Е. В. Иконникова, Е. В. Шавердова

БАЗИС ШАФАРЕВИЧА В МНОГОМЕРНОМ ЛОКАЛЬНОМ ПОЛЕ

§1. Введение

Определение 1. Поле K-n-мерное локальное поле над полем k, если задана последовательность полных дискретно нормированных полей $K_n=K,\,K_{n-1},\,\ldots,\,K_0=k$, где каждое последующее поле является полем вычетов предыдущего.

При данной терминологии классическое локальное поле является одномерным локальным полем над некоторым конечным полем.

Базис Шафаревича – это мультипликативный базис главных единиц поля. Для классического локального поля эта структура достаточно давно известна ([7]).

В случае классического локального поля с полем вычетов характеристики p, не содержащего корень из единицы степени p, его элементы выглядят следующим образом:

$$E(c_i X^i)|_{X=\pi}$$

где E – экспонента Артина—Хассе, π – униформизирующая локального поля, c_i принадлежат набору \Re представителей в K базиса последнего поля вычетов k над \mathbb{F}_p , $1\leqslant i<\frac{pv(p)}{p-1}$. Любая главная единица поля единственным образом представима в виде произведения элементов базиса в целых p-адических степенях.

Если наибольшее m, такое, что поле содержит корень из единицы степени p^m , больше нуля, то в набор элементов базиса Шафаревича добавляется элемент

$$\omega(a) = E(as(X))|_{X=\pi},$$

где a — целый элемент подполя инерции, такой, что его след в \mathbb{Q}_p не делится на p^m , а s — ряд с целыми коэффициентами из подполя

Ключевые слова: многомерные локальные поля, базис Шафаревича.

Работа поддержана грантом РФФИ 11-01-00588-а. Авторы благодарят Санкт-Петербургский Государственный Университет за финансовую поддержку в рам-ках НИР.

инерции. При этом

$$s(X) = z(X)^{p^m} - 1,$$

где z(X) — ряд с целыми коэффициентами из подполя инерции, причем $\zeta(\pi)$ равно ζ_{p^m} — первообразному корню из единицы степени p^m . Любая главная единица поля представима в виде произведения элементов базиса в целых p-адических степенях, при этом базис является каноническим по модулю K^{p^m} , т. е. для двух элементов поля, отличающихся множителем из K^{p^m} , соответствующие показатели в представлении сравнимы по модулю p^m .

На момент написания этой работы были получены следующие результаты:

- С. В. Востоков, статья [2]. Построен базис Шафаревича в многомерном локальном поле, у которого первое поле вычетов ненулевой характеристики. Дана схема доказательства.
- А. И. Мадунц, диссертация [4]. Доказана корректность построения примарного элемента для формальных групп. Без доказательства сформулирована корректность для случая многомерного локального поля.
- С.В.Востоков, статья [5]. На основе образующих Гензеля и рбазиса полей характеристики р построен базис в мультипликативной группе полного дискретно нормированного поля с полем вычетов простой характеристики. Доказывается единственность построенного базиса, и как следствие — единственность канонического базиса Шафаревича.

Результатом этой работы является построение базиса Шафаревича для многомерного поля с совершенным последним полем вычетов.

§2. Обозначения

Будем придерживаться следующих обозначений:

- K-n-мерное локальное поле над совершенным полем k, char K=0, char k=p
- набор локальных параметров в $K \overrightarrow{t} = (t_1, t_2, \dots, t_n)$
- ullet R система представителей Тейхмюллера поля вычетов k
- \Re система представителей базиса k как векторного пространства над $\mathbb{F}_p,\,\Re\subset R$
- $\overrightarrow{v}()$ n-мерное нормирование поля K
- $\bullet \overrightarrow{e} := \overrightarrow{v}(p)$

- ullet $\overrightarrow{e}_1:=rac{\overrightarrow{e}}{p-1}$ (не обязательно целочисленный вектор)
- \bullet для индекса $\overrightarrow{r} \in \mathbb{Z}^n$ $\overrightarrow{r} = (r_1, r_2, \dots, r_n)$
- на индексах введен лексикографический порядок:

$$\overrightarrow{q} > \overrightarrow{r} \iff \exists 1 \leqslant l \leqslant n : q_n = r_n, q_{n-1} = r_{n-1}, \dots, q_{l+1} = r_{l+1}, q_l > r_l$$

В частности, будем называть индекс положительным, если его первый с конца ненулевой элемент положителен.

- $\bullet \overrightarrow{t}^{\stackrel{\cdot}{i}} := t_1^{i_1} t_2^{i_3} \dots t_n^{i_n}$ $\bullet \overrightarrow{t}^{\stackrel{\cdot}{i_1}} \equiv \overrightarrow{t}^{\stackrel{\cdot}{i_2}} \mod \overrightarrow{t}^{\stackrel{\cdot}{r}} + \Longleftrightarrow \exists \overrightarrow{r}_1 > \overrightarrow{r} : \overrightarrow{t}^{\stackrel{\cdot}{i_1}} \equiv \overrightarrow{t}^{\stackrel{\cdot}{i_2}} \mod \overrightarrow{t}^{\stackrel{\cdot}{r}_1}$ $\bullet p \equiv \theta_0 \overrightarrow{t}^{\stackrel{\cdot}{e}} \mod \overrightarrow{t}^{\stackrel{\cdot}{e}} +$
- \bullet \overline{a} вычет, соответствующий элементу $a \in K$
- $rep: k \to R$ отображение, сопоставляющее вычету его представитель Тейхмюллера.

§3. Сходимость рядов с р-адическими коэффициентами

Теперь рассмотрим вопрос сходимости в многомерном локальном поле степенных рядов с р-адическими коэффициентами при подстановке в них элементов максимального идеала, а также сходимость сумм результатов таких подстановок.

Определение 2. Набор индексов Ω будем называть допустимым, если для любых $i_n,\ldots,i_{n-k+1}\in\mathbb{Z}$ найдется $i_{n-k}\in\mathbb{Z}$ такое, что для каждого $\overrightarrow{r} \in \Omega$ с $r_n = i_n, \dots r_{n-k+1} = i_{n-k+1}$, выполняется неравенство $r_{n-k} \geqslant i_{n-k}$.

Определение 3. Множество наборов индексов $\{\Omega_i, i \in I\}$ будем называть допустимым, если:

- (1) любой индекс встречается не более чем в конечном числе наборов множества;
- $(2) \bigcup_{i \in I} \Omega_i \partial onycmuмый набор индексов.$

Следующие две теоремы доказаны в статье [3].

Теорема 1. Пусть $\{\Omega_i, i \in I\}$ – допустимое множество наборов ин- $\partial e\kappa cos$. Тог ∂a $\partial \Lambda s$ любых $b_{i} \neq R$ сумма

$$\sum_{i \in I} \sum_{\overrightarrow{r} \in \Omega_i} b_{i, \overrightarrow{r}} \overrightarrow{t}^{\overrightarrow{r}}$$

сходится.

