3auCKu HayIHBIX
cemuHapos [IOMU
Tom 410, 2013 T.

N. Filonov

ON THE REGULARITY OF SOLUTIONS TO THE
EQUATION —-Au+b-Vu=0

ABSTRACT. The equation —Au + b - Vu = 0 is considered. The
dependence of the local regularity of a solution w on the properties
of the coefficient b is investigated.

To the memory of O. A. Ladyzhenskaya

§1. FORMULATION OF THE RESULTS

Denote by Br a ball in R™, n > 2, of radius R centered at the origin.
We consider the equation

—Au+b-Vu=0 (1.1)

in Br. We always assume that a scalar function u € W.} (Bg), and a vector-
valued coefficient b € L,(Bg), p > 2. We understand the equation (1.1) in
the sense of the integral identity

/ Vu-(Vh+0bh)de =0 Vh e C;°(Bg).

Br
We are interested in the dependence of the local regularity of the solution
u of (1.1) on the order p of the summability of the coefficient b. The aim
of the present paper is to list the results, and the counterexamples which
guarantee the sharpness of the results. The brief summary is given in the
Table 1 below.

The critical case is p = n. If p > n, the solution w is continuously

differentiable.

Theorem 1.1 ([5], Chapter III, Theorem 15.1). Let b € L,(Bgr), p > n,
and let u € W} (Bg) be a solution to the equation (1.1). Then

weWZ(B,) cC"'"#(B,) Vr<R.
Key words and phrases: elliptic equations, regularity of solutions.
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ON THE REGULARITY OF SOLUTIONS 169

Here and in what follows by u € Wg(B,) we mean that the restriction
of u onto the ball B, belongs to this space, u|z € W2(B,).

If p = n the properties of solution depend on the dimension, whether
n=2orn>2.

1.1. Case n = 2. Let us consider two simple examples. The first example
shows that when p = n = 2 a solution u can be unbounded. The second
one shows that even if we assume a priori a solution to be bounded, then
it can fail to be Holder continuous.
Example 1. Let n =2, R = 1/e,
—x
=lIn|l b(z) = ———.
u(w) = Inlnfel|, br) = i
Thenb € Ly(By.), u € V°V21(B1/e), and (1.1) is satisfied, but u ¢ Lo (B /).
Example 2. Let n =2, R =1/2,
1 2z
b(r) = ————.
u(z) (z) FETE
Then b € L2(Bl/2)7 u € W;(Bl/z) N C(Bl/Q), and (].].) is satisfied. But
u ¢ C%(By ) for any a > 0.
The situation changes if the coefficient b satisfies an extra condition
divb = 0.

Theorem 1.2. Let n =2, b € Ly(Bg) and divb = 0. Let u € W} (Bg) be
a solution to equation (1.1). Then

we (\W7(B,) C [ C*(By) Vr<R.

q<2 a<l

:ln|x|’

We prove Theorem 1.2 in the next section.

Remark 1.3. In [7] a more general equation

—div(aVu) +b-Vu =0 (1.2)
is considered. The matrix-coefficient a(x) is assumed to be positive and
bounded,

0<all<a(z) <oyl (1.3)
here 1 is the identity matrix. If b € Lo(Bg), divb = 0, then a solution u

to (1.2) is Holder continuous, u € C* with some a > 0 (see Corollary 2.3
and the comments at the end of §2 in [7]).
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Remark 1.4. If the coefficient b satisfies a slightly stronger condition than
be LQ,

/ |b(x)|? In(1 + |b(z)]?) dz <
Br

(without the divergence-free condition), then the statement of Theorem
1.2 remains valid, see §4.4 below.

1.2. Case n > 3. In this case, the condition b € L,, is sufficient for u to
be Holder continuous.

Theorem 1.5. Let n > 3, b € L,(Bg), and u € W3 (Bgr) be a solution to
equation (1.1). Then

we [\ W;(B,)C ()C*B,) Vr<R.
g<n a<l

This theorem is probably known, although we have not found a relevant
reference. Theorem 1.5 can be proved in the same way that Theorem 1.2,
see Remark 2.8 below.

