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SOLVABILITY OF A FREE BOUNDARY PROBLEM OF
MAGNETOHYDRODYNAMICS IN AN INFINITE TIME
INTERVAL

ABSTRACT. We prove global in time solvability of a free boundary
problem governing the motion of a finite isolated mass of a viscous
incompressible electrically conducting capillary liquid in vacuum,
under the smallness assumptions on initial data. We assume that
initial position of a free boundary is close to a sphere. We show that
if ¢ — oo, then the solution tends to zero exponentially and the
free boundary tends to a sphere of the same radius, but, in general,
the sphere may have a different center. The solution is obtained in

Sobolev—Slobodetskii spaces W;H’IH/Q, 1/2<1< 1.

Dedicated to the memory of Professor M. Padula

§1. INTRODUCTION

We consider the free boundary problem governing the motion of a finite
isolated mass of a viscous incompressible electrically conducting capillary
liquid. It is assumed that the liquid is contained in a bounded variable
domain §2;; whose boundary consists of two disjoint components: the free
boundary I'; and the fixed surface ¥ that ia also a boundary of the fixed
domain D. Both I'y and ¥ are homeomorphic to a sphere. The domain
D UQy, is surrounded by a bounded vacuum region Qy; we set Q = QU
[ UQy; Q is bounded by ¥ and the exterior surface S, also homeomorphic
to a sphere. It is assumed that S and X are independent of time, perfectly
conducting closed surfaces such that [''NS = @, ['NY = @ . The problem
consists of determination of the variable domains Q;, ¢ = 1,2, together
with the velocity vector field v(z,t), the pressure p(z,t), * € Qq, and
the magnetic field H(z,t), * € Q1 U Qo, from the following system of
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equations, initial and boundary conditions:

vi+(v-V)v—-V -T(v,p) -V -Ty(H)=0, V- v(z,t)=0,

1 Hi+a rot rot H—pyrot (vxH)=0, V- H(z,t)=0, z € Qqq, t > 0,
rotH=0, V- -H(x,t) =0, xz€Qy, t>0,

v(z,t)=0, z€%, t>0, (1.1)
(T(v,p) + [Ty(H)])n =onH, V,=v-n,

[WH -n] =0, [H]:O, zely, t>0,

H(x,t) -n(z) = zesS, t>0,

H(x, )nx): rot, H=0, ze€X, t>0,

0) =

( Vo (:U), RS QlO; H(ZL“,O) = Ho(él?), z € Q19 U Nog.

Henceforth, we assume that the density of the fluid is equal to one and
use the following notation:

v,a, o are positive constants (the kinematic viscosity, conductivity, co-
efficient of the surface tension);

‘H is the doubled mean curvature of Iy,

T(v,p) = —pI + vS(v) is the viscous stress tensor,

S(v) =Vv+ (Vv)T = (% + %) Las is the doubled rate-of-strain
J i/ ,5=1,

tensor,

V,, is the velocity of evolution of the surface I'; in the direction of the
exterior normal n to [y,

p (magnetic permeability) is a piecewise constant function (which is
equal to p; > 01in Q4,1 =1,2),

Ty (H) = p(H® H — $1|H[?) is the magnetic stress tensor.

Q10 is a given initial configuration of the liquid,

8910 =XU Fo,

[u] = u® —u® — jump of u(z) on Ty, ') = ul,q .

The problem similar to (1.1) but without a rigid domain D is studied
in the paper [1], where local (in time) solvability of this problem is proved
for a closed surface [y of arbitrary shape (but such that Q¢; and Q =
Q0 U Qg are simply connected) and arbitrary initial data vo(z), Ho(z),
satisfying natural compatibility conditions and regularity assumptions. In
the present paper, we prove the unique solvability of problem (1.1) in an
infinite time interval £ > 0 under the additional smallness assumptions for
the initial data and in the case when the surface I'y is close to the sphere
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Sro(0) ={ly| = Ro} with Ry defined by
4
D] + Q0] = g”RSa

where |D] is the volume of D. We also show that when ¢ — oo, then the
velocity, pressure, and the magnetic field tend to zero exponentially and I';
tends to a sphere of the same radius but, in general, of a different center.

We assume that I'g can be regarded as the normal perturbation of Sg,:

To={z=y+Nu)p(y), y€Sr},

where N(y) = % is the exterior normal to Sk, and pg is a given small
function. Moreover, let I'; be given by the equation of a similar form, i.e.,

Uy ={z=y+N(y)p(y,t) +£(t), y€Sr},

where p(y,t) is an unknown function and

1
&) = mg/wdw

is also unknown (this is the barycenter point of the domain Q; = D U Q1
filled with the liquid of the density 1). We assume that £(0) = 0, i.e.,
J xdx = 0. The derivative of £(t) is given by the relation

Qo

, 1 d/ 1 / 1 /

t) = —— [ zdxr=— | v(z,t)dxr = — [ v(z,t)dz,

O o o] J YOI = gy ) VD
Qy Q¢ Q1¢

provided that v(x,t) =0 for z € D.
We assume that

|£(t)| + |p(y7t)| < d07
then the free boundary I'; is located in the layer

0<R0—d0<|y|<R0+d0.

This assumption is valid for sufficiently small initial data (see Remark 3.1).

In order to reduce problem (1.1) to a problem in a fixed domain, we
construct the mapping of @ = Q;, UL U Qs on Q = F1 U Sk, UFs, where
F is the domain bounded by ¥ and Sg, and F» = Q\ Fy; 0F, = SUSR,.
We take a smooth nonnegative cut-off function x(y) equal to 1, when y
belongs to the layer Ry — dyp < |y| < Ro + dp and vanishing outside the
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layer Ro — 2dp < |y| < Ro + 2dp ( for small dy this layer is contained in 2)
and we define the mapping

r=y+N(y)p* (y,t) + x(W)EE) =epe, yEQ, (1.2)

where N*(y) and p*(y,t) are sufficiently regular extensions of N and p
from Sg, into 2, in particular, we assume that p*(y,t) = 0 near S and X,
and that the C'-norm of p* is small. In our problem, it is possible to set
N*(y) = N(y) = |—yl| When p* and &(t) are sufficiently small, then (1.2)
establishes one-to-one correspondence between F; and Q;, i = 1,2. We
denote by L(y, p*, ) the Jacobi matrix of the transformation & = e, ¢(y)
and we set L =det £, L = LLL.

Transformation (1.2) transforms (1.1) to a nonlinear problem in the
fixed domain Q = F; U Sk, U F» with respect to unknown functions

20

u(y,t) =VO€pe, q(yat) =DPO€pg— R_O’

and
h(y,t) = L(y,p",§)(Hoe,e).

If we separate linear and nonlinear terms in all the equations, then our
problem can be rewritten in the form

ut_’/v2u+vq:ll(u7q7h7p)7 V~u:l2(u,p), y€f17t>07
u(y,t)], . =0,

vIlpS(u)N = 13(u, p),

—q+vN-Su)N(y) + 0Bop = ls(u,h, p) + I5(p),

1
pt_UN(y)+m/UdyN(y):lﬁ(uap)a yeSRoa t>07 (13)
Fi1

pihy + a trotroth =1;(h,u,p), V-h=0, yeF, t>0,
roth =rotlg(h,p), V-h=0, ye€F,

[wh-N] =0, [h-]=1y(h,p), y€ Sk, t>0,
h(y,t) - n(y) =0, yeSUXE, rot;h=0, yeX ¢>0,
u(y,0) =uo(y), ye€Fi, h(y,0)=ho(y), yeFiUF,
p(y,0) = po(y), Y € Shy,

where 1; — lg are the nonlinear terms presented by the relations
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11(4,4,p,B) = v(V2 — V)u+ (V - V)g + (£~ (N* ()}
XWE (1) V)u— (£ - V)ut+ V- T (T),
b(up) = (I~ £V u=V-(I- L, yer,
Iy, p) = V1l S(w)N)(y) — IS (wn(ey(y)),
li(uh.p) = v(N- SN ~ 1 S(u)n) — [Tor(51)]n.

