modules of GL(n,q) on subspaces in cross-cha-
racteristic. As above let F' be a field of characteristic char(F) =p >0
where we assume that p does not divide ¢ = |F|. If X is an arbitrary
set we denote by FX the F -vector space with basis X . If a group G
actson X then FX isthe F'G -permutation module afforded by G over
F . In our situation, G will be G,, = GL(n,q), or a subgroup of it, and
X will be some collection of subspaces of V' = F™. This section follows
James’ book [4] closely. We denote

M} = FL}
and set M;? =0 when k <0 or k> n. Similarly let
MP' =FL}' and M} :=FL}* (4)

with M,?_l =0= M,?_2 when Lz_l = @ or LZ‘Q = @ . It is clear
that M} D M,?_l D M,?_2 are modules for F'G,,, FG,_1 and FG,_»
respectively.

In F@,, define the expression

1 1 0
B x ()

acfr—1

Next we assume that F'* contains an element of order gy where ¢q is the
prime dividing ¢ . This implies that there is a nontrivial homomorphism

x: (F,+) — F*.

In this case we may define the element
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in FG, . In these expressions I,_; and I,_» denote identity matrices,
and we emphasize that F; and E, are elements of F'(G, rather than
matrix sums. It is easy to show that E1FE> =0 = ExE, and E;E; = E;
for i =1,2.

The elements of A,,_1 commute with E; and so if M is an FG,,-
module, then ME; := (zE; : x € M)p is an FA,_; -module. Similarly,
MEyA,_1 ={(xEsg : x € M, g€ Ap_1)p isan FA,_;-module and this
can be written as MFEyA,,_1 = ME>S,—1 when S,_; denotes a Singer
cycle of Gy,—;1 . The following theorem of James is the essential branching
rule for modules involved in M} .

Theorem 2.1 ([4, Theorems 9.11 and 10.5]). Assume that F* contains
an element of order qu where qo is the prime diwiding |F|. If M is an
FG,, -module involved in FLj then

(i) M=ME, ® ME>S,—1 as FA,_1 -modules, and
(ii) dim M =dim(ME;) + (¢" ! —1)dim(ME,) .
As a corollary we have the following branching rule for M} . The as-

sumption that char(F) # char(F) is indispensable, it distinguishes the
cross-characteristic case from that of defining characteristic.

Theorem 2.2 ([4, Corollary 10.16]). If 0 < char(F') # char(F) then
MP=MPt o MP @ M Sa (5)
as FA,_1 -modules.

2.3. Incidence maps. The containment relation among subspaces of
V =TF" yields an incidence map O : M} — M}, for all k. This map is
defined on the basis L} of M| by setting

o(x) := Z Y

where the sum runs over all co-dimension 1 subspaces y of z,for x € L} .
If i > 1 is an integer then

O'(x) = (i) )y (6)

where the sum runs over all co-dimension ¢ subspaces y of  and where
¢(7) is a coefficient depending only on 4. It is easy to see that c¢(i) is the
number of chains y =x; Cx;—1 C --- Cxy Cz of length i, and hence

c(i) = [(i)!]q = [i]q i - 1]q T [1]11-
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Clearly 0% is an FG, -homomorphism, and in particular, the idem-
potents E; defined above commute with 9°. The following is useful for
computations. If z and y are subspaces of V let z -y denote the sub-
space spanned by x and y . In particular, we write vy -y for the subspace
(v1, y) . This can be extended linearly to an associative and commutative
product on M™ := @ M.

Let 0 < £k < n and f € M} . Then there are unique elements
fi € M| and ¢ € M} with

f=v-fi+l

so that no space appearing in ¢ for a nonzero coefficient contains vy . This
is the standard decomposition of f. We collect some useful facts.

Lemma 2.3. (1) Let f1 S Ml?:ll . Then (Ul . fl)El =1 f1 . If E2 15
defined then (vi - f1)E2 =0.

(ii) Let = = (alz’) € LY with a € (F*)T and o' € L}~ be a space
not containing vy . Then zE; = ¢ ¢ (b|a:’) where the sum runs over
all b € (FMT . If Ey is defined then xEy = 0 unless ©' = vy - 2" with
= LZ:% .

Proof. (i) The first part is a simple calculation and for the second part
we have (’1)1 . fl)El =V fl so that ('Ul . fl)EQ = (’1)1 . fl)E1E2 =0.

