И. А. Ибрагимов

ОБ ОДНОМ ОБОБЩЕНИИ ПРОЕКЦИОННЫХ ОЦЕНОК Н. Н. ЧЕНЦОВА

1. Проекционные оценки впервые появились в 1962 г. в работе Н. Н. Ченцова [1], как метод построения оценок бесконечномерного, например, функционального параметра. В общих чертах этот метод заключается в следующем. Допустим, что подлежащий оценке параметр $\theta \in \Theta \subseteq H$, H — гильбертово пространство с нормой $\|\cdot\|$, и качество оценки $\widehat{\theta}$ определяется величиной $\mathbf{E}_{\theta} \| \widehat{\theta} - \theta \|^2$. Метод Ченцова рекомендует рассмотреть конечномерное подпространство H_N пространства H, хорошо приближающее Θ , и оценивать не сам параметр θ , а его проекции θ_N на H_N . Последняя задача уже есть задача оценки конечномерного параметра.

Для определенности рассмотрим следующую задачу, в которой метод построения проекционных оценок выглядит особенно просто и естественно. Функция $f \in F \subset L_2(0,1)$ наблюдается в гауссовском белом шуме интенсивности ε . Это означает, что в качестве наблюдения мы имеем

$$X_{\varepsilon}(t) = \int_{0}^{t} f(s) ds + \varepsilon w(t), \qquad (1.1)$$

где w(t) — процесс Винера.

Пусть H_N — конечномерное подпространство $L_2([0,1])$ размерности N, а $\varphi_1,\ldots,\varphi_N$ — ортогональный базис в $H_N.$ Проекция f на H_N имеет вид

$$f_N = \sum_{1}^{N} a_j \varphi_j, \quad a_j = (f, \varphi_j) = \int_{0}^{1} f(t) \varphi_j(t) dt,$$

 $Knweebue\ cnoba:$ проекционные оценки Ченцова, непараметрическая теория оценивания, ядерные оценки, воспроизводящие ядра.

Работа выполнена при частичной поддержке РФФИ, грант 11-01-00577-а, "Ведущие научные школы", грант НШ-1216.2012.1, и Программы фундаментальных исследований РАН "Современные проблемы теоретической математики".

и естественной оценкой для f_N является статистика

$$\widehat{f}_N = \sum_{1}^{N} \widehat{a}_j \varphi_j, \quad \widehat{a}_j = \int_{0}^{1} \varphi_j(t) dX_{\varepsilon}(t).$$

Очевидно, что

$$\mathbf{E}_f \|f - \widehat{f}_N\|^2 = \sum_{1}^N \mathbf{E}_f |a_j - \widehat{a}_j|^2 + \|f - f_N\|^2 \leqslant N\varepsilon^2 + \left(\operatorname{dist}(F, H_N)\right)^2.$$

Поэтому для любого $\delta > 0$ можно найти такую оценку \widehat{f}_{δ} , что

$$\sup_{f \in F} \mathbf{E}_f \| f - \widehat{f}_{\delta} \| \le N \varepsilon^2 + (1 + \delta) d_N^2(F),$$

$$\inf_{\widehat{f}} \sup_{f \in F} \mathbf{E}_f \|f - \widehat{f}\|^2 \leqslant N\varepsilon^2 + d_N^2(F). \tag{1.2}$$

Здесь $d_N(F)$ означает N-й поперечник Колмогорова множества F в $L_2([0,1])$. Поперечники множеств нормированных пространств были введены А. Н. Колмогоровым [2]. Относительно поперечников см., например, [3–5].

2. В работе [6], хотя и не совсем явно, было отмечено, что в определенных случаях проекции на бесконечномерные пространства с ограниченным воспроизводящим ядром допускают столь же хорошие оценки, что и проекции на конечномерные пространства. Этот феномен и основанные на нем методы оценивания исследовался в работе [7]. Настоящая работа продолжает это исследование.

Напомним определение пространств с воспроизводящим ядром (см. [8, с. 139], [9]). Пусть \mathfrak{X} — некоторое абстрактное множество точек x и пусть система H комплексных функций f(x), заданных на \mathfrak{X} , образует гильбертово пространство со скалярным произведением (f,g). Комплексная функция K(x,y), определенная на $\mathfrak{X} \times \mathfrak{X}$, называется воспроизводящим ядром для H, если

- а) для любого фиксированного $y \in \mathfrak{X}$ функция K(x,y) как функция от x есть элемент H:
 - b) для любого элемента $f \in H$

$$f(y) = (f(\cdot), K(\cdot, y))$$

и, следовательно,

$$\overline{f(y)} = (K(\cdot, y), f(\cdot)).$$

В силу условия b),

$$K(x,y) = (K(\cdot,y), K(\cdot,x)).$$

Если H имеет воспроизводящее ядро, то это ядро единственно. Воспроизводящее ядро положительно определено. В частности,

$$K(x,y) = \overline{K(y,x)}, K(x,x) \geqslant 0, \quad |K(x,y)|^2 \leqslant K(x,x)K(y,y).$$

Если $\{\varphi_i(x)\}$ – это какая-нибудь ортонормальная система, то

$$\sum |\varphi_j(x)|^2 \leqslant K(x,x).$$

Если же пространство H сепарабельно, то оно имеет воспроизводящее ядро в том и только том случае, если для любого ортонормированного базиса $\{\varphi_i\}$ сумма $\sum |\varphi_i(x)|^2 < \infty$. При этом

$$K(x,y) = \sum \varphi_j(x) \overline{\varphi_j(y)}. \tag{2.1}$$

Отметим еще, что пространство H имеет воспроизводящее ядро в том и только том случае, если все линейные функционалы $L_x(f) = f(x)$ непрерывны. При этом

$$|f(x)| \le (K(x,x))^{1/2} \cdot ||f||.$$

Ниже мы рассматриваем только вещественные H, так что K(x,y)=K(y,x).

Примеры.

- **2.1.** Всякое конечномерное пространство H есть пространство с вопроизводящим ядром $K(x,y)=\sum\limits_1^N \varphi_j(x)\varphi_j(y),$ где $\{\varphi_j\}$ ортонормальный базис в H.
- **2.2.** Пусть G измеримое подмножество R^d , имеющее конечную положительную лебегову меру. Обозначим $H_G = H$ подпространство $L^2(R^d)$, состоящее из функций f, преобразование Фурье которых

$$\widetilde{f}(t) = \int_{\mathbb{R}^d} e^{i(t,x)} f(x) dx$$

обращается в нуль вне множества G. Тогда H_G — пространство с воспроизводящим ядром

$$K(x,y) = \frac{1}{(2\pi)^d} \int_G e^{i(t,x-y)} dt.$$
 (2.2)

Действительно, если $f \in H_G$, то

$$\int_{R^d} K(x,y) f(x) \, dx = \frac{1}{(2\pi)^d} \int_G e^{-i(t,y)} \, dt \int_{R^d} e^{i(t,x)} f(x) \, dx$$
$$= \frac{1}{(2\pi)^d} \int_G e^{-i(t,y)} \widetilde{f}(t) \, dt = f(y).$$

2.3. Пусть интервалы $[a_j,a_{j+1})$ не пересекаются. Пусть функции $\varphi_j\in L_2(R^1)$ обращаются в нуль вне интервала (a_j,a_{j+1}) и $\|\varphi_j\|=1$. Пусть H – подпространство $L_2(R^1)$, натянутое на векторы $\{\varphi_j\}$. Тогда H имеет воспроизводящее ядро

$$K(x,y) = \sum_{j} \varphi_{j}(x)\varphi_{j}(y). \tag{2.3}$$

3. Ниже мы будем рассматривать задачу оценивания параметра $\theta \in \Theta \subseteq L_2(\mathfrak{X},\mathfrak{A},\mu) = L_2, \, \mu - \sigma$ -конечная мера на σ -алгебре \mathfrak{A} подмножеств \mathfrak{X} .

Мы рассмотрим три следующие статистические задачи.

І. Оценка плотности распределения. Наблюдениями в этой задаче являются независимые одинаково распределенные \mathfrak{X} -значные случайные величины

$$X_1,\ldots,X_n$$

с неизвестной плотностью распределения $\theta(x)$ относительно μ . Неизвестная плотность θ принадлежит известному множеству $\Theta\subseteq L_2$. Качество оценки $\widehat{\theta}$ измеряется величиной $\mathbf{E}_{\theta}\|\widehat{\theta}-\theta\|^2$.