Теорема 2. Пусть $\{\Omega_i, i \in I\}$ — допустимое множество наборов положительных индексов. Тогда для любых $b_{i, \overrightarrow{r}} \in R$ произведение

$$\prod_{i \in I} (1 + \sum_{\overrightarrow{r} \in \Omega_i} b_{i, \overrightarrow{r}} \overrightarrow{t}^{\overrightarrow{r}})$$

cxo dum cs.

Замечание. Если множество $\{\Omega_i, i \in I\}$ не является допустимым, нетрудно видеть, что сумма и произведение из теорем 1 и 2 могут расходиться.

Теперь докажем подготовительную лемму.

Лемма 1. Пусть Ω — допустимый набор положительных индексов. Тогда $\Omega^* = \{\overrightarrow{r}_1 + \overrightarrow{r}_2 + \cdots + \overrightarrow{r}_m | r_i \in \Omega, m \in \mathbb{N}\}$ — допустимый набор индексов, при этом любой его элемент может быть представлен в виде суммы индексов из Ω не более чем конечным числом способов.

Доказательство. Сначала докажем допустимость, используя индукцию. Докажем, что, выбрав последние k элементов значения суммы индексов, мы ограничиваем некоторой константой количество слагаемых с хотя бы одним ненулевым элементом среди последних k элементов, а также количество возможных наборов их последних k элементов. Заметим, что это утверждение для k, равного длине индекса, равносильно второму утверждению теоремы. И докажем, что тогда есть оценка снизу на (n-k)-ый элемент суммы.

При k=0 ограничение последнего индекса снизу такое же, как в Ω . При k=1 и значении последнего элемента суммы s у слагаемых последний элемент не может быть больше s и меньше 0, следовательно, количество допустимых наборов конечно. Из этого и допустимости Ω сразу следует ограничение снизу на предпоследний элемент суммы. С другой стороны, слагаемых с ненулевым последним элементом также не может быть больше s.

Теперь докажем переход от k-1 к k. Пусть зафиксированы последние k значений суммы. Тогда ограничено некоторой константой количество слагаемых с хотя бы одним ненулевым элементом среди последних k-1 элементов, а также (по индукционному предположению) количество возможных наборов их последних k-1 элементов. Отсюда и из допустимости Ω сразу следует ограничение снизу на k-й с конца элемент их суммы, а также каждого слагаемого. У каждого слагаемого есть еще и ограничение сверху, так как сумма для них

ограничена сверху. Для индексов с нулевыми последними (k-1)-ми элементами и ненулевыми k-ми отсюда также следует ограничение на количество, а также значения k-х элементов. Из ограничений следует, что число допустимых наборов последних k элементов слагаемых конечно, поэтому (k+1)-й с конца элемент их суммы ограничен снизу из допустимости Ω .

Следствие. Пусть Ω_1 , Ω_2 – два допустимых набора положительных индексов. Тогда $\Omega_+ = \{\overrightarrow{r}_1 + \overrightarrow{r}_2 | r_i \in \Omega_i\}$ – допустимый набор индексов, при этом любой его элемент может быть представлен в виде суммы индексов из Ω_1 и Ω_2 только конечным числом способов.

Доказательство. Набор $\Omega_{\bigcup} = \Omega_1 \bigcup \Omega_2$ допустим. При этом для него Ω_{\bigcup}^* по лемме 1 является допустимым набором и содержит Ω_+ , значит, Ω_+ также допустим. Представления в виде сумм индексов также содержат все представления вида $\overrightarrow{r}_1 + \overrightarrow{r}_2$, $r_i \in \Omega_i$, и их конечное число.

Лемма 2. Для любого ряда $f(X) \in \mathbb{Z}_p[[X]]$ и любого мультииндекса $\overrightarrow{r} > \overrightarrow{0}$ корректна подстановка

$$f(X)|_{X-\overrightarrow{t}^{\overrightarrow{r}}}$$
.

Доказательство. Пусть

$$f(X) = \sum_{i \ge 0} c_i X^i.$$

Разложим p по степеням локальных параметров:

$$p = \sum_{\overrightarrow{q} \in \Gamma} \theta_{\overrightarrow{q}} \overrightarrow{t}^{\overrightarrow{q}},$$

Г – допустимый набор индексов

$$c_i = \sum_{j \geqslant 0} \theta_{i,j} p^j = \sum_{\overrightarrow{q} \in \Gamma^*} \left(\sum_{l=1}^{m_{\overrightarrow{q}}} a_{\overrightarrow{q},l} \theta_{\overrightarrow{q},l} \right) \overrightarrow{t}^{\overrightarrow{q}}, \quad a_{\overrightarrow{q},l} \in \mathbb{Z}.$$

(По лемме 1 любой мультииндекс $\overrightarrow{q} \in \Gamma^*$ появляется в разложении лишь для конечного числа индексов j, значит, и набор коэффициентов при \overrightarrow{t} конечен.)

Рассмотрим наборы мультииндексов

$$\Gamma_l = \left\{ \overrightarrow{q} \in \Gamma^* : l = m_{\overrightarrow{q}} \right\}.$$

Заметим, что $\bigcup_{l\geqslant 1}\Gamma_l=\Gamma^*$ и $\{\Gamma_l,l\geqslant 1\}$ – допустимое мультимножество наборов индексов.

Таким образом,

$$c_i = \sum_{l \geqslant 1} \sum_{\overrightarrow{q} \in \Gamma_l} a_{\overrightarrow{q}, l} \theta_{\overrightarrow{q}, l} \overrightarrow{t}^{\overrightarrow{q}}.$$

Подставим в f(X) $X = \overrightarrow{t}^{r}$. Получаем

$$\sum_{l\geqslant 1}\sum_{i\geqslant 0}\sum_{\overrightarrow{q}\in\Gamma_{l}}a_{\overrightarrow{q},l}\theta_{\overrightarrow{q},l}\overrightarrow{t}^{\overrightarrow{q}+i\overrightarrow{r}}=\sum_{l\geqslant 1}\sum_{\overrightarrow{q}\in\Gamma_{l}^{(l)}}\left(\sum_{j=1}^{m_{\overrightarrow{q},l}}a_{\overrightarrow{q},l,j}\theta_{\overrightarrow{q},l,j}\right)\overrightarrow{t}^{\overrightarrow{r}},$$

где $\Gamma_{\cup}^{(l)} = (\Gamma_l \cup \{\overrightarrow{r}\})^*$ – допустимый набор.

Пусть теперь

$$\Gamma_{l,j} = \left\{ \overrightarrow{q} \in \Gamma_{\cup}^{(l)} : j = m_{\overrightarrow{q},l} \right\}.$$

Легко видеть, что $\{\Gamma_{l,j}: l\geqslant 1, j\geqslant 1\}$ — допустимое мультимножество наборов индексов.