The following example shows that a solution u can be unbounded when
p<n.
Example 3. Let n > 3, R=1,
(n—2)x

|z[?
Then b € L,(B;) forall p < n, u € W(By), and (1.1) is satisfied, but
u ¢ Loo (Bl)

Furthermore, for p < n, if we assume a priori a solution to be bounded,
it can be discontinuous, even for divergence-free coefficient b € L.

u(z) =Inlz|, blz)=

Theorem 1.6. Let n > 3, p < n. There exist a vector-function by €
Ly(By)s), divby = 0, and a scalar function ug € Wy (By/2) N Loo(By2)
such that the equation (1.1) is satisfied, but uo ¢ C(Bi/2).

We prove this Theorem in Section 3.

Remark 1.7. It is easy to construct an example of a bounded solution
which is not Holder continuous for the case div b # 0.

Example 4. Let n > 3, R =1/2,

u(e) = b(w):((n—2)|az|—i> x

T Infz]’ B AL
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Then b € NpenLy(Bi)s), u € W3 (Byy2) N C(By»), and (1.1) is satisfied.
But u ¢ C%(By ;) for any a > 0.

For the proof of Theorem 1.6 we follow the approach of the paper [8].
We consider together with (1.1) the equation

—Au + div(bu) = 0. (1.4)

We understand this equation in the sense

/u(Ah-l—b-Vh)deO Vh € C3°(Bgr);
Br

the integral is well defined if u,b € Lo(Bg). It is clear that every solution
u € W3 (BRr) to equation (1.1) solves also equation (1.4) if divb = 0. The
converse statement is valid for bounded solutions.

Theorem 1.8 ([8], Proposition 4.1). Let u € Loo(BRr), b € L2(Bg),
divb =0, and (1.4) be satisfied. Then u € W3 (B,) for all 1 < R, u solves
the equation (1.1), and the estimate
1/2
IVullzys,) < C(,r, R) (1+[Ibllzy(5r) " lulloo(sn
holds.

In order to prove Theorem 1.6 we establish

Theorem 1.9. Let n > 3, p < n. There are two positive constants cy, 1
such that for any € > 0 there ewist a vector-function b. € C(B3),

divb. = 0, |[b:[|L,(B,,,) < co, and a scalar function u. € C®(By/2),
tellLaw(Bry) < 1o llucllwi(s,,,) < co, which satisfy the equations (1.1)
and (1.4), and moreover

u:(0) =0, u-(0,...,0,2¢) > ¢;.

This result was proven in [8] for n = 3 and p = 1. It is also clear from the
construction of b. in [8], that one can take any power p < 2. However, in
order to deduce Theorem 1.6 from Theorem 1.9 one has to get Theorem 1.9
with a power p > 2.

In Section 2 we prove Theorem 1.2. In Section 3 we prove Theorem 1.6
and Theorem 1.9. Some comments are collected in Section 4.

We do not consider the parabolic equation O;u—Au+b-Vu = 0, and the
regularity of a solution in dependence of the properties of a coefficient b.
Some results in this direction (under the condition div b = 0) can be found
in [7-9] (see also references therein).
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The author is grateful to prof. G. Serégin for attracting his attention to
the problem. Author thanks also A. Nazarov, A. Pushnitski and T. Shilkin
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Table 1. The local properties of a solution u to equation
(1.1) with b € L,,.

n=2 n>=3

p>n |ueCbI-n/p uwe obi-n/p
In general u ¢ Lo,
p=n |oru€ Lo, u¢ C* |uecC* Va<l
If divb = 0 ,then
ue C*Va < 1.

In general u ¢ L.

p<n | — It is also possible (even in
the case divb = 0)

that u € Lo, u ¢ C.

