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THE LINEARIZATION PRINCIPLE FOR A FREE
BOUNDARY PROBLEM FOR VISCOUS, CAPILLARY
INCOMPRESSIBLE FLUIDS

ABSTRACT. We consider the free boundary problem associated to a
viscous incompressible surface wave subjected to capillary force on
the free upper surface and Dirchlet boundary condition on the fixed
bottom surface. In the spatially periodic case, we prove a general
linearization principle which gives, for sufficiently small perturba-
tions from a linearly stable stationary solution, existence of a global
solution of the associated system and exponential convergence of the
latter to the stationary one. Convergence of the velocity, the pressure
and the free boundary is proved in anisotropic Sobolev-Slobodetskii
spaces, after a suitable change of variables is performed to formulate
the problem in a fixed domain. We apply this linearization princi-
ple to the study of the rest state’s stability in the case of general
potential forces.

Dedicated to the memory of Professor M. Padula

§1. INTRODUCTION AND AUXILIARY PROPOSITIONS

A viscous, incompressible fluid, with velocity field v and pressure p, fills
at any time ¢ > 0 a domain €, where it satisfies the incompressible Navier—
Stokes equations with external force f and viscosity v. The density of the
fluid is supposed to be 1. We suppose that this domain can be described
as Qt = {(y17y27y3) : 0 < Ys < QS(yl,t)}, where y/ = (yl;yZ) and (ls is a
sufficiently regular function whose graph in R? is the free boundary of the
fluid, I';, with exterior normal n. We suppose that the velocity field, the
pressure and the free boundary function ¢ are periodic for every ¢ > 0,
with periodic cell ¥ being a fixed rectangle in R2.

On the bottom part of the boundary we impose nonhomogeneous Diri-
chlet boundary conditions v((y’,0),t) = «(y’,t), for some sufficiently
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smooth, ¥-periodic a = (a!, a?, a®) such that

/a3 dy’ = 0.
)

We suppose that the free boundary is subjected to capillary forces, with
surface tension coefficient ¢ > 0 and to an external pressure p.. Both p,
and f are supposed X-periodic and defined in all {3 > 0}. Given a suitable
Y-periodic initial velocity field vy at time ¢ = 0, defined in a X-periodic
domain €y, whose upper boundary Iy is the graph of ¢9 = ¢(-,0), one is
thus lead to the following evolution problem:

v+ (v-V)o-V -T(v,p)=F in Q,

V-v=0 in Q,

T(v,p)n = —cHin — pen on I, 1)
Vo=v'mn on I,

v(y,0) = vo(y) in o,

v((y',0),t) = a(y',t) on ¥ fort>0,

where the underscript comma in v ¢ denotes the partial derivative w.r.t. ¢
(we will always assume such a notation). Here T is the stress tensor of the
fluid, V;, is the normal velocity of the free surface I';, H; is the doubled
mean curvature of I';, positive for boundaries of convex bodies. We suppose
the fluid is Newtonian, and thus

T(v,p) = —pI + vD(v),

where D(v) is the doubled symmetric rate-of-strain tensor D(v) := Vv +
(Vo)T. If T, is the orthogonal projection on the tangent space to Iy
and my its exterior normal, this system is coupled with the compatibility
conditions

V-vy=0 in Q,

Ho]D)(’Uo)TLO =0 on Fo, (2)

vo(y',0) = a(y’,0) on X.

We are concerned with a linearization principle for this problem. When
f, pe and a are independent of time, we consider a smooth stationary
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solution (vy,pp), in some domain Qp := {(2’,x3) : 0 < w3 < @p(z')} of

(o - V)vp =V -T(vp,pp) = f in O,

V-v,=0 in Q,

T(vp,py)N = —cH,N —p.N on G, (3)
vy - N =0 on G,

vp(2’,0,t) = (') on ¥ fort>0,

where G is the surface defined by z3 = ¢(2'), N its exterior normal and
H, its doubled mean curvature. Notice that V - v, = 0 actually forces the

condition [ a®dz’ = 0. We then consider solutions of (1) with initial data
5

(vo, Qo) which are small perturbations of (v, ), thus imposing |Qg] =
|2 |. We linearize system (1) near this stationary solution, performing the
transformation of coordinates

Qb >x — eﬂ(a") =+ 9($)p($1,$2,t)63 =y cE Qt: (4)

for a smooth cutoff function § = 6(z3) equal to 1 near G and zero near
¥, to obtain a problem in the fixed domain 2, (this transformation is
well defined as long as supy; |p| is sufficiently small). We let, in the new
coordinates © € Qp, u = v —vp, p = ¢— Py, ¢ = p— Py, With p(a’, dp(2')) =
¢(x') — ¢p(2'), ' = (x1,x2). Neglecting the nonlinear terms and setting
V! = (O4,,0s,), we obtain, for suitable linear differential operators ®y,
®, and ®3, the system

us—vAzu+ Vg — P1(u,p) =0 in  Q,
Ve u— ®s(p) =0 i Q,
Te(u,q)N +0LpN — ®3(p) =0 on G,
pit+ (Vidp,—1)-u+ (V,p,0)-v, =0 on g, (5)
u(-,t) =0 on X,
u(-,0) = ug :=vo — vy in €,
p(,0) = po := do — ¢o on G,

for all ¢ > 0, subjected to the compatibility conditions
Vi - ug — ®2(po) =0,
I, (VD (uo) N — ®3(po)) = 0, (6)
f Lo diL“/ = 0,
b
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where II; is the orthogonal projection on the tangent space to G. Here the
first two conditions correspond to the first two in (2) in the new variables,
while the third to the volume preservation of the perturbation, i.e., || =
|2, where |A| stands here for the volume of A C R3.

For [ > 0, let K' denote the parabolic anisotropic Sobolev—Slobodetskii
space, WI the isotropic one (both precisely defined below),
Qr =M% x1[0,T),Gr =G x[0,T) for 0 < T < +00. We define

a2yl = el wrva@n) + 9Pl @) + 1Pl gres i
16l vt g+ Il gy (D)

and say that the stationary solution (vy,pp) in € of (3) is linearly expo-
nentially stable if there exists v > 0 such that every solution of (5) with
compatibility conditions (6) decays exponentially in time, i.e.,

le7 (2,2, p) e < e(lluoll g1y + 100l wga(g) )- (8)
We will prove the following theorem.