L
1
LT (y,sp)N
a/ (1—13s) —/3 (y,sp)V-%ds, (1.4)
0

oo o) (5

1 n(e
F1

n,
1:(h, p) = o 'rot <r0th et Lot h) +17.cn
L L L
L (N"p; + XW)E () V)7 Lh+ puxot (C 7w x ),y € 7,
1s(h, p) = (I — %CTﬁ)h, y € Fy,

LLTN
ly(h, p) = <W —N>[h'N]; Y € SRy,

where V is the transformed gradient V,, i.e., V=£"TV, V=V,
Su) =L TV@u+ (L7TV®u)?; the sign (1)1 means transposition;

1
Of =f—n(@-f), Hof=f-N(-N), Bop=—7(As,p+2p),
0

Ag, is the Laplacean on the unit sphere S;. The expression —oByp is the
first variation of o(H + Rio) with respect to p, and I5(p) is a nonlinear
remainder. The nonlinear terms I, — l5, Iy — lg are calculated in the same
way as it is done in [1], and we omit the details. Let us show that the
nonlinear term in the dynamic boundary condition has the form lg. Since
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Vi=n-x; =mn-(£(t)+ p:IN), this condition is equivalent to

1
piny.—v-n+&t) n=pn,—v-n+— [ v(z,t)dr -n=0,

12
Q¢
ie.,
1 n(ep)
—u-N+— t)dy-N = / , d < L N)
|| uly, 1) dy- 190] u(y ) dy)-
F1
(epé)
—— [ u(L-1)dy —2& =,
|no|/ (L=t)dy- == =l
F1
where
LTN(y)
n(ep,a):ATi-
|LTN(y)|

The assumptions

4
Qo] = gﬂRS, and /azz dx =0
Qo

lead to the following conditions for pg:

/((Ro + p0)3 — Rg) ds =0, /yz((Ro + p0)4 - Ré) ds =0, i=1,2,3.
S1 S1

Thus,
]‘ 3
pO(ROy) dS = —— pO ds — 3R2 Po dS7 (15)
S1 Sl
ds = 2 ds - 2 dS 1 2 ds
yipo(Roy) dS = _Q—Ro Yipp dS — 72 Yipp dS — iR Yipo do.
Sy Sy Sy Sy

Natural compatibility conditions in the problem (1.3) are as follows:
Vg =la2(uo,p0), y € Fu,
(1.6)
VHOS(UO)N(y) = 13(110,/)0): Yy S SR07 up = 07 ) S Z:
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and
rot h((f) = rot ls(hé2),po), y € Fa, [hor] =lg(ho,po), y € Sry,

V-hi'=0, yeFR, V-h =0 yer, (1.7)
[ho -N]=0, ye€Sgr,, hgrn=0, yeXUS, rot hy=0, yeX.
To state the main result of the paper, we recall some definitions. By the

Sobolev space Wi(f2), © € R” with noninteger [ > 0 we mean the space of
functions u(z), z € Q with the finite norm

) o Doul? dxdy
[ u ||Wzg(9)—||u ||Wm + Z //|D )] |z — y[r 2=

lal=[l1g O

where

. o 2
lulpg= Y [ IDtu@f ds
’ 0<lal<l]

is the norm in the space WQ[Z](Q). The anisotropic Sobolev-Slobodetskii
space Wl /2 (@) in the cylindrical domain Q7 = Q% (0,7) can be defined
as the space Lo ((0,T), W(€)) N Ly (2, Wi/?(0,T)) with the norm

o By g /mu ) Bgco ﬁ+/nu oo, @ (19)

There exists many other equivalent norms in Wé’l/ 2(Qr). Sobolev spaces
of functions defined on the smooth surfaces are introduced in a stan-
dard way, with the help of local maps and partition of unity. We also
find it convenient to use the spaces Wi (Qr) = Ly((0,T), Wi(€)) and
W;’l/2(QT) = LQ((Q,W5/2(O,T)). The squares of norms in these spaces
coincides with the first and the second term in (1.8), respectively.

In the present paper we prove global solvability of the problem (1.3) in
anisotropic Sobolev—Slobodetskii spaces.

Theorem 1.1. Let
uy € WHHF), po € W2t (Sg,), hY) e WitH(F)
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with a certain l € (1/2,1), the compatibility conditions (1.6), (1.7), condi-
tions (1.5), and the following smallness condition

2
ollws+sz,) + lP0llwien(sn, ) + 2 IS yivr sy €< 1 (19)
=1

be satisfied. Then problem (1.3) has a unique solution with the following
reqularity properties:

uwe wytHRQL), vge WH(QL),
g € Wyt 2%(Goo) N W (0, 00, Wy (Shy)),

p € Wy P0G o)W,/ ? (0, +00; Wy * (Sky)), e € Wy /22T (@),

h® e Wt 2QL), i e W(0, +o00, Wy (Sky),
where
Qi = Fix (0,00), Goo =Sg, % (0,00), h¥ =h|,cr, i=12
The solution satisfies the estimate
leullyzrtasirzgu ) + e Vallyir g + e al iz,
+ ||€atCI||W2l/2(0’oo;w21/2(sﬂo)) + ||€atﬂ||W21+5/2>0(Goo)

F 1Pl o, 00w 2 smgy) T 1€ Pellwsrsrzinssrng
2

37 (e By earsrs oy + 1€ B o s 251 )
=1

2
< c(||uo||w21+z(f1) +llpollwz+ 5y + D ||hé’>||w21+z(fi)), (1.10)

i=1

with a certain a > 0.

We have described the main relations of the problem and results of the
paper, the outline of which is as follows. In Sec. 2, we present analysis of
the linear problems corresponding to (1.3), and in Sec. 3, we prove the
main result of the present paper — the solvability of the nonlinear problem
(1.3) on the infinite time interval. Section 4 plays the role of appendix, we
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discuss there the estimates of the nonlinear terms. Detailed proofs will be
given in subsequent publications.