§2. PROOF OF THEOREM 1.2

2.1. Existence of strong solution. First, let us consider the Dirichlet
problem for the Laplace equation in a ball

—Au = fin Bg, ulgg, =0. (2.1)

Explicit formulas for the solution together with the Calderon-Zygmund
estimates of singular integrals imply the well known

Theorem 2.1. Let f € Ly(Bg), 1 < ¢ < oo. There exists a unique
function u € W2 (Bg) satisfying (2.1), and lullwz(sr) < CLllfllL,(Br)-

Now, let us consider the problem

(2.2)

—Av+b-Vv=fin Bp,
vlsp, = 0.

The following Lemma is also well known, we give a proof for the reader
convenience.



ON THE REGULARITY OF SOLUTIONS 173

Lemma 2.2. Letn > 2, 1 < q < n. There exists a positive number
50(”7(1) such that if b € Ln(BR)a ||b||Ln(BR) < co, [ € LQ(BR)a then
there exists a unique function v € W,f(BR) satisfying (2.2). Moreover,
lollwz(Br) < ClIfllLy(Br)-

Proof. Denote by Ly the Laplace operator of the Dirichlet problem,

Ly=-A:W2nW} — L.

The operator b- VLy*' is bounded in L,(Bg). Indeed, let f € L,(Bg),
u=Ly"f € W2(Bg). Due to the imbedding theorem W2 C W/t Ve
have

16~ Vullz, < [0l [Vullz < Collbllz, lullwz < CoCrlbllz, I £lL,,

where on the last step we used Theorem 2.1. If g9 < (2C,C;)~?, then
Ib-VLy ! |p,~1, < 1/2. Now, we set

nq/(n—q)

v="Ly (I+b-VL") " f.

Clearly,
~Av+b-Vo=f, veWnW,, and |vllwzse <2C1flL,5),

as H([+b-VL0_1)71‘

<2 O
q—Lq
2.2. Spaces H; and BMO. Let us recall a definition of the Hardy space
Hy(R"™). Let ® € C5°(B1), [ ®(x)dx =1. For f € L (R™) we set
B

1) @) =swp |- [ 2 (Z52) ra,

R’n
and

Hy(R") ={f € Li(R") : Mo f € Li(R™)}, [ flla, = 1Mo fllz,@n)-
The space H; does not depend on the choice of a function ®, and the norms
constructed with different functions ® are equivalent. A detailed exposition
of the theory of Hardy spaces can be found in [11]. The dual space to H;
is the space BMO(R™) (Bounded Mean Oscillation). Its definition read as
follows: a function f € Li j,.(R"™) belong to BMO if and only if

sup sup = [ |0) = Tl dy = [ fllanio < .

vckr R>0 |Br(z)|
BR(E)



174 N. FILONOV

Here fp,(z) = mB f( ) f(y) dy. The functional || . || garo is a seminorm
RI\T
(it vanishes on the constants). We will use the following result.

Lemma 2.3 ( [1], Theorem I1.1.2). Letb € L,(R™), 1 < p < o0, divb =0,
© € Wy (R™). Then b- Vi € Hi(R"),

16 Vol < Clblle, IVellL, -
Now, we can establish the following estimate.

Lemma 2.4. Let n =2, b€ Ly(Bg), divb = 0. Then

/ b- Vot do| < Cbllasm V9l Lo | Vel Lo

R

YV o € Wi(Bg), ¥ € C°(Bg). (2.3)

Proof. First, as divb = 0, we can represent the function b as (by,b2) =
(0w, —01w) with w € W.}(Bg). We extend the function w into the whole
plane, and denote this extension by @,

HeWy(R?), Qlg, =w, [@llwpre < Clwllwisg)-
Let us define a vector-function b = (95, —81@). Clearly,

be Ly(R?), |[Bllroe2) < ClbllLas, b, =b divb=0.
R

Therefore, by Lemma 2.3, b- Vi € H; (R?) and

||l~) : V@HHI < C||b||L2(BR)||v90||L2(BR)‘

On the other hand, it is well known, that the space W.} (R?) is imbedded
in BMO(R?), and the estimate

¥l Bro®?) < ClIVY|Lyr2)

holds (it is a simple consequence of the Poincaré inequality, see for exam-
ple [2]).