Theorem 1.1. Let ! € (%, 1) and (vp,ps, dp) be a linearly exponentially
stable solution of (3). There exists 0 > 0 such that for any vo, ¢o = ¢p+po
satisfying

[vo(ep, () — ’Ub(ﬂf)||W21+1(Qb) + [[do — ¢b||w2’+2(z) <9,

the compatibility conditions (2) and [ podz’ = 0, there exists a unique
b
global periodic solution (v,p,d) of (1) such that for some v >~" > 0,

7" (=5, D=1, 6= 05) 1,00 < C(l|vo—vb||w2l+1(9,,) +||¢0_¢b||W2’+2(2)):
where the norms of v and p are calculated in Qy according to v(x) =
v(e, (7)), p(x) = pley(x)), with p = ¢ — .

This theorem is applied in the last section to the rest state v, = 0 in
a horizontal layer of fluid {0 < xz3 < h} subjected to a potential hydro-
dinamic force f = VV and an external pressure p.. Under the natural
condition that the free boundary {z3 = h} is an equipotential surface for
the total potential V' — p., we will prove the following result.

Theorem 1.2. Let ] € (%,1) and f = VV and p. be X-periodic, suffi-
ciently smooth (say, Wﬁi(R*)) and satisfy V'(V —p.) = 0 on {z3 = h},
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so that we may suppose p, =V there. If the quadratic form

B(p) = / o[V o) + (e’ 1) — V(&' 1)) agp? (') dt’,
)

0, pp =V, ¢p = h is linearly

is positive definite, the rest state vy
exponentially stable.

Thus for any sufficiently small perturbation from the rest state, there
exists unique global in time solution of the free boundary problem (1),
which exponentially converges to the rest state. We will provide some con-
crete examples, such as surface waves on a small scale (constant gravity
force and external pressure) and large scale (decaying gravity force and
pressure) and sufficient conditions for the stability of an upside-down cap-
illary layer of fluid.

Without periodicity assumption the problem has been treated in [2,
12, 14, 16] for a heavy fluid without capillarity. When surface tension
is present, it has been treated in [3, 4, 13, 14, 15] without periodicity
assumption, and in [7] for periodic motions. Theorem 1.1 seems optimal
in its regularity assumptions. It is worth noting that in [3, 4, 13, 14, 15], a
nonoptimal regularity on the initial perturbation is required, mostly asking

v — vy to be small in WQH%. Exponential stability results for the rest state
(without periodicity assumptions) are addressed in [3] for 1 < ! < 3/2 with
nonoptimal regularity on the initial velocity and in [13] for 1/2 <1 < 1 but
$o —h € W2l+%(2) < 6. In [8], exponential stability is proved for [ = —1
regardless of the size of the initial data, provided a global in time and
smooth solution exists. In [7], the periodic case is studied, a weak form of
the exponential stability of the rest state is proved for [ = 1 . Both these
latter two works employ energy methods. In all of the aforementioned
literature, a small scale model for the gravity and pressure is assumed:
thus, the general sufficient condition on the positivity of the quadratic
form B in order to obtain stability is, to the best of our knowledge, new.
Although in most of the literature some kind of linearization around
the rest state is used, a general linearization principle was still unproved.
Consequently, exponential stability has been obtained only in special cases
(I = —1,1, near the rest state with small scale models). Due to its gener-
ality, the linearization principle may allow to obtain exponential stability
not only of the rest state, but also of other known stationary solutions of
the free boundary problems, e.g. suitable flows down an inclined plane.
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Auziliary propositions

If [ is a nonnegative integer, the isotropic Sobolev—Slobodetskii space
on a bounded domain © C R¥ coincides with the usual Sobolev space, i.e.,
the set of functions u : 2 — R with finite norm

lulZgay = /|Dju(x)|2d$,
l71<t o

where DJu is the jth distributional derivative. Here j is a multiindex
j= U1, j~n)and |j| = 1+ - -+jn. Whenl = [[]+{l}, where {I} € (0,1)
is the fractional part of [, the norm is

: |Diu(z) — Diu(y)|?
||U||€V2I(Q) ||U||Wm + Z/ |$_ N2 dz dy.
i=llg

Given a continuation operator C' : Wi(Q2) — WE(RY), an equivalent norm,
with constant depending on (2, is

g+ [ IADICWE e vy
RUEISY:
for which we will use the same symbol || ||y (q), while for the last addend
of the previous definition we will use the symbol || ”vile(Q)v which will
denote the principal part of the norm. It will be useful to recall the algebra
properties of W(€). To this end, we recall the following theorem (see [10]
for a a refined statement using Besov spaces).

Proposition 1.3. For arbitrary functions u,v given in a smooth bounded
domain Q C RY it holds

(1) If0 <1< N/2,

luvll2@) < cllullwyolloll -

W (@)
(2) If0<I< N/2<s,
luvllwie) < cllullwi@) vl w¥ @) + [0l oo (o)) o
< cllullwy o) ||U||W;(Q)-
(3) Ifl > s> N/2,
”U'UHWl(Q) S (”U'”WZI(Q)HU”WZS(Q) + ||U||W2Z(Q)||U||W;(Q)) (10)

< cllullwillvllwsw)-
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When Q = (0,T), the constants in the previous inequalities do not depend
onT as long as T > 1.

For A € C the weighted Sobolev-Slobodetskii norm on W(2) is
||U||§JIA(Q) = ||’U’||%/V2l(Q) + |/\|l||u||%2(9)-

The classical interpolation inequality reads

APl < el (1)
which clearly implies
|A|n||u||§{;(9) < C”“HZ;M(Q)-
Another type of interpolation inequality is the following;:
A7l < cllul? , 12
oy < el (12)

which toghether with standard restriction estimates for Sobolev—Slobo-
detsii spaces, implies for any n > 0, A # 0,

lullf a0y < cllull® a7 )

(Notice that for 5 = 0 this inequality fails in non weighted Sobolev—

Slobodetskii spaces.) All the constants in the previous inequalities do not
depend on u or A, as long as |A| is bounded away from 0, say |A| > 1.