II. Оценка функции в аддитивном гауссовском шуме. Для любого $\varphi \in L_2$ наблюдается гауссовская случайная величина

$$X(\varphi) = (\theta, \varphi) + \xi(\varphi) = \int_{\mathcal{T}} \theta(x)\varphi(x) d\mu + \xi(\varphi),$$

где функция $\theta \in \Theta$ подлежит оценке. Величины $\xi(\varphi)$ – гауссовские с

$$\mathbf{E}\xi(\varphi) = 0, \quad \mathbf{E}\xi(\varphi)\xi(\psi) = \int_{\mathfrak{X}} \varphi(x)\psi(x)\sigma^2(x) d\mu.$$

III. Оценка плотности интенсивности пуассоновского множества Π . На множестве $\mathfrak X$ наблюдается случайное пуассоновское множество Π с неизвестной плотностью интенсивности θ относительно μ . Плотность $\theta \in \Theta \subseteq L_2$. Надлежит по наблюдениям Π оценить θ .

Следуя указанному выше методу, мы будем сперва оценивать проекции θ на пространство H_K с воспроизводящим ядром $K, H_K \subseteq L_2$.

4. Мы начнем с исследования более простой задачи II.

Теорема 4.1. Пусть $H_K \subseteq L_2$ — подпространство с воспроизводящим ядром K(x,y). Пусть $\Theta \subseteq H_K$. Оценим θ статистикой

$$\widehat{\theta}_K(y) = X(K(\cdot, y)).$$

Tог ∂a

$$\mathbf{E}_{\theta} \|\widehat{\theta}_K - \theta\|^2 \leqslant \int_{\mathfrak{X}} K(x, x) \sigma^2(x) \, d\mu \tag{4.1}$$

и, следовательно,

$$\inf_{\widehat{\theta}} \sup_{\theta \in \Theta} \mathbf{E}_{\theta} \|\widehat{\theta} - \theta\|^2 \leqslant \int_{\mathfrak{X}} K(x, x) \sigma^2(x) \, dx. \tag{4.2}$$

Доказательство. Так как $\theta \in H_K$, то

$$\theta(y) = \left(\theta, K(\cdot, y)\right) = \int\limits_{\mathfrak{X}} \theta(x) K(x, y) \mu(dx).$$

Поэтому $X(K(\cdot,y))=\theta(y)+\xi(K(\cdot,y))$ и, следовательно,

$$\begin{aligned} \mathbf{E}_{\theta} \| \widehat{\theta}_{K} - \theta \|^{2} &= \mathbf{E} \int_{\mathfrak{X}} |\xi(K(\cdot, y)|^{2} \mu(dy) \\ &= \int_{\mathfrak{X}} \mu(dy) \int_{\mathfrak{X}} K(x, y) K(x, y) \sigma^{2}(x) \mu(dx) \\ &= \int_{CX} \sigma^{2}(x) \mu(dx) \int_{\mathfrak{X}} K(x, y) K(x, y) \mu(dy) \\ &= \int_{\mathfrak{X}} \sigma^{2}(x) K(x, y) \mu(dx). \end{aligned}$$

Следующая теорема показывает, что неравенство (4.2) теоремы 4.1, вообще говоря, нельзя улучшить.

Теорема 4.2. Пусть в условиях теоремы 4.1 множество $\Theta = H_K$. Тогда

$$\inf_{\widehat{\theta}} \sup_{\theta \in \Theta} \mathbf{E}_{\theta} \|\widehat{\theta} - \theta\|^2 = \int_{\mathfrak{X}} K(x, x) \sigma^2(x) \, dx. \tag{4.3}$$

Доказательство. Пусть $\{\varphi_j\}$ — ортонормальный базис в H_K . Обозначим L_N подпространство H_K , натянутое на векторы $\varphi_1, \ldots, \varphi_N$. Очевидно,

$$\inf_{\widehat{\theta}} \sup_{\theta \in \Theta} \mathbf{E}_{\theta} \|\widehat{\theta} - \theta\|^2 \geqslant \inf_{\widehat{\theta}} \sup_{\theta \in L_N} \mathbf{E}_{\theta} \|\widehat{\theta} - \theta\|^2. \tag{4.4}$$

Ясно, что при оценивании $\theta \in L_N$ достаточно ограничиться оценками $\widehat{\theta} \in L_N$. Таким образом, полагая $\theta = \sum\limits_1^N a_j \varphi_j, \ \widehat{\theta} = \sum\limits_1^N \widehat{a}_j \varphi_j,$ мы найдем, что

$$\inf_{\widehat{\theta}} \sup_{\theta \in \Theta} \mathbf{E}_{\theta} \|\widehat{\theta} - \theta\|^2 \geqslant \inf_{\{\widehat{a}_j\}} \sup_{\{a_j\}} \mathbf{E}_a \left(\sum_{1}^{N} |a_j - \widehat{a}_j|^2 \right). \tag{4.5}$$

Рассмотрим вспомогательную задачу оценивания N-мерного параметра $a=(a_1,\dots,a_N)$ по наблюдению

$$X = a + \xi$$

где $\xi = (\xi_1, \dots, \xi_N)$ — гауссовский вектор с $\mathbf{E} \xi = 0$ и корреляционной матрицей

$$R = ||r_{kl}||, \quad r_{kl} = \mathbf{E}\xi_k\xi_l = \int_{\mathfrak{X}} \varphi_k(x)\varphi_l(x)\sigma^2(x) d\mu.$$

Риск оценки \widehat{a} определяется квадратичной функцией потерь $W(z) = \sum\limits_{1}^{N} z_{i}^{2}.$

Для этой задачи

$$\inf_{\widehat{a}_{j}} \sup_{a} \mathbf{E}_{a} \left(\sum_{1}^{N} |\widehat{a}_{j} - a_{j}|^{2} \right) = \mathbf{E}W(\xi)$$

$$= \operatorname{tr} R = \sum_{1}^{N} \int_{\mathfrak{X}} \varphi_{j}^{2}(x) \sigma^{2}(x) d\mu. \quad (4.6)$$

Последнее равенство, по-видимому, хорошо известно специалистам. Его можно легко доказать с помощью аргументов, используемых при доказательстве теоремы Гаека (см. [10, теорема 2.12.1]; заметим, что здесь мы имеем дело с "абсолютной", а не локальной и асимптотической нормальностью).

Возвращаясь к основной задаче, мы находим из (4.4)–(4.6), что для всех N

$$\inf_{\widehat{\theta}} \sup_{\theta \in \Theta} \mathbf{E}_{\theta} \|\widehat{\theta} - \theta\|^2 \geqslant \int_{\mathfrak{X}} \left(\sum_{1}^{N} \varphi_j^2(x) \right) \sigma_j^2(x) \, d\mu.$$

Отсюда следует, что

$$\inf_{\widehat{\theta}} \sup_{\theta \in \Theta} \mathbf{E}_{\theta} \|\widehat{\theta} - \theta\|^2 \geqslant \int_{\mathfrak{X}} \sum_{1}^{\infty} \varphi_j^2(x) \sigma^2(x) d\mu = \int_{\mathfrak{X}} K(x, x) \sigma^2(x) d\mu.$$

Обратное неравенство есть следствие теоремы 4.1.

Теорема доказана.

Примеры

4.1. В условиях примера 2.1, если $\Theta = H_K \subseteq L_2$, а $\sigma(x) \equiv \varepsilon$

$$\inf_{\widehat{\theta}} \sup_{\theta \in \Theta} \mathbf{E}_{\theta} \|\widehat{\theta} - \theta\|^2 = \varepsilon^2 \sum_{1}^{N} \int_{\mathfrak{X}} \varphi_j^2(x) \, d\mu = N\varepsilon^2. \tag{4.7}$$

4.2. В условиях примера 2.2 $K(x,x)=(2\pi)^{-d}\mathrm{mes}\,\mathrm{G},$ так что (ср. ниже теоремы 5.2, 6.2)

$$\inf_{\widehat{\theta}} \sup_{\theta \in N_K} \mathbf{E}_{\theta} \|\widehat{\theta} - \theta\|^2 = \frac{\operatorname{mes G}}{(2\pi)^d} \int_{R^d} \sigma^2(x) \, dx. \tag{4.8}$$

4.3. Пусть в условиях примера 2.3 $a_j=\frac{j}{N},$ а $\varphi_j(x)=\sqrt{N},\,\frac{j}{N}\leqslant x\leqslant \frac{j+1}{N}.$ Тогда

$$\inf_{\widehat{\theta}} \sup_{\theta \in H_K} \mathbf{E}_{\theta} \|\widehat{\theta} - \theta\|^2 = N \int_{-\infty}^{\infty} \sigma^2(x) \, dx. \tag{4.9}$$

5. Оценка плотности распределения. В этом пункте мы рассмотрим задачу I в предположении, что $\Theta \subseteq H_K \subseteq L_2(\mathfrak{X},\mathfrak{A},\mu)$ для какогонибудь подпространства H_K .