§2. LINEAR PROBLEMS

Omitting the nonlinear terms in (1.3), we arrive at two linear problems:
one for the velocity, pressure and p and another for the magnetic field. We
present the existence theorems for both problems in anisotropic Sobolev—
Slobodetskii spaces. First, we consider the nonhomogeneous linear problem
for v, p, p, namely,

Vt—VVZV-va:f(y,t), V-V:fl(y,t)ZV'F(y,t), y € F1,
H()S(V)N = Hod(y,t),
—p+vN-SV)N+0oByp=d-N,

pe (v — 90 [ v dy) ‘N=g(y.8), yeSn, (21)
Fi

v(y,t) =0, yex,
V(y,O) ZVO(y)7 yEfla p(;U:O) :po(y)7 yESRO;

Theorem 2.1. Assume that | € [0,3/2), | # 1/2 and the data of prob-
lem (2.1) possess the following regularity properties:

Fewy' @), fem @), fiwt) =V Fy.b),
Fewy ™2(Qh), d-New,™ 2 Gr) nwy*(0,T;W,(Sky),
d_ N(d . N) c Wé+1/2’l/2+1/4(GT), ge Wé+3/2’l/2+3/4(GT),

vo € WY (FY), po € Wi (SRr,), where
T < oo, QF=F x(0,T), Gr=Sg, x(0,T).
Moreover, let the compatibility conditions
V-vo(y) = f1(y,0), y € F1, S (ve)N =1IIpd(y,0), y € Sgr,, Vo‘z =0
be satisfied. Then, the problem (2.1) has a unique solution v,p, p such that

v e Wi QL) vpe WH(@Qh),

pe Wy (G n WP (0,15 W, (Sky)),
Dt c Wé+3/27l/2+3/4(GT), p c Wé+5/270(GT) N Wé/Z(O,T;Wj/Z(SRO)),
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and the solution satisfies the inequalities
IVl rzarzs guy +1VEIywrz gy + Py rrzo g,
FPllwyrz 0 rwyr2sn) +IPlwyrero ) + 1Plhwireo zwer sy
+ ||Pt||W21+3/2,l/2+3/4(GT)
< e (I8lwgrrzayy + Iillwgrenyy + IF gz gy,
+ ||H0d||W21+1/2.l/2+1/4(GT) +||d - N||W21+1/2,0(GT)

1 Nllyyrz o, zw2/2(5mg)) T 19lwirerzerzeersgy

+ Vo llwis ) + 190wt s)) (2.2)
and
IV llyeziro gy + VPl guy + [Plyierr206
T WPl rwz2sngy T 1Plwirorog + 1Plware rwsrsn,)
+ 1ot llyyiarzirarars gy < C( 1V lzay) FIEly 2o
FAllwirrouy + IF lyorsirz ooy + IModllyierrziroisa g )
- Nllyyierrzoig) + - Nlyrzg rwrzss,)

+lgllyprrerzirasara g + Vol 7 + ||p0||W2H2(SRO)) (2.3)
with the constant C' independent of T.

This theorem can be proved with the help of the same scheme as The-
oreml.1 in [2]. The problem (2.1) differs from the problem studied in [2]
by the presence of an additional weak nonlocal term

N / vy, t)dy - N,
Fi

and by the geometry of the domain F7, the boundary of which has one
more component Y with the no-slip condition v = 0. Hence, the proof
of (2.2), (2.3) requires local estimates of the solution near ¥ in the spaces
W22+l’1+l/2. Such estimates are obtained in the paper [13]. Using the Schau-
der localization method and the results of [13] and [2], it is possible to

obtain inequality (2.3). After this (2.2) is established in a standard way
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with the help of interpolation inequalities and the Gronwall lemma. We
omit the details.
Now, we consider the problem

vt—VV2v+Vp:0, V-v=0, yeF,

vIIS(v)N =0,
—p+vN-S(v)N +0Bgp =0,
pr = (v— Q0| /V(y,t) dy) ‘N, y € Sry, (24)

Fi
v(y,t) =0, yekX,

V(y,O):vo(y), ye-'fla p(;U:O):pO(y); yESRoa

assuming that the initial data vg, pg satisfy only natural compatibility
conditions

V- Vo(y) =0, yer, HOS(VO)N(y) =0, ye SR07 v0|2 =0, (25)
and the orthogonality conditions

/W@MZQ'/WMM&% i=1,2,3,  (26)

SRO SRO

obtained by linearization of (1.5). It is easy to see that then the solution
of (2.4) satisfies the same orthogonality conditions at any time ¢ > 0:

[ownas=o. [upwnas=o i=123 @

SRO SRO

This fact follows from the relations

d 1
— p(y,t)dS:/v-NdS——/vdy-/ N(y)dS:/V-vdy:O,
dt [Q0]

SRy SRy F1 SRy F1

d 1
— | wvip(y,t)dS = /V-(vyi)dy— —/vdy- /N(y)y@- ds
dt Q0]

F1 F1 Skrq

SRO

1 47 R3
= /vi(y,t) dy — m/vi dy 3 0 —0. (2.8)
Fi1 Fi1
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Now, we prove that under these assumptions the solution of (2.4) is
decaying exponentially as ¢t — oo.

Theorem 2.2. For arbitrary vo € Wi\ (F1) and po € Wit (Sg,), where
1 €[0,3/2), which satisfy the conditions (2.5) and (2.6), the problem (2.4)
has a unique solution, and

e Vllysezirza gy + 1 Vpllyirgp) +1ePllyierzo g,
e Pllwar o w2 say) 1€ Pllwirsroy,
e pllywirz o mws 2 (snyy) + 1€ Pellyprvarnaravsrag,) (2.9)
+ sup eV ()l ey + sup e o, Dl s,
< C(||V0||W21+1(]:1) + ||P0||W21+2(5R0)):
where a > 0; the constant c is independent of T'.

Proof. To obtain the energy estimate, we multiply the first equation in
(2.4) by v, integrate over Fi, and integrate by parts. We arrive at the
relation

‘ v ‘

57 VGO Moy +5 110 s

+ / (—vS(V)N-v+pv-N)ds=0. (2.10)
0F

Due to the boundary conditions in (2.4), the surface integral takes the
form

1
/ optBopds + o / Bopm /v(y,t) dy - N ds, (2.11)
Sk Sk Fi
where
1
Bop = % (Asy,p+2p)-
0

The second term of the right-hand side in (2.11) is equal to zero due to
the condition By/N; = 0, while the first term equals

o o d . . 1d
-2 [(a P -7 opl2 =207 ds = =S M (1).
Rg/( 5,0+ 2p) pe ds 2R dt/(IV pI> = 2p%) ds = 5 M (1)

51 Sl
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As a result, (2.10) reads

1d ) , 2
2 V6D [y +M0) +5150) [Fusy=0. (212)

It can be shown in the same way as in [4,5] that (2.7) imply positive defi-
niteness of M (t). Indeed, due to (2.8), p is orthogonal to the first and the

second eigenfunctions of Laplace-Beltarmi operator Ag,. Consequently,
“+o0

p = Y. Y,, where Y, are linear combinations of eigenfunctions, corre-
n=2

sponding to the eigenvalues A, = n(n + 1), n > 2. We see that

R2/nz n(n+ 1) )ZYds

Hence,
M) > C [ (48 [y sn) - (2.13)
There is no dissipative term for p in (2.12). To add this term, we use
the so-called “free energy” method (see, for example, [6-8]).