The anisotropic Sobolev—Slobodetskii space is defined as the set of func-
tions u = u(z,t), defined in Qp := Q x [0,7), 0 < T < +o0 such that

ue KNQrp) == L2(0,T; W) N W (0,T; LA(R))

with norm

Ileon) / )y + / S IDduC e

0<i<[4]

+/ pir2{t }/”A hD ( t)||%2(9) d.

An equivalent norm, which will still be denoted with the same symbol, is

2
lullde @y = / D)l + / fute 2y,
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and the first and second term will be denoted respectively by ||u||€v,,0 (@2)
> T

@r)’ The seminorms ||u||W21,o(QT) and ||u||W2o,z/z(QT) are sim-

ilarly defined in the natural way. Applying proposition 1.3 gives, for any
smooth function v,

and [[u]]? ..
2

vl (@) < collullgi@r), Yu € KN(Qr). (13)

We will sometimes use the following mixed norm on functions v : @7 — R

|U|}Z/2,r = Z ||D§U||%2(07T;W;(Q))
0<i<[4]
T T

dh :
+/m/||Ath[ ]U(';t)H%v;(Q) dt,
0 h

which well defines the Banach space Wé/ *(0,T; WZ(9)). Interpolation in-
equalities ensure that

K (Qr) — Wy/?(0,T; W3 (). (14)

Finally we recall the following result, which follows from standard inter-
polation arguments.

Proposition 1.4. Let G be a smooth bounded submanifold of RN, and
T >0. For anyl > % it holds the estimate

su ot <c( 1 )’
OgtETHP( Nwig) < ||/’||Wzl+é~0 Gx[0,T))

(GX[0,T)) + ||p7t||Wé—%,o(

for a constant c independent of p : Gx[0,T) — R and T, as long as T > 1.

§2. REDUCTION TO A FIXED DOMAIN
If G is the graph of ¢, over X,

N= VD I,(V)=V — (N-V)N,

V1+ Vg2
are its normal and projection operator on the tangent space of G, respec-
tively. Letting p := ¢ — ¢, we rewrite problem (1) in terms of the new
variable z € 0}, defined as

QU 3y =e(z) =2 +0(x)p(a,t)es,
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where 6 is a C*° cutoff function with suitable regularity. We will assume,
to simplify some calculations, that 8 = 6(ys) and €(s) = 0 for s < h and
0 =1 for s > 2h, with infy, ¢, > 3h > 0. We suppose that, for some [ > %,

sup 1 3 <1,
sup o ) 1o

so that the transformation (4) is at least of class C'* and invertible.
Moreover, we will henceforth write p*(x,t) = 6(x3)p(«’,t). This change of
variable transforms €2y to €2, and we will denote by £ = L(z, p) the Jacobi
matrix of this transformation:

1 0 0

E(m,p):<gyi> = o 1 o |. (15)
Yl \Opay Opwn 146

Furthermore, we will set L = det£, £ = LL~" so that £ = cof(£)T. One
has

—0p,ay
/ -T b —130/0 -T 1 *
L=1+6p, L7"=1]0 1 1+‘;,’”02 , I—-L :sz ®es. (16)
1
00

The transformation e, converts the operator V, to V =L£"7Y,, and we
will henceforth write V for V,. We now rewrite system (1) in the new
variables (x,t). For the term v ; we have

1

d 0
Y vy =py(L es-V)v+u,.

rvley(2),t) = Vo

The term (v-V,)v corresponds to (L7 'v-V)v and all the other differential
operators are substituted with the rule V, — V and A, — A = V2.
Letting then v = v(e,(z)), f = f(e,(x)) and pe = pe(e,(x)), the system
(1) becomes, in the new variables:

vy —pi(L 7 es Vv —vAv+Vp+ (v- Vv =f in Q,
V-v=0 in Q,
’f‘(v,p)n =—cHn —p.n on G, (17)
pit+V'ey-v(z', dp) —v* (@' ) + V'p-v(a',¢) =0 on I,
v(z,0) =vo(z), in Dy, p(a’,0)=po(z’), on X,
v(z';t) =alz’) for t>0,2 €%,
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where vy = vg(e,, ), H is the doubled mean curvature of the graph of ¢p+p,
n the normal of the latter and T = —pn+D(v)n with D(v) = Vo +(Vo)T.
The equation for p; can and will be equivalently written with variables in
G instead of X, simply letting p(z’, ¢y (")) = p(z’).

Recall now that (vy,ps, ) is a smooth solution of (3). In order to
linearize problem (17) near (v, pp, gbb), weset u = v —vp, ¢ = p—pp and,
subtracting (3) to (17), obtain a system of the form

uy —vAu + Vg — @ (u, p)—lo(u,p)+l1(u,p,q) in (,
Vu—@3(p) = la(u,p) =V -G(u,p) in (,
T(u, q)N—l—ULpN ®;3(p ) = l3(u, p) on G, (18)
pt+ Vo -u—ud+Vp v, =l4(u,p) on G,
u(z,0) = uo(z) inQp, pz’,0) = po(z) on X,
u(z',t) =0 Va'eX, t=0.
Problem (18) is subjected to the following compatibility conditions:
V- up — ®2(po) = lz(uo, po),
I, (VD(UO)N - ‘1’3(/’0)) = IIyl3(uo, po), (19)

[ podz’ =0.
5

The first two conditions are the simplest compatibility conditions at the
initial time, while the third one is the preservation of mass for the pertur-
bation, and a straightforward calculation shows that this implies that for
any solution of (18) the mean value of p vanishes identically for ¢t > 0.

We will now calculate the expressions ®; and I; which we will construct
as the first order and higher order term respectively in u, ¢ and p. First
note that the exact equation for p; is

pt+Vp-vy+Viy- u—ul=-Vp- u,

and therefore

li(u,p) = =V'p-u. (20)
From the explicit matrix given in (16), we have
00 _0p7w1
ST =10 0 —Ops, | :=-Vp ®es, 6L7'=—e3®Vp",

0 0 —b&p
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and we will let
/

2 e _ _ )
2p-T ._ p=T _ 7 _ T _ %
‘LT =L I—-67" =Vp 1 6/p®63.