Итак, мы получили

$$\sum_{l,j\geqslant 1}\sum_{\overrightarrow{q}\in\Gamma_{l,j}}a_{\overrightarrow{q},l,j}\theta_{\overrightarrow{q},l,j}\overrightarrow{t}^{\overrightarrow{q}},\quad a_{\overrightarrow{q},l,j}\in\mathbb{Z}.$$

Представим этот ряд как разность двух рядов аналогичного вида, но с $a_{\overrightarrow{q},l,j} \in \mathbb{N}$. Таким образом придем к рядам вида

$$\sum_{l,j\geqslant 1} \sum_{\overrightarrow{q'} \in \Gamma_{l,j}} \sum_{0\leqslant w\leqslant a_{\overrightarrow{q},l,j}} \theta_{\overrightarrow{q'},l,j} \overrightarrow{t'^{\overrightarrow{q'}}},$$

которые можно переписать как

$$\sum_{\substack{l,j,w\geqslant 1}}\sum_{\overrightarrow{q}\in\Gamma_{l,i,m}}\theta_{\overrightarrow{q},l,j}\overrightarrow{t}^{\overrightarrow{q}},$$

где

$$\Gamma_{l,j,w} = \left\{ \overrightarrow{q} \in \Gamma_{l,j} : w = a_{\overrightarrow{q},l,j} \right\}.$$

Мультимножество $\{\Gamma_{l,j,w}: l\geqslant 1, j\geqslant 1, w\geqslant 1\}$ допустимо, значит, оба полученных ряда сходятся.

Лемма 3. Для любого допустимого набора положительных индексов Ω и семейства рядов $f_{\overrightarrow{r}}(X) \in X\mathbb{Z}_p[[X]], \overrightarrow{r} \in \Omega$ корректна подстановка

$$\sum_{\overrightarrow{r} \in \Omega} f_{\overrightarrow{r}}(X)|_{X = \overrightarrow{t}^{\overrightarrow{r}}}.$$

Доказательство. Аналогично доказательству предыдущей леммы коэффициенты каждого из рядов $f_{\overrightarrow{r}}(X) = \sum\limits_{i\geqslant 0} c_{i,\overrightarrow{r}}X^i$ раскладываем

по степеням \overrightarrow{t} :

$$c_{i,\overrightarrow{r}} = \sum_{l\geqslant 1} \sum_{\overrightarrow{q}\in \Gamma_l} a_{\overrightarrow{q},l,\overrightarrow{r}}, \theta_{\overrightarrow{q},l,\overrightarrow{r}} \overrightarrow{t}^{\overrightarrow{q}},$$

приходим к ряду

$$\sum_{\overrightarrow{r} \in \Omega} \sum_{l \geqslant 1} \sum_{i \geqslant 0} \sum_{\overrightarrow{q} \in \Gamma_{l,\overrightarrow{r}}} a_{\overrightarrow{q},l} \theta_{\overrightarrow{q},l} \overrightarrow{t}^{\overrightarrow{q}+i\overrightarrow{r}} = \sum_{l \geqslant 1} \sum_{\overrightarrow{q} \in \Gamma_{1,l}^{(l)}} \left(\sum_{j=1}^{m_{\overrightarrow{q},l}} a_{\overrightarrow{q},l,j} \theta_{\overrightarrow{q},l,j} \right) \overrightarrow{t}^{\overrightarrow{q}},$$

где $\Gamma_{\cup}^{(l)} = (\Gamma_l \cup \Omega)^*$ – допустимый набор.

Продолжая аналогично доказательству леммы 2, получим разность двух сходящихся рядов вида

$$\sum_{l,j\geqslant 1}\sum_{\overrightarrow{q}\in \Gamma_{l,j,\overrightarrow{r}}}\sum_{0\leqslant w\leqslant a_{\overrightarrow{q},l,j,\overrightarrow{r}}}\theta_{\overrightarrow{q},l,j,\overrightarrow{r}}\overrightarrow{t}^{\overrightarrow{q}}.$$

§4. Экспонента Артина-Хассе

Обозначим подполе инерции поля K через T, а его кольцо целых — $\mathfrak o$. Возьмем кольцо $\mathfrak o\{\{X_1\}\}\{\{X_2\}\}\dots\{\{X_n\}\}$ и рассмотрим на нем оператор Фробениуса \triangle , который на переменные X_i действует как возведение в степень p, а на коэффициенты — как автоморфизм Фробениуса φ из $\mathrm{Gal}(\mathbb Q_p^{ur}/\mathbb Q_p)$. На $X_n\mathfrak o\{\{X_1\}\}\{\{X_2\}\}\dots\{\{X_{n-1}\}\}[[X_n]]$ определена экспонента Артина—Хассе

$$E(a) = \exp((1 - \frac{\triangle}{p})^{-1}(a)).$$

Рассмотрим корректность подстановки элементов максимального идеала в образ мономов относительно экспоненты Артина—Хассе. Сначала докажем, что на мономах с коэффициентом из представителей Тейхмюллера экспоненту можно определить как степенной ряд от монома с целыми p-адическими коэффициентами. В силу определения отображения, это утвеждение достаточно проверить на мономах первой степени. Для простоты заменим набор переменных X_i одной переменной X, на которую оператор Фробениуса действует возведением

в *p*-ую степень. Рассмотрим, как автоморфизм Фробениуса влияет на коэффициент.

Лемма 4. Пусть $\theta \in R$, φ – автоморфизм Фробениуса в поле T. Тогда

$$\varphi(\theta) = \theta^p$$
.

Доказательство. Из свойств φ имеем $\varphi(\theta) \equiv \theta^p \mod \mathfrak{M}$, где \mathfrak{M} – максимальный идеал K. При этом $\varphi(\theta) \in R$. Следовательно, представитель $\operatorname{rep}(\varphi(\theta)) = \varphi(\theta)$, но $\operatorname{rep}(\varphi(\theta)) = \operatorname{rep}(\theta^p) = \theta^p$.

Таким образом, $E(\theta X)=\exp(\sum_{i\geqslant 0}\frac{(\theta X)^{p^i}}{p^i})$. Упростим запись этого ряда, чтобы убедиться в том, что коэффициенты целы.

Лемма 5.

$$\exp(\sum_{i\geqslant 0} \frac{X^{p^i}}{p^i}) = \prod_{(i,p)=1} (1 - X^i)^{-\mu(i)/i},$$

где $\mu(i)$ — функция Мебиуса, причем степень — $\mu(i)/i$ следует рассматривать как p-адическое число.