(ii) This is also a direct calculation, alternatively see Theorem 10.2 in [4]
for a more general case. O

Lemma 2.4. Let f € M,?:ll and i > 1. Then
O (vi - fr) =v1-0'(fr) + ¢"[i],0"  (fLEr).
n—1

Proof. By linearity we can assume that f; = 2’ € L;y”; and so
O'(v1 - @') represents the sum in M}* , of all (k — i)-dimensional sub-
spaces of vy -2’ with coefficient [(7)!],, see (6). On the right-hand side of
the equation we have subspaces y of vy -z’ of dimension k—i, and y has
the correct coefficient [(i)!], if it contains v; . Otherwise y is a summand
in the second term on the right-hand side. In this case, its coefficient is
¢" ][ — 1)1, - ¢~ *~9 see Lemma 2.3 (ii). Now

¢l - Dl a0 = (@)

as required. O
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§3. PARTIALLY ORDERED SETS

Let (P,<) be a finite ranked poset with rank function rk: P —
N U {0}, and assume that min{rk(z) : z € P} = 0. Let G be the
automorphism group of P and let F' be a coefficient ring with 1. We
describe a construction that associates to this data a family of homology
modules which arise from the F'G -action on certain permutation modules
obtained from P.

For k € Z denote the set of all z € P with rk(z) =k by P and let
Mj, .= F'Pj, be the F -vector space with basis Py . In particular, My =0
when k < 0 or k > max{rk(z) : « € P}. Consider the linear incidence
map O: My — Mj,_; which is defined for z € Py by

o)=Yy

where the sum runs over all y€P_; with y<z. Then 9 is an FG -ho-
momorphism on M = @, ., M and gives rise to the F'G -sequence

M : O<—8M0<—8...<—8Mk_2<—8Mk_1

iMk<—aMk+1<—8...<—60. (7)

From this sequence we obtain homological F'G -sequences as follows. Note
that My # 0 for only finitely many k, as P is finite, and hence 9 is
nilpotent. Hence let m > 1 be an integer for which 9™ = 0 as a map on
M . Fixing some 0 < k£ and 0 < ¢ < m now consider the sequence

o o o
Mk,i N Mlc—m — Mk—l — Mk
o o* o
— My — My — ..., (8)

in which 9* = 9" or 9™~ stands for the appropriate power of 9. Then
M, ; is homological since 99" = 8™ = 0. We denote the homology at
My, M, — M, by

+m—1i
Hy ;i = (ker 8" N M) / O (Mg i)

We call Hy; the incidence homology of P over F' for parameters k and
0 < ¢ < m. For example, when m =2 then M =My forany k>0 is
a homological sequence in the usual sense. This definition of the homology
depends on m , and the choices for m depend on both F and P. For
instance, one may take m to be minimal with the property 9™ =0, but
this is not the only case to consider.
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The homology modules are related to each other. Denote
Ly = 0™ (Mg ;)
and
Ky = (ker 0' N M,,).
Then 0 induces a linear map

0: ch7i — kalyifl by a(:U + Ik7z) = a(:U) + kalyifl . (9)

In a similar way the identity map inc: My — M} induces a map inc:
Hy; — Hy iy . If the Hy; are arranged as a grid with rows indexed
by 0 < i < m and columns indexed by k then 0 and inc connect the
modules in the array

Hy ; Hyi1 (10)

mc
Hi1,i41

of maps which carries essential information. (This feature is particular, it
does not exist in ordinary homology.) It is used to determine completely
the homologies of finite projective spaces in Section 5.

We emphasize that this construction is entirely general, it applies to an
arbitrary finite ranked poset for any arbitrary coeflicient ring with 1.

3.1. Branching rules in projective space. We now consider this ho-
mology for finite projective spaces. Let ¢ be a prime power, F the field
of g elements and n > 0. Then the projective space P = P(n,q) is the
set of all subspaces of F" ordered by inclusion, with rank function given
by dimension. Let G,, := GL(n, q) . As coefficients we choose a field F' of
characteristic p > 0 not dividing ¢ and let

m =m(p,q)

be the characteristic of F in F' discussed at the beginning of Section 2.

We use the same notation for modules and incidence maps as above and

as in Sections 2.2 and 2.3. It is clear from (6) that ™ =0 on M = @ M,
kEZ

independently of n . In particular, if 0 < k£ and 0 < ¢ < m are given then
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we obtain the homological FG -sequence (or F'G -chain complex)

n . " n " n
k- ...<_Mk_m<_Mk_l-
" - n B o 5"
B VA Y NP VAP  §)

The homology for parameters k£ and 0 <+ < m is denoted by
HE = K I

It is convenient to set Ko =0, K, = My and I}y =0, I, = My .
In particular, Hy', =0=Hp, forall k and n.

It is appropriate to discuss homology at the level of F'G -sequences,
rather than individual modules. (We prefer the term ‘F'G -sequence’ in-
stead of ‘F'G -chain complex’ as it is simpler and does not interfere with
the notion of a combinatorial complex.)