We now define
vy —vAv + Vp = ly(v, p) + 11 (v,p, p)
where, if £(p) = f(e,(z)) and simply £(0) = f,
bo(v,p) = ~(£7'v - V)v + £(p),
L (v,p,p) = V(A — A)v + (V = V)p+ p'(L 7 es - V),
noting that
u;—vAu+ Vp zio(v,p) — l~0(vb, 0) +71('U,p, ) -1 (vp,pp,0).

Since 71 is linear in the arguments v and p, it suffices to compute the
linearization &l (vy, py, p) of 1 (v, py, p) With respect to p.

* apb

L1 (vy,pp, p) = v(SLTTV-V+V-SL V), 4+ Vp 0 +6p% (L7 es-V)vy

For the last term, we have that

P tes D= Lo = e+ 20,
Therefore the linear part is
v(6LTIV -V + V6LV ) vy + Vo poas + Pl0b,0s (21)
and the nonlinear one is
- !/ *
Li(u,q,p) =li(u,q,p) —°L T Vp, 10, 9, (22)

v(I-c )WV -I-£T)Vv+ 5% ™V V+V-8L7V)v,
For 1y we have
1o(v, p)—lo(v,0) = (0L vy V+u- V) + (v Vu+lo(u, p) + £(p) — f,
which adds a further linear term to (21), giving
D1 (u,p) = VP Poas +0pe0se; + (V- VIu+ f . p*

1 1 23
+v(6LTV -V + V6LV + —0L 7 vy -Vt —u- Vo, (23)
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This is a linear combination of terms of the form h times

k * * k *
u-, p,z,—; p7t7 u,z,—; p,z,—zja (24)

for suitable smooth h’s depending on the indexes and on vy, py, ¢p, f and
f. The nonlinear term is

lo(u,p) = (2L vy - VIu + (2L u - Vv + (2L vy - V)
+ (L7 ' V)u+ (u-V)u+5°f, (25)

where
1
2
FF = £0)~ £~ F o = (=935 Flen (@) ds.
0

Inspecting the terms in (22) and (25), one sees that the sum l; + o is a
linear combination of terms of the form h(x, p*(x), Vp*(x)) times

*2 * ok * * * % * % * k

p P p,z,—; p,a:,-p7a:j7 p p7t7 p p,z,—mja p,tuﬂfz'? (26)
* k * k * ok * Jak

p,ziu,z]—7 p,wixju,acﬂ p,ziu,ijﬂ p,-tiq7zj7 u u,zi

for suitable smooth h’s depending on the indexes and on vy, py, ¢y, f and
6. We will henceforth set h, = h(z, p*(z), Vp*(z)) (and similar notation
in the scalar case) always assuming such a smooth dependence on the
indexes, the datas and the stationary solution. Regarding the divergence,
notice that

=~ 1
Vo=L1V.v= Z(ETV)-Uzo & (L'V)-v =0,
and R
(L'V) v =V - (Lv),
since the cofactor matrix has divergence free rows. Therefore
Vo= (I-LYV) - v=V-(I-L)w. (27)

Since
R 1+6 0 0
L= 0 146p 0| =I(1+6p) —e3®Vp*, (28)
_ep,ﬂh _ep,xz 1
the matrix I — £ is linear in p; therefore, from (27) we get

0
V-u:Vp*-vb,m—9’pV-vb+Vp*-%—9/PV'ua
3
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giving
By(p) = Vp* - vpay —0'pV v, =V - (I — L)vy, (29)
lo(u,p) =Vp* - uyy, —0'pV-u, G(u,p)=(Vp"-u)es —6pu. (30)
Notice that R
(I - L)yvp, =G(u,p) =0, (31)
in a neighbourhood of ¥, since # identically vanishes for sufficiently small
x3. We now look at the equation for T(u, p). It holds

T(v,p)n—T(vs, pp) N = T(u,q) N —py(n—N)—q(n—N)
+ (D —D)(vy) N + D(vy)(n — N) +D(u)(n — N)
+(D—D)(u)N + (D—D)(v)(n— N)+ (D—D)(u)(n— N).

If n, is the upward normal to the cartesian surface with equation
ys = ¢p(z’) + sp(z’), we define g = 1 + |V(¢p + sp)|?, and thus
n, = (=V'(¢s + sp),1)//9s. The first variation w.r.t. sp of N and D
is readily computed as

(=V'p,0)

V1+ V|2

N =TI, éD(v) = —Vp* @ Vv* — Vov* @ Vp*,

and it holds
1 d? g
’N:=n—- N —-6N = /(1 - s)@ns ds = pa.pe; A (Y, Vp) ds,
0
n—N=p. By, Vp),
for smooth A” and B'. Since D(v) = 2Sym(Vwv) where
Sym(M) = (M + M7)/2,

/

(D —D — éD)(v) = 2Sym(6°L~ T Vv) = 2Sym <Vp* ® Vv3>,

14+6p
which vanishes on G supposing 6 = 1 near G. Therefore

T(v, p)n—T (v, pp) N =T(q,u) N —ppd N +5D(vy) N +D(vy)0 N +1(u, q, p),
where l(u, g, p) collects the higher order terms:
l(u,q,p) :=—ppd°’N — q(n — N) + D(vy)0° N + D(u)(n — N)
+ 0D(u)N + 6D(vp)(n — N) + 6D(u)(n — N).
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It is convenient to eliminate the pressure term by looking at the normal
component of T(p,v) and T(pp,vp): setting pe(p) = pe(z’,dp + p) and
De = Pe(0) = pe(2’, dp), it holds

p=0H +pe(p) + nD(v)n
oy = 0cHy + pe + ND(v,)N,
from which
4= o(H — Hy) + (pe(p) — po) + nD(v)n — ND@)N.  (32)

We now consider the curvature term. Recall that given a surface with nor-
mal n, smoothly extended in a neighbourhood of the surface, the doubled
mean curvature H is defined as V - n. Definining H; = V,, - ng, it holds
1
d d?
Hy = Ho + ——H, ls=o+ [ (1 —s)5Hsds.

ds
0

Moreover, for a, 8 =1,2

d

1 ¢bz ¢bz
— H,| gm0 = ——0u| 04 far — L% THER -
ds Le=0 gba ( v ) e

Vb
1 \vadivd 2, \vid
— =V VIV'&|*Vey - V'p + W (33)
9 9
b

\/%Agp +b-V'p=:Lp.