Finally, the integral of a product of an H;-function and a bounded
BMO-function can be estimated by the product of the corresponding
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norms (see [11]),
/i) Vo de

< Clb-Vollm 1Yl Bro < Clbll Lo IVl Ly (80 IV | La(Br)- O

Remark 2.5. Lemma 2.4 is borrowed from the paper [6]. In this paper a
detailed investigation of the boundedness of the integral in the left hand
side of (2.3) under different conditions on b, ¢, ¢ is done. We gave the proof
of (2.3) in our particular case for the convenience of a reader.

2.3. Uniqueness of weak solution.

Lemma 2.6. Let b € Ly(Bg), divb = 0. Then the solution to the prob-
lem (2.2) is unique in the space W.} (BR).

Proof. Let u solve the homogeneous problem
—Au+b-Vu=0, ueW)(Bg). (2.4)
Choose a sequence ¢, € C§°(Bg) such that 1, — v in W3 (Bg). Then

/ Vulde < / Vau - Vibude + [Vl Ly |V — Vobnllza(50)-
Bgr Br

The second term tends to 0 when n — oo. For the first term we have

Br Br Br

where we used (2.4) and the equality [ b- Vi, 1, dz = 0 which is due to
Br
the divergence-free condition. By virtue of Lemma 2.4,

69 00 = wads| < OBl Vo=V 30| T 1230y 2, 0

R

So, ||Vu||%2(BR) =0, and u = 0. O

Remark 2.7. Example 1 shows that the uniqueness of weak solution can
be violated in the case div b # 0.
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2.4. Proof of Theorem 1.2. The statement of the Theorem is local.
Therefore, without loss of generality, we can assume that the norm
10ll Lo(By) is arbitrarily small. Let u € W3 (Bg) be a solution to the equa-
tion (1.1), and let ¢ € C5°(Br), (|, = 1. Then

—A(Cu) + b V(Cu) = —Alu —2VC-Vu+b-V(u € Ly(Bg) Vq<2.

Thus, the function ((u) solves the problem (2.2) with the right hand side in
L. By virtue of Lemma 2.2, such a problem has a solution from W7 (Bg).
On the other hand, the solution is unique due to Lemma 2.6. So, u €
W2(B,) for all ¢ < 2.

Remark 2.8. Proof of Theorem 1.5 can be done similarly. The existence
of strong solution is due to Lemma 2.2. The uniqueness of weak solution
is given by

Lemma 2.9. Letn > 3. There is a number e, = €1(n) such that a solution
to the problem 2.2 is unique in Wy (Bg) if b € Ln(Bg), |[bllL, (8x) < é1-

Proof. Let u be a solution to the problem (2.2) with f = 0. Using the
Hélder inequality and the imbedding Theorem Wi C L, /(n—2) We have

[ vupds == [ b Vuuds < bl ol Vlzagm ol 0
Br

Br
< COHbHLn(BR)HVU’”%,Z(BR)' (2.5)
If e, < 1/Cp, then ||Vu||L2(BR) =0. O

Now, multiplying a solution to the equation (1.1) by a cut-off function,
we get the relation

wueW,(Bg), 2<q<n = uve(B,)CWin__qq(B,), Vr<R.

Iterating this relation [2%] times we obtain u € W2(B;) for all ¢ < n
and r < R.

§3. PROOF OF THEOREM 1.6

The proof of Theorem 1.9 (with p = 1) in [8] is based on the theory of
the stochastic processes. We prove Theorem 1.6 and Theorem 1.9 following
the general scheme of [8], but without using the probability theory.