Lemma 2.1 ([6-8]). For any function p € W;/Z’O(GT) such that

pt € L2(Gr), and
[ etw.yas=o.

there exists a vector field

w(,t) € Wi (F1), wi(-t) € La(F),
which is a solution to the following problem
V.-w=0, y € Fi, t >0,
wly =0, W'N‘SRO =p
and satisfies the estimates
1w 0) g < € G 0) lyarsgsn )
W t) o)< el pCot) la(sag)s (2.14)
|| Wt('vt) ||L2(7:1)< C( ” pt('7t) ”Lz(SRO) + ” p('vt) ||W21/2(SRO) )
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If we multiply the first equation in (2.4) by w and integrate over Fi,

we arrive at
/vt-wdm—u/v2v-wdaz+/Vp-wda::0.
Fi1 Fi1

Fi1

Now, we integrate by parts, take into account the boundary conditions in
(2.4) and obtain:

dt
Fi1

i/V-WdQU-FV]}{S(V):S(W)d:U

—/v~wtd:c+/UB0pw~Nds:O. (2.15)
F1 SRy

= p, the surface integral in (2.15) can be

SRO

Due to the condition w - N

written in the form

/ (IVuwpl? —2p*) ds = M(t).
S1

o

Rj
We multiply (2.15) by a small positive number v and add it to (2.12),
which gives

52 (B + 7B (1) + M) + D) +9Di(1) +7M()) =0, (216)
where
Et) =l v(,) 2,05, EL(t) = Q/V.de,
Fi1
D(t) = g | S(v) ”%2(]:1)7 Dy (t) = I//S(v) : S(w)dr — /v -wydz,
Fi #

M) = g5 [ (Vb0 —2,1) s

S1
Making use of (2.14),, we estimate Ej (t) in the following way

o
T p2
Ry

|EL ()] <20V Lol W Lo
<2 v [l < (v 7 +1 ol )-
Lay(F)ll P L2(Srg) Lo(F1) P L2(Sry)
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For the sufficiently small v, it leads to
E(t) +vE(t) + M) = c(II V(1) [T, + 11 pC58) iyp(sp,) ) (217)

Similarly, in view of (2.14);, (2.14)3, and the boundary condition (2.4)4,
we have

|D1(t)| <[ v (- t) lwz ) ( [ w(t) lwamy + 1 welst) Lam) )
<60 lwgemy (1060 lysragsyy + 10060 liacsny) ) 2:18)

<l Vet lwpcry (1060 sy + 1 V68) sy )-
By the Korn inequality,
1 vt Dz oy <l SO0 iy,
so that for sufficiently small 7, (2.13) and (2.18) imply

D(t) +vD:(t) +yM(t)

> (Ve Biar +7 1060 Bz sy ) (219)

As a consequence of (2.16), (2.17), and (2.19), we obtain the exponential
decay in Lo norms:

[ v(,t) ||iz(f1) + 1l p(-,t) ||%4/21(5R0)

<O (11vo um) + 1l o0 Igispy) )o B> 0 (2:20)

Now we pass to estimate (2.9). Let us introduce the functions

v=eYy, p=¢e“p, p=ep, a>0.

If v, p, p is a solution to problem (2.4), then v, p, p satisfy the following
relations:

Vi —vVN+Vp=av, V-v=0, yeF,

II,S(v)N =0,

—p+vN-SHV)N+0Byp =0,

pr = (V—[Q|! /v(y,t) dy) -N+ap, y € Sg,, (2.21)
Fi1
V(yat) =0, Yy e 3,

v(y,0) =vol(y), yeFi, py,0)=po(y), y€ESr,.
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In view of (2.3), we have
||V||Wé+2,z/2+1(Q;) + Hvﬁ“Wzl'l/Z(QlT) + HﬁHWle/Z'O(GT)
TPz o, 232 (smg)) + IPlwyrerzo )

1Pl wirzo,0wsr2 sy + IPelwirarzizraraa,, (2.22)

< C( | v ||L2(Q}) +a||V||W21,z/2(Q1T) + a||ﬁ||W2l+3/2'l/2+3/4(GT)

+ Vollwgs ) + 90l s )
where the constant C is independent of 7'. We apply interpolation inequal-
ities to the right-hand side of (2.22), and estimate the norms
198 sz 116D w5y
by means of (2.20). For a < f this gives (2.9). O
Now, we consider the main linear problem for the magnetic field:
wmH; +a 'rotrot H = 1 G(y,t), V-H=0, y¢cFi,
rotH=0, V-H=0, ye&F,,
[WH-N]=0, [H;]=0, yé€Sk,, (2.23)
Hn=0 yeSUX, rot,H=0, yeX
H(y,0) =Ho(y), y€F1UF.
Also we need to consider two auxiliary problems, namely,
rotH(z) =&(zx), V-H=0, ze€F UF,

Hn=0 zeSUx, [uH-NHSR =0, [HT]|SR =0, (2.24)
0 0
and
rot¢(z) =g(z), V- -¢=0, =€, (2.25)
¢ N=0, z€8Sg, ¢ =0 zec |

Lemma 2.2. For arbitrary &€ € WLT(F,), i = 1,2 satisfying the condi-
tions

V-&(z)=0, z€F, [§ Nlsz =0, 5'”|5:0;

the problem (2.24) has a unique solution H € W22+l(.7-'i), i =1,2, and this
solution satisfies the inequality

2 2
Z ||H||W22+l(_7_-i) < CZ ||£||W21+l(]_—i). (2.26)
i=1 i=1
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Proof. Uniqueness. If H is a solution of (2.24) with € = 0, then
H = Vp(z), where ¢ is a single-valued harmonic function satisfying the

relations 5
p ¥
v? =0 e LUF —
90(33) ) T 1 2, 8n
Op
[(p] = 0, |:/l,a—n:| = 0, T € SR()-
Hence, ¢ = const, H = 0.

Ezistence. We seek the solution of (2.24) in the form H = H; (x) + VU (x),
where

mmﬁj%m<!§w@+DVW@Mﬂ,

7

suy

—y| [z -yl
~ ou 2.27
V(@) =0, w€FRUF, Z-| =-Hi-n|gy, (2.27)
oU (z
U@l =0, [n250] = N, s € s,
and W is a solution of the Neumann problem
VW (z) =0, z€D, %—VZ:g-n, € X.

This problem is solvable since [£-nds = [£-nds = 0. It is clear that
5 5

||VW||W21+1(D) S C||£||W21/2+l(g) < C||£||W21+l(y:1)-

Equations (2.24) are verified by straightforward calculations, and (2.26)
follows from the known estimates of the volume potentials and of the
solution of the elliptic problem for U. O

Let H"(£2) denote the space of vector fields ¢ € W (F;), i = 1,2, such
that
V-y(zx) =0, ze€FHUF, roty(z)=0, zcl,,

¢.n‘EUS :07 rOt’T¢|E =0 (lf r>3/2), (228)
N =0, [,]=0, € Sp,.
Corollary 2.1. For arbitrary H € H""(Q), we have

2 2
e Y [Hl iz < cllrot Hllwy iz <oy [Hllygor gy (2:29)
i=1 i=1
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Lemma 2.3. For arbitrary g € W (F1) such that
Vg(w)zoa wEfla g'n|E:07

the problem (2.25) has a unique solution ¢ € W, T"(F,), and this solution
satisfies the inequality

1@llyssr(zy < cllglwgr- (2.30)

Proof. Uniqueness. If ¢ satisfies (2.25) with g = 0, then ¢ = Vw,

Ow
i

which implies w = const and ¢ = 0.
Ezistence. The solution of (2.25) has the form ¢ = ¢, (z) + VU (z),

where
%@:im%/§@3+ wm@w)
Fi

Viw=0, z€lF, =0, = const,

w|
Sro

4 |z -y
Fa

‘ Uy (2.31)

2 _ — — b, .
v Ul(:v)—O, x € Fi, on Siq = ¢1 n|5R07
U1(£U) = ul(w)a T €L,

and W is a solution of the Neumann problem
ow ow
VAW, (z) = 0 B, L —g.N S ——‘:&

1(:1/') ) T < 2, aN g ) S Ro>» an g

It is clear that
I9Walyren ) < ellgllyprzings < clellm)-

The function w; is defined as follows: since rot¢; -n=g-n =0 on 3,
we have [ rot ¢, -ndS = 0 for arbitrary ¥’ C . Hence, [ ¢, -dl =0
30 ¢

for arbitrary closed contour ¢ C ¥, and this means that ¢, }2 = -V, ui(x)
where u; is a certain single-valued function on X. It follows that ¢, |Z =0.
It is straightforward to verify that ¢ = ¢, + VU is a solution of (2.25)

satisfying (2.30). Lemma is proved. O

Now we prove solvability of the problem (2.23).
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Theorem 2.3. For arbitrary HOEVVQH'1 (F), i = 1,2, satisfying the com-
patibility conditions
V- -Hy(z) =0, ze€F UF, rotHy(z)=0, zel,
[NHO . N] = 0, [HOT] = 0, T e SRO,
Hy - n=0, rot,Hy=0, ze€k,
Hy n=0, z€8§,

(2.32)

and arbitrary divergence free G € W;’Z/Z(QlT) the problem (2.23) has a
unique solution, and the inequality

2
> (Ile‘”H(’) lzaara gy + 5uP le*HO(., t)”w;“(f,-))

i=1
2 .
< C<Z L |y, + ||e“tG||W21,z/2(Q1T)> (2.33)
i=1
is satisfied with a certain a > 0 and with the constant c independent of T'.