Теорема 5.1. Пусть $H_K \subseteq L_2$ — пространство с воспроизводящим ядром K(x,y). Пусть $\Theta \subseteq H_K$. Оценим θ статистикой

$$\widehat{\theta}_K(y) = \frac{1}{n} \sum_{1}^{n} K(X_j, y).$$

Tог ∂a

$$\mathbf{E}_{\theta} \|\widehat{\theta}_K - \theta\|^2 \leqslant \frac{1}{n} \left(\int_{\mathbf{F}} K(x, x) \theta(x) \, d\mu - \|\theta\|^2 \right) \tag{5.1}$$

и, следовательно,

$$\inf_{\widehat{\theta}} \sup_{\theta \in \Theta} \mathbf{E}_{\theta} \|\widehat{\theta} - \theta\|^2 \leqslant \frac{1}{n} \sup_{\theta} \int_{\mathfrak{X}} K(x, x) \theta(x) \, d\mu. \tag{5.2}$$

Доказательство. В силу воспроизводящих свойств ядра K

$$\mathbf{E}_{\theta}\widehat{\theta}_{K}(y) = \int_{\mathfrak{X}} K(x, y)\theta(x)\mu(dx) = \theta(y),$$

так что $\widehat{\theta}_K$ — несмещенная оценка θ . Далее,

$$\begin{aligned} \mathbf{E}_{\theta} \| \widehat{\theta}_K - \theta \|^2 &= \int_{\mathfrak{X}} \frac{1}{n} \mathbf{E}_{\theta} \left(K(X_1, y) - \mathbf{E}_{\theta} K(X_1, y) \right)^2 \mu(dy) \\ &= \frac{1}{n} \int_{\mathfrak{X}} \theta(x) \mu(dx) \int_{\mathfrak{X}} K(x, y) K(x, y) \mu(dy) - \frac{\|\theta\|^2}{n} \\ &= \frac{1}{n} \left(\int_{\mathfrak{X}} K(x, x) \theta(x) d\mu - \|\theta\|^2 \right). \end{aligned}$$

Теорема доказана.

Заметим, что в отличие от предыдущего раздела неравенство (5.2) не является точным даже в случае $\Theta = H_K$, так как в пространстве H_K может не оказаться достаточного числа положительных функций. Пусть, например, $\mathfrak{X} = R^1$ и θ суть плотности распределения по отношению к мере Лебега. Пусть H есть подпространство $L_2(R^1)$, натянутое

на векторы $\psi(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}, \ \varphi_j(x) = \frac{\sin 2^j x}{1+x^2}, \ j=0,\dots,N.$ В H лежит ровно одна плотность распределения, так что $\inf_{\widehat{x}} \sup_{A} \mathbf{E}_{\theta} \|\widehat{\theta} - \theta\| = 0.$

Приведем два примера, когда неравенство (5.2) оказывается точным. В обоих этих примерах $L_2(\mathfrak{X},\mathfrak{A},\mu)=L_2(\mathbb{R}^d)$, что не оговаривается особо.

Теорема 5.2. Рассмотрим задачу I оценки плотности распределения θ в предположении, что $\theta \in \Theta \subseteq H_K$, H_K есть пространство с воспроизводящим ядром примера 2.2 и Θ содержит все плотности распределения из H_K . Тогда

$$\lim_{n} \inf_{\widehat{\theta}} \sup_{\theta} n \mathbf{E}_{\theta} \|\widehat{\theta} - \theta\|^{2} = \sup_{\theta} \int_{\mathbb{R}^{d}} K(x, x) \theta(x) \, dx = \frac{\text{mes G}}{(2\pi)^{d}}. \tag{5.3}$$

Доказательство. Эта теорема доказана в [6].

Теорема 5.3. Рассмотрим задачу I оценки плотности распределения θ в предположении, что $\theta \in \Theta$, $\Theta \subseteq H_K$ и содержит все плотности распределения из H_K , а H_K есть пространство с воспроизводящим ядром примера 2.3, причем $a_j = \frac{j}{N}, \ j = \cdots -1, 0, 1, \ldots, \ a$ $\varphi_j(x) = \sqrt{N}$ для $x \in [a_j, a_{j+1})$. Тогда

$$\lim_{n} \inf_{\widehat{\theta}} \sup_{\theta \in \Theta} n \mathbf{E}_{\theta} \|\theta - \widehat{\theta}\|^{2} = \sup_{\theta \in \Theta} \int_{-\infty}^{\infty} K(x, x) \theta(x) \, dx = N.$$
(5.4)

Доказательство. Пусть M — фиксированное целое положительное число. Положим $q(x) = \frac{\sqrt{N}}{M+1} \sum_{0}^{M} \varphi_j(x)$ и рассмотрим семейство функций

$$\theta(x) = \theta(x; a) = q(x) + \sum_{j=1}^{M} a_j(\varphi_j(x) - \varphi_0(x)), \tag{5.5}$$

зависящих от параметра $a=(a_1,\dots,a_M)$. Очевидно, что

$$\int_{-\infty}^{\infty} \theta(x; a) \, dx = 1.$$

Если $a \in A = \{a : |a_j| < \frac{\sqrt{N}}{M+1}\}$, то $\theta(x; a) \geqslant 0$. Таким образом, если $a \in A$, то $\theta(x; a)$ есть плотность распределения в R^1 . Будем обозначать

это семейство плотностей тоже буквой A. Очевидно, $A\subseteq \Theta$ и потому для любой оценки $\widehat{\theta}$

$$\sup_{\theta \in \Theta} \mathbf{E}_{\theta} \|\widehat{\theta} - \theta\|^2 \geqslant \sup_{\theta \in A} \mathbf{E}_{\theta} \|\widehat{\theta} - \theta\|^2.$$
 (5.6)

При оценивании плотности $\theta \in A$ достаточно ограничиться оценками вида $\hat{b} \cdot q + \sum_{1}^{N} \hat{a}_{j}(\theta_{j} - \theta_{0})$, где \hat{b} , \hat{a}_{j} – какие-то статистики выборки X_{1}, \ldots, X_{n} . Для таких оценок θ

$$\|\widehat{\theta} - \theta\|^2 = |\widehat{b} - 1|^2 \|q\|^2 + \left\| \sum_{1}^{N} (\widehat{a}_j - a_j)(\theta_j - \theta_0) \right\|^2,$$

так что можно положить $\widehat{b}=1$ и рассматривать лишь оценки вида $q+\sum\limits_{1}^{N}\widehat{a}_{j}(\theta_{j}-\theta_{0}).$ Таким образом

$$\sup_{\theta \in \Theta} \mathbf{E}_{\theta} \|\widehat{\theta} - \theta\|^2 \geqslant \inf_{\widehat{\theta}} \sup_{\theta \in A} \mathbf{E}_{\theta} \left\{ \sum_{1}^{N} |\widehat{a}_j - a_j|^2 + \left| \sum_{1}^{N} (\widehat{a}_j - a_j) \right|^2 \right\}.$$

Чтобы оценить правую часть последнего неравенства, рассмотрим параметрическую задачу оценивания параметра a плотности распределения $\theta(x;a)$ по наблюдениям X_1,\ldots,X_n . Обозначим через $I_M(a)=I(a)=\|I_{ij}(a)\|$ информационную матрицу этой задачи. Тогда

$$I_{ii} = I_{ii}(0) = \int_{-\infty}^{\infty} \frac{|\varphi_i(x) - \varphi_0(x)|^2}{q(x)} dx = 2 \cdot \frac{M+1}{N},$$
$$I_{ij} = \int_{-\infty}^{\infty} \frac{|\varphi_0(x)|^2}{q(x)} dx = \frac{M+1}{N}, \quad i \neq j.$$

Если в качестве функции потерь задачи выбрать функцию $w(x)=\sum_1^N x_i^2+\left(\sum_1^N x_i\right)^2$, то, в силу неравенства Гаека (см. [10, теорема 2.12.1]), для любой оценки $\widehat{a}=(\widehat{a}_1,\dots,\widehat{a}_M)$ параметра a

$$\underline{\lim}_{n \to \infty} \sup_{a \in A} n \mathbf{E}_a W(\widehat{a} - a) \geqslant \mathbf{E} W(\xi), \tag{5.8}$$

где $\xi=(\xi_1,\dots,\xi_M)$ — нормальный случайный вектор со средним нуль и корреляционной матрицей $I_M^{-1}=(\|I_{ij}\|)^{-1}.$

Ортогональным преобразованием матрица I_M приводится к диагональному виду с диагональю $(c(M+1),c,c,\ldots,c),\ c=\frac{M+1}{N}.$

Поэтому, возвращаясь к неравенству (5.7), мы получим (с учетом (5.8)), что для любой оценки $\widehat{\theta}$

$$\frac{\lim \sup_{n} \sup_{\theta \in \Theta} n \mathbf{E}_{\theta} \|\widehat{\theta} - \theta\|^{2} \geqslant \mathbf{E}w(\xi)$$

$$= \frac{\sqrt{\det I_{M}}}{(2\pi)^{M/2}} \int_{R^{M}} w(x) \exp\left\{-\frac{1}{2}(I_{M}x, x)\right\} dx$$

$$= \frac{\sqrt{\det I_{M}}}{(2\pi)^{M/2}} \int_{R^{M}} \left(\sum_{2}^{M} x_{i}^{2} + (M+1)x_{1}^{2}\right)$$

$$\times \exp\left\{-\frac{1}{2}\left(c\sum_{2}^{M} x_{i}^{2} + c(M+1)x_{1}^{2}\right)\right\} dx = \frac{M}{M+1}N.$$

Устремляя в этом неравенстве M к бесконечности, мы придем к неравенству теоремы.

