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AMARI-CHENTSOV CONNECTIONS AND THEIR
GEODESICS ON HOMOGENEOUS SPACES OF
DIFFEOMORPHISM GROUPS

ABSTRACT. We study the family of a-connections of Amari—Chent-
sov on the homogeneous space D(M)/D,(M) of diffeomorphisms
modulo volume-preserving diffeomorphims of a compact manifold
M. We show that in some cases their geodesic equations yield com-
pletely integrable Hamiltonian systems.

§1. INTRODUCTION

In a recent paper [6] several key notions of geometric statistics were de-
veloped on diffeomorphism groups and their quotient spaces equipped with
right-invariant metrics. For example, the metric defined by (the homoge-
neous part of) the Sobolev H! inner product of vector fields on the under-
lying compact manifold was shown to induce on the quotient of the dif-
feomorphism group by its subgroup of volume-preserving diffeomorphisms
an infinite-dimensional analogue of the Fisher-Rao metric while geodesics
of its Levi-Civita connection — when the underlying manifold is the circle
— were shown to be related to solutions of a well-known one-dimensional
completely integrable equation [7,8]. Furthermore, the authors also de-
scribed analogues of the so-called a-connections introduced in geometric
statistics by Chentsov [3] and Amari [1] and pointed out integrability of
another geodesic equation corresponding to o = —1.

Our goals in this paper are to provide a proof of the construction
in [6] of Amari-Chentsov connections for circle diffeomorphisms (The-
orem 2.1), to generalize this construction to diffeomorphism groups of
higher-dimensional manifolds (Theorem 3.1) and finally, as a by-product,
to show integrability of the geodesic equations corresponding to @ = 1
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(Theorem 2.6, Corollary 3.3). Finally, we point out that a different ap-
proach to a-connections can be found in [4].

1.1. Diffeomorphism groups and the Fisher—Rao metric. Let M
be a compact Riemannian manifold without boundary. Let D(M) denote
the group of smooth diffeomorphisms of M and let D, (M) be its subgroup
of diffeomorphisms preserving the volume form g on M. It is well-known
that the completion of D(M) (D, (M), respectively) in the H® Sobolev
norm with s > n/2 + 1 can be equipped with the structure of a smooth
Hilbert manifold whose tangent space at the identity diffeomorphism e
consists of all H® vector fields (resp. all divergence-free H® vector fields)
on M. However, for what follows it will be sufficient to work in the smooth
category. It will also be convenient to normalize the Riemannian volume
u(M) =1. For any n € D(M) and any V, W € T,)D(M) we set

1
(V,2W)p = Z/divvdivwdu, (1)
M

where V =von and W = w on with v,w € T.D(M) to obtain a right-
invariant (degenerate) H' metric on D(M).

The geometry of this metric turns out to be particularly remarkable.
The homogeneous space D(M)/D, (M) of right cosets can be naturally
identified with the set of smooth probability densities, i.e., smooth func-
tions p > 0 on M satisfying the condition [ pdu = 1. The right coset

M
[n] € D(M)/D,(M) is identified with the function Jac,n. If N is an n-
dimensional submanifold of such densities p = py, . ¢, parameterized by
(t1,.-.,tn) € R™ then recall that the Fisher—-Rao metric on N is given by
the formula

dlog p Al
gij:/ 08P IO8P 1<i, j<n (2)

ot; 8tj pap ’
M

It turns out that the right-invariant H' metric defined by (1) on D(M)
descends to a (nondegenerate) metric on D(M)/D,(M) and the map
n — y/Jac,n defines an isometry between D(M)/D,(M) and a subset
of the unit sphere in L?(M,du) with the canonical round metric. Further-
more, the restriction of the H*' metric to any finite-dimensional subman-
ifold N of D(M)/D, (M) coincides with the Fisher-Rao metric (2) on N
while its Riemannian distance is the spherical Hellinger distance between
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probability densities on M. Proofs of these statements can be found in
Sec. 3 of [6].