We confine ourselves to the case [ = 0, because the improvement of the
regularity of the solution is made in the same way as in [1, Theorem 4].
Let 9 (-, t) € H'(Q). We note that the equations

rot(x,t) =0, V- -¢p(x,t) =0, z€F

imply
T,b(%t):V‘P(fUat); :UE]:Q,

where ¢ is a solution of the problem

dp(z,t
Vi(,t) =0, z€F, et )
on z€S
B0z, 1) (2.34)
P, (1) -
o HO N =0.
2 ON ,U1 TESR,

Let ®(z,t), z € F1, be the solution of
V2®(z,t) =0, x€F, ®(z,t)— <p(a:,t)|z65RO =0, @ _,=0.

Following the proof of Theorem 4 in [1], we multiply the first equation in
(2.23) by ¥ — V® and integrate over F;. Then we integrate by parts, using
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the boundary conditions for H. This leads to

// (H,—G)-(¢p— vq>)d:cdt+a—1//rotH roty dedt =0, (2.35)

0 F 0 F

which is equivalent to

// (H; — G*) - drdt +a” //rotH ot dedt =0, (2.36)
0 F

where G* is an element of Ly(0,T;H°(2)) defined by G*(z,t) = G(z,t)
for x € F1, G*(z,t) = Vya(z,t) for x € Fy, and g is a solution of (2.34)
with G instead of H.

The existence of H(x,t) satisfying (2.36) and the initial condition
H(z,0) = Ho(z) can be proved by Galerkin’s method (see [14]), and it
is easily seen that

[Hell2o(Qq) + [0t H| Ly 01y < C(||G*||L2(QT) + ||rot H0||Lz(.7-'1)>>

or, in view of Corollary 2.1,

il 3 Hlhygo o) < (1€ a3 +Z||H0||W1 ) (237)

i=1

To estimate the second derivatives of H, we set € = rot H and we
introduce ¢ € Ly(0,T; Wy (F1)) as the solution of problem (2.25) with
g = o (G — Hy). In view of (2.35), we have

/r0t¢-(1/J—V<I>)dx:a/,u1(G—Ht)-(1/J—V<I>)dx:/£-r0t1/)dx,
F1 F1 F1

which implies

T
//(5 —¢)-rotypdudt =0 for any 9 € Lo (0,T;H ().
0 Fu
It follows that
€~ ¢ =Vs(z,t), Vis(z,t)=0, z¢cF,
Js
ON

=0, s(x,t = const
+€Sm, ’ ( ’ )‘er )
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which implies € — ¢ = 0. Hence rot H = ¢ € W, °(F}) and, in view of
(2.29),

2 2
> Il y200s.) < cllrot Hl o1 < C<Z 1Hollwy () + ||G||L2(QT)):
i=1 i=1

q.e.d.

From (2.35) it follows that H satisfies the first equation in (2.23) and
the boundary condition rot ;H|y, = 0. Moreover, (2.23) can be written in
the form of the Cauchy problem

H:+AH=G, H|_,=H (2.38)

in the space H°(£) with a positive self-adjoint operator A defined on the
space H? as follows:

AH = Pyop 'rot Ea trot H,

where Py is the orthogonal projection on H%(§2) in the space L2(f) sup-
plied with the scalar product | pH; -H, dz and € is an extension operator
Q

from Fi into Q defined on the space of the divergence free vector fields
u(z) with u- Nl|s, =0, u;[s = 0 and such that

(Eu)rls =0, [l€ullyir gy <cllallyier z)-
The characteristic property of A is
/uAH ‘hdz =a™! /rotH-rothdx for all h,H e H>.

Q Fi1

The spectrum of A consists of a countable number of real negative eigen-
values with the accumulation point at —oo. This guarantees the weighted
estimate (2.33) (see details in [12]).

§3. PROOF OF THEOREM 1.1.

First, we find sufficiently small functions u, =u’ (y,0), py = " (y,0),
satisfying the relations

1" ]_ B
/po (Roy) dS = —R—O/pé(Roy) ds
Sl Sl

/pS(Roy) ds,

S1

1
3R2
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1" 3 . ].
/ymo (Roy)dS = ——/ymé(Roy) dS - 5 /yipS(Roy) ds
0

2Ry
S1 s K
IR /yipé(Roy) ds, i=1,2,3,
$1
vug(x) :lZ(UO;PO); y€.7:1, (31)

I/H()S(IIS)N(],I) = 13(“0;P0): ye SR07 116/ = 07 ye E;
Below, we use the following result.

Proposition 3.1 ([9]). For arbitrary number p, vector m, function
g € WL(F1), and vector field b € Wéfl/z(SRo) there ewist functions
r € Wit (Sg,), and u € Wyt (Fy) such that

/T‘(y) dS = D, /r(y)yl dsS = m;i, i = 172737

Sl Sl
V-u(y) =g(y), yeF, vipS(u)N(y)=b(y), y € Sk, u‘z =0,
and the following estimate
Irllwz+t sy + lllzsecny < (o] + ml + lallwiem + Bllys-1rss, )
holds.

We apply Proposition 3.1 to g = l3(ug, po), b = I3(uo, po). Then, we
conclude that there exist u, and p, satisfying (3.1) and

1o ||W22+l(sR0) + [lug ||W21+l(]-'1)
< c([ltz2(o, po) lwy iz, + 113 (a0, po)lyya-172(g,, ) + 1012 (5r))
2
< C(||p0||w22+’(5R0) + ||u0||W2’+l(j:l)) . (32)
Now we find hy = h"(y,0) such that
rot hg = rot 18(h(()2)7p0)7 ) S -7:27 [hgr] = 19(h0;/’0)> Yy S SR();
V-hy =0, yeFUF, [phy NJ=0, y€Sg,, (3.3)

"

hy-n=0, ycSUYX, rot;hy =0, yeI.
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By Theorems 2 and 5 in [1], hy exists and the following estimate holds:

2
> Ibg otz < o IrotIs(ho, po) lwy ) + Msllygreeras, ) )
i=1

2 2
<o S i+ Imlhasras, ) - B4
i=1

Due to (3.2), (3.4), and condition (1.9), we see that the functions u, (),
po (), hy () have the order &2, while

u)(y) = uo(y) —ue(v),  PH(Y) = po(y) — po(¥), hy(y) = ho(y) — hy (y)

satisfy the homogeneous conditions (1.6), (1.7). We define u’,¢’, p’, h’ as
solutions of the homogeneous linear problems (2.4), (2.23) with initial data
(ug, py, hy). It is clear, that the compatibility conditions take place. By
Theorems 2.2 and 2.3, such solutions exist and admit exponential decay
in time, in particular, there holds the inequalities

||u'(-,t)||W21+z(}-1) + ||PI('>t)||W22+’(SRO)

N

e (ollwger ey + 16wz, )

Cle_at (||u0||W21+z(}-1) + ||p0||W22+l(5R0)): (35)

N

2
”hl(':t)”WZl“(}‘i) < Czefat Z ||h0||W21+l(7:i)7 a >0,
1 i=1

M)

-
Il

with the constants ¢y, ¢o independent of .