Доказательство. Обозначим

$$\lambda(X) = \sum_{i \geqslant 0} \frac{X^{p^i}}{p^i}.$$

Докажем, что

$$\log(1-X) = -\sum_{(i,p)=1} \frac{1}{i} \lambda(X^i).$$

В левой части коэффициент при X^i $\frac{-1}{i}$ при $i\geqslant 1$. Пусть $i=i_0p^{d_i}$, где $(i_0,p)=1$. Тогда справа слагаемое X^i встречается только в ряде $\lambda(X^{i_0})$ с коэффициентом $\frac{1}{p^{d_i}}$. Итого коэффициент $\frac{-1}{i_0}\frac{1}{p^{d_i}}=\frac{-1}{i}$, следовательно, ряды совпадают.

Докажем, что

$$\lambda(X) = \sum_{(i,p)=1} \frac{-\mu(i)}{i} \log(1 - X^i).$$
 (1)

Имеем

$$\sum_{(i,p)=1} \frac{-\mu(i)}{i} \log(1 - X^i) = \sum_{(i,p)=1} \frac{\mu(i)}{i} \sum_{(j,p)=1} \frac{1}{j} \lambda(X^{ij})$$
$$= \sum_{i,j:(ij,p)=1} \frac{\mu(i)}{ij} \lambda(X^{ij}).$$

По свойству функции Мебиуса для $n \neq 1$ $\sum_{d \mid n} \mu(d) = 0$.

Рассмотрим коэффициенты при X^l в левой и правой частях (1).

- (1) $l = p^n$. В $\sum_{i,j:(ij,p)=1} \frac{\mu(i)}{ij} \lambda(X^{ij})$ соответствующее слагаемое встречается только в $\lambda(X)$, следовательно, коэффициент при нем совпадает с коэффициентом в левой части (1);
- (2) $l=p^n l_0$, $(l_0,p)=1$, $l_0\neq 1$. В $\sum_{i,j:(ij,p)=1} \frac{\mu(i)}{ij} \lambda(X^{ij})$ соответствующее слагаемое встречается только в $\lambda(X^{i_0})$, значит, коэффициент при нем $\sum_{d|i_0} \frac{\mu(d)}{i_0} \frac{1}{p^{i_0}} = \frac{1}{i_0 p^{i_0}} \sum_{d|i_0} \mu(d) = 0$, как и в левой части (1).

Взяв экспоненту от (1), получаем утверждение леммы.

 $\prod_{(i,p)=1} (1-\theta^i X^i)^{-\mu(i)/i}$ – ряд с целыми p-адическими коэффициентами. Поэтому, воспользовавшись этим представлением и леммой 2, получаем следующую теорему.

Теорема 3. Для любого $\theta \in R \setminus \{0\}, \ \overrightarrow{i} > \overrightarrow{0}$ корректно определен элемент $E(\theta X)|_{X=\overrightarrow{t}; \ }$ в K, причем выполнено сравнение

$$\left. E(\theta X) \right|_{X = \overrightarrow{t} \cdot \overrightarrow{i}} \equiv 1 + \theta \overrightarrow{t} \stackrel{\overrightarrow{i}}{\longrightarrow} \mod \overrightarrow{t} \stackrel{\overrightarrow{i}}{\longrightarrow} +.$$

Доказательство.

гельство.
$$\prod_{(j,p)=1} (1-X^j)^{-\mu(j)/j} \equiv (1-X)^{-1} \equiv 1+X \mod X^2.$$

Значит, сравнение выполнено.

$\S 5$. Случай поля без p-корней из единицы

Теорема 4. Пусть п-мерное поле K не содержит корень из единицы степени p. Тогда любую его главную единицу можно представить в виде

$$\prod_{\overrightarrow{x'} \in \Omega} E(\theta_{\overrightarrow{r}} \overrightarrow{X}^{\overrightarrow{r}})^{a_{\overrightarrow{r}}}|_{\overrightarrow{X} = \overrightarrow{t}},$$

где

- $\Omega \partial onycmumoe \$ множество;
- ullet $heta_{\overrightarrow{r}}\in\Re,\,\Re$ cucmeма npedcmasumeлей базиса nocлеdнего norя вычетов как векторного пространства над \mathbb{F}_p ;
- $a_{\overrightarrow{r}} \in \mathbb{Z}_p$;
- \overrightarrow{t} локальные параметры; $0 < \overrightarrow{r} < \frac{p\overrightarrow{v}(p)}{p-1}$;
- $p \not\mid \overrightarrow{r}$,

однозначно при $v_n(p)>0$ и с точностью до множителя из K^{p^d} для произвольного натурального d при $v_n(p) = 0$, причем такое представление канонично по модулю K^{p^d} .

Сначала изучим, когда система элементов становится мультипликативной порождающей системой главных единиц. Сформулируем теорему из [3].

Теорема 5. Пусть для любых $\overrightarrow{r}>0$ и $\theta\in R$ определен элемент $a_{ heta} \overrightarrow{r} \in K$, $a_{ heta} \overrightarrow{r} \equiv 1 + heta \overrightarrow{t} \overrightarrow{r} \mod \overrightarrow{t} \overrightarrow{r} +$. Тогда для того, чтобы любая главная единица $\alpha \in K$ была однозначно представима в виде

$$\alpha = \prod_{\overrightarrow{r} \in \Omega_{\alpha}} a_{\theta_{\overrightarrow{r}}, \overrightarrow{r}},$$

где Ω_{α} – допустимый набор положительных индексов, достаточно выполнения любого из условий:

- (1) множество наборов индексов $\{\Omega_{\theta, \overrightarrow{r}}, \theta \in R, \overrightarrow{r} \in \Omega\}$, $r de \Omega_{\theta, \overrightarrow{r}}$ набор индексов из разложения $a_{ heta, \overrightarrow{r}} - 1$ по степеням \overrightarrow{t} , допустимо для любого допустимого Ω ;
- (2) ряд $\sum_{\overrightarrow{r}\in\Omega}(a_{ heta,\overrightarrow{r}}-1)$ сходится для любого допустимого набора $\Omega.$

Доказательство. Для первого из условий теорема доказана в [3]. Фактически это доказательство состоит из двух частей: сначала доказывается, что из допустимости $\{\Omega_{ heta,\overrightarrow{r}}, heta \in R, \overrightarrow{r} \in \Omega\}$ следует сходимость рядов $\sum (a_{\theta, \overrightarrow{r}} - 1)$, потом (с использованием только этой схо-

димости) доказывается существование и единственность разложения α в произведение. Таким образом, если нам изначально известно, что такие ряды сходятся для выбранных некоторым специальным образом $a_{\theta,\overrightarrow{r}}$, то утверждение теоремы останется верным.

Зафиксируем подмножество представителей Тейхмюллера \Re , чьи вычеты образуют базис k над \mathbb{F}_p .