ON THE REGULARITY OF SOLUTIONS 177

3.1. Coefficient b. Let n > 3, let Q be a cylinder in R,
Q={zxeR":p<l,ze(-1,1)},

where p = /a2 + -+ 22_|, z = x,. We will use the auxiliary parameters

p € (1,2), e € (0,1/2) and a function n € C*°(R), n(t) = 0if t < 1/2,
n(t) = 1if t > 1. Introduce the function
H.(z) = p" "'z~ "n(z/e)n(z/p) (3.1)
if ¢, > 0, and H.(z1,.. ._,:Un,l,xn) =—H.(z1,...,¢p-1,—,) if z, <0.
It is clear that H. € C°°(Q) if the dimension n is odd, and p~'H. € C>(12)
if n is even. We define the function b. as follows
bs(x) = Kpl_n (xlasza EERE xn—lasza _papHE) -
In cylindrical coordinates it means that
(bs)p = Kpbnasz, (bs)z = _Kp27napHE: (32)
and all other components are zero. Here K is a large constant, which we

choose later (see Lemma 3.4 below); it does not depend on €.

Lemma 3.1. The function b. possesses the following properties:
be € C>(Q);

divb. =0,

we have

(be)p = —uKpz~'7H, (b)), = —(n— 1)Kz

on the set
Q. :={zxeQ:p<ze<z<1} (3.3)

(it is a truncated cone in the upper half of the cylinder Q);
b: € Lyp(Q) for p < n/p, and the norms |b.||z, are uniformly
bounded with respect to €.

Proof. The first three properties follows directly from the construction.
Let us verify the last one. For postitve z we have

|VH. ()]

1 1 1 z 2 P ~
< n—1_—p (=, =, = Z z z z
<Cp" 'z (p+z+8X[1/2,1] (5)+p2X[1/2,1] <p)> X[1/2,00) (p) )
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where x[1/2,1] and x[1/2,00) are the characteristic functions of the interval
[1/2,1] and [1/2, c0) respectively. Next,

1 (z)<1 z z <1
EX[1/2,1] ) S pQX[1/271] P \p’

and
1 z 2 z
ZX[1/2,00) ; < ;X[I/Z,oo) ; .
Therefore,
o z
|VH.(z)] < Cp"*z "X[1/2,00) (;)
and

_ zZ
b ()] < CK = x1 .00, (;) (3.5)

where the constant C' depends on the function 7 only and does not depend
on . The last inequality implies

1 e}
/|b5(:c)|pdx< C’Kp/p”_2dp/z_”pdz < 00,
Q 0 p/2
because n — up > 0. (]

3.2. Auxiliary function f.

Lemma 3.2. There exists a function f = f. € C?[g,1] which possesses
the following properties

1) f(z) 20, f'(z) =2 0;

2) f(e) =0, f(2e) 21 >0, f(1) =1,

3) 1(2) < e f ()24, —f1(2) < e f ()20,

Here the positive constants c1, ca, c3 depend on pu and do not depend
on €.

Remark 3.3. Such a function can not exist when p = 1. Indeed, the
conditions

fl(2) 20, f(2e)>c1 and f(2) <caf'(2)2

1

imply that f’(z) > c1c; '2~! when z > 2e. Therefore,

1
1—c = f(1) — f(2e) 26/% = ¢|In 2¢|,

2e
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and we have a contradiction.
Proof of Lemma 3.2. First, we define the function
W) = { %3{5_3 —‘5”_4) 22— (2672—e" %) 1+ (28_14-%6”_2) , e <t< 2,
%tﬂ*l, 2e < t<1.
Its derivative
W) = {(533_— 6‘1;4) t—2e 24t 3 et < 2,
Q3-8 9e <1 < 1,

is continuous and negative everywhere. Therefore, the function h € C'[e, 1]
is decreasing.