6. Оценка плотности интенсивности пуассоновского случайного множества. В этом разделе мы рассмотрим задачу III в предположении, что неизвестная плотность интенсивности наблюдаемого пуассоновского множества $\theta \in \Theta \subseteq H_K$, где $H_K \subseteq L_2(\mathfrak{X},\mathfrak{A},\mu)$ — подпространство с воспроизводящим ядром K. Чтобы избежать ненужных затруднений, мы всегда предполагаем, что множество

$$\mathbf{D} = \{(x, y) : x = y\}$$

измеримо в $(\mathfrak{X} \times \mathfrak{X}, \mathfrak{A} \times \mathfrak{A})$ (см. [11, глава 2]).

Теорема 6.1. Пусть наблюдаемое пуассоновское случайное множество $\Pi \subset \mathfrak{X}$ имеет плотностью интенсивности (относительно μ) функцию $\theta \in \Theta \subseteq H_K \subseteq L_2$. Оценим θ статистикой

$$\widehat{\theta}(y) = \sum_{x \in \Pi} K(x, y).$$

Tог ∂a

$$\mathbf{E}_{\theta} \|\widehat{\theta} - \theta\|^2 = \int_{\mathfrak{X}} K(x, x) \theta(x) d\mu. \tag{6.1}$$

В частности,

$$\inf_{\widehat{\theta}} \sup_{\theta} \mathbf{E}_{\theta} \|\widehat{\theta} - \theta\|^2 \leqslant \sup_{\theta} \int_{\mathbf{r}} K(x, x) \theta(x) \, d\mu. \tag{6.2}$$

Доказательство. В силу теоремы Кэмпбелла (см. [11, глава 3])

$$\mathbf{E}_{\theta}\widehat{\theta}(y) = \int_{\mathfrak{X}} K(x, y)\theta(x) \, d\mu = (K(\cdot, y), \theta) = \theta(y).$$

Снова по теореме Кэмпбелла

$$\mathbf{D}\widehat{\theta}(y) = \mathbf{E}|\theta(y) - \widehat{\theta}(y)|^2 = \int_{\mathbf{x}} K^2(x, y)\theta(x) d\mu.$$

Интегрируя последнее равенство по мере μ , найдем, что

$$\mathbf{E}_{\theta} \|\widehat{\theta} - \theta\|^2 = \int_{\mathfrak{X}} \theta(x) \, d\mu(x) \int_{\mathfrak{X}} K^2(x, y) \, d\mu(y) = \int_{\mathfrak{X}} K(x, x) \theta(x) \, d\mu.$$

Теорема доказана.

Как и в предыдущем случае, полное обращение неравенства (6.2), вообще говоря, невозможно, так как $\theta(x)\geqslant 0$. Мы докажем аналоги теорем 5.2 и 5.3. Чтобы сформулировать эти теоремы, изменим несколько постановку задачи и предположим, что наблюдаемое пуассоновское случайное множество Π_{ε} имеет плотностью интенсивности функцию $\frac{\theta(x)}{\varepsilon}$, где ε — известный малый параметр, а $\theta\in\Theta$ — функция, подлежащая оценке. Примером подобной постановки служит, например, следующая задача. Наблюдаются n независимых одинаково распределенных пуассоновских множеств Π_1,Π_2,\ldots,Π_n с плотностью интенсивности θ . По этим наблюдениям надлежит оценить θ . Объединение множеств $\Pi_j,\ \Pi_{\varepsilon}=\cup\Pi_j,\$ есть достаточная статистика задачи, Π_{ε} — случайное пуассоновское множество интенсивности $n\cdot\theta(x)=\frac{\theta(x)}{\varepsilon},\ \varepsilon=\frac{1}{n}.$ Выбирая в качестве оценки для θ статистику

$$\widehat{\theta}_{\varepsilon}(y) = \varepsilon \sum_{x \in \Pi_{\varepsilon}} K(x, y),$$

найдем, повторяя ход доказательства предыдущей теоремы, что

$$\mathbf{E}_{\theta} \|\widehat{\theta}_{\varepsilon} - \theta\|^2 = \varepsilon \int_{\mathfrak{X}} K(x, x) \theta(x) \, dx. \tag{6.3}$$

Теорема 6.2. Пусть наблюдаемый процесс Пуассона Π_{ε} имеет своей плотностью интенсивности функцию $\varepsilon^{-1}\theta(x)$, где $\varepsilon>0$ – известный (малый) параметр. Допустим, что $\theta\in\Theta\subseteq H_K$, где H_K есть пространство с воспроизводящим ядром примера 2.2, и что Θ содержит все неотрицательные функции $\theta\in H_K$, такие что $\int\limits_{\mathbb{R}^d}\theta(x)\,dx\leqslant M$.

Тогда

$$\lim_{\varepsilon \to 0} \inf_{\widehat{\theta}} \sup_{\theta \in \Theta} \varepsilon^{-1} \mathbf{E}_{\theta} \|\widehat{\theta} - \theta\|^{2} = \frac{\operatorname{mes}(\mathbf{G})}{(2\pi)^{d}} \sup_{\theta} \int_{\mathbf{R}^{d}} \theta(x) \, dx = \frac{\operatorname{mes}(\mathbf{G})}{(2\pi)^{d}} \cdot M. \tag{6.4}$$

Доказательство. В силу (6.3) для оценки

$$\widehat{\theta}_{\varepsilon}(y) = \varepsilon \sum_{x \in \Pi_{\varepsilon}} K(x, y)$$

выполняется неравенство

$$\mathbf{E}_{\theta} \| \widehat{\theta}_{\varepsilon} - \theta \|^{2} \leqslant \varepsilon \int_{R^{d}} K(x, x) \theta(x) \, dx = \frac{\operatorname{mes}(G)}{(2\pi)^{d}} \int_{R^{d}} \theta(x) \, dx,$$

так что заведомо

$$\lim_{\varepsilon \to 0} \inf_{\widehat{\theta}} \sup_{\theta} \varepsilon^{-1} \mathbf{E}_{\theta} \|\widehat{\theta} - \theta\|^2 \leqslant \frac{\operatorname{mes}(\mathbf{G})}{(2\pi)^d} M.$$

Перейдем к доказательству обратного неравенства. При этом без потери общности можно считать $\int\limits_{R^d}\theta(x)\,dx\leqslant 1,$ что и предполагается ниже. Доказательство сходно с доказательством теоремы 5.2, т.е.

ся ниже. доказательство сходно с доказательством теоремы 5.2, т.е. теоремы 1 из [6], и мы позволим себе опускать некоторые детали доказательства.

Положим

$$\Delta_2^2 = \inf_{\widehat{\theta}} \sup_{\theta \in \Theta} \mathbf{E}_{\theta} \| \widehat{\theta} - \theta \|^2$$

и оценим снизу величину $\varepsilon^{-1}\Delta_2^2$ (следует иметь в виду, что $\mathbf{E}_{\theta}(\cdot)$ означает математическое ожидание по отношению к пуассоновскому полю Π_{ε} с плотностью интенсивности $\theta \varepsilon^{-1}$ (а не θ)).

Зафиксируем малое положительное число $\delta>0$ и рассмотрим множество $G_\delta=(1-\delta)G=\{y:y=(1-\delta)x,x\in G\}$. Обозначим Γ_γ куб $\{x:|x_i|\leqslant\gamma\}$ и выберем $\gamma=\gamma(\delta)$ так, чтобы $G_\delta+\Gamma_\gamma=\{x:x=x^1+x^2,x^1\in K_\delta,x^2\in\Gamma_\gamma\}\subseteq G$. Условимся обозначать $\mathcal{E}(D)$ множество функций $f\in L_2(R^d)$, преобразование Фурье которых обращается в нуль вне множества D.