Thus, in the framework of diffeomorphism groups, information geometry
associated with the Fisher-Rao metric and its spherical Hellinger distance
can be viewed as an H! analogue of standard optimal transport associated
with the metric' on D(M)/D,, (M) induced by the (noninvariant) L* metric
on D(M) and whose Riemannian distance is the celebrated Kantorovich
(or Wasserstein) distance, cf. [10].

1.2. Divergence functions and dual connections. Recall that a di-
vergence on an n-dimensional manifold NV is a smooth function D : N x
N — R satisfying D(p|lq) = 0 with equality if and only if p = ¢ and such
that the matrix gg defined in a chart at p € N by
0 0

95 (p) = “op og; PPIDl=g 1< j<n (3)
is strictly positive definite for every p € N. Equation (3) defines a Rie-
mannian metric on N with covariant derivative determined by

0 0 0
rc =—— -~ "D -0 1<, j,k<n. 4
ij,k apz apJ aqk (p||q)|p7q L, .]7k n ( )

In what follows we shall consider on D(M) x D(M) the functions

]- l1—a 1+
DEE) = 1 1+ [ (a0, (acun)'5du |
M
-l<a<l1, (5)
1
DV (glln) = DD (nle) = ; / (logJac,¢ — log Jac,n)Jac,Edp. — (6)

M
These functions are well-defined on the homogeneous space D(M)/D,, (M)
and satisfy D(®)(¢||n) > 0 with equality if and only if € and 5 project onto
the same probability density on M.

Furthermore, recall that two affine connections V and V* on a Riemann-
ian manifold N are called dual (or conjugate) relative to the Riemann-
ian metric if for any vector fields U, V, and W they satisty W(U,V) =
(VwU,V)+(U, V}, V). Basic facts about dual connections and divergences
can be found in [1] or [5].

1T his metric is sometimes called Otto’s metric.
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§2. THE ONE-DIMENSIONAL CASE: D(S!)/Rot(S!)

We first consider the case when the underlying manifold is the circle
St = R/Z. In this case, D, (S*) is the space of rigid rotations Rot(S*) ~
St It will be convenient to identify the homogeneous space D(S*)/Rot(S*)
with the subgroup of circle diffeomorphisms which fix a prescribed point,
for example with {n € D(S') : n(0) = 0}. Its tangent space at the identity
can be identified with the space of smooth periodic functions vanishing at
0. Furthermore, given any such function u(z) we define the operator

A u(x) :—]/yu(z) dzdy-l—x/1 yu(z) dz dy (7)

i.e., A~! is the inverse.
The following is a reformulation of Theorem 6.2 stated (without proof)
in [6]. Our first objective is to provide a proof of this result.

Theorem 2.1 (cf. [6], Sec. 6).

(i) Each divergence D™ induces on D(S')/Rot(S') the H* metric
and an affine connection V®) whose Christoffel symbols are given
by

1+«

(A7 0.V on™). W o)) fon,
—1<a<1. (8)
(ii) For any « the connections V(@) and V(=) are dual with respect
to the H' metric and V) is the self-dual Levi-Civita connection.
(iii) The geodesic equation of V(® on D(S')/Rot(S") is the generalized
Proudman-Johnson equation
Utge + (2 — Q)UgUgy + Ulgry = 0. 9)

In particular, o = 0 yields the completely integrable Hunter—Sazton
equation

Utge + 2Uglyy + Ulgzy =0 (10)
and a = —1 yields the completely integrable p-Burgers equation

Utze + SUglUge + Ulgee = 0. (11)