Put g(z) = fzh(t) dt. The function g increases, g € C?[e, 1] and g(¢) = 0.
We have )

7e3 32
g26) = (70 — &™) - — (27— ev0) -
2 A 1 /1 2 1
2 —1 e p—2 _Z - _c p—1 - .
+(z—: +2—u6 )s 6+(3+2—u)€ > 5 (3.6)
and
1
(1) =g(2 )+/h(t) dt = g(2¢) + z (1-(20)"71)
g(1) = g(2¢ =92)+ —————(1—1(2¢
; 2-p)(n—1)
1 231 erl 1 23— h p
<-4+ + <z+ =:d,.
6 2-wpe-1) 3 "2 2-pkr-1) "

Now, we define the function f as f(z) = g(2)/g(1). It is immediate
that the properties 1) and 2) are fulfilled; one can take ¢; = (6d,)"".
Let us verify the property 3). It is sufficient to check the corresponding
inequalities for the function g instead of function f. For z < 2¢ we have

§(2) = h() > h(2) = e gle) < g(1) < dy < O (),

— K
where C' = (2 — p)d, /2. Further,
/ —u 2 n—2 —u 217” -2 " / / 2
§ > g = S ) = W) 2R () =
therefore,

—g"(2) < 2-w2" g (2)2 7"
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For z > 2¢ we have

23H

1) —
9(2) = 5= .
C = (2 — p)2#~3d,. Finally,

—9"(2) = 2-wg'(2) < 2—pyg'(2)z7".

7 = g(2) < Cy'(2)" 7,

O

3.3. Barrier function v. Let f = f. be a function constructed in Lem-
ma 3.2. Consider the function v.(z) = f(z)cos 52 on the set Q. defined
by (3.3). Clearly, v. € C*(%.),

ve >0, vl =0, wl_, =0, uv _, =cos %, (3.7)

and
2
0pve :—%f(z) sin 7;—5, 8;2,05 = —:—2 (2) cos ;r—g,
d.v. =f'(z )cos2— -I-—f( )s1n—5
2 2
v, = f"(2) cos g—g + Z—é)f'(z) sin 7;_5 — Z—g (2) sin;r—g — 7;;4 f(z) cos 72T_§
Lemma 3.4. Let the function b. be defined by formulas (3.1), (3.2) with
4 .
K>max( - ;7T202+C3>;
n—p—1

where ¢y and c3 are the constants from Lemma 3.2. Then the inequality
Av.(z) — be(x) - Vo (x) >0

holds in Q..

Proof. We have

. n—2 .
Av, = 851)5 + Tapvs + 857)5

71—2 71—2 2 ™
— () - T 1+ 1)) cos 32

422

(n—2)w T T ., . TP
(U525 1) - T 1) + ) ) sin

w2 P P
> I " &7 .
> < 2Z2f(z) +f (z)) cos 5~ o () sin 5
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where we used the inequalities p < z in Q. and f/'(z) > 0
Next,

-1
—be-Vo.=(n —1)Kz""f'(2) cos 2_p +%K7rpz_2_“f(z) sin -2
Taking into account Lemma 3.2, we get

2
Ave — b -V, > <(n - 1)K — L 03) 2 Hf'(2) cos o (3.8)

2 2z
a1
+ <%K7rpz_2_” - ;—:Z) f(2)sin Z—Z
If 0 < p < 2/2 then sin 32 < 72 and cos 32 > 7, therefore
2 2
L P T nmw? u T \/— B )
S 1(e)sin 2 < T () < M ()2 2f'(2)e Hcos 3L,

where we have used Lemma 3.2 again. Thus, Avg(x) —b.(z)-Vu:(x) >0
when p < z/2 due to the fact that

K>n%c;4+c3 = (n—1)K > <2+%> 7o + c3.

If 2/2 < p < z then 4p* > 2% > 21 T# and ”p” 2nmwpz~27#. Therefore,

the last term in the right hand side of (3.8) is positive, as (n —pu— 1)K >
4n. O

Remark 3.5. This construction does not work for n = 2, because we have
used the positiveness of the multiplier (n — p — 1) in (3.8), and p > 1.