Recall that if

Ar oo A A < and B: 2B LB
are finite F'G -sequences then A = B are isomorphic if and only if there
is an F'G-isomorphism ¢ : A; — B; for all j such that ¢Ya = Sy

(Assume that the first nonzero modules are Ay and By, respectively.)
¥

Similarly, if C: ... L Cpy <L Op <L ... is an F H -sequence for
some subgroup H C G and if Ay = CS is obtained by induction from
H to G for each k for some S C G then A=CS is the FG -sequence
induced from C with maps induced from - .

Let S,,—1 denote a Singer cycle in G,,—1 = GL(n — 1,q), of order
[Sn—1] =¢* -1, and let M,?__fSn,l be the module induced from G, _»
to G—1 via Harish—Chandra induction. Correspondingly let MZ:iiSn_l

be the FG,_1 -sequence induced from Mzzii .

Theorem 3.1 (Branching Rule). Let F be the field of q elements and
let F be a field of characteristic p > 0 not dividing q. Suppose that
0<k<n with 1<n and 0 <i<m=m(p,q) are integers. Then

n  ~ n—1 n—1 n—2
ki — Mk7i+1 D Mk71,i71 & Mlchi Sn—1
as FG,_1 -sequences.

This result is Theorem 2.2 at the level of F'G,,—1 -sequences; the proof is
given in the next section. The following diagram may clarify the situation.
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We show that there is an isomorphism ¢ of F'GG,_1 -sequences so that all
maps commute.

19k7i+m

n n—1 n—1 n—2
Mk—z'+m—’ Mkfier @ Mlcfi+m71 o MkfierflS”—l
lamz 8mi+><mil lamz

lai 8i+1><8i1 lai

Mmr UL oyt g e &  MP.S
k—i k—i k—i—1 k—i—1”n—1

Fig. 1. Branching rule.

Since My ; is homological we have corresponding F'G -sequences for im-
ages and kernels, and this gives the sequence
o a* o a*
kit e H g HE e Hil i —— (12)
Using Theorem 3.1 and standard results from homological algebra we have
the following corollary.

Theorem 3.2 (Homology Decomposition). Let F be the field of q ele-
ments and let F' be a field of characteristic p > 0 not dividing q . Suppose
that 0 < k<n and 0<i<m=m(p,q) are integers. Then

H;cl,i = HZ,ZL & sz,i—1 & Z:ii Sn—1
as FG,_1 -sequences.

This in turn completes the proof of Theorem 1.

3.2. Proof of the branching rule. The proof requires two simple ob-
servations. First consider the idempotent FE; introduced in Section 2.2.
Observe that O restricts to a map 0: M'E; — M;'E, and hence we may
consider the FG,_; -sequence MZJ-El . We have
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Lemma 3.3. Suppose that 0 < k <n and 0 <i < m are integers. Then
~ -1 -1
M?,iEl = MZ,M @ sz1,i71
as FG,_1 -sequences.

Proof. If 0 < j < n is an integer and f belongs to M}‘El consider its
standard decomposition f =wv; - fi + ¢ as discussed in Section 2.3. Thus
f1 belongs to M;‘:ll and none of the spaces appearing in ¢ contains vy .
Hence £ is of the shape

(= Z o (b] ")

where the sum runs over all b € (FF)* and 2’ € L}™", see Lemma 2.3.
Hence let

=y a’ € MPTL
(Explicitly, ¢* is obtained by removing the first column of all matrices
appearing in ¢.) We define the map ¢;: M}'E; — M;‘fl & M;l:ll for
j=k+m—i, k,k—1i,... by

Yr—izm(f) = £ + q*[m —i]g fr + 0(£*)
Vi (f) = 0+ ¢ il fr + O(07)
Yr—i(f) = 0 + ¢mm -l fi +0(0%), etc.,

see again Fig. 1. It is clear that 1 is an injective FG,,—; -homomorphism.
By Theorems 2.1 and 2.2 we have dim M?E; = dim M,?_l + dim M,?__ll
and hence ¢ is an isomorphism. (In order to apply Theorem 2.1 tem-
porarily enlarge F' so that F* contains an element of order ¢y where ¢q
is the prime dividing |F|. The dimension formula then remains true when
restricting back to the smaller field.) To prove that ¢ is a homomorphism
of sequences it suffices to examine the case j = k, the other indices are
the same. To show that (0"t @ 0" 1) (Y (f)) = Yr_i(0*(f)) we obtain

O @0 () = O (il +OE) + 9T

= ¢l 0T A) HON) + ).
For the standard decomposition of 9%(f) we have

(v - fr+0) =v1-0'(f1) + ¢" [i]40" (fLEL) + O (¢)
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by Lemma 2.4 and therefore

Ur—i(0'(vy - fr +0)) = ¢"[i],0° 1 (f1) +0°(£%)
+ (q" " m — il + 6" i) 0 (f1) + 0 ().
The result follows since
qk—m[m _ i]q +qk_i[i]q — qk—m(l g4+ qm—l) =0

in F. (I

Next we consider the idempotent Es; in particular, assume that F*
contains an element of order gy where gy is the prime dividing ¢ . Here we
have the F'G,,_»-sequence M}jyiEg , we claim that there is the following
isomorphism:
Lemma 3.4. Suppose that 0 < k <n and 0 <i <m are integers. Then

RiBy = MRTT

as FG,_o -sequences.