Remark 2.2. The equation corresponding to a = 1 also turns out to be
integrable and its solutions can be given explicitly, see Theorem 2.6 below.
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Proof. The metrics induced by D(® and their connections can be calcu-
lated essentially as in finite dimensions using formulas (3) and (4). We first
assume that a # +1. Given any tangent vectors V and W at n € D(S!) let
n(s,t) be a two-parameter family of diffeomorphisms in D(S!) such that
1(0,0) = n with £n(0,0) =V and 2n(0,0) = W. From (3) and (5) we
have

0 0
= —— il (@)
ViW)a==5-| 2| _ D (s,0n(0,1)
1 0 0 1—a 14a
= — 2 (5,007 0. (0,8) = 12
1—a? 9sls=0 8tt:0/n (5,0)7% 1. 0, 2) de (12)
Sl
1 Sloa -l 1 [V W, _ .
= Z/waxnm Nz dx = 4/ Tn de = <V,W>H1.
St S1

Now suppose that W is a vector field on D(S') defined in a neighbor-
hood of n. Let n(s,t,r) be a three-parameter family of diffeomorphisms
such that 7(0,0,0) = n with %n(0,0,0) =V, %n(s,0,0) = Wiy(s,0,0) for
all sufficiently small s, and %W(0,0,0) = Z. It is clear that such a map
n(s,t,r) exists. From the formulas (4), (5) and (12) we have

(a)
1 2z
iz, = [ CE,

N
5’1
0 0 0
= —— — N D(o‘)
0s szoat‘tzo Orlr=0 (n(s, £, 0)[11(0,0,7))
1 9 0 0 l-a lta
T 1-a20s SZOELZOE rzo/nw(s,t,O) 72(0,0,7) = dz
Sl
_19 /W((SOO)) (5,0,0) "5 Zons * da (13)
_488520 127777 nmaa wnﬂi
Sl

—l+a

1 —3—a
-ga/WxVxnw 2 Zyng 2 dx
Sl

_ ES[(DW VYo Zon i —
-1 [{@w vyen,
4

S Won ), Won), }(Zon ™), da
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and integrating by parts and using the fact that Z is arbitrary we find that
(VW) = (DW - V) () = T (W, V),

where the Christoffel map is given by (8).
We will use the same notation for calculations in the remaining cases
a = £1. From (1) and (6) we have

_9
0s

9
s=0 at

/%(S,O)(log%(sa 0) — lognx(oat)) dx
Sl

<V7W>—1 = <V7W>1 =
10

4 Os

| DV @(s.0)[(0,1)

0
s=0 Ot ‘t:o

(14)

T ]‘ T T
70/nz(s,0)W d:C:Z/VW de = (V,W)

T N
St St

10
4 Os
The corresponding affine connections can be obtained as in (13) using

(4), (6) and (14). When a = —1 we have

/ VI, 2,
Nz

dx

Sl

__9
~ Os

_9
" Os

7z(8,t,0)
T 7t7 1 ~ d.
Tzo/n (5,0) log 12(0,0,7) !

’
S1

Ly
0 /nx(s,t,O)n— dx

s=0 Ot lt=0 z
Sl

Z,
- /Wm(S,O,O)—Zd:U
s_OS1

2‘ 9
s=0 Otlt=0 Or

_9
" Os

€T

VA
= /(DW V) =2 dw
Nz
Sl
from which we deduce that
-1 _
LoD (w,v) = 0. (15)
When o = 1 an analogous calculation gives
LYW, V) = —A71 0 {(Von De(Won ™ )u}on. (16)

This establishes the first part of the theorem.
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For the second part we need to verify that for any vector fields X, Y,
and Z on D(S*)/Rot(S') we have

XY, Z) g = (VY Z) s + (Y, VSV Z) 0 (17)

This can be done either by a direct calculation as above or else it can
be deduced from general properties of divergences of the type (5) and (6)
which are discussed in Chap. 3 of [1]. The fact that V(%) is the Levi-Civita
connection of the H' metric follows at once from (17).