3.4. Proof of Theorem 1.6 and Theorem 1.9.

Proof of Theorem 1.9. Let the sets €2, 2. and the function b. be defined
as before. Then b, € C*, div b, = 0 and the norms ||b. || (q) are uniformly
bounded with respect to . Let u. € W3 () be the unique solution to the
problem

—Au: +b:-Vu. =0 in Q,

Ue|,_yy = Fcos T, ue|,_, =0.
Evidently, u.|g, € C*(B1) and |Juc||;_ (B,) = 1. The norms uellwz (B, )
are also uniformly bounded due to the Theorem 1.8. Next, it is clear that
the function wu. is odd,

Ue (X1, oo Tpe1, — ) = —Ue (X1, ooy, Tpe1, Ty)-
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Therefore, u.|,_, = 0. By the maximum principle, u.(x) > 0 when z > 0.
This means that u.(z) > v.(z) on the boundary 0., where v, is the
barrier function constructed in Section 3.3 (see (3.7)). Using the maximum
principle for the set (2. and the Lemma 3.2, we get

ue(0,...,0,2) 2 0v:(0,...,0,2) = fe(2) 21 Vz = 2e. (3.9)
O

Proof of Theorem 1.6. Without loss of generality we can assume p >
n/2.

We deduce Theorem 1.6 from the Theorem 1.9. Roughly speaking, we
repeat here the argument of [8]. Put

Hy(z) = p"t27Fn(z/p) when =z, >0,
Ho(xl, ey xn_l,xn) = —Ho(ilfl, vy 1, —.’I,'n) when Ty < 0.

Let

(bo), = Kp* "0.Ho, (bo): = —Kp* "9,Ho,
and all other components be zero. The constant K here is defined in
Lemma 3.4. It is evident that b. — by a.e. as ¢ — 0, and |b-(z)| <
CKz7"X[1/2,00)(2/p) due to (3.5). Therefore, the same estimate has place
for the function by, by € Ly, and b, — by in Ly, for all p < n/p. This yields
also that div by = 0.

By virtue of the Theorem 1.1 and the inequality (3.5), the functions
ue are uniformly bounded in Wg(U), for all subdomains U with smooth
boundaries such that U C 2\ {0}. The imbedding W2 (U) c C(U) is com-
pact, therefore, there is a subsequence {u., } which converges uniformly on
U. Furthermore, Theorem 1.8 implies that the sequence {u., } is uniformly
bounded in W3} (B1/2). Without loss of generality one can assume that u.,
tends pointwise to a function wuy,

Ugy, (ZE) - UO(J:) vz 7é 0,

and u., — ug weakly in W3 (B 3). Clearly, w0l Lo (B, ) < 1.
We have for any h € C5°(B/2)

/uo (Ah +byg-Vh)de = lim [ u., (Ah+b., - Vh) dz =0.

k—oo

Thus, the equations (1.1) and (1.4) are fulfilled for wuy, bo.
Finally, the function ug is odd,

wo(T1, ., Tpne1, —Tpn) = —ug(T1,-- -, Tn—1,Tn),
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but
up(0,...,0,2) = ¢1, Vz>0,

due to (3.9). Therefore, the function wug is discontinuous at the origin. O

§4. COMMENTS AND REMARKS

4.1. Case n = 1. We do not consider the one-dimensional case, because
the equation —u"(z) + b(z)u'(z) = 0 admits an explicit solution

z Yy

u(z) :Cl/exp /b(t) dt | dy + Cs.

0 0

4.2. On Stampacchia’s Theorem. It is announced in [10] that a solu-
tion to (1.2) under the conditions (1.3) and b € L,, must be bounded [10,
Theorem 4.1], and therefore, Holder continuous [10, Theorem 7.1] for all
n > 2. These Theorems are proven in [10] for n > 3. However, for n = 2,
both statement are false, see Examples 1 and 2 in §1. The reason is that
the imbedding Theorem W3 C Ly /(n—2) used in [10] has no place when
n=2.