Положим

$$q_{\gamma}(x) = \prod_{1}^{d} \frac{\sin^{2}(x_{i}\gamma/2)}{\pi\gamma x_{i}^{2}}.$$

Очевидно, что $q_{\gamma} \in \mathcal{E}(\Gamma_{\gamma})$ и если $\psi \in \mathcal{E}(G_{\delta})$, то $\psi q_{\gamma} \in \mathcal{E}(G)$. Ниже для краткости вместо q_{γ} будем писать просто q. Пусть функции $\{\varphi_j\}$ образуют полную ортонормальную систему в $\mathcal{E}(G_{\delta})$. Рассмотрим семейство функций

$$\theta(x; a) = q(x) \left(1 + \sum_{1}^{N} a_j \varphi_j(x) \right),$$

зависящее от N-мерного параметра $a=(a_1,\ldots,a_N)$. Все эти функции суть элементы H_K . Обозначая $\widetilde{\varphi}_j$ преобразование Фурье функции φ_j , найдем

$$\|\varphi_j\| \leqslant (2\pi)^{-d} \int_{G_s} |\widetilde{\varphi}_j(t)| dt < (\operatorname{mes G})^{1/2}.$$

Поэтому если точка $a=(a_1,\ldots,a_N)$ принадлежит кубу

$$A = \Big\{a: |a_j| \leqslant \frac{\sqrt{\operatorname{mes} \mathbf{G}}}{N}\Big\},\,$$

то все функции $\theta(x;a)$ суть плотности интенсивности из Θ . Условимся обозначать через A также и множество функций $\theta(x;a), a \in A$.

Таким образом, $A\subseteq\Theta$ и для любой оценки $\widehat{\theta}_{\varepsilon}$ плотности θ

$$\sup_{\theta \in \Theta} \mathbf{E}_{\theta} \|\widehat{\theta}_{\varepsilon} - \theta\|^{2} \geqslant \sup_{\theta \in A} \mathbf{E}_{\theta} \|\widehat{\theta}_{\varepsilon} - \theta\|^{2}. \tag{6.5}$$

Оценивая функцию $\theta \in A$, мы заведомо можем ограничиться оценками $\widehat{\theta}_{\varepsilon}$ вида

$$\widehat{\theta}_{\varepsilon}(x; \Pi_{\varepsilon}) = q(x) \left(\widehat{a}_0 + \sum_{1}^{N} \widehat{a}_j \varphi_j(x) \right), \quad \widehat{a}_j = \widehat{a}_j(\Pi_{\varepsilon}).$$

Поэтому

$$\sup_{\theta \in A} \mathbf{E}_{\theta} \|\widehat{\theta} - \theta\|^2 = \sup_{\theta \in A} \frac{1}{\varepsilon} \mathbf{E}_{\theta} \left\| q(\widehat{a}_0 - 1) + \sum_{j=1}^{N} (\widehat{a}_j - a_j) \varphi_j \right\|^2.$$
 (6.6)

От компоненты \widehat{a}_0 можно избавиться следующим образом.

Рассмотрим матрицу

$$B_N = \left\| \int_{\mathbb{R}^d} \varphi_j(x) \varphi_i(x) q^2(x) \, dx \right\|$$

и запишем неотрицательную квадратичную форму переменных $t,\,z=(z_1,\ldots,z_N)$

$$Q = \left\| q \left(t + \sum_{j=1}^{N} z_j \varphi_j \right) \right\|^2$$

в виде

$$Q = \left(B_N(z + B_N^{-1}u), (z + B_N^{-1}u)\right) + \left[t\|q\|^2 - \left(B_N^{-1}u, u\right)\right], \tag{6.7}$$

где $u=(u_1,\dots,u_N)$ – вектор с компонентами $t\int\limits_{R^d}q^2(x)\varphi_j(x)\,dx$. Форма Q – неотрицательная, и, полагая в (6.7) $z=-B^{-1}u$, мы найдем, что $t\|q\|^2-(B_N^{-1}u,u)\geqslant 0$ и что, следовательно,

$$Q \geqslant \left(B_N(z + B_N^{-1}u), (z + B_N^{-1}u)\right).$$
 (6.8)

Заменим теперь в (6.6) оценку $(\widehat{a}_0,\widehat{a}_1,\ldots,\widehat{a}_N)$ оценкой $(\widetilde{a}_1,\ldots,\widetilde{a}_N)$, где $\widetilde{a}_j=\widehat{a}_j-B_N^{-1}u$. Мы получим тогда, что

$$\inf_{\{a_j\}}\sup_{\theta\in A}\mathbf{E}_{\theta}\left\|q(\widehat{a}_0-1)+\sum_1^N(\widehat{a}_j-a_j)\varphi_j\right\|^2\geqslant\inf_{\{a_j\}}\sup_{\theta\in A}\mathbf{E}_{\theta}\left\|q\sum_1^N(\widehat{a}_j-a_j)\varphi_j\right\|^2$$
и что, следовательно,

$$\inf_{\widehat{\theta}_{\varepsilon}} \sup_{\theta \in \Theta} \mathbf{E}_{\theta} \|\widehat{\theta}_{\varepsilon} - \theta\|^{2} \geqslant \inf_{\{a_{j}\}} \sup_{\theta \in A} \mathbf{E}_{\theta} \| q \sum_{1}^{N} (\widehat{a}_{j} - a_{j}) \varphi_{j} \|^{2}.$$
 (6.9)

Чтобы оценить правую часть последнего неравенства, рассмотрим следующую вспомогательную задачу параметрического оценивания: по наблюдению пуассоновского случайного множества Π_{ε} с плотностью интенсивности $\varepsilon^{-1}\theta(x;a)$ оценить параметр $a=(a_1,\ldots,a_N)\in A$ в предположении, что функция потерь $w(z)=\left\|q\sum_{1}^{N}z_j\varphi_j\right\|^2$.

Если \mathbf{P}_{λ} есть распределение пуассоновского множества Π на $(\mathfrak{X},\mathfrak{A},\mu)$ с плотностью интенсивности λ , то

$$\frac{d\mathbf{P}_{\lambda_2}}{d\mathbf{P}_{\lambda_1}}(\Pi) = \exp\bigg\{\sum_{x\in\Pi}\ln\frac{\lambda_2(x)}{\lambda_1(x)} - \int\limits_{\mathbf{x}} \left[\lambda_2(x) - \lambda_1(x)\right]d\mu\bigg\}$$

(см., например, [12, с. 124], или [13]).

Отсюда легко следует, что количество информации Фишера параметрического статистического эксперимента порожденного Π_{ε} определено и информационная матрица Фишера в точке a=0

$$I_N = \left\| \int_{\mathbb{R}^d} \varphi_i(x) \varphi_j(x) q(x) \, dx \right\|$$

и что соответствующий статистический эксперимент удовлетворяет условию локальной асимптотической нормальности (ЛАН) с нормирующим множителем $\varphi(\varepsilon)=\sqrt{\varepsilon}\,I_N^{-1},\,\varepsilon\to0$ (см. [10, глава II]). Об условиях ЛАН для пуассоновских наблюдений см. также [14].

В силу теоремы Гаека (см. [10, §2.12]) для любой оценки \widehat{a} параметра a

$$\varliminf_{\varepsilon \to 0} \ \sup_{a \in A} \mathbf{E}_a^{(\varepsilon)} W \left(\varepsilon^{-\frac{1}{2}} (\widehat{a} - a) \right) \geqslant \mathbf{E} W \left(\xi \right),$$

где ξ — нормальный случайный вектор с нулевым средним и корреляционной матрицей $I_N^{-1}.$ Последнее неравенство можно переписать в виде

$$\frac{\lim_{\varepsilon \to 0} \sup_{a \in A} \frac{1}{\varepsilon} \mathbf{E}_{a} \left\| q \sum_{1}^{N} (\widehat{a}_{j} - a_{j}) \varphi_{j} \right\|^{2}$$

$$\geqslant \frac{\sqrt{\det I_{N}}}{(2\pi)^{N/2}} \int_{R^{N}} dv \left\{ \int_{R^{d}} q^{2}(y) \left| \sum_{1}^{N} v_{j} \varphi_{j}(y) \right|^{2} dy \right\}$$

$$\times \exp \left\{ -\frac{1}{2} \int_{R^{d}} q(x) \left\{ \int_{R^{d}} q^{2}(y) \left| \sum_{1}^{N} v_{j} \varphi_{j}(y) \right|^{2} dx \right\} \right\}$$

Выражение справа можно записать в виде $\mathbf{E}(B_N \xi, \xi)$, где матрица

$$B_N = \left\| \int_{\mathbb{R}^d} q^2(x) \varphi_i(x) \varphi_j(x) \, dx \right\|,$$

а $\xi=(\xi_1,\ldots,\xi_N)$ — нормальный случайный вектор со средним нуль и корреляционной матрицей I_N^{-1} . Следуя [6] (см. соотношение (17) в [6]), нетрудно показать, что

$$(B_N \xi, \xi) \geqslant (I_N^2 \xi, \xi) = |I_N \xi|^2.$$

Далее,

$$\mathbf{E}|I_N\xi|^2 = \operatorname{tr} I_N = \int_{R^k} q(x) \left(\sum_{1}^N \varphi_j^2(x)\right) dx,$$