The equation for geodesics of V(®) on D(S')/Rot(S*) has the form

Ny AR

dt? To\dt’ dt
Setting dvy/dt = u oy defines a time-dependent vector field u on the circle
St (i.e., a periodic function vanishing at = = 0). Differentiating this rela-
tion with respect to ¢t and eliminating the first and second derivatives of ~y

from the geodesic equation gives

(ut + uug) oy = l"(f‘)(uo%uo'y).

Using (8) and composing both sides with y~!

dodifferential equation

we obtain a nonlinear pseu-

EAT, )

Ut + Uy = —
which we can rewrite as a nonlinear PDE
—Utgy — BUalgs — Ulgze = — (1 + @)U Ugs
yielding (9). O
Remark 2.3. The Hunter-Saxton equation (10) can be alternatively de-
rived by observing that it is is the Euler-Arnold equation of V(®) on

T.D(S')/Rot(S!) and as such it is obtained from the geodesic equation

of the right-invariant H*' metric (1) by a standard reduction procedure,
see [7].

Remark 2.4. Another form of the Proudman—Johnson equation can be
obtained by integrating (9) in the = variable

1—
2 o
where C(t) = =132 [ u2 dz. Observe that C(t) is a conserved integral of
Sl

=C(1),

Uty + Ulgy +

Eq. (10) when « = 0.
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Remark 2.5 (a-curvature). Using the Christoffel symbols (8) it is pos-
sible to calculate the curvature of the a-connections. It turns out to be
proportional to the curvature of the H! metric, i.e., for any vector fields
X, Y and Z on D(S')/Rot(S*) we have

RO(X,Y)Z = (1— a2)(X<Y, Z) i + Y (X, Z>H1). (18)

This formula can be computed as in finite dimensions; see [9] where a
different choice of parameters is made.

It turns out that the geodesic equation corresponding to (9) with @ =1
can be integrated as well, albeit indirectly, by constructing affine coor-
dinates for V(1. Observe that from (18) we already know that the con-
nections V(=1 and V(1) are flat. In the former case this is also evident
from (15).

Theorem 2.6. The geodesic equation of V1Y) corresponding to
Utez + UgUgy + Ulges = 0 (19)

1s integrable. Its general solution is given by
[ ent+b(w) gy
u = dn on~t, where nt,z)=2—o
dt ’ ’ f ea(@)t+b(z) p
S1

(20)

and where a,b are smooth mean-zero functions on S'.

Proof. We will construct a chart on D(S')/Rot(S') in which the Christof-
fel symbols of V(1) vanish identically. Consider the map

1= ¢(n) = logn, — /logm da (21)
Sl
from D(S')/Rot(S!) to the space of smooth periodic mean-zero functions.
To see how the Christoffel symbols transform under i — 77 = ¢(n) we first
compute the derivatives

W. W. VoW, Ve W.
Do) =22 — [ 2 an, D2pvv) =t [
Nz & Nz Mz & Nz

for any V,W € T,,D(S")/Rot(S'). Next, from (7) and (16) we obtain
VaWa
3
€T

0 (Dyd(W), Dyd(V)) = DEG(W, V) + Dy (LD (W, V) = —
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W At Wz )z x At Wz )z x

Ny A A AT S ST
Nz Na Nz

St St

= _(waw)on+/(vxwx)on dr — (Ail(vxww)z)xon

S1

+ /(Ail(vwwl.)m)w ondr =—(vywy)on+ /(Umww) on dx
St S1

—(—Usz+/wawd$)on+/(_vwww+/vwwwd$)Ondxzoa

51 51 st
where v =V on™! and w = Won~ L. _
We can now solve (19) as follows. Since I'™) = 0 all geodesics of V)

in the affine coordinates are the straight lines which can be written as

t —n(t,r) = a(x)t +b(z) xcS*
for some smooth mean-zero periodic functions a and b. Thus, given any
such functions to construct a general solution u it is sufficient (i) to invert
the map ¢ in (21) to obtain the flow ¢t — n(t) = ¢~ 17(t) and (ii) to right-
translate the velocity vector of 7(t) to the tangent space at the identity in
D(S1)/Rot(S!).? The explicit formulas are those in (20). O

It is worth pointing out that the above proof manifests integrability of
(19) in that it provides an explicit change of coordinates that linearizes
the flow in the same spirit as the inverse scattering transform formalism.