Here Ag is the Laplace-Beltrami operator on the surface G, and b is a
smooth field depending on ¢;,. Finally, a lengthy but straightforward cal-
culation shows that

&2 3 » 3 q
B B
ZHs = Paaps i T T PaPiane, il
m=1 s m=1 Js

where pogm and ¢agym are polynomials in the variables s, V' p, V¢, V2.
Since Hy = H,, we have

Hin — H,N = H,dN + LpN +1'(p),

where

1
2

d
U(p) i= (H — Hy)(n — N) + N/(l ~ )4 Hods + 0N,
0
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collects the higher order terms and is a linear combination of terms of the
form hppuipe; or hpp o;p e, - Finally we consider the external pressure.

Setting pe(p) = pe(z’, ¢ + p) and pe = pe(0) = pe(z’, o)

pe(p)n — pe N =0pe N + (pe(p) — pe — 6pe) N + ped N

+p.(n— N —5N) + (p.(p) —p.)(n — N),
where
0pe(x) = Pe,zs (m)p(x/)

Thus the linear part is dp.IN + p.dIN, which is a linear combination of
terms of the form h,p and h,p .;, while the nonlinear one is
(p) == (pe(p) — Pe — 6pe) N + pe(n — N — ON) + (pe(p) — pe)(n — N),
which is a linear combination of terms of the form hp? and hp ..p..; for
smooth h’s depending on vy, py, ¢p and pe. All in all, we have

®3(p) = (po — pe — 0Hp — D(vy)) 0N — dp.N — dD(wvy) N, (34)

which is a linear combination of terms of the form h,p ,; and h,p. For the
nonlinear part, using (32) to get rid of ¢, we get

l3(u7 P) = _l(u7 q, p) - Jl/(p) - l”(p)a
which is a linear combination of terms of the form h, times

PPy Paibayy Uaibasy Puibajen- (35)
Neglecting all the nonlinear terms, one is thus lead to the study of the
the optimal regularity properties of the linearized problem
uy—vAu+Vqg—®1(u,p) =f in Q,
V-u—®(p)=h=V-F in  Q,
T(u,q)N + cLpN — ®5(p) =d on G,
pi+ Vi -u—ut+Vp-vy,=9g on G,
u=>0 on X forall t>0,
u(z,0) = uo(x), pla’,0)=po(z’) for ze€Q, ' €X,

(36)

with suitable regularity conditions on the right-hand terms and compati-
bility conditions on wg, po. Here ®; are given in (23), (29), and (34), and
L in (33).

Using (29), an explicit calculation shows that for any solution of (36),

d ’_ /
T pdz —/hdx+/gdm
Y Q b
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holds, therefore we have preservation of mass for the linear problem when

the right-hand side is identically zero. As previously noted, the right-hand

side above vanishes for h = l5(u, p) and g = l4(u, p) whenever [u®da’ =0,
b

which is clearly the case.
Using Laplace transform, we consider the associated complex parameter
dependent problem

/\u—l/Au—l—Vq—f/I;l(u,p) =Ff in Q,

Vou—®(p)=h=V F in O,
T(u,q)N + 0cLpN — ®35(p) =d on G, (37)
M+Viey-u—ud+Vp - v,=9g on G,
u=0 on X,

where @, is given as in (23) substituting the term p% with Ap™.
The reason we keep separated the linear operator L given in (33) from
@3 is apparent with the following lemma.

Lemma 2.1. The bilinear form

By(p) = /Lp(sp +V'p-vy)da
b
is positive definite for sufficiently large real s, (depending on ¢p and vy).

Proof. A straightforward calculation shows that, summing for o, 8 = 1, 2,

1 ¢ba¢b5> } ( ¢ba¢bﬂ> 1
Lp=——0, || 0as/gp — ———= —{ das/gp — ——— On— -
P % [( BV 9o N p.B BV YIb N p.p 7

We integrate by parts one derivative in the Laplace-Beltrami operator:
by periodicity there is no boundary term and by the previous formula the
terms in J,(1/gp) cancel out, giving

Po,aPb,3 )
/Lp spda’ —s/ ( aBVIb — P8P, dx’.
) ) Vo

From Schwartz inequality, one immediately obtains

1 ®b,0 b3 >
=~ (s, _ 10a¥0.0 o
) < BV b \/% P.BP,

_ VP + V') — (Vip- Vgy)? IV’pI2
9 gb
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and thus

/Lp spdr’ > /| ol dz’ > cs/|V p|? da’.
%

s
Similarly, for the other term we have

/ LpV'p-vydz’ = / (5 5y — Qualhs ) ¥ (p,mvz? +pnv2a) dx'.
b)) b)) \/—b 7

Clearly

1 (bb astB) /! |2
— | dagr/gp — ——=2 v) > —c|V'p|?,
b ( B \/% p7Bp7’Y b,()[ | pl

with a constant depending on ¢, and vy. It remains to estimate

1 ®p ad)bﬁ) p
— | dapv/Gs — ——= ) P3P,V dT’,
E/gb < B % BP,avVy

but since this expression is symmetric in a and (3, integrating by parts on
the term p o~ With respect to z, gives

) astB p.,BP oryU(;Y /
2/ (5a gy — —— el dx’ =
/ VT o

= _E/p,ap,BaV |:<6a3\/% st\ji:ﬂ) ] d;U —C /|v/p|2

The claim follows, since gathering together the previous estimates gives

B(p) > (es — &) / V' d 9

§3. MODEL PROBLEMS IN THE HALF-SPACE

In this section, we study the model problems in the half space arising
from the system

Au—vAu+Vg=f in Q,
V-u=h=V-F in Q,
T(u,p)N + cLpN =d on G, (39)

M+V'eé-u—ud+v,-Vp=g on
u=a on

M QQ
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obtained neglecting the lower order terms in (37).
The first one has been treated in [11] and is defined as

A —vAu+Vg=f in ]Ri,
Vou=h=V-F+I in R?,
v(ul, +ul, ) =d/, j=1,2 in R? (40)
—q+ 21/1173963 —oA/p=d? in R?,
M+V - Vp+ud=g in R2,

where R? C R3 as {x3 = 0} and primed variables and differential operators
are to be meant in R2.
We set £¥° = ¥ x [0, 400), and consider first an auxiliary problem.