Proof. Let 0 < j < n. Then the elements (vy - z”)Ey with 2 € L;‘:f
form a basis of M}'E,, see Lemma 2.3. For j =k+m —1i, k,k—1,...

define the map ¢;: Mj'Ey — M;‘:f by

(v -a")Bs) = 2" € My}
(Explicitly, ¢ removes the first two columns in all matrices appearing in
f € M{,E>.) It is immediate that ¢ is an FG,_2-isomorphism, and
similarly that ¢ commutes with 8’ and ™~ as appropriate. O

Proof of Theorem 3.1. First assume that F'* contains an element of
order ¢o. Let S,—1 be a Singer cycle of G,_1. By the earlier com-
ment on induced sequences and Lemma 3.4 we have an isomorphism
My B2 Spq & Mg:iisn,l of FG,_1-sequences which we also denote
by ¢ . Using Lemma 3.3 we therefore have an isomorphism

Vi=(Y,0): M En & My ;E2Sya
~ n—1 n—1 n—2
= Mk,i+1 b Mk—l,i—l b Mk—l,iS”*1
of FGp_1-sequences. Finally My, = Mg, E1 & M}, E>S,—1 by Theo-
rem 2.1 since 0* commutes with E; and E,. This proves the theorem

when F* contains an element of order go . In the remaining case, extend
F to afield F O F which contains an element of order gy and apply the
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result to this larger field. Now notice that the map (¢, ¢) restricts back
to a map over F'. (I

§4. HOMOLOGY MODULES H},

We begin to analyze the incidence homology for finite projective spaces
in detail. As before F = GF(q) and F' is a field of characteristic p > 0
not dividing ¢. Denote G,, = GL(n,q) and let m = m(p,q) be the
characteristic of ¢ in F'.

Let n > 0. For any £ < n and ¢ with 0 < ¢ < m we have the
homological sequence

S , v .
P 0 S g g Mg, o

(13)
in which 0* is the appropriate power of d. Suppose that n > m . Then
for any choice of a <b in {0,...,m— 1} the sequence My, , contains

the term M £ My, and all Mp; are of this form. Hence there are

(') distinct sequences if n > m. For instance, the index pairs (k,i),
(k—1i,m —1),and (k=+m,i) etc. all define the same sequence. We write

(kal) ~ (klail) if MZJ = MZ/,i/ :

4.1. Almost exact sequences and Brauer characters. If A is a
homological sequence then its homology is concentrated in a single position,
or A is almost ezact, if all but at most one of the homology modules in A
vanish. We show that M ; has this property for all (k,7) . One direction
of the following is Theorem 3.1 in the paper [8] with Valery Mnukhin.

Theorem 4.1. Let 0 < k< n and 0 <i < m. Then Hy'; #0 if and
only if n <2k+m—i<n+m.

We call (k,i) a middle indez for n if (a) 0 <k <n, (b) 0<i<
m,and (¢) n < 2k+m—i <n+m.If (ki) is a middle index then
M, — M} is the middle index of the (unique) sequence in which the
two modules appear. It is easy to check that for any k', i’ the sequence
MZ/,:‘/ contains at most one middle index. But it may contain none. When
m = 2, for instance, then there is a unique middle index (k,1) for n even,

and k = 5 in this case, while there is no middle index when n is odd.

Proof of Theorem 4.1. Assume that 0 < i < m and 0 < k < n.
Writing out the inequalities observe that (k,i) is a middle index for n if
and only if (k,i+1), (k—1,i—1),and (k—1,i) are middle indices for
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n—1, n—1 and n — 2, respectively, unless ¢ € {1,m — 1} or kK =0.
The result now follows from Theorem 1 and induction on n. O

Corollary 4.2. For all (k,i) with 0 < i < m the sequence M, is
almost exact. Furthermore, ki 18 evact if and only (k,i) ~ (K',i’)
implies that (k',i') is not a middle index for n .

This corollary implies that the incidence homology of P(n,q) lies in
the Burnside ring of GL(n,q) over F'. For each (k,i) the sequence Mj;
is homological and therefore the Hopf-Lefschetz trace formula (see, for
instance, [11, Theorem 22.1, Chap. 2]) says that

@ (HI::L+tm,i_HI?—i+tm,m—i) = @ (MI?+tm_MI?—i+tm)' (14)
tez tez

If (k,i) is the middle index of M ; then H}; is the only nontrivial
homology in (14) and hence Corollary 4.2 gives

Corollary 4.3 (Trace Formula). Let (k,i) be a middle index. Then
Hl?z = @ MI?thm - @ Mlgfz#tm (15)
tez tez

as FG, -modules in the Burnside ring.