В соответствии с теоремой 3 определим для $\theta \in R$

$$a_{\theta, \overrightarrow{r}} = E(\theta X)|_{X = \overrightarrow{t} \overrightarrow{r}}.$$

В системе $a_{\theta, \overrightarrow{r}}$ некоторые элементы можно заменить на p-ые степени других. В самом деле, выпишем сравнения:

$$(1 + \theta \overrightarrow{t}^{i})^{p} \equiv 1 + \theta^{p} \overrightarrow{t}^{p} \overrightarrow{i} \mod \overrightarrow{t}^{p} \overrightarrow{i} +, \text{ ech} \overrightarrow{i} < \overrightarrow{e}_{1}; \qquad (2)$$

$$(1 + \theta \overrightarrow{t}^{i})^{p} \equiv 1 + (\theta^{p} + \theta_{0}\theta) \overrightarrow{t}^{p} \overrightarrow{i} \mod \overrightarrow{t}^{p} \overrightarrow{i} +, \text{ если } \overrightarrow{i} = \overrightarrow{e}_{1};$$
 (3)

$$(1 + \theta \overrightarrow{t}^{i})^{p} \equiv 1 + \theta_{0} \theta \overrightarrow{t}^{i+\overrightarrow{e}} \mod \overrightarrow{t}^{i+\overrightarrow{e}} +, \text{ если } \overrightarrow{i} > \overrightarrow{e}_{1}.$$
 (4)

Из сравнений следует, что на p-е степени других элементов можно заменить $a_{\theta,\overrightarrow{r}}$ для \overrightarrow{r} , меньших $p\overrightarrow{e}_1$ и кратных p, равных $p\overrightarrow{e}_1$ или больших $\overrightarrow{e}_1+\overrightarrow{e}$, при условии, что соответствующие отображения коэффициентов индуцируют автоморфизмы поля вычетов k как линейного пространства над \mathbb{F}_p . Поле k совершенно, умножение на ненулевой элемент очевидно является автоморфизмом, а отображение $\theta \mapsto \theta^p + \theta_0 \theta$ автоморфизмом является по следующей лемме.

Лемма 6. Гомоморфизм $\psi: \theta \mapsto \theta^p + \theta_0 \theta$ является изоморфизмом векторных пространств над \mathbb{F}_p .

Доказательство. Инъективность доказана в [6]. Тогда у любого элемента из базиса k над \mathbb{F}_p существует единственный прообраз. Прообраз произвольного элемента k, таким образом, будет линейной комбинацией прообразов элементов базиса, и, значит, ψ – сюръекция. \square

Теперь для каждого элемента системы $\{a_{\theta}, \overrightarrow{r}\}$, для которого это возможно, переопределим его как p-ую степень другого элемента, который, в свою очередь, (опять же при возможности это сделать) как p-ую степень третьего, и т. д. Заметим, что нормирование каждого следующего элемента меньше нормирования предыдущего, и при $v_n(p)>0$ для каждого из исходных $\{a_{\theta},\overrightarrow{r}\}$ эта цепочка оборвется. При $v_n(p)=0$ мы для любого фиксированного натурального d можем останавливаться после d переобозначений.

Почему теперь мы можем применить к системе $\{a_{\theta, \overrightarrow{r}}\}$ теорему 5? В случае конечного k это возможно по следующей лемме.

Лемма 7. Пусть $a_{\theta,\overrightarrow{r}}=E(\theta X)|_{X=\overrightarrow{t}^{\overrightarrow{r}}},$ где $\theta\in R$. Пусть $\Omega_{\theta,\overrightarrow{r}}$ - набор индексов в разложении $a_{\theta,\overrightarrow{r}}$ по степеням \overrightarrow{t} , Ω - допустимый набор положительных индексов. Тогда при конечном $R\left\{\Omega_{\theta,\overrightarrow{r}}:\theta\in R,\overrightarrow{r}\in\Omega\right\}$ - допустимое мультимножество наборов положительных индексов.

Доказательство. Пусть $\overrightarrow{s} \in \mathbb{Z}^n$ — мультииндекс. Заметим, что \overrightarrow{s} встречается в $\Omega_{\theta,\overrightarrow{r}}$ лишь при $\overrightarrow{r} \leqslant \overrightarrow{s}$, а таких \overrightarrow{r} конечное число. Таким образом, первое из условий допустимости выполнено.

Докажем второе условие. Рассмотрим объединение $\bigcup \Omega_{\theta, \overrightarrow{r}}$ и докажем, что оно является допустимым набором индексов. Зафиксируем i_{n-k+1},\ldots,i_n . Рассмотрим подмножество $\Omega_{\{i_{n-k+1},\ldots,i_n\}}\subset \bigcup \Omega_{\theta,\overrightarrow{r}},$ состоящее из индексов, k последних элементов которых совпадают с i_{n-k+1},\ldots,i_n .

Пусть $\overrightarrow{i_0} \in \Omega_{\{i_{n-k+1},\dots,i_n\}}$ – некоторый произвольно выбранный фиксированный элемент. Тогда $\Omega_{\{i_{n-k+1},\dots,i_n\}}$ разбивается на два подмножества, состоящие соответственно из $\overrightarrow{i} \leqslant \overrightarrow{i_0}$ и $\overrightarrow{i} > \overrightarrow{i_0}$.

Число таких $\Omega_{\theta,\overrightarrow{r}}$, в которых встречаются $\overrightarrow{i}\leqslant\overrightarrow{i_0}$, конечно, в каждом из этих множеств (n-k)-ые компоненты таких \overrightarrow{i} ограничены снизу, значит, и в $\bigcup\Omega_{\theta,\overrightarrow{r}}$ (n-k)-ые компоненты $\overrightarrow{i}\leqslant\overrightarrow{i_0}$ ограничены снизу.

Если же рассмотреть $\overrightarrow{i} > \overrightarrow{i_0}$, то, раз последние k компонент \overrightarrow{i} и $\overrightarrow{i_0}$ совпадают, то для (n-k)-ых компонент $i_{n-k} \geqslant (i_0)_{n-k}$. Таким образом, для всех индексов из $\Omega_{\{i_{n-k+1},\dots,i_n\}}$ выполняется условие ограниченности (n-k)-ой компоненты.

Замечание. Если множество представителей Тейхмюллера R бесконечно, то $\{\Omega_{\theta, \overrightarrow{r}}: \theta \in R, \overrightarrow{r} \in \Omega\}$ не является допустимым, так как любой мультииндекс $\overrightarrow{s} \in \mathbb{Z}^n$ встречается в наборах $\Omega_{\theta, \overrightarrow{s}}$ при всех $\theta \in R$.

Тем не менее, так как при нашем выборе $a_{\theta,\overrightarrow{r}}$ ряды $\sum_{\overrightarrow{r}\in\Omega}(a_{\theta,\overrightarrow{r}}-1)$ для любого допустимого Ω сходятся по лемме 3, то и при конечном, и при бесконечном R можно воспользоваться теоремой 5. Заметим также, что каждый из элементов $a_{\theta,\overrightarrow{r}}$ для $\theta\in R$ представляет собой произведение конечного числа элементов $a_{\theta,\overrightarrow{r}}$ с $\theta\in\Re$. Таким образом, приходим к утверждению теоремы 4.