In this section, we use the notation
2
V(1) = a0l + 100 Ollwzrigse ) + 3 IO yssigs,,
i=1

Xiap (u,q,p,h) = ||u||W22+l>1+l/2(f1><(a,b)) + ||VQ||W21>1/2(_7:1><((17()))

+||q||w2l+1/2'0(530x(a,b)) + ||p||W2l+5/2’0(5R0 x(a,b))
Hloellyyresrirmesis s, (0

2

2 (I gz oy + 108 gz w250 )

=1
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and denote by Y'(t), X[/a o) Y (b), XE(; p) the same expressions for the

’ ’ "

functions u/, p/, q, h' or u , pl , q h//, respectively. The inequalities

(3.5) imply
Y (t) < ese=™Y(0), 3 = max{ci, s}
Let T be so large that
Y (T) < %Y(O). (3.6)
We are seeking the solution of problem (1.3) in the form
u=u+u, g=q¢+q, p=p +p, h=h +h".

Then, for the functions (u”,q”,pﬁ, h”) we obtain the following nonlinear
problem:

u, — vV + Vg =L +u’ ¢ +q W +h g+ ),

V.ou = I>(u’ +uﬂ,p/+P”) in Fi, u’(y,1) s 0
ye

VIl S(u )N =Is(w +u’,p' +p),
—q +vN-Su")N(y) +0Bop’
— l4(u/ + u//,hl + h”,p/ + p//) + l5(p/ + p//),

"

pl — ' N+ 0] [0 ds N = lof+u”,p 4 p), o S,
F1

phy +a trotroth” =10 +h” 0/ +u”, o/ +p"), (3.7)

V-h'=0, in £,

roth” =rotls(h’' +h”,p' +p), V-h' =0, in F,

[uh” N =0, [h]=l(h' +h",p +p"), on Sk,

h”(y,t)-n(y):(), on SUY, rot . h” =0, on X,

u' (y,0)=uy(y), ye€F&, h'(y,0)=hy(y), yeFRUPR,

P (4,0) = po(y), ¥ € Sk,

As the initial data in problem (3.7) are of the order &2, this problem can
be solved for ¢ € [0, T], provided that ¢ is sufficiently small.

Theorem 3.1. Let all the assumptions of Theorem 1.1 be fulfilled. For a
given T > 0, there exists such e > 0 that if the initial data satisfy conditions
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(3.2), (3.4), (1.9) with this €, then problem (3.7) is uniquely solvable on
the time interval (0,T) and for the solution the following estimate

Xy (w07 0" 0") +5up Y (6) <o(T)Y'(0) <MY (0) - (38)
<

holds.

Proof. The proof of this theorem can be carried out by the successive
approximations method.

For the first approximation (u;,q, , p,, h]) we take extensions of initial
data constructed in the following way: we put qlll = 0 and assume that ulll,
p/l/ satisfy the initial conditions

1"

u;

"

"
t=0 — 0> P1

"
t=0 = pO:

and the inequalities
" V7
[ ||W22+l’1+”2(Q§1)< ¢l ug ||W21+’(}‘1)7

|| P1 ||W25/2+I’O(GT) + || P1 ||W21/2(0,T,W25/2)(SRO) (39)

1" 1"
+ 1 pre Nyarerziarara g <l Po llwztt(sy,) -

The existence of u;, p; with such properties follows from inverse trace
theorems in Sobolev—-Slobodetskii spaces and Proposition 4.1 in [2]. For
h/l/ we take a divergence free vector field satisfying the initial condition

"

hy|,_ =hy,, yeFAUPR,
and the estimate
2
; (1 DD ypzrrrss gy + 1B gtz w25 )
2 2
< by ey < e 0 IR e, - (3.10)
i=1 i=1

The construction of this vector field is presented in [9].
For an arbitrary function p(y,t), y € Sg,, we define a linear extension
operator E with the following properties:
OFEp

EpcQ =0
supp Lp ’ on Siy )
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|| Ep(-,t) ||W2"+1/2(Q) Sc || p ||W2"(SRO) re (07l+ 5/2]7
0
HEEP(,t)H 1/2 < c||pt||W2"(SRO) re (Oal+ 3/2]7
w2 (@)

and we set p,*(y,t) = Epy, p*(y,1) = Ep .
Approximations u,, 1, ¢, 41, Ppy1s Dy for m > 1 can be found step
by step from the following linear system:

%u;’:ﬂ-l(y? t) — szu;’:m—i-l + V‘I;;z+1
=L (' +u,,q +qp,h +h,, 0 +p,),

Vouy, =bL +u,,p +p,) in Fi, (o +p,)" =Ep +Ep,,
VIS (u,, )N = L3(u +u,,, 0’ + p,),

- q;:z+1 +vN- S(u;;erl)N(y) + UBOP;:z+1

=L +u,,h +hy,, 0 +p,) + 500+ ),

a " " _ 1"
BiPm+1 T U1 N(y) + Q0] /“m+1 dz - N(y)
Fi1
=lg(u' +u,,p +p,) on Sg,, UZz+1‘ =0, (3.11)

yeY
m%h;ﬂ + a 'rotrot h;H =1I;(h’ + h;;],u’ + u;;],p’ + p;;l),
V-h, =0, inF,
roth, ., =rotlg(h’ +h, o' +p.), V-h, =0 in F,
[uhy iy - N1 =0, [hy,,,]=lo(h' +h,,p +p,) on S,
h;;wrl(y,t) ‘n(y) =0 on SUZ, rotTh;;b_H =0, on I,
W, (1,0) =ug(y), yEF, hyi(y,0)=hy(y) in FUR,
Pms1(¥:0) = po(y) on Sg,.

Due to (3.2), (3.4), (3.9), (3.10), and assumption (1.9), the first approxi-
mation satisfies the estimate

Ko (ulal ol ) +5mp Y] () DY), (312
<
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We intend to prove similar result for the (m + 1)th approximation. To this
end, we estimate the nonlinear terms.