Considering characters, if H is any FG,, -module, let x(g, H) denote
the Brauer character of G, on H . In particular, the permutation char-
acter

x(g, My!) = mi(g)

is the number of £ -dimensional spaces of V' that are stabilized by g € G, .
Hence Corollary 4.3 yields

Theorem 4.4. Let (k,i) be a middle index for n. Then the Brauer
character of GL(n,q) on Hp; is

x(g, Hl?z) = Z Tkttm (9) = Th—ittm (9)-
tez

This key fact is already mentioned in [8], it also provides the dimensions
of the homology modules in the next section.
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4.2. Betti numbers. By Theorem 4.1 we have H';, # 0 if and only if
(k,7) is a middle index, and in that case let B, := dim H}; be the Betti
number of Hp;. As before it will be useful to set 8y, =0= 8y, .

Theorem 4.5. Let (k,i) be a middle index for n. Then

(i) ﬁkz_ﬁkz-i-l Gy 1io1 0 11( E Vi
(i) Br; = tZ:Z (k+tm)q - (kiiitm)q. In particular, By, is the Euler
€

characteristic of M ; ;

(iii) (Duality:) For all 0 < £ < n and 0 < j < m we have Bj; =
’r?fmej :

(iv) Let € =2 when n is odd and € = 1 otherwise. Then as a poly-
nomial in q¢ we have

Bri= (""" =)@ =" = 1) (¢ = 1) + f(a),
where f(q) is a polynomial of degree
<(n-1D)+m=3)+n—=5)+-+e

Remark. We say that the index pair (n — ¢,m — j) is dual to (¢,j).
The equation Bj'; = B, 4 ,—; in (iii) extends to an isomorphism H'; =
Hp _,,,_;- This is shown in Section 5 which contains many additional

inequalities for Betti numbers.

Proof. The first part (i) follows from Theorem 1 and (ii) follows from
(15). To show (iii) first notice that (¢,7) is a middle index if and only if
the same is true about its dual. Hence we assume that (¢, j) is a middle
index and proceed by induction. The equality 37 ; = 85_, ,,_; is easily
checked for n < 2. Using (1) we have

BZ]' = l]+1 + B[ 1,j—1 + B?:l%j(qn_l - 1)

and

n

n—€,m—j — BZlém] 1+Bn1€+1m j+1+6n2€+1m j(q
Observe that (¢ —1,j) is dual to (n —2—£+1,m — j) relative to n — 2
and the other two pairs are dual to each other relative to n—1. The result
now follows by induction. The last part follows by induction on n from
the first part. O

n—1 _ 1)

For small m(p,q) one can analyze the Betti numbers a little further.
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Corollary 4.6. (a) Suppose that m(p,q) = 2. If n is odd then MJ
is exact. If n =2k is even then " := [}, depends on n only and

A= (" =@ - D" 1) (g - D).
(b) Suppose that m(p,q) = 3. For given n either M} ; is exact or (k,i)
is one of two middle indices (k,1) # (k',2), where " := B, = By,
depends on n only. Furthermore,
Bn _ Bn—l + 6n—2(qn—1 _ 1)
with initial values B° =B =1.

Proof. We leave this to the reader. [l

§5. MODULE STRUCTURE AND DUALITY

We determine the incidence homology up to isomorphism, in terms of
the standard GL(n, q) -irreducibles over F'. In addition we show that there
are dualities between homology modules for certain index pairs.

5.1. Composition factors. If (k,i) is a middle index for n then
n < 2k+m—1i<mn+m. We say that (k,i) is a mazimal middle in-

dex if 2k —i¢ =n — 1. The following is checked easily.
Lemma 5.1. Let n > 2 and let (k,i) be a maximal middle index for
n. Then
(i) (k—1,4) is a maximal middle index for n —2 unless k=0;
(ii) (k,i+1) is a mazimal middle index for n —1 unless i+1=m;
(iii) (k—1,i—1) is a mazimal middle index for n—1 unless i —1=10
k=0

If A= (A1,A2) is a composition of n denote the Specht module for A
by S* and let D* := S*/S* N (S*)* be its head. Then D* = D(X2\)
is the usual standard irreducible F'G,, -modules indexed by A. If p =
(1, p2) is another composition of n then A majorizes u, denoted A > u
if a largest part of A is bigger or equal to a largest part of u. We write
A>p if A>p and A # p, see James’ book [4].

Proposition 5.2. (i) Let (k,i) be a middle index. Then all composition
factors of H}'; have the form D* with X\ > (n — k,k). Furthermore,
D =kk) has multiplicity 1 in Hp ;.