Лемма 8. Полученное разложение определено однозначно.

Доказательство. Предположим противное. Докажем, что из неоднозначности разложения следует наличие в поле корня из единицы степени *p*. В самом деле, если есть неоднозначное разложение, то есть нетривиальное разложение единицы. Запишем его:

$$\prod_{\overrightarrow{r} \in \Omega} E(\theta_{\overrightarrow{r}} \overrightarrow{t}^{\overrightarrow{r}})^{a_{\overrightarrow{r}}} = 1 \qquad \text{при } v_n(p) > 0;$$

$$\beta^{p^d} \prod_{\overrightarrow{r} \in \Omega} E(\theta_{\overrightarrow{r}} \overrightarrow{t}^{\overrightarrow{r}})^{a_{\overrightarrow{r}}} = 1 \qquad \text{при } v_n(p) = 0.$$

Если все $a_{\overrightarrow{r}}$ делятся на p, то, поделив показатели на p, мы получим сходящееся разложение для корня из единицы степени p, т.е. он лежит в поле K. Значит, есть лексикографически наименьший \overrightarrow{j} , такой, что $a_{\overrightarrow{j}}$ не делится на p (множество индексов Ω допустимо, значит, наименьший существует). Тогда мы можем записать

$$\prod_{\overrightarrow{r}\geqslant\overrightarrow{j}}E(\theta_{\overrightarrow{r}}\overrightarrow{t}^{\overrightarrow{r}})^{a_{\overrightarrow{r}}}=\varepsilon^{p}$$

для некоторой (главной!) единицы ε . Пусть $\varepsilon\equiv 1+\eta\overrightarrow{t}^{i}\mod\overrightarrow{t}^{i}+.$

$$E(\theta_{\overrightarrow{j}}\overrightarrow{t}\overrightarrow{t}\overrightarrow{j})^{a_{\overrightarrow{j}}} \equiv 1 + a_{\overrightarrow{j}}\theta_{\overrightarrow{j}}\overrightarrow{t}\overrightarrow{j} \mod \overrightarrow{t}\overrightarrow{j} +,$$

значит,

$$1 + a_{\overrightarrow{j}}\theta_{\overrightarrow{j}}\overrightarrow{t}^{\overrightarrow{j}} \equiv (1 + \eta \overrightarrow{t}^{\overrightarrow{i}})^p \mod \overrightarrow{t}^{\overrightarrow{j}} + .$$

Но все такие единицы представлены в нашем базисе p-ми степенями других элементов, значит, $a_{\overrightarrow{j}}$ делится на p. Противоречие.

$$\S6.$$
 Элемент $\omega(a)$

Определим на $1 + X_n \mathfrak{o}\{\{X_1\}\}\{\{X_2\}\}\dots[[X_n]]$ функцию

$$l(a) = (1 - \frac{\triangle}{p})(\log(a)).$$

Лемма 9. E является \mathbb{Z}_p -изоморфизмом из

$$X_n \mathfrak{o}\{\{X_1\}\}\{\{X_2\}\}\dots[[X_n]]$$

в $1 + X_n \mathfrak{o}\{\{X_1\}\}\{\{X_2\}\}\dots[[X_n]]$, а l – обратный изоморфизм.

Доказательство. Доказательство аналогично предложению 2.2 главы VI в [6].

Для $a \in \mathfrak{o}$ существует α в \widehat{T} – пополнении T, такое, что $\varphi(\alpha) - \alpha = a$ ([6], предложение 1.8 главы IV).

Пусть теперь поле K содержит корень из 1 p-ой степени. Обозначим m наибольшее число, такое, что K содержит корень из 1 p^m -ой степени, а корень — ζ .

Обозначим
$$z(\overrightarrow{X})$$
 из $R\{\{X_1\}\}\{\{X_2\}\}\dots\{\{X_{n-1}\}\}[[X_n]],$ такой, что
$$z(\overrightarrow{t})=\zeta.$$

Его можно получить, например, из разложения ζ в ряд по локальным параметрам с коэффициентами из представителей Тейхмюллера. Определим ряд

$$s(\overrightarrow{X}) = z(\overrightarrow{X})^{p^m} - 1.$$

Рассмотрим следующую подстановку:

$$\omega(a) = E(as(\overrightarrow{X}))|_{\overrightarrow{X} = \overrightarrow{t}}.$$

Из определения ряда s и леммы 2 следует ее корректность. Найдем условие, при котором полученный элемент лежит в K^{p^m} . Докажем цепочку лемм, ведущих к соответствующему утверждению.

Лемма 10. Элемент

$$H(a) = E(p^m \varphi(\alpha) l(z(\overrightarrow{X})))|_{\overrightarrow{X} - \overrightarrow{t}}$$

 κ орректно определен в K. При этом

$$H(a) \in K^{p^m} \iff \operatorname{Tr}_{T/\mathbb{Q}_p} a \equiv 0 \mod p^m.$$

Доказательство. По лемме 9 элемент корректно определен.

Пусть $f=f(T/\mathbb{Q}_p),$ тогда автоморфизм Фробениуса поля T $\varphi_T=\varphi^f.$ Имеем

$$\varphi^{f+1}(\alpha) - \varphi(\alpha) = \varphi(1 + \varphi + \dots + \varphi^{f-1})(\varphi(\alpha) - \alpha)$$
$$= (\varphi + \varphi^2 \dots + \varphi^f)(a) = \operatorname{Tr}_{T/\mathbb{Q}_p} a.$$

Следовательно,

$$\varphi_T E(\varphi(\alpha)l(z(\overrightarrow{X})))|_{\overrightarrow{X} = \overrightarrow{t}} = E((\operatorname{Tr}_{T/\mathbb{Q}_p} a + \varphi(\alpha))l(z(\overrightarrow{X})))|_{X = \pi}$$

$$= E(\varphi(\alpha)l(z(\overrightarrow{X})))|_{\overrightarrow{X} = \overrightarrow{t}} \zeta^{\operatorname{Tr}_{T/\mathbb{Q}_p} a}.$$

Тем самым второе утверждение теоремы доказано. Наконец,

$$\varphi_T H(a) = H(a) \zeta^{p^m T_{r_T/\mathbb{Q}_p} a} = H(a).$$

Следовательно, H(a) лежит в K.