§3. THE n-DIMENSIONAL CASE: D(M)/D,(M)

We now turn to the general case when M is an n-dimensional com-
pact Riemannian manifold without boundary. We will work with the coset
space D(M)/D,,(M). Our next result is a higher-dimensional analogue of
Theorem 2.1.

Theorem 3.1.
(i) Each divergence D'®) induces on the quotient D(M)/D,(M) the

H' metric (1) and an affine connection V() given for a right-
invariant vector field W, = won and a tangent vector V =von

2In the language of fluid dynamics the second step corresponds to going from La-
grangian to Eulerian coordinates.
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by

#
@ . l-—a . .

(V&,)VV),7 = —{A‘ld(ddlvw~v+ adlvwdlvv)} o, (22)
where a € [—1,1] and A = dé + dd denotes the Laplace—de Rham
operator.

(ii) For any o the connections V(@ and V=) are dual with respect
to the H' metric and V'°) is the Levi-Civita connection.

(iii) The geodesic equation of V(®) on D(M)/D,(M) is equivalent to
the following nonlinear PDE

dpt + digdp + (1 — a)pdp =0, ¢ =divu. (23)

Proof. Despite the fact that we are now working with cosets the compu-
tations involved in the proof of statements (i) and (ii) are similar to the
one-dimensional case in Sec. 2. We will prove (i) for a € (-1, 1); the proofs
for a = £1 are analogous and will be omitted.

Let W be a right-invariant vector field on D(M) defined in a neigh-
borhood of n € D(M). Given V,Z € T,,D(M) let n(s,t,r) be a three-
parameter family of diffeomorphisms such that 7(0,0,0) =  with

0
U(Oa 07 0) = Va —77(57 07 0) = Wn(s,070)

9
0s ot

for all sufficiently small s and 83 (0,0,0) = Z. Using the identity

0
5, Jacﬂn(s £,0) = div(Wy (50,00 ©n " (s,0,0)) o n(s,0,0) Jac,n(s,0,0)
=divw on(s,0,0) Jac,n(s,0,0),

where W, = won and similar identities for the partial derivatives in s and
r we have

0
W i ™ t
68506tt087"r0 (S OHUOOT»
L2 /Jac £,0)) =" (Jac,n(0,0,7)) =" d
1a288s08tt08rr0 wl(s, 'l T 1
M
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l—a
2

[ v 0 n(s,0,0) Gacun(s, 0,0)
M

9
Os

RNy

s=0

x div(Z on™) o (Jac,n) = dp
l—«

2

S

{ddivwon~V+ divwoﬂdiV(Voﬂfl)on}

1
4

x div(Zon™')o nJac,ndu

1 1-—
= —/{ddivw~v+ adivwdivv} div(Z on~) dp, (24)
4 2
M

where V = v o7. Using integration by parts
/fdideu = —/f&deu = —/df(X) du
M

M M
and the fact that Z is arbitrary, we find

ddiv{(V\W)on '} =df, ie, div{(V¥W)on '} :f—/fd,u,
M

where f = ddivw-v + 252 div w div v. The expression in (22) now follows
from the next lemma.