(i) If (k,i) is a mazimal middle index for n then HJ, = D(n=k.k)
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Proof. (i) By Corollary 16.3 in [4] the composition factors of M]' are
of the form D* with A > (n — k,k) and hence the same is true for
Hy; . Furthermore, D(=kk) has multiplicity 1 in M} . The remainder
is easy to verify when n < 2 and when k = 0. In the latter case we
have Hy', = F = DO If n > 2 and if (k,i) is a middle index of n
then (k—1,4) is a middle index of n—2. By induction and the homology
decomposition we may assume that D~ 1=%k=1) is a4 composition factor
of H,?:lz i -

Let D, D™-1 ... and D™ be the composition factors of HY,,
ordered so that Ay > Ae—1 > -+ > A = (n — k,k). For A = (a,b) with
a,b >0 let A be the composition (a—1,b—1) of n—2. It follows from
Theorem 16.9 of [4] that the composition factors of H,?__ii are of the shape

DY with N/ > (n—k, k)" = (n—1—k,k—1). As Dn=1-kk=1) g 4
composition factor of H,?:fl we have A\ = (n — k, k) . By Corollary 16.3
the multiplicity of D™=%# in Hp is 1.

(ii) This is easy to verify when n < 2 or when k = 0. So suppose that
n > 2 and k # 0. Using Lemma 5.1 we may apply induction to the terms
on the right-hand side of the decomposition

n o~ n—1 n—1 n—2
Hlm' = Hk,i-i—l & Hk—l,i—l & Hk—l,i Sp-1-

By the first part of the theorem we have H,?:lzZ = D=kR)" gince

k > 0. Furthermore, we have H,?;ll = D"=FE)" (unless H,?;ll =0,

i =m—1) and H,?__117i_1 = Dn=kk)" (unless H,?__llvi_l =0 i=1),
where (n — k,k)* :== (n — 1 —k,k) and (n — k,k)® := (n — k,k — 1)
are the corresponding compositions of n — 1. By the first part we have
that D("~%*) has multiplicity one in Hy ;. Suppose that also D* with
A > (n —k, k) appeared as a composition factor in Hy'; . Now use Theo-
rem 16.9 of [4] (or direct computation) to show that at least one of the
modules H ,?;}1 , Hg:117i_1 , H ,?_71271. has more than one composition fac-
tor, a contradiction. O

5.2. Embeddings. Let 0 < k < n and m = m(p,q) be given. Then
(k,i) is a middle index for some i if and only if (n —m+1) < k <
1(n+m—1) and 0 <k <n.Let ¢ and r be the minimal and maximal
choices for k satisfying this constraint, respectively. It is useful to imagine
the middle indices as nodes in an array of m—1 rows and m—1 or m—2
columns, depending on the parity of n —m if n > m — 2. (There will be
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fewer columns if n < m — 2 due to the constraint 0 < k < n.) Placing
the nonzero homologies into this array we obtain the table

Hpy Hpyyy Hips, 0 0 0
0 Hivy o Hiyso 0 0 0
0 Hip'vvs Hitss 0 0 0
0 0 HPou 0 0 0
0 0 Hlus 0 0 0
H"™:
0 0 0 H 5,0 s 0
0 0 0 H 2 m-a 0 0
0 0 0 H! 5m3 H 1m-3 0
0 0 0 H! 3m—2 H1mo 0
0 0 0 H smo1 Hi'1mo rm—1

Figure 2: H" -Table.

when n —m is even, and a similar table with two nonzero entries in the
first and last column, when n — m is odd. (Similarly, remove an equal
number of columns on the left and the right of the array if n<m—2.) The
corner entries H;',, _,, H" ,, 5, H', . 5... on the right correspond
to maximal middle indices. As discussed in Section 3, the incidence map
0: M} — M, induces a map 0 : H,Zi — H,?_u_l. This map is
a NW-arrow in the table. The identity map M;' — M}’ induces a map
inc: Hy'; — Hy';\, this represents a S -arrow in the H"™ -table. Compare

to the general situation described in (10).

Lemma 5.3. (i) Let 0 < k< n and 1 <t <i < m. Assume that
2k —t > n. Then 0%: Hp, — Hy ;¢ is an injection.
(ii) Let 0 < k<n and 1 <i<j<m.Assume that 2k+m—i—j > n.
Then inc?~%: Hp, — Hy'; is an injection.