Теперь преобразуем H(a). Поскольку

$$(1 - \frac{\triangle}{p})(\alpha \log z) = \alpha \log z - \varphi(\alpha) \frac{\triangle}{p} \log z =$$
$$(\alpha - \varphi(\alpha)) \log z + \varphi(\alpha)l(z) = \varphi(\alpha)l(z) - a \log z,$$

а также

$$E(p^{m}(1 - \frac{\triangle}{p})\alpha \log z) = \exp(p^{m}\alpha \log z),$$

получаем

$$E(p^m \varphi(\alpha) l(z)) = E(p^m a \log z) \exp(p^m \alpha \log z).$$

Подстановка в рассмотренные ряды $\overrightarrow{X} = \overrightarrow{t}$ корректна, т.к. \log – ряд с целыми p-адическими коэффициентами, как и ряд $\exp(p^m \overrightarrow{X})$. При этом

 $\exp(p^m\alpha\log z(\overrightarrow{X}))|_{\overrightarrow{X}=\overrightarrow{t}} = \exp(\alpha\log z(\overrightarrow{X})^{p^m})|_{\overrightarrow{X}=\overrightarrow{t}} = \exp(\alpha\log\zeta^{p^m}) = 1.$ To есть

$$H(a) = E(p^m \varphi(\alpha) l(z(\overrightarrow{X}))|_{\overrightarrow{X} = \overrightarrow{t}}) = E(p^m a \log z(\overrightarrow{X})|_{\overrightarrow{X} = \overrightarrow{t}}.$$

Поскольку $p^m \log z = \log(s+1)$, получаем

$$E(p^m a \log z) = E(as)E(a(\log(1+s) - s)).$$

Докажем, что подстановка $E(a(\log(1+s(\overrightarrow{X}))-s(\overrightarrow{X})))|_{\overrightarrow{X}=\overrightarrow{t}}$ дает элемент K^{p^m} . Тогда будет получена следующая теорема.

Теорема 6. Для $a \in \mathfrak{o}$ элемент

$$\omega(a) = E(as(\overrightarrow{X}))|_{\overrightarrow{X} = \overrightarrow{t}}$$

корректно определен, и

$$\omega(a) \in K^{p^m} \iff \operatorname{Tr}_{T/\mathbb{O}_n} a \equiv 0 \mod p^m.$$

Доказательство. Для обоснования второго утверждения теоремы заметим, что $\omega(a)$ отличается от H(a) на множитель из K^{p^m} .

Поскольку $\overrightarrow{v}(\zeta-1)=\overrightarrow{e}/(p-1)p^{n-1}=\overrightarrow{e}_{\zeta}$, ряд $z(\overrightarrow{X})=1+\theta\overrightarrow{X}^{\overrightarrow{e}_{\zeta}}+\ldots$ Будем в дальнейшем рассматривать только такой ряд и соответствующий ему ряд $s(\overrightarrow{t})\equiv\theta_1\overrightarrow{t}^{\overrightarrow{e}_1}\mod\overrightarrow{t}^{\overrightarrow{e}_1}+\ldots$ Отметим, что ряд, соответствующий разложению ζ по локальным параметрам с коэффициентами из представителей Тейхмюллера, удовлетворяет этому условию.

Лемма 11. Подстановка $E(a(\log(1+s(\overrightarrow{X}))-s(\overrightarrow{X})))|_{\overrightarrow{X}=\overrightarrow{t}}$ корректна, и ее результат является элементом K^{p^m} .

Доказательство. Имеем

$$E(a(\log(1+s(\overrightarrow{X})) - s(\overrightarrow{X}))) = \exp(a(\log(1+s(\overrightarrow{X})) - s(\overrightarrow{X}))) \exp(\sum_{i \geqslant 1} \triangle^i (a(\log(1+s(\overrightarrow{X})) - s(\overrightarrow{X}))/p^i) \exp(a(\log(1+s(\overrightarrow{X})) - s(\overrightarrow{X})))|_{\overrightarrow{X} - \overrightarrow{Y}} = 1,$$

т.к. подстановка корректна по лемме 2, а $s(\overrightarrow{t}) = 0$. Далее,

$$\log(1+s) - s = \sum_{k \ge 2} (-1)^{k+1} s^k / k,$$

$$\exp(\sum_{i\geqslant 1} \triangle^i (a(\log(1+s)-s)/p^i) = \exp(\sum_{i\geqslant 1} \sum_{k\geqslant 2} (-1)^{k+1} \triangle^i (as^k)/kp^{i+m})^{p^m}.$$

Для корректности выделения степени p^m достаточно доказать, что аргумент экспоненты после подстановки имеет нормирование хотя бы \overrightarrow{e} , поскольку ряд $\exp(pX)$ является рядом с целыми p-адическими коэффициентами. Аналогично одномерному случаю ([6], глава 6, (4.2)) получаем

$$\overrightarrow{v}(\triangle^k s(\overrightarrow{t})) > \overrightarrow{e}(1 + \max(k, m)).$$

Тогда $\overrightarrow{v}(\triangle^i(as^k)/kp^{i+m}) > \overrightarrow{e}(k(1+\max(m,i))-i-m-(k-1)) \geqslant \overrightarrow{e},$ поскольку $k\geqslant 2, \ \overrightarrow{v}(m)\leqslant (m-1)\overrightarrow{e}$ при натуральном m.

$\S7$. Случай поля с p-корнями из единицы

Пусть теперь поле K содержит корень из 1 p-ой степени. Докажем следующую теорему.

Теорема 7. Пусть K-n-мерное поле, и наибольшее m, такое, что поле содержит корень из единицы степени p^m , больше нуля. Обозначим этот корень через ζ . Тогда любую главную единицу поля K можно представить в виде

$$\prod_{\overrightarrow{r}\in\Omega} E(\theta_{\overrightarrow{r}}\overrightarrow{X}^{\overrightarrow{r}})^{a_{\overrightarrow{r}}} E(as(X))^{b}|_{\overrightarrow{X}=\overrightarrow{t}},$$

 $e \partial e$

- $\Omega \partial onycmumoe$ множество;
- $\theta_{\overrightarrow{r}} \in \Re$;

- $a_{\overrightarrow{r}}, b \in \mathbb{Z}_p$;
- \bullet \overrightarrow{t} локальные параметры;
- $0 < \overrightarrow{r} < p\overrightarrow{v}(p)/(p-1)$;
- ullet а целый элемент подполя инерции, такой, что $\mathrm{Tr}_{T/\mathbb{Q}_p}$ $a\equiv 1$
- $z(\overrightarrow{X}) \in R\{\{X_1\}\}\{\{X_2\}\}\dots\{\{X_{n-1}\}\}[[X_n]], \ npuчем \ z(\overrightarrow{t}) = \zeta_{p^m},$ первообразному корню из единицы степени $p^m;$

c точностью до множителя из K^{p^m} . При этом базис является каноническим по модулю K^{p^m} , т.е. для двух элементов поля, отличающихся множителем из K^{p^m} , соответствующие показатели в представлении сравнимы по модулю p^m .

Подобно случаю без p-корней, любой элемент поля представим в виде произведения $E(\theta_{\overrightarrow{r}}\overrightarrow{t}^{\overrightarrow{r}})$ по допустимому множеству. Переопределим, как и раньше, некоторые элементы базиса как p-е степени других элементов, но так, чтобы в итоге степень не превысила p^m .