Theorem 3.1. Let [ >0, and V' = (V1, V1) a constant vector. For suffi-
ciently large Re X\ there exists a unique X-periodic solution of

M+ (V- Ve —vAu+Vg=0 in R3,

V-u=0 in R3,
v(ud, +uly) =d/, j=1,2 in R2?, (41)
—q+2vu’,, —olA'p=d, in R?,
M+ V' - Vp+u? =g, in R2,

such that u — 0 and q — ¢ for x3 — +o00. It satisfies the estimates

2 2 2
Il + 1Vl ey + DOy

. ‘ . ‘ (42)
+ ol + Al <c(]lal? ol g ),
||p||Hi+%(Z) ” pHHl;r%(E) || ||Hi+%(2) ”gHHl;r%(Z)
/ gds’ = —/d3 de’ =:d, Vs>0, (43)
{zz=s} b
— ey < c( d|? +[lg]1? ) 44
oWy < (07 s |+l (41

Proof. The proof of the first estimate is a straightforward modification
of the one in [11], using Fourier series instead of Fourier transforms, and a
slightly different norm. For any & € Z?, let g, pe, and pe be the £th Fourier
coefficient with respect to (x1,x2) of u, p, and p, respectively. System (41)
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is then reduced to

d? ;
1/<7"%—F) ué-l—iﬁqu:() for j=1,2, z3>0,
T3
. d? dq
2 3 € _
V<r1_d—x§)u£+d_$3_0 for z3 >0,
I dug
zflug +ilpue + 5— =0 for z3>0,
i ; d$3
v <d—x3 + z@u?) = dj for j=1,2, z3=0,
g, B 2pe = ¥ f 0
—ge + yd—$3+a|§| pe = dg or x3 =0,
Aipe +uf = ge for x3 =0,
ug — 0, g —c for x3 — 4o0,

where 71 = r1 (X, &) = V/Av L+ €2, -7 < Arg(r) <m, A = A+iV'- &
This system of ODE can be explicitly solved for Re A > 0 as

. 1—0;3 ; 60 373
ut = — eo(z3)d: U; d]
€ vry 0( 3) € t i + NP V2’I“1 T1 + |£| Z gl

e1(z3) al€*( 60($3)Ui3 +riei(x3)Vis)
sz dj - )
V2(ry + [EDP Z ’ Phri(n +EP "

i=1,2,3,

g = 7“1‘)\1 |: <2V 0'|£|2) (lfldg +l£2d2)

V2P
—I/(T1+ dg__Al |£|29§ e €l 3

pe = (g —ug)/ M,

where

—rizz _ o—|€|xs
. e e
’ -

eo(zs) =€ e1(xs) =
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g
P =(rf +|¢)” — 4¢P + 5l¢P°

M (M > [ ol¢?
=5 (e (- 5) + 5 )

and Ujj;, Vi; are the elements of the matrices

E(Bri—lEDM+ZIEP)  &1&a(Bri — €)M + ZIE]*)  i€urida(r — [€])
S&(Bri—ENA+2EP)  &(Bri— 1€)AL + ZIE)*)  i&ridi(ri— €] |,

—i€1iridi(ri—[¢]) —i€ar1hi(r1—[¢]) —[€lriAi(rs — [€])
and
—&(2r A + Z[¢€1%) —&&@2m A + ZIE) =& (rf +1E7)
—&1&((2r1 A + %|§|2) —&(2rmA + %|§|2) —i&A(r +1€°%) |,

—i&[€1(2riA + ZIE7)  —i&l€l(2rA + ZIE7) [T + 1)

respectively. For the constant mode £ = (0,0) this reduces to

_ Y

di
0 e—\/Xxg, 7::1727 UgEO: QOE—dg: pU_Ta

U6($3) = —m

and thus ¢ — —d3 for x3 — +oo. If v > |V'|?/v and Re A > 1, it holds

1 1 5
“inl < S(VIN+1gl) < VINFIEP < VIAT+ el < elral,  (45)

and the same estimate for A;. Moreover |r + |£|| > max{|ri], |¢|}, and
[P > c(7) (1€1° + 1€/l + 62N + ). (46)

The principal parts of the norms of e; on [0, +00) are estimated as

||60||%j/271([07+oo)) < C|T1 |27’I—1,

” ”2 |741|277_1 + |£|277—1
g (0,400 € RIE

for any n > 0. Finally for £ € Z? and Re A > v, it holds
U7+ [Vig 2 < e Ml + [P + €15 + [€1°),

(47)
|Uis]? + Uil + [Via]* < c([€P[Ma]* + [€1°[ A ]?).
From these inequalities one gets the following estimates for ug:
1 PO g2, < el (del® + 1€ 19e ), (48)

et B,y < elral* (Idel + 1€ |gel)-
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One can similarly estimate the pressure, considering the cases |\;| < |¢|?,
which implies |r1| < ¢[¢], and |A1]| > |£]?, which implies |ri| < ey/|\1].
Supposing ¢ # (0,0) and noting that ||e_‘5‘w3||‘;v2l(R+) < ¢! one ob-
tains

I PEP el T2, ) < clr P (1del® + 1612 gel?),
dge o
|| IIWl

(49)

iy < i PIER laell e, ) < el (Idel® + €17 |ge -

Summing in £ € Z? inequalities (48), (49) and using (45), we get through
Parceval identity

55 ey + 9035
2 2 A IPAIE
(DI vy ) + 191, vy )+ Nl )