Writing 2k —t = k + (k — t) the condition in (i) says that the arrow
Hp, — H} ,; , is balanced on or towards the right of the centre of the
array. Similarly, the assumption in (ii) is a balancing condition on the
diagonal of the array.
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Proof. (i) We can assume that n < 2k +m — i < n+ m since otherwise
Hy'; =0 by Theorem 4.1, and in this case the assertion is true. Now (k,t)
is a middle index if and only if 2k —t¢ < n. From the assumption and
Theorem 4.1 we conclude that Hy', = 0. For injectivity we show that if
d'(x) belongs to @™ (M, ) then x belongs to O™ “(M . ).
So suppose that 9'(x) = 9™ “*(w) for some w in M}, .. Then
9" (z — 0™ Y(w)) =0 and since K}!, = I}, there is some u in Mpyym
so that o — 0™ " (w) = 0™ '(u). Hence = = 9™ *(w + 0" (u)) .

(ii) Again assume that n < 2k+m—i < n+m . Now (k+m—j,m—j+i)
is a middle index if and only if 2k+m—i—j < n . From the assumption and
Theorem 4.1 we have Hp,,, ;. ;.. =0.So suppose that = = 9"/ (w)
for some w € My, ; and Oi(z) = 0. Then 9™+ (w) = 0 and as
H,g_m_j,m_jﬂ = 0, we have w = 0’7*(u) for some u. Therefore z =
Om=3(977"(2)) = 0™ "(u) ; hence inc~*: HI', — HJ is injective. O

Theorem 5.4 (Duality). Let F = GF(q) and let F be a field of charac-
teristic p > 0 not dividing q . Suppose that 0 < k<n and 0 <i<m =
m(p,q) . Then

() Hg; = Hy g s

(i) Hy, = Hy,, where j =2k —n+m —i as FG, -modules.

This is Theorem 2 in the Introduction. It endows the H™ -array with a
Cs5 x C2 symmetry which we will use to complete our analysis.

Example. To illustrate the two dualities consider the case n=10, m=5,
k=4,and i = 2. Then j =1 and the relevant index pairs are (4,2),
(6,3), (4,1), and (6,4). From the trace formula of Corollary 4.3 we can
express the Hy', as

(a) Hi%=M;°®—M;°+ Mg° — Mz°,

(b) H = MO = M0 + 2410 — MY,

(©) HI = Mi° — YO + Mo — 2120,

(d) H% = Mg°® — M3° + M° — M}°.

At the level of permutation sets L}’ is not permutation equivalent to
L?_ ., and so the isomorphism does not hold for permutation sets. How-
ever, in the case of cross characteristics we do have AM' = M , at the
level of permutation modules, see [4, Theorem 14.3]. From this it follows
that the four homology modules are indeed isomorphic.



SOME HOMOLOGY REPRESENTATIONS FOR GRASSMANNIANS 177

Proof of Theorem 5.4. For the index pairs (k,i) and (¢,7) we write
(k,i)—(£,7) or (k,i) < (£,7) provided that thereis an F'G,, -monomor-
phism, or F'G,, -isomorphism Hy', — Hy'; , respectively. For the first part
of the theorem note that dim(H};) = dim(H}}_, . ;) by Theorem 4.5(iii).
In particular, (k,7) is a middle index if and only if (n — k,m — i) is a
middle index. Hence it suffices to show that (k,i) < (n—k,m —1i) for all
k}%n and all 0<i<m.

When n is even. Here H" has a middle column indexed by ¢ . Consider

the middle index (k,i) where k= 1in+a with 0 <a < ii<i(m-1)
since k < §(n+m—1). First suppose that 2i < m+2a. Then incmt2e=,
(k,i) — (k,m — i+ 2a) and 0°%: (k,m —i+ 2a) — (k — 2a,m — i) by
Lemma 5.3. Hence (k,i) — (n —k,m — i) . Next suppose that a > 0 and
2i > m + 2a. Here we have 9%%: (3n + a,i) < (3n — a,i — 2a) by the
lemma. Now observe that (in—a,i—2a) < (3n+a,m—i+2a) by the
first part of the proof, since 2(m — i + 2a) < m + 2a. Next we have

. 1 1
0% <§n+a,m—i—|—2a> — <§n—a,m—i—|—2a—2a).

Hence together (3n + a,i) < (in —a,m — i) which proves the result for
n even.

When n s odd. The argument is almost the same. Consider the middle
index (k,i) where k = %n-l—a with a = %, 1+%,...,< %z < %(m—l).
First suppose that 2i < m + 2a . Then

0% (ki) = <%n+a,i) — (%n—a,i—2a)

i 1 1
inc™ 2tz <§n —a,i— 2a) — (En —a,m— z)

by Lemma 5.3. Hence (k,i) — (n — k,m —4) in this case. Next suppose
that 2i > m+2a so that 0**: (k,i) = (3n+a,i) < (3n—a,i—2a) . Now
(An—a,i—2a) < (in+a,m—i+2a) by the first part of the proof, as
2(m — i+ 2a) < m+ 2a. This gives

and

. 1 1
0% <§n+a,m—i—|—2a> — <§n—a,m—i—|—2a—2a).