Отметим, что теперь отображение $\theta \mapsto \theta^p + \theta_0 \theta$ изоморфизмом поля вычетов не является. То есть теперь в поле K есть элементы, сравнимые с $1 + \theta \overrightarrow{t}^{p\overrightarrow{e}_1} \mod \overrightarrow{t}^{p\overrightarrow{e}_1} +$, которые не лежат в K^p .

По построению $E(as(\overrightarrow{t})) \equiv 1 + \varphi(a)\theta_1 \overrightarrow{t}^{p\overrightarrow{e}_1} \mod \overrightarrow{t}^{p\overrightarrow{e}_1}$, где θ_1 – некоторый фиксированный представитель Тейхмюллера. Поскольку φ – автоморфизм T, в таком виде мы можем получить любой элемент $a_{\theta,p\overrightarrow{e}_1}$. Рассмотрим аддитивный гомоморфизм $\psi: T \longrightarrow \langle \zeta \rangle$:

$$\psi(a) = \zeta^{\operatorname{Tr}_{T/\mathbb{Q}_p} a}.$$

Его ядро составляют те a, у которых $\operatorname{Tr}_{T/\mathbb{Q}_n} a \equiv 0 \mod p^m$. С другой стороны, из теоремы 6 известно, что это ровно те а, для которых $\omega(a)\in K^{p^m}$. Следовательно, элемент $\omega(b)$ с $\mathrm{Tr}_{T/\mathbb{Q}_p}$ $b\equiv 1\mod p^m$ порождает $\langle \omega(a) | a \in T \rangle / \langle \omega(a) | a \in T \rangle \cap K^p$. Поэтому для получения базиса достаточно добавить к порождающим элементам $\omega(b)$ и его степени, определив ими соответствующие $a_{\theta, \vec{r}}$, а также их произведения с уже определенными как p-ые степени a_{θ} . \overrightarrow{r} .

Заметим, что теперь в разложении к произведению старого вида добавился множитель вида $\omega(b)$ в p-адической степени, который определен корректно, значит, и все произведение сходится.

Теперь докажем, что полученное разложение канонично по модулю $K^{p^m}.$

Лемма 12. Полученное разложение канонично по модулю K^{p^m} .

Доказательство. Докажем индукцией по m. База: m=1.

Если есть неоднозначное разложение, то имеется нетривиальное разложение единицы:

$$\varepsilon_0^p \prod E(\theta \overrightarrow{t}^{\overrightarrow{r}})^{a \overrightarrow{r}} \omega(a)^b = 1.$$

Сначала докажем, что все $a_{\overrightarrow{r}}$ делятся на p. Если это не так, есть лексикографически наименьший \overrightarrow{j} , такой, что $a_{\overrightarrow{j}}$ не делится на p (множество индексов допустимо, значит, наименьший существует). Тогда мы можем записать

$$\prod_{\overrightarrow{r}\geqslant\overrightarrow{j}}E(\theta\overrightarrow{t}^{\overrightarrow{r}})^{a_{\overrightarrow{r}}}=\varepsilon^{p}\omega(a)^{-b}$$

для некоторой единицы ε . Значит,

$$E(\theta_j \overrightarrow{t}^{\overrightarrow{j}})^{a_{\overrightarrow{j}}} \equiv 1 + a_{\overrightarrow{j}} \theta \overrightarrow{t}^{\overrightarrow{j}} \equiv \varepsilon^p \omega(a)^{-b} \mod \overrightarrow{t}^{\overrightarrow{j}} + .$$

Рассмотрим два случая:

- (1) $\overrightarrow{v}(\varepsilon^p-1)<\overrightarrow{v}(\omega(a)^{-b}-1)$. Тогда $E(\theta\overrightarrow{t}\overrightarrow{j})^a\overrightarrow{\jmath}\equiv\varepsilon^p$ является главной единицей вида, описанного в сравнениях. Но все такие единицы представлены в нашем базисе p-ми степенями других элементов, значит, $a_{\theta\overrightarrow{j}}$ делится на p.
- (2) $\overrightarrow{v}(\varepsilon^p-1)\geqslant \overrightarrow{v}(\omega(a)^{-b}-1)$. Тогда $\overrightarrow{j}\geqslant p\,\overrightarrow{e}_1$, что противоречит построению.

Итак, все $a_{\theta,\overrightarrow{r}}$ делятся на p. Теперь докажем, что b кратно p. Пусть это не так. Тогда $\omega(a)\in K^p$, что противоречит выбору этого элемента.

Переход от m-1 к m.

Пусть у нас есть нетривиальное разложение единицы с точностью до множителя степени p^m . Тогда по базе индукции все показатели делятся на p. Разделив их, мы получим разложение для некоторого корня ζ_p -й степени из 1 до множителя степени p^{m-1} . Его же разложение можно получить, возведя в p^{m-1} -ю степень разложение ζ_{p^m} . У этого разложения все показатели будут делиться на p^{m-1} . По индукционному предположению показатели определены однозначно по модулю

 p^{m-1} . Значит, у разложения ζ_p , полученного из разложения единицы, все показатели тоже делятся на p^{m-1} , поэтому у разложения единицы все показатели делятся на p^m , что и требовалось доказать.

Литература

- 1. С. В. Востоков, Явная конструкция теории полей классов многомерного локального поля. — Изв. АН СССР. Сер. матем. **49**, No. 2 (1985), 283–308.
- 2. С. В. Востоков, Спаривание на K-группах многомерных полных полей. Труды С.-Петербург. матем. общества 3 (1994), 140-184.
- 3. И. Б. Жуков, А. И. Мадунц, Аддитивные и мультипликативные разложения в многомерных локальных полях. Зап. научн. семин. ПОМИ **272** (2000), 186–196.
- А. И. Мадунц, Сходимость последовательностей и рядов в многомерных полных полях. — Кандидатская диссертация, СПбГУ (1995).
- 5. С. В. Востоков, Канопический базис Гензеля-Шафаревича в полных дискретно-нормированных полях. Зап. научн. семин. ПОМИ **394** (2011), 174–193.
- I. B. Fesenko, S. V. Vostokov, Local fields and their extensions. AMS Bookstore, 2002.
- 7. И. Р. Шафаревич, Общий закон взаимности. Матем. сб. **26(68)**, No. 1 (1950), 113-146.

Ikonnikova E. V., Shaverdova E. V. The Shafarevich basis in higher dimensional local fields.

This paper presents a generalization of Shafarevich basis for n-dimensional local fields with perfect last residue field. We consider the group of principal units of such fields and construct its multiplicative basis.

С.-Петербургский государственный университет, Университетский пр. 28, Петродворец, Санкт-Петербург 198504, Россия E-mail: elena.mm1120gmail.com eshaverdova0gmail.com

Поступило 20 декабря 2012 г.