To estimate q at z3 = 0, one has, with the same method

1 gg (00 < clra P (Ide* + (1 + 1€%)|ge ),

which gives
lgO)? oy <ely) IIOlII2
') ( o)

So far we have obtained the estimate

2 2 2
||u||HE\+2(Eoo) + ||V‘I||Hlk(zeo) + ||Q(0)||H;+%(E)

2 2 I+4 2
O (M g g 190 1o )+ A gl )

2 30112
ol vy +IN gz )-

and thus, by interpolation

el ey + 1VElIE 2oy + 12(0)] e

< c(y ( d||? + 2 )
We now estimate p¢, using the relations

A1pe = ge — ug(0),

du?(0)
ol€1 pe = df + ac(0) — 2v—2-

= d} + q¢(0) + 2w (i& ug + i&uf).
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Since Re A is supposed to be large, it suffices to obtain the estimates

2 < 2 2
1612 1o gy <1 ey ) #1902 s ) (50)
A|? <cl|d]? +|lgl? , 51
NI 1o g < I g ) + 1002 s ) (51)
ERTRNENTD 1 a0e 3.
A Ao ey < (AR Nl + N lglEey). (52)

From the explicit formula for us and the bounds (46), (47), we obtain

d 2
|Mmmﬁ<c05'+wﬁ),

raf?
€1 el < c(ldel* + (1 + Ig)lge )

Since |A1] = ¢|\| = ¢y, and recalling (45), we get from the first one

(53)

3 1 3 .
A2 gl < eI gl + A1 fge )

which, summed on ¢ € Z2, gives (52). By the first inequality (53) and
|7"1| 2 C|£|,

€2 Apgl? < (1€ Idel® + €2+ ge ),

which gives, together with |p¢|? < e(|de|? + |ge|?), inequality (51). Finally
(50) is given by the second inequality in (53), which implies

€122 log 2 < (1€ Idel? + €12+ el?).

We conclude estimating ¢ — dj on £°: for any £ # 0 we have

1 c
2 2 2 2 2
q = 5ola <—(d + 1+ [€)lg )

which gives (44), summing over £ € Z\{0} and recalling that go = —dj. O

We now consider the full model problem (40).

Theorem 3.2. Let [ >0 and V' = (V1,V2) a constant vector. Suppose h
decays for x3 — +oo sufficiently rapidly and h' is compactly supported in
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x3. For sufficiently large Re A, there is a unique periodic solution to (40),
with u — 0 and ¢ — ¢ for x3 — 400 and

“ v =) T + + A
Il ey + IV + g+ ol g o+ Mg
< (IF 12 ey + 2N o) + 2R 32 g
I ey + 112 oy D0l g+ D) G

Proof. Let us call X (u,gq,p) the left-hand side of (54) and Y (f, d, g, h,
F, 1) the right-hand side. First of all we solve the corresponding problem
with solenoidal velocity, i.e., we consider the case h = 0. To this end,
consider the problem

M4+ (V' -Viu—-vAu+Vg=f in R3,

V-u=0 in Ri_,
v(ud, +ul, ) =d/, j=1,2 in R2 (55)
—q+21/u73z3 —oA/p=d? in R2?,
M+V - Vp+ud=g in R2

Notice that the solution of

Ap=V - -f in X,
p=20 if x3 =0,

satisfies [|Vp| i (o) < cfl Il gt (5)- Set then F = f — Vp, for which it
holds V ? = 0: we extend } to the whole space with preservation of class,
periodicity and solenoidality, and define for ¢ € Z? and z3 € R the Fourier
coeflicients R
fg (r3)
ve(r3) = ————.
elws) = 3 IE
For Re A > |V'|/v, it holds (1+ |€]?)? + |A]> < ¢|\1 +€|?|* and thus these
coefficients define a Y-periodic solution in R? to
AW —vAv+ (V. Vw=F V-v=0,

satisfying ”"’HH’;Z(ZxR) < [ fllmt (g~ Thus, solving (55) in (u,q,p) is
equivalent to solving (41) in (u —v, ¢ —p, p), since, by standard restriction

theorems, the right-hand sides in the latter case are modified by terms
whose corresponding norms are bounded by || f[| gt (nec).-
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We now can get rid of the term (V'-V/)u in the equation for the velocity
by a standard iteration argument, defining (u1,q1,p1) as the solution to
(55), and (Wp+t1,@nt1,Pn+1) as the solution to (55) with the right-hand
side f + (V' V')u,, of the velocity equation. If

(wn;pn;,un) = (un —Up—-1,9n — qn—1,Pn — pnfl);
then we note that (wyt1,Pn+1, nt1) satisfies (55) with the right-hand side
(V' -V )w, on the velocity equation and zero elsewhere. From the inter-
polation inequality
/ / 2 c 2

V" 90l ) < S50 s ey

and the estimate (54) for problem (55), we get that
c
X (Wnt1,Pnt1s pnt1) < WX(wn:pn:un):

which in turn gives, for ¢/|A\| < 1, strong convergence of the sequence
(Wn, @n, pn) to a solution of

A —vAu+Vg=f in R3,
V-u=0 in R3%,
v(ud, +ul, ) =d/, j=1,2 in R? (56)
—q+2vu’, —oA'p=d’ in R2,
M+ V' - Vp+ud=g in R2?,

and the estimate X (u,q,p) < Y (f,d, g,0,0,0).
We finally take care of the divergence term, defining w = V4, where v
is the stable periodic solution of

Ap=h=V-F+} in R
{z/JhV +h in RS, 57

=0 on RZ
It satisfies
l0l22 gy < (102000 gy H A2 (IF gy K 2y ) ) - (59)

The solution defined as (w +u, g, p), where (u, g, p) solves (56) with modi-
fied the right-hand sides. Inequality (58) and standard restriction theorems
ensure the validity of (54). O
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The second model problem arises from the need of a correction in
solenoidality, together with Dirichlet boundary conditions, on the bottom
surface.