так что для любого N

$$\varliminf_{\varepsilon \to 0} \ \inf_{\widehat{\theta}} \ \sup_{\theta \in \Theta} \mathbf{E}_{\theta} \| \widehat{\theta} - \theta \|^2 \geqslant \int\limits_{R^d} \sum_{1}^N \varphi_j^2(x) q(x) \, dx.$$

Устремляя здесь $N \to \infty$ и учитывая, что $\sum\limits_1^\infty \varphi_j^2(x) = \frac{\operatorname{mes} \mathrm{G}_\delta}{(2\pi)^d}$ (см. пример 2.2), мы найдем, что

$$\varliminf_{\varepsilon \to 0} \ \inf_{\widehat{\theta}} \ \sup_{\theta \in \Theta} \mathbf{E}_{\theta} \| \widehat{\theta} - \theta \|^2 \geqslant \frac{\operatorname{mes} G_{\delta}}{(2\pi)^d} \underset{\delta \to 0}{\longrightarrow} \frac{\operatorname{mes} G}{(2\pi)^d}.$$

Теорема доказана

Приведем еще аналог теоремы 5.3. Рассмотрим задачу III оценки плотности интенсивности $\theta(x)$ по наблюдению пуассоновского случайного множества Π_{ε} с интенсивностью $\frac{\theta(x)}{\varepsilon}$ в предположении, что $\theta \in \Theta, \ \Theta \subseteq H_K$ и содержит все плотности интенсивности $\theta(x)$ с $\int\limits_{-\infty}^{\infty} \theta(x) \, dx \leqslant M < \infty, \ a \ H_K$ есть пространство с воспроизводящим ядром примера 2.3, причем $a_j = \frac{j}{N}, \ j = \cdots -1, 0, 1, \ldots, \ a \ \varphi_j(x) = \sqrt{N}$ для $x \in [a_j, a_{j+1})$. Тогда

$$\underline{\lim}_{\varepsilon \to 0} \inf_{\widehat{\theta}} \sup_{\theta \in \Theta} \varepsilon^{-1} \mathbf{E}_{\theta} \|\widehat{\theta} - \theta\|^2 = \sup_{\theta \in \Theta} \int_{-\infty}^{\infty} K(x, x) \theta(x) \, dx = MN.$$

Доказательство. Неравенство

$$\inf_{\widehat{\theta}} \sup_{\theta \in \Theta} \mathbf{E}_{\theta} \|\widehat{\theta} - \theta\|^2 \leqslant \varepsilon \sup_{\theta \in \Theta} \int_{-\infty}^{\infty} K(x, x) \theta(x) \, dx = M N \varepsilon$$

следует из (6.3).

Докажем обратное неравенство. Достаточно ограничиться случаем M=1. Пусть $\delta>0$ — малое положительное число. Рассмотрим

семейство функций

$$\theta(x; a) = \sqrt{N} (1 - \delta) a \varphi_1(x),$$

зависящее от вещественного параметра $a,\ a\in A=\{a:|1-a|\leqslant \delta\}.$ Если $\delta\leqslant\frac{1}{2},$ то для всех $a\in A$ функции $\theta(x;a)\in\Theta$. Будем обозначать это семейство θ тоже буквой A. Тогда

$$\sup_{\theta \in \Theta} |\mathbf{E}_{\theta}| |\widehat{\theta} - \theta||^2 \geqslant \sup_{\theta \in A} |\mathbf{E}_{\theta}| |\widehat{\theta} - \theta||^2.$$
 (6.12)

Очевидно, что оценивая $\theta \in \Theta$ мы можем ограничиться оценками вида $\widehat{\theta} = \sqrt{N} \, (1 - \delta) \widehat{a} \varphi_1$, так что

$$\inf_{\widehat{\theta}} \sup_{\theta \in A} \mathbf{E}_{\theta} \|\widehat{\theta} - \theta\|^2 = N(1 - \delta)^2 \inf_{\widehat{a}} \sup_{\theta \in A} \mathbf{E}_{\theta} |\widehat{a} - a|^2.$$
 (6.13)

Чтобы оценить правую часть последнего неравенства, рассмотрим задачу оценивания вещественного параметра $a \in A$ по наблюдениям пуассоновского случайного множества с интенсивностью $\varepsilon^{-1}\theta(x;a)$. Соответствующие статистические эксперименты удовлетворяют условию ЛАН и имеют информацию Фишера

$$I(a) = \frac{1}{\varepsilon} \; \frac{1}{a(1-\delta)}.$$

В силу неравенства Гаека (см. [10, теорема 2.12.1]

$$\lim_{\varepsilon \to 0} \inf_{\widehat{a}} \sup_{\theta \in A} \varepsilon^{-1} \mathbf{E}_{\theta} |\widehat{a} - a|^2 \geqslant \frac{1}{I(a)} = \frac{1}{1 - \delta}.$$

Отсюда и из неравенств (6.12), (6.13) следует, что

$$\lim_{\varepsilon \to 0} \inf_{\widehat{\theta}} \sup_{\theta \in \Theta} \varepsilon^{-1} \mathbf{E}_{\theta} \| \widehat{\theta} - \theta \|^2 \geqslant (1 - \delta) N.$$

Устремляя δ к нулю, придем к утверждению теоремы.

Замечание. Любопытно, что верхняя грань достигается уже на плотностях из одномерного подпространства H_K , натянутого на φ_1 , ср. с доказательством теоремы 5.2, где используются все подпространства, натянутые на $\varphi_1, \ldots, \varphi_M$ для всех M.

7. Оценка производных функции θ . Здесь мы лишь слегка коснемся этой задачи (см., например, [15]), ограничившись для определенности задачей оценки производных плотности распределения.

Итак, допустим, что наблюдается выборка

$$X_1, \ldots, X_n,$$

состоящая из n независимых одинаково распределенных случайных величин x_j , принимающих значения в R^d и имеющих там плотность распределения $\theta(x)$. Предполагается, что $\theta \in \Theta$, где Θ – заданное подмножетво $L_2(R^d)$. Задача заключается в оценке производных $\theta^{(\overline{\nu})}(x) = \frac{\partial^{\nu_1}}{\partial x_1^{\nu_1}} \cdots \frac{\partial^{\nu_d}}{\partial x_d^{\nu_d}} \theta(x)$ в предположении, что $\Theta \subseteq H_K$, $H_K \subseteq L_2$ – подпространство с воспроизводящим ядром K. Допустим, что если $f \in H_K$, то и все произведные f определенного порядка принадлежат H_K . Для простоты мы даже предположим, что f из H_K бесконечно дифференцируемы и все производные лежат в H_K .

Рассмотрим в качестве оценки для $\theta^{(\overline{\nu})}$ статистику

$$\widehat{\theta}_n(y) = \frac{1}{n} \sum K_y^{(\overline{\nu})}(X_j, y).$$

Не вдаваясь в детали, когда приводимые ниже выкладки обоснованы, найдем

$$\mathbf{E}_{\theta} \, \widehat{\theta}_n(y) = \int\limits_{R^d} K_y^{(\overline{\nu})}(x,y) \theta(x) \, dx = \left(\int\limits_{R^d} K(x,y) \theta(x) \, dx \right)_y^{(\overline{\nu})} = \theta^{(\overline{\nu})}(y),$$

так что $\widehat{\theta}_n$ — несмещенная оценка. Далее (ср. с п. 4)

$$\begin{split} \mathbf{E}_{\theta} \| \widehat{\theta}_n - \theta^{(\overline{\nu})} \|^2 &\leqslant \frac{1}{n} \int\limits_{R^d} dy \int \left| K_y^{(\overline{\nu})}(x, y) \right|^2 \theta(x) \, dx \\ &= \frac{1}{n} \int\limits_{R^d} \theta(x) \, dx \int\limits_{R^d} K_y^{(\overline{\nu})}(x, y) K_y^{(\overline{\nu})}(x, y) \, dy. \end{split}$$

Интегрирование по частям превращает внутренний интеграл в $\left[K_y^{(2\overline{
u})}(x,y)\right]_{y=x}$, и мы приходим к следующему результату:

для оценки $\widehat{\theta}_n$ справедливо неравенство

$$\mathbf{E}_{\theta} \|\widehat{\theta}_n - \theta^{(\overline{\nu})}\|^2 \leqslant \frac{1}{n} \int_{R^d} \left[K_y^{(2\overline{\nu})}(x, y) \right]_{y=x} \theta(x) \, dx.$$

Пример 7.1. Пусть H_K — пространство функций, преобразование Фурье которых обращается в нуль вне ограниченного множества G положительной меры. H_K есть пространство целых функций f экспоненциального типа и вместе с f содержит все производные $f^{(\overline{\nu})}$. В данном случае все приведенные выше выкладки, очевидно, законны и для $\Theta \subset H_K$

$$\underline{\lim}_{n\to\infty} \inf_{\widehat{\theta}_n} \sup_{\theta\in\Theta} \mathbf{E}_{\theta} \|\widehat{\theta}_n - \theta^{(\nu)}\|^2 \leqslant (2\pi)^{-d} \int_G x_1^{2\nu_1}, \dots, x_d^{2\nu_d} dx.$$

Можно показать, что если Θ содержит все плотности из H_K , то это неравенство правращается в равенство (ср. с теоремой 4.1).