Lemma 3.1. Let

1200 2) w2t s

01 <1,
| u(-,t) ||W21+l(]:) d

<
<o <1, t<T, (3.13)
and let the functions u, q, p,h have finite norm
X[07T] (ll, q;p, h) + sup Y(t)7
t<T
then the sum of the norms

21w, 0,0, W)(T) =] 11 (0,0, 0) oz e, + 1200, 0) s o

9 A
+§1<1¥ || l2(u7 P) ”Wzl(]-'l) + || a((l_ L )ll) HWS'I/Z(Q;)

T R P T AW SY I
+ || l4(ll, Py h) ||W21/2(07T7W21/2(SR0)) + ” l5(p) ||W2l+1/2'0(GT)
+ || l5(p) ||W21/2(0,T,W21/2(SRO)) + ” l@(ll, P) ||W21+3/2-l/1+3/4(GT)

+ || 17(“7 P h) ||W21>l/2(Q;) + || rOtlS(th) ”W%“‘%Q%)

0
+§1<1¥ ” rot 18(P; h) ||W2l(]:2) + || alg(pah) ||W;>l/2(Q%)

+ oo, b) [lyits20 6, +sup o (ps b) [lyi1r2g,,

3l (LATaY

QZT:fiX(OaT)a GT:SROX(():T)
satisfies the inequality

Z[(a,q, p,h)](T)

< O(T) [(X[O,T] + §1<11T>Y(t))2 + (X[&T] + fggy(t))g}. (3.14)

)

A(l)( ’h)H

’8t WZ’/Z(OTW‘”Z(SRO)))
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The main ideas of the proof of (3.14) are outlined in Sec. 4.
From Theorems 2.1, 2.3, and Lemma 2.2, it can be deduced that the

problem (3.11) has a unique solution u;;lﬂ, q;nﬂ, Pl h;;Hl, and in
accordance with (2.2), (2.33) (with a = 0), and (3.14), we have

Xt [0, 7]+ 5up Yy 1 () < CT) (2 [ty s prns Bin] +Y(0))
t<T

<o) ((X,;;[o, T)+sup Vo (1)) + (X[0,T] + sup Y (¢))
t<T t<T

+(X[0,T] + sup Yo ()" + (X'[0,7] + sup V') +Y'(0)  (315)

< Co(T) (X010, T]+5up ¥, (6)*+ (X, [0, T)+5up ¥, (4))* |+ C(T)eY (0).
t<T t<T
For m =1, (3.12) and (3.15) imply

X, [0,T]+supY, (t) < Co(T) (CL(T)eY (0))? + C3(T)eY (0).  (3.16)
t<T

We choose ¢ in such a way that the right-hand side of (3.16) does not
exceed 2C3(T)eY (0). It is clear that if the estimate

X, [0,T] + sup Y, (t) < 2C5(T)eY (0) (3.17)
t<T

holds for the m-th approximation, it holds also for the m + 1-th approxi-
mation, provided ¢ is sufficiently small. And if conditions (3.13) are valid
for the m-th approximation then they are valid for the m + 1-th approxi-
mation.

In order to prove the convergence of the sequence (u;;z, q;;b, p;;z, h;;b), we
introduce the differences

1" " 1" 1"
km+1 = hm+1 - hm7 W+l = Uy — Uy,
" " " "
Tm—i—l = pm+1 - pm) Sm+1 = qm+1 - qm
They satisfy the relations

%wm+1(y, t) — vV Wyi1 + Vi

=L(W + 1y, ¢ + b+ p )

—Li(u + u;;th q + q;:th h' + h;;th P+ p;;zfl)7

VWit =l + 1,0+ p,) = b +uy, 1,0 + ) i F,
Vo S(Wop1)N = (0’ + 1y, + ) = Ls (0 + 1wy 1,0+ py, ),
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— Sma1 + VN - S(Wy1)N(y) + 0 Borm1

=l +uy, b + by, + ) + (0 + )

— (' +uy, b +hy, 0 o) L0+ ), (3.18)
0 _
Gyt~ Wkt NG + 90/ [ woadz NG)

Fi1

:l@(u/—l—u;;“pl—f—pm)—lﬁ(ul—f—um_l,pl—l—p;_l) on Sk,

Wimnm+1 |y€2 = 07

"

a ” ”
1 akm+1 +a trotrotky, 1 =l (W +h,,u +u,,p +p,,)
—1;(h" + h;’:m—lvul + u;’:m—lvpl + plr;z—l)7 V-kni1 =0 in Fi,
rot Ky 41 = rotls(h’ + h,,, o' + p,,) — rotls(h' + by, 1, 0"+ p,, 1),
Vkm+1:0 in -7:27
[kt - N =0, [Kpirr] =lo(b' + by, 0 + pp,)
-y (hl + h;;v,—la pl + plr;z—l) on Sk,
ki+1(y,t) -n(y) =0, on SUX, rot k,y;1 =0 on X,
Wint1(4,0) =0, y€F, Kpt1(y,0)=0 in FLUF,
m+1(y,0) =0 on Sg,.

Estimates of the differences of nonlinear terms in the right-hand side of
(3.18) can be obtained by the same technics as estimates of the nonlinear
terms (see Sec. 4). Precisely, the following result holds.

Lemma 3.2. Let all the assumptions of Lemma 3.1 be fulfilled, and let
(3.17) hold for m € N. Then

ZT[(UI +u,,, q' + Qs b’ + hmapl + pm)
- (u/ + umflaq/ T @15 h' + hm717p/ + pmfl)]

< (e, T)X (W, = Wy G — s by =By P = ) (3:19)
=cl(e, T)X (Wuy Sty Kiny Tin)

where the function 0(e,T) is small for small €.
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Since for solutions to the linear problems inequalities (2.2) and (2.33)
are valid, (3.19) implies

XT[Wm—l—l: Sm+1, km+17 Tm—i—l] < 09(5: T)XT[Wm: Sm, Km, Tm]- (320)

For sufficiently small 6(e,T), (3.20) guarantees the convergence of the se-
quence (W,,, G, pons ) to the solution of problem (3.7) (see [1, Sec. 3]).
Passing to the limit in (3.17), we obtain (3.8). Uniqueness of the solution

follows from the above estimates applied to the difference of two solutions

of (3.7). O
Now we fix € so small that on the right-hand side of (3.8) cs(T)e < .
Taking a sum of (3.6) and (3.8), we obtain
1
Y(T) < 7Y (0). (3.21)

Then, we consider Y (T') as initial data at ¢ = T and repeat the above
scheme on [T, 2T]. On this step conservation of volume still holds (it means
that the first of conditions (1.5) for p(y,T') takes place), while the barycen-
ter is located at the point £(T"), which not necessarily coincides with the
origin. We have

4

/xi do = §,-(T)§7TRS = f,-(T)/ duw,

QT QT

e, [ (#;—&(T)) de =0,i=1,2,3. We pass to the spherical coordinates
Q

T
with the center at the point &(T): x; = vir + &(T), and see that linear
part of the second condition (1.5) for p(y,T’) has the same form as for po,
precisely, [ yip(Roy,T)dS = 0. Consequently, we can use all the results
St

of Sec. 2 on the time interval [T, 2T"]. Repeating these arguments on time
intervals [¢T, (i + 1)T],i=1,...,k — 1, we have
1 1

Y(T) < =Y (k- 1)) < - <

i < FY(0), keN. (3.22)

It means the exponential decay for Y (¢). Let us prove estimate (1.10). Due
to (2.9), (2.33), the following inequality

Xio,1] (e“tu,, e“tql,e“tpl,e“th,) <Y (0) (3.23)



SOLVABILITY OF A FREE BOUNDARY PROBLEM

161
holds with a certain a > 0 and a constant c¢5 independent of ¢. Under the
assumption ¢4(T)e < § in (3.8), we have

7" 7" " 7" ]_
X[O,T](u q P 7h ) < gY(O)J
and, if we take a < #, it means that

X[O,T] (ea 11”, eatq//, eatp//, eath//) g Y(O) (324)
Taking a sum of (3.23) and (3.24), we arrive at
Xjo,7y(¢"w, e*q,e"p, e"*h) < Y (0),

(3.25)
where the constant cg is independent of T. On the second step we can
apply estimates (2.9), (2.33), replacing t by ¢ — T', and obtain