4.3. Morrey space. Let us recall the definition of Morrey’s spaces:

MG(Q) ={f € Ly(?) : [|fllme = sup Qr_a”f”Lq(B,.(z)) < oo}

r(x)C

The following result is proved in [7].

Theorem 4.1. Let a satisfy (1.3), b € Mq%_l(BR), n/2 < q¢ < n,
divhb = 0. Let u € W.}(BR) solve the equation (1.2). Then u € C®(BR)
with some a > 0.

n

The Holder inequality implies that L, C My ¥, 1 < g < p. Therefore,
Theorem 1.6 shows that the power (n/q — 1) in Theorem 4.1 is sharp.

4.4. Space Lj,. The following result has place.

Theorem 4.2. Let n = 2. Assume that the coefficient b satisfies the con-
dition

/ 1b()[2 In(1 + [b(x)[2) dz < oo. (4.1)
Br
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Let u € W} (BR) be a solution to (1.1). Then
we (\Wi(B,) c [)C*B,) Vr<R.
q<2 a<l

Denote by L2 1n(Br) the space of measurable functions b (modulo func-
tions vanishing on the set of full measure) satisfying (4.1) (clearly, L1, C
Ly). It is the Orlicz space corresponding to the function ¢? In(1 + ¢2). The
theory of Orlicz spaces can be found for example in [4]. Recall some basic

facts on such space. The quantity
2 2
b
In (1—!— ‘_(a:) ) de <1

k
is well defined for b € Ly 1n(Bgr). One can show that this functional is a
norm, and that

. b(x
||b||L2,h,(BR) =infd{k>0: / ‘%
Br

6ly,n(B,) — 0 as 7 —0.

Lemma 4.3. Let n = 2, R < 1, b € Lyu(Bgr), ¥ € Wi(Bg). Then
by € Ly(BRr) and

||b¢||L2(BR) < COHb”LZ,ln(BR)||v¢||L2(BR)7
where Cy is an absolute constant.

Proof. Follows form the fact (see, for example, [3, Theorem 7.15]) that
all functions from W.}(Bg) satisfy the estimate

2
/exp % dx < as|BRr]|
B alH’l/}”Wzl(BR)

R

with two constants ai, az, and the elementary inequality
En<&nf+e”, &§n>0. g

Now, the proof of Theorem 4.2 is similar to the proof of Theorem 1.2.
The uniqueness of weak solution (an analogue of Lemma 2.6) follows from
the estimate

[ b Vuuds| < oull o [Vl
R

< C1lbll (B IVUlE y 5y YV u€ Wa(Br) — (42)
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if the norm [|b]| 1, (B, is sufficiently small.

We borrowed the condition (4.1) from [7]. Under the conditions (1.3)
and (4.1) it is proven in [7] that any solution to the equation (1.2) is
Holder continuous (see comments at the end of §2 in [7]). Note that
the condition (4.1) can not be changed by the finiteness of the integral
[ 1b(2)? (In(1 + |b(z)[?))” dz with any v < 1 (see Example 1).

Br

4.5. Maximum principle. If the coefficient b satisfies the conditions of
Theorems 1.2, 1.5 or 4.2, then a solution u to the equation (1.2) satisfies
the maximum principle [7, Corollary 2.2 and comments at the end of §2].
Examples 2) and 4) in Section 1 show that the conditions imposed on b
again can not be weakened.

4.6. Open questions. The following questions remain open.

o Let n > 3,b € L,(Br), 2 < p < n,and divb = 0. Whether a
solution u € W} (Bg) to equation (1.1) should be bounded in B,
r<R?

e Let n = 2,b € La(Bg). Whether a solution u € W} (Bg)NLoo (BRr)
to equation (1.1) should be continuous?
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