8. В этом пункте мы покажем, как осуществляется вторая часть метода Н. Н. Ченцова, связанная с аппроксимацией множеств $\Theta \subseteq L_2(\mathfrak{X},\mathfrak{A},\mu)$ пространствами H_K с воспроизводящим ядром K.

Следуя [7], обозначим $\mathcal{K}(T,p)$, $1\leqslant p\leqslant \infty$, совокупность всех воспроизводящих ядер в L_2 , таких, что $K(x,x)\in L_p(\mathfrak{X},\mathfrak{A},\mu)$ и

$$||K(x,x)||_p \leqslant T. \tag{8.1}$$

Для множества $\Theta\subseteq L_2$ определим поперечники $\delta_T(\Theta;p)$ равенством

$$\delta_T(\Theta; p) = \inf_{a, H} \sup_{\theta \in \Theta} \inf_{h \in H + a} \|\theta - h\|, \tag{8.2}$$

где внешний inf берется по всем $H=H_K$ с $K\in\mathcal{K}(T,p)$ и всем векторам $a\in L_2$.

Пример 8.1. Всякое N-мерное подпространство H с ортонормальным базисом $\{\varphi_1,\ldots,\varphi_N\}$ имеет воспроизводящее ядро $K\in\mathcal{K}(N,1)$. Поэтому $\delta_N(\Theta,1)\leqslant d_N(\Theta)$, где d_N-N -й поперечник Колмогорова множества Θ .

Схема построения оценок функционального параметра $\theta \in \Theta$ выглядит следующим образом.

Рассмотрим для определенности задачу оценивания функции $\theta \in \Theta$ по наблюдению пуассоновского случайного множества Π_{ε} в $\mathfrak X$ с плотностью интенсивности $\varepsilon^{-1}\theta(x)$. Относительно Θ будем дополнительно предполагать, что $\sup_{x \in \Omega} \|\theta\|_1 \leqslant A$. Положим

$$\delta_T = \delta_T(\Theta) = \delta_T(\Theta, \infty).$$

Теорема 8.1 (ср. [7, теорема 1]). Имеет место неравенство

$$\inf_{\widehat{\theta}_{\varepsilon}} \sup_{\theta \in \Theta} \mathbf{E}_{\theta} \| \widehat{\theta}_{\varepsilon} - \theta \|^{2} \leqslant \inf_{T} (4\delta_{T}^{2} + \varepsilon T A). \tag{8.3}$$

Доказательство. Будем для простоты считать, что при определении $\delta_T(\theta)$ сдвиг a=0. Подберем такое H_K , что для него расстояние между H_K и Θ не превосходит $2\delta_T$. Выберем в качестве оценки θ статистику

$$\widehat{\theta}_K(y) = \varepsilon \sum_{x \in \Pi_x} K(x, y).$$

Пусть $\theta_K(y) = \int\limits_{\mathfrak{X}} K(x,y) \theta(x) \, dx$ — проекция θ на H_K . В силу результа-

тов раздела 6, теорема 6.1, $\widehat{\theta}_K$ есть несмещенная оценка θ_K , $\mathbf{E}_{\theta}\widehat{\theta}_K(y) = \theta_K(y)$. Как мы видели выше, теорема 6.1,

$$\mathbf{E}_{\theta} \|\widehat{\theta}_K - \theta_K\|^2 = \varepsilon \int_{\mathbf{x}} K(x, x) \theta(x) \, dx.$$

Поэтому

$$\begin{split} \mathbf{E}_{\theta} \| \theta - \widehat{\theta}_{K} \|^{2} &= \mathbf{E}_{\theta} \Big\{ \| \widehat{\theta}_{K} - \theta_{K} \|^{2} \Big\} + \| \theta - \theta_{K} \|^{2} \\ &\leqslant \varepsilon \int_{\mathfrak{X}} K(x, x) \theta(x) \, dx + 4 \delta_{T}^{2} \leqslant \varepsilon T \sup_{\theta \in \Theta} \int_{\mathfrak{X}} \theta(x) \, dx + 4 \delta_{T}^{2}. \end{split}$$

Теорема доказана.

Рассмотрим два примера применения этой теоремы.

Пример 8.2. Рассмотрим задачу оценивания функции θ по наблюдению пуассоновского множества $\Pi_{\varepsilon} \subseteq R^d$ с плотностью интенсивности $\varepsilon^{-1}\theta(x)$. Неизвестная функция $\theta \in \Theta \subseteq L_2(R^d)$, а Θ – известный класс функций.

Пусть $\varphi(x), x \in R^d$ — непрерывная положительная функция, такая что $\varphi(x) \to \infty$, когда $|x| \to \infty$. Обозначим $F(\varphi; L)$ класс функций $f \in L_2(R^d)$, таких что

$$\int_{R^d} \varphi^2(t)|g(t)|^2 \leqslant L^2, \tag{8.4}$$

где $g(t) = \int\limits_{R^d} e^{i(t,x)} f(x) \, dx$ — преобразование Фурье функции f(x).

Условие (8.4) можно рассматривать как некоторое условие гладкости функций из $F(\varphi; L)$. Классы $F(\varphi; L)$ можно также трактовать как континуальные аналоги эллипсоидов.

Теорема 8.1. Пусть $\Theta\subseteq F(\varphi;L)$ и пусть $\int\limits_{R^d}\theta(x)\,dx\leqslant 1$ для $\theta\in\Theta$.

Пусть функция

$$a(T) = \int_{\{t: |\varphi(t)| \leqslant T\}} dt.$$

Существует оценка $\widehat{\theta}_{\varepsilon}$ функции θ , такая что

$$\mathbf{E}_{\theta} \|\widehat{\theta}_{\varepsilon} - \theta\| \leqslant \inf_{T} \left(\frac{L^{2}}{T^{2}} + \varepsilon \frac{a(T)}{(2\pi)^{d}} \right). \tag{8.5}$$

Доказательство. Обозначим L_T подпространство $L_2(R^d)$, состоящее из всех функций $f \in L_2(R^d)$, преобразование Фурье g которых обращается в нуль вне множества $G = G_T = \{t : \varphi(t) \leq T\}$. Мы видели (пример 2.1), что L_T есть пространство H_K с воспроизводящим ядром

$$K(x,y) = \frac{1}{(2\pi)^d} \int_C e^{-i(t,x-y)} dt.$$

Обозначим θ_T проекцию θ на $L_T = H_K$ и рассмотрим оценку

$$\widehat{\theta}(y) = \varepsilon \sum_{x \in \Pi_{\varepsilon}} K(x, y).$$

Для этой оценки

$$\mathbf{E}_{\theta} \|\widehat{\theta}_T - \theta\|^2 = \|\theta - \theta_T\|^2 + \mathbf{E}_{\theta} \|\widehat{\theta}_T - \theta_T\|^2. \tag{8.6}$$

Обозначая g преобразование Фурье функции θ , найдем

$$\|\theta - \theta_T\|^2 = \int_{\{t: \varphi(t) > T\}} |g(t)|^2 dt \leqslant \frac{1}{T^2} \int_{R^d} \varphi^2(t) |g(t)|^2 dt \leqslant \frac{L^2}{T^2}.$$

Второе слагаемое в (8.6)

$$\mathbf{E}_{\theta} \|\widehat{\theta}_T - \theta_T\|^2 \leqslant \varepsilon \int_{\mathbb{R}^d} K(x, x) \theta(x) \, dx = \varepsilon \frac{a(T)}{(2\pi)^d}.$$

Таким образом,

$$\mathbf{E}_{\theta} \|\widehat{\theta}_T - \theta_T\|^2 \leqslant \frac{L^2}{T^2} + \varepsilon \frac{a(T)}{(2\pi)^d}.$$
 (8.7)

Обозначая $\widehat{\theta}_{\varepsilon}$ оценку, соответствующую $\widehat{\theta}_T$ с T, минимизирующим правую часть (8.7), придем к неравенству теоремы.