Hence (%n +a,i) — (%n —a,m — 1), and this completes the proof of the
first part.
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To prove the second part note that (k,¢) is a middle index if and only
if (k,j) with 0 < j=2k—n+m—1i < m is a middle index. Assume
therefore that (k,7) is a middle index so that 0 < 2k —n+m —i <m
and without loss ¢ < j. First suppose k > %n with k£ = %n + a. Then
inc?k=mtm (ki) < (k,2k—n+m—i) = (k,j) by Lemma 5.3. Conversely,
we have 02: (k,2k—n+m—i) — (k—2a,2k—2a—n+m—i) by the lemma
and (k—2a,2k—2a—n+m—i) < (n—k+2a,m—2k+2a+n—m+i) by the
first part of the theorem. But (n—k+2a,m—2k+2a+n—m+1i) = (k,7) .
Hence (k,j) < (k,i). The case k < n is very similar. O

By the last theorem all homologies are determined by the modules H}’,
in the “triangle” where 2k = n + 2a with ¢ > 0 and 2: < m + 2a. It
remains to examine these terms.

Lemma 5.5. Let (k,i) be a mazimal middle index for n > 0, and write
k= %n +a with a > 0. Suppose that j is an integer with ¢ < 7 < m
and 2j <m+2a. Then By ; = B, + Biy1 ji1 -

Proof. Note that our usual convention applies, we put B’?‘i’ly]"{’l =0 if
(k+1,7+1) is not a middle index. The equation holds for j =m —1 by
Theorem 5.4 (i) and similarly for @ > £(m — 3) in which case k indexes
the last column in the H"™ -array. The statement is also true for 0 <n < 1.
The result now follows by induction and Theorem 4.5 (i). O

Theorem 5.6. Let F = GF(q) and let F be a field of characteristic
p > 0 not dividing q . Let (k,i) be a mazimal middle index for n >0,
and write k = %n +a with a > 0. Suppose that j is an integer with
i<j<m and 2j <m+2a. Then Hi'; = H, ® H ;. as FG, -
modules.

Proof. By Lemma 5.3, we have inc’~*: (k,i) < (k,7) and
0: (k+1,j+1) = (k,j).

As (k,i) is a maximal middle index it follows from Proposition 5.2 that
Hp, = D("=k:k) g irreducible and not a composition factor of HE i
Therefore the sum incj_i(H,Zi) + O(Hpyy j41) © Hy; is direct and the
result follows from Lemma 5.5. g

Theorem 5.7. Let F = GF(q) and let F be a field of characteristic
p > 0 not dividing q. Let (k,j) be a middle index for n > 0. Assume
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that k > 3n and j < 3(m —n)+k. Put { = n—k+j—1. Then
¢
Hp =@ Din=tt)
’ t=k

‘
When j > k + 1 then for some terms in @ D™ %Y we have expres-
t=k
sions (n —t,t) with n —t < 0. Here evidently D~ tt) =0

Proof. First notice that ¢ > k since (k,7) is a middle index, with equal-
ity if and only if (k,j) is a maximal middle index. Next let k& be maximal
with k& < 2(n +m — 1), that is, k indexes the right-most column of
H™ . If L{(n+m—1) <n then the constraint j < $(m —n) + k implies
that (k,j) is a maximal middle index, and hence k = ¢. From Propo-

sition 5.2 it follows that Hy, = D(n=kk) a5 required. If k& = n then

J4
Hp; = F = DO = G}k D=t hayving in mind the comment about
t=
expressions (n—t,t) with n—¢ < 0. So we may apply induction and sup-
pose that the theorem holds for all values > k. Now apply Theorem 5.6

and Propostion 5.2. O

Proof of Theorem 3. The first part is Theorem 4.1 and so we turn
to the second part. Let (k,i) be a middle index. (a) If k¥ > in and
i<3(m—n)+k set
Tpi:={t: k<t<n—k+i—1}

In this case, the statement of Theorem 3 is Theorem 5.7. Considering the
remaining three possibilities suppose (b) that k>1n and i>1(m—n)+k.
Here let i’ =2k —n+m —i. Then HJ';, = H}', by Theorem 5.4 (ii) and
as (k,i’) is of type (a) the result follows if we set

Tk’i:{tt k<t<k—|—m—i—1}.

Similarly, using Theorem 5.4(i), the remaining two cases can be reduced
to (a) or (b) if we define

Tk7i:{t:n—k<t<n—k+i—1}

(m_n)+k7

DN | =

1
if k<§n and i <
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and

Tk7i:{t:n—k<t<k+m—i—1}

1 1
if k<§n and i>§(m—n)+k.

This completes the proof. In practical terms, the result says that the H™ -

array is bordered by D

(n=k:k) on both ends of column k with the re-

mainder filled in using the simple rule of Theorem 5.7 and its mirror ver-

sions. (I
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