Lemma 3.2. Let A be the Laplace-de Rham operator. Then

div(-A7d) =1 - [ fdu, fec=0u.
M

Proof. If g = div(—(A~'df)*) = A~df then Ag = ddf = Af and since
the kernel of A acting on functions consists of the constants, we deduce

that g = f+c for some constant c. Integrating over M yields 0 = [ fdu+c,
M
which determines c. (]

Calculation of V&f')W for an arbitrary (not necessarily right-invariant)
vector field W can be reduced to the right-invariant case as follows. Fix
1 € D(M) and let W* be the right-invariant vector field with WF = W,).
Then

(VW) = (VW = W), + (V7w ),

= (Lv (W — WE)), + (Vi WE),, (25)
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where Ly denotes the Lie derivative in the direction of any vector field v
such that V;, = V. Indeed, if Z is a vector fields satisfying Z,, = 0, then
locally

(VvZ)y =DZ(n) -V =Ty(Zy, V) =DZ(n) -V = [V, 2]y = (Lv Z)y-

Using (22) and (25) we can compute the affine connection V(@) for arbi-
trary fields on D(M) and this completes the proof of (i).

As in the proof of Theorem 2.1, (ii) can be established by a direct
calculation or, alternatively, it can be deduced from the general properties
of divergences of the type (5) and (6).

Regarding (iii) let «(t) be a curve in D(M) with v(0) = e and
4 =dy/dt = uo+y. In the appendix, we prove that (25) implies

Vi = g oy + VAR, (26)

Using (22) and (26) the geodesic equation VEYO‘)W = 0 can be written as

1-— .
uy = (A7Ydf)?, where f=ddivu-u+ Ta(divu)z

so that setting ¢ = divu and applying A to both sides of the equation we
get

—dpy + 6du’ = diydp + (1 — a)pdep.

The relation u? = A~ldf implies Adu? = dAu? = 0; hence, in particular,

ddu’ = 0. This proves (23). O

Finally, we turn to integrability of the geodesic equations in (23) which
to the best of our knowledge has not been studied in the literature before,
with the exception of the case & = 0 in [6].

Corollary 3.3. The geodesic equations of V'®) on D(M)/D,(M) corre-
sponding to (23) with o = 0,+1 are integrable equations in any dimen-
$0M M.

Proof. Equation (23) with o = 0 was derived and shown to be integrable
in [6]. Since V(M) and V(=1 are flat, integrability of the other two equations
can be established similarly to their one-dimensional analogues in Sec. 2.
We will consider the more complicated case @ = 1 with the corresponding
equation

doy + diyde =0, @ =divu. (27)
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Proceeding as in the proof of Theorem 2.6 we first show that the map

n — ¢(n) = log Jac,n — /log Jac,ndu
M

from D(M)/D,(M) to the space of smooth mean-zero functions on M
defines an affine chart for V), Thus, as before, the geodesics of V(1) in
the affine coordinates defined by ¢ are the straight lines

t—nt,z) =a@)t+bz) zeM

where a and b are smooth mean-zero functions on M. From this we find

ea(@)t+b(z)
Jac,n(t,z) = m reM

M

and combining this expression with the identity %Jacu (n) = (pon)Jac,n,
we obtain
f a(x)ea(z)t+b(w)du

e(t,n(t,z)) = alz) — - f €a(w)t+b($)du . (28)
M

Note that the time derivative of ¢ o7 is independent of z, so that
doy + duyde =d((pon)ion™) =0
which shows that (28) solves the equations in (27). O

APPENDIX §A. PROOF OF (26)
Let v(t) be a curve in D(M) with §(t) = u(t) o y(t). For any to we
compute

w(to)o7(t0) = {

(3(1) o v(t)l)} o (o)

= i(t0) + DG { G 107 fortto). (a2

But differentiating the relation «(t)~! o () = e with respect to ¢ we find

d
dt

07 for(t) + Dlata) ™) o2(ta) i (r0) =
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Thus, (A.29) yields
ui(to) 0 ¥(to) = F(to) — D(§(t0)) - D(v(t0) ") © y(to) - ¥(to)

= 4] {50 ~5(t0) o7(t0) ™ 090} = DG~ 1) (k).

Equation (26) now follows from (25).
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