Пусть вектор $\overline{\beta} = (\beta_1, \dots, \beta_d), \beta_i > 0$. Положим

$$E_{\overline{\beta}}^{(1)}(L) = F(\varphi_1; L), \quad \varphi_1(x) = \left(\left(1 + |x_1| \right)^{2\beta_1} + \dots + \left(1 + |x_d| \right)^{2\beta_d} \right)^{1/2},$$

$$E_{\overline{\beta}}^{(2)}(L) = F(\varphi_2; L), \quad \varphi_2(x) = \left(|x_1|^{2\beta_1} + \dots + |x_d|^{2\beta_d} \right)^{1/2}.$$

Теорема 8.3. Пусть $\Theta\subseteq E^{(1)}_{\overline{\beta}}(L)$. Допустим, что $\min\beta_j=\beta=\beta_1=\cdots=\beta_l<\beta_{l+1}\leqslant\cdots\leqslant\beta_d$. Тогда существует такая оценка $\widehat{\theta}_{\varepsilon}$ функции θ , что

$$\mathbf{E}_{\theta}^{(\varepsilon)} \| \widehat{\theta}_{\varepsilon} - \theta \|^{2} \leqslant c \left(\varepsilon \left(\ln \frac{1}{\varepsilon} \right)^{l-1} \right)^{\frac{2\beta}{2\beta+1}}. \tag{8.8}$$

Kонстанта c завиcum om L и $\overline{\beta}$.

Доказательство. Когда $T \to \infty$,

$$a(T) = \int_{\{x: \varphi_1(x) \leqslant T\}} dx \sim c_0 T^{1/\beta} (\ln T)^{l-1}$$

и (8.8) следует из (8.5).

Теорема 8.4. Пусть $\Theta \subseteq E_{\overline{\beta}}^{(2)}(L)$. Определим β соотношением $\frac{1}{\beta} = \frac{1}{\beta_1} + \cdots + \frac{1}{\beta_d}$. Существует оценка $\widehat{\theta}_{\varepsilon}$ функции θ , такая что

$$\mathbf{E}_{\theta}^{(\varepsilon)} \| \widehat{\theta}_{\varepsilon} - \theta \|^2 \leqslant c \varepsilon^{\frac{2\beta}{2\beta+1}}. \tag{8.9}$$

 Π остоянная c зависит от L и $\overline{\beta}$.

Доказательство. На этот раз

$$a(T) = \int_{\{x:\varphi(x)\leqslant T\}} dx = T^{1/\beta} \int_{\{x:\varphi(x)\leqslant 1\}} dx,$$

и (8.9) следует из (8.5).

Пример 8.3. В следующем примере мы снова рассмотрим задачу оценивания функции $\theta(x)$ по наблюдениям случайного пуассоновского множества $\Pi_{\varepsilon} \subseteq R^1$ с плотностью интенсивности $\varepsilon^{-1}\theta(x)$. Неизвестная функция $\theta \in \Theta \subseteq L_2(R^1)$. Задавшись числом T>0, введем пространство с вопроизводящим ядром H_K примера 2.3, полагая $a_j=\frac{j}{T}$, а $\varphi_j(x)=\sqrt{T}$ для $a_j\leqslant x< a_{j+1}$. Пусть $K(x,y)=\sum \varphi_j(x)\varphi_j(y)$ — воспроизводящее ядро пространства H_K . Обозначим θ_T проекцию θ на H_K . В качестве оценки θ рассмотрим статистику

$$\widehat{\theta}_T(y) = \varepsilon \sum_{x \in \Pi_{\varepsilon}} K(x, y).$$

Эта статистика есть классическая гистограмма плотности интенсивности с ячейками ширины T^{-1} . Как мы видели, $\widehat{\theta}_T$ — несмещенная оценка проекции θ_T , $\mathbf{E}\widehat{\theta}_T = \theta_T$, и

$$\mathbf{E}_{\theta} \|\theta - \widehat{\theta}_{T}\|^{2} \leqslant \varepsilon \int_{-\infty}^{\infty} K(x, x)\theta(x) \, dx + \|\theta - \theta_{T}\|^{2} = T\varepsilon \cdot \int_{-\infty}^{\infty} \theta(x) \, dx + \|\theta - \theta_{T}\|^{2}.$$

Обозначим $\omega(h;\theta)$ модуль непрерывности θ в $L_2(R)$. Имеем

$$\|\theta - \theta_T\|^2 = T \sum_{\nu} \int_{\nu/T}^{(\nu+1)/T} \int_{\nu/T}^{(\nu+1)/T} |\theta(x) - \theta(y)|^2 dx dy \leqslant \omega\left(\frac{1}{T}; \theta\right).$$

Из двух последних неравенств следует, что

$$\mathbf{E}_{\theta} \| \theta - \widehat{\theta}_T \|^2 \leqslant T \varepsilon \sup_{\theta} \int_{-\infty}^{\infty} \theta(x) \, dx + \sup_{\theta} \omega^2 \left(\frac{1}{T}; \theta \right).$$

Таким образом, существует оценка θ_{ε} функции θ , такая что

$$\mathbf{E}_{\theta} \| \theta - \widehat{\theta}_{T} \|^{2} \leqslant \inf_{T} \left(\varepsilon T \sup_{\theta} \int_{-\infty}^{\infty} \theta(x) \, dx + \sup_{\theta} \omega^{2} \left(\frac{1}{T}; \theta \right) \right).$$

Если, например, Θ состоит из функций $\theta,$ для которых $\int\limits_{-\infty}^{\infty}\theta(x)dx\!\leqslant\!1,$

а $\omega(h;0)\leqslant Lh^{\beta},$ то найдется оценка $\widehat{\theta}_{\varepsilon},$ такая что

$$\mathbf{E}_{\theta} \| \widehat{\theta}_{\varepsilon} - \theta \|^2 \leqslant c \varepsilon^{\frac{2\beta}{2\beta+1}},$$

где постоянная c зависит от β , L.

Последнее неравенство, как и неравенства предыдущего примера, относящиеся к классам $E^{(i)}$, с точностью до константы неулучшаемы.

Литература

- 1. Н. Н. Ченцов, Оценка неизвестной плотности распределения по наблюдениям. ДАН СССР **147**, No. 1 (1962), 45–48.
- 2. А. Н. Колмогоров, Über die beste Annäherung von Funktionen einer gegebenen Funktionalklassen. Ann. Math., 37, No. 1 (1936), 107-111; (см. также А. Н. Колмогоров, Избранные труды Математика и механика, Наука, М., 1985).
- 3. В. М. Тихомиров, Некоторые вопросы теории приближений. Изд-во МГУ, М., 1976.
- 4. В. М. Тихомиров, *Теория приближений*. Итоги науки и техники. Современные проблемы математики **14** (1987), 103–270.
- 5. К. И. Бабенко (ред.), Теоретические основы и конструирование численных алгоритмов задач математической физики. Наука, М., 1979.
- 6. И. А. Ибрагимов, Р. З. Хасьминский, Об оценке плотности распределения, принадлежащей одному классу целых функций. Теория вероятн. и ее примен. 27, вып. 3 (1982), 514-524.
- 7. И. А. Ибрагимов, Об одной характеристике точности оценивания плотности распределения. Теория вероятн. и ее примен. 38, вып. 2 (1993), 425-431.
- 8. К. Иосида, Функциональный анализ. Мир, М., 1967.
- N. Aronzain, Theory of reproducing kernels. Trans. Amer. Math. Soc. 68 (1950), 337-404
- И. А. Ибрагимов, Р. З. Хасьминский, Асимптотическая теория оценивая. Наука, М., 1979.
- 11. Дж. Кингман, Пуассоновские процессы. МЦНМО, М., 2007.
- 12. U. Grenander, Abstract Inference. J. Wiley, New York, 1981.
- M. Brown, Discrimination of Poisson processes. Ann. Math. Statist. 42 (1971), 773-776.
- 14. Yu. A. Kutoyants, Introduction to Statistics of Poisson Processes. Springer, 2012.

 И. А. Ибрагимов, Р. З. Хасьминский, Об оценках сигнала, его производных и точки максимума для гауссовских наблюдений. — Теория вероятн. и ее примен. 25, вып. 4 (1980), 718-733.

Ibragimov I. A. A generalization of Chentsov's projection estimates.

In 1962, N. N. Chentsov suggested the following method of estimation a functional parameter θ belonging to a Hilbert space H. He suggested to project θ on finite-dimensional subspaces of H and consider as estimates of θ estimates of these projections. In this paper, we suggest to consider the projections on all reproducing kernel subspaces of H.

Санкт-Петербургское отделение Математического института им. В. А. Стеклова РАН, Фонтанка 27, 191023 и Санкт-Петербургский государственный университет, Математико-механический факультет Университетский пр., 28, Петродворец, 198504 Санкт-Петербург, Россия

 $E ext{-}mail:$ ibr32@pdmi.ru

Поступило 23 апреля 2013 г.