X1 (ea(t*T)u/,e“(t*T)q/,ea(t*T)pl,e“(t*T)h/) <esY' (T) <

Cs
—Y(0).
2y (0)
Consequently, for a < +,
aT
Xi71,27] (e“tu ,eq ep ,e“th) < 1 ¢ Y (0) < e5Y(0). (3.26)
By (3.22), we see that
" " " " ]_ ].
Xirom(u ,q ,p ,h) < gY(T) < EY(O)- (3.27)
Inequalities (3.26), (3.27), give us (3.25) on [T, 2T], namely

X211 (e“tu, eq,ep, e“th) < Y (0),
where the constant cg is independent of T'. Let us consider the interval

kT, (k + 1)T], k = 2,3,.... Now we use weighted estimates (2.9), (2.33)
for linear problems, replacing ¢t by t — k7. For a < T, we arrive at

K
Xpr,ernyr) (€, e%q  e®p L e®h ) < e* Y (kT) < e_kY(O) <Y(0)

1 .
Taking into account also (3.8), (3.22), we obtain (3.25) on [kT, (k + 1)T.
Consequently,

n—1

k=0

Xo,n1] < Z X, (k1)) (€70, €% q, e p, e h) < negY (0),
with a certain a <

(3.28)

and constant cg independent on T'. For n tends
to infinity, (3.28) implies the exponential decay in corresponding Sobolev
norms for u, g, p,h with a certain power a; < a.

1
T



162 V. A. SOLONNIKOV, E. V. FROLOVA

Making use of coordinate transform (1.2), we obtain the solution v,
p, H, p to problem (1.1), which is defined for ¢ > 0 and tends to zero
exponentially as ¢t tends to infinity.

Estimate (3.22) shows that

||u('7t)||L2(.7-'1) < eibt(HuoHWle(]_-l) + ||po||W21+2(SRO)
2
+ DI gy ) <€ Me >0,
i=1

Consequently,

|§(+00)]

|Qo

/dt/ (2,1)d ﬁ / dt/|u(y,t)||L|dy
Fi1

c/ ||u(-,t)||L2(].-1)dt<c/z—:e*btdtéCs. (3.29)
0 0

It means that £(¢) is uniformly bounded for any ¢ > 0: |£(¢)| < Ce with
the constant C' independent of t, which justifies the above arguments.

Remark 3.1. To be sure that our free boundary not intersect the fixed
boundaries ¥ and S, we should assume that at the initial moment of time

dist {E Fo} 2dy, dist {S, Fo} > 2dy, dp > Ce,
and also dist {£(0), X} > ¢ > Ce.

§4. ESTIMATES OF NONLINEAR TERMS

In connection with the proof of local solvability of a free boundary
problem for the Navier—Stokes equation, nonlinear terms similar to 1, 15,13
are estimated in [10], under the assumption that T is sufficiently small.
Similar estimates for the nonlinear terms depending of the magnetic field
are done in [1]. In [9], it is shown how to treat the nonlinear terms when
T is not small any more, on the contrary, 7' > 1, while the initial data are
sufficiently small. The method used in [1,9,10] based on estimates for the
product of two functions in Sobolev norms and the following result:
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Proposition 4.1 ([1, Proposition 3]). Let
ON}p*
R(z,t) = ( P ) , P =Ep,
dy; i,j=1,2,3

and let the function p satisfies the condition

Sup (-, £)ly+1 (5, <0 < 1.

Then, for the arbitrary smooth function f(R) defined for |R| < c||p||W2z+z,
the inequalities

| FR) lypor sy < (4.1)

[ RFR) lwyFn< el R llwyr)
<CH p||W2"+1/2(SR0)7 re [071+l]7 7/:172

| RFR) [y (< el 0 lygrovi s (42)
are valid.

In the present paper, we make the coordinate transformation (1.2),
which has the additional term x(y)&(t) in comparison with the one used
in [1,9]. Consequently, the Jacobi matrix has the entries

; 0 0
5+ —— (Nip*) + —x()&i (D).
ayj( p’) aij(y)ﬁ()

As a result, all the nonlinear terms in our case are slightly different from
the terms in [1,9]. Under the assumptions that the cut-off function x(y) is
a smooth function with uniformly bounded derivatives and

sup€(t)] <6 <1, (43
t<T
inequality (4.1) is evidently valid for R = (Biyx(y)fi(t» . Under
i §,j=1,2,3
the second of conditions (3.13), we have
5 T
sup6(0)] < s [ dr [ Juw,Dl|E|dy < el|7i )T,
t<T 7TR0
o A
and condition (4.3) holds if d; < m < 1. This makes it possible to

apply in our case the method suggested in [9].
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To illustrate the proof, we estimate the term (V — V)¢ in l;. In our
case [ € (1/2,1), consequently I < n/2, and product of two functions we
estimate by (4.6) in [9]:

[ wo lwyzy< el ullwymyllviiwg @z, s>n/2

We obtain:

[ (V—=V)q ||W2"°(Q1T)< fgg | I— LT ||W23/2+n(f1)|| Vq ||w2’~0(Q1T)

< (sup 15760 Lygors sy + 502 1€O]) 119 lgoggy
ne(0,1—1/2). (4.4)
In Wé/Z(O, T), where T > 1, we use the norm

T

1 i 1/2
( I f 1 Zs0,m) +/W |Ad(=h) F(B)[? dt) ;
0

h

where Ai(—h) f(t) = f(t—h)—f(¢). This norm is equivalent to the standard
one. We have

17 =90 gz g, <l 0= £ 1ot

1/2

1 T
dh . .
i /h1+l/” (I = L7 A=)V [y
0 h

1/2

1 T
dh _
o [ [1HeEne Ve ey @) . @)
0 h
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To estimate the right-hand side of (4.5), we use the inequalities

| (I = L7)WVq ||Lom)< <sgp|R(y,t)l + |€(t)|) IV llraz),
I (I = £7T)D(=h)Vq || Loyr)
< c@p R(y,0)| + |§(t>|) | Ad(=h)Vq llarry,

(A=) LTV o) < € | Ve lwgmll De(=R)LT Nl ysret
h

h
el Ve lwymy | [ IR =) lyggraosiry dr [(€ = )lar
0

0

For the terms containing R, we repeat the arguments given in [9, Sec. 4],
and obtain

|| (v - V)q ||W20’l/2(Qé~)

< .
< (SR 1 0.0 lygoors sy + 51O 1V g,

T ¢ 1/2
J UV gy dt [ Wor Bysvong,,) dr
0 0
T min (¢,1) i h N 1/2
0 0 0
Since
1 T
sup €(t)] < — / / fuly, DIILIdy < e(T) | ullpaor)s (A7)
=<t Q 0 F

it remains to estimate the last term at the right-hand side of (4.6). As

, 1
€0 =g ! u(y, t)L dy, (48)
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and [ < 1, we have, using the Minkovskii inequality:

T min (¢,1) dh h 2
[Vl a0 [ o5 | 1€ @-niar
0 0 0
T min (1,t) min (1,t) dh 1/2 2
< [UValigey | [ Ee-niar( [
0 0 T

(4.9)

T 1
<e [ 1V Bayry dt [ atm) Iy dr < eX?0,7)
0 0

Estimates (4.4)—(4.9) give us

|| (v - 6)q ||W2”/2(Q;)< CX2[07T]'

In comparison with the previous papers, we have the additional terms in
11, ls, and 1y, for example,

L7Y(t)-Vu in 1} or /udy-(N—g) in lg.
F1 '

Due to (4.7), (4.8) the estimate of these terms can be done in a similar
way.

1
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