Theorem 3.3. Let | > 0. Assume that f € WL(X>®), a = (a*,a?,0) €
3 .
Wé+2 (2), h € WHL(Z®), and F,h' € L*(X*°) are S-periodic, h'(z) = 0,
whenever x3 > L, F? = 0 for 3 = 0 and f hdx = 0. For any Re\ >
EOO

v > 0, there is a unique X-periodic solution to

AMu—vAu+Vg=Ff in R%,
V-u=h=V-F+h in R3, (59)
u=a in R2?;

it satisfies the estimate

2 2 2 2
o2y + VP g sy < (17 g s + 01105

(60)
1R 1 gy + A2 UF oy + 1 [0 )-

We omit the proof of this proposition, since in the case h = 0, optimal
regularity estimates for periodic solutions are proved, e.g., in [7], and one
can always reduce (59) to a similar one with A = 0 subtracting the gradient
of the Neumann problem corresponding to (57). Estimate (58) still holds
true (see the proof of Lemma 4.1 below), and thus gives (60).

§4. PARAMETER DEPENDENT LINEAR PROBLEM

In this section, we prove the solvability and the coercive estimates for
sufficiently large Re ), of problem (39), where a®> = F3 = 0 on X. The
method of proof follows [1]. We start with a lemma which allows to extend
the equation h = V - F from © to R} controlling the norms.

Lemma 4.1. Let h,h € Wit (Q), F € WiT2(Q) be S-periodic and such
that
h=V-F+H
holds in Q. There exist a L-periodic extensions h of h to Ri and an
F € W T2 (2%) such that
h=V-F,
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in Rﬁ_, h=TF =0 for sufficiently large ©3, F-n=F -n on ¥ and

1l ey < elltllyray,

_ , (61)
1Pl o) < e(IF ez + W llz2o) ).
Proof. Let ¢ be the periodic solution of
AYy=h=V-F+h in Q
=0 on G, (62)

g—:/: =F-n on X.
Standard elliptic estimates guarantee that
||¢||W21+3(Q) < C”h”WZ“rl(Q);

and the weak formulation of (62) reads

/Vi/}-V?]d:U:/F-Vn—h’nda:,
Q Q

for all n € C°°(Q2) such that n|g= 0, which gives
IV T2 < IF 2@ IVYIlL2@) + 1B |2 1] 20 (63)
Since ¥ = 0 on G, a form of Poincaré inequality gives
191l L2@) < eV,
and thus (63) becomes
IVYlir2@) < eI Fllrz@) + 17 ]|22(9))- (64)

We now consider a vector field F defined in the whole Ri extending Vi)
with controlled norms and vanishing for sufficiently large z3. Setting then
h := V - F gives the claim, since

Flwgsssey < 1Tl gonsey < el Velpgin ey < cllbllsos
while the inequality for F follows from (64). O

We will use the following proposition.
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Proposition 4.2. Let | > 0. For any sufficiently large Re A, there is a
unique periodic solution to the problem

A —vAu+Vg=f in Q
V-u=0 m
U in Q, (65)
T(’U,, q)N =0 on g’
u=>0 on X
for any f € WL(Q) and it satisfies the inequality
gy + 9l o+ Dy o <l (60

Proof. The existence of a weak solution
weJ = {veWzl(Q):V-vzo, ngzo}

can be proved through Lax—Milgram theorem, since the weak formulation
of (65) is

A wpde+l | D) :D(@)de = [ f-dpdr, YoeWLHQ), ¢|s=0.
[eei] /

Indeed, the Korn inequality gives coerciveness of the bilinear form defined
from the left-hand side, and Sobolev inequality the continuity of the right-
hand side for f € L?(2). The pressure can be recovered through standard
methods, see, e.g., [9]. The estimate (66) follows, for example, from Shauder
localisation method and the analogous estimates for the related problems
in the half-space. O

Lemma 4.3. Let § < 1 and n, ¥ be smooth functions such that
supp € B(0,6) C Q for some smooth bounded Q@ C RN, N = 2,3.

If
19|
)
for k independent of &, then for any f € Wi(Q),
76 F gy < O sy + 2O 220
where ¢2(0) depends on 0, n, ¥, Im and k.

sup || + 6|Vl + 6%Vl + == + [Vy| + V| < k (67)
B(O,d)

Proof. We consider an extension f* of f to the whole RV, with controlled
norm. Let us consider the case N = 3 first. From (67) we get

||n¢||%V§(R3) < Ck4(s.
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If 1 < 2 we use (9) to obtain
1 sy < el sy < Il 1 sy < K811

and conclude by interpolation inequality. Otherwise we use (10) w1th
min{2,l} > s > 2 to obtain
IIWfII%sz(Q) < g oy 1 gy 101y 1 g e
<Ol s rey + cONF L2 es)

by the interpolation inequality. For N = 2 we proceed in a similar way:
since ||’I]1,ZJ||%/V2(R2) < okt and [[n)|72(gey < cké?, the interpolation in-
cquality gives 1917 /s ..,
analogous. (]

< ckd, and the rest of the proof is entirely

Theorem 4.4. Let | > 0. For any sufficiently large Re A, there exists a
unique periodic solution of (39), for any choice of periodic f € Wi(Q),

d ¢ W”2(g), g € WHEQ), hoe WI(Q), F e Wi(Q), and
ac VV2 ( ) with a® = F3|s= 0. The solution satisfies the estimate:

2 2 2 2 2
||U||Hi+2(9) + ||vq||HE\(Q) + HqHHH%(g) + ||p||Hi+%(g) + ||>\p||Hi+%(g)

S(IF g+ NRIZ, 1 g + N2 F 20+ (68)

Uy Al g lal g ).
|| ||H;+é(g) || ||Hi+g(g) ” ”Hi+3(2)

Proof. We first show that it suffices to prove the existence of a solution

of
A —vAu+Vqg=0 in Q,
Vou=0 n 0
T(uw,q)N + oLpN =d on G, (69)
AM+Vigy-u—ud+wv,-Vp=g on G,
u=20 on X.

Indeed one can extend f with preservation of class and controlled norms,
as well as apply Lemma 4.1 to F' and h. We consider a solution vy, p;
of (59) with the right-hand sides, then a solution vs, po of (65) with the
right-hand side Vp; . Given a solution v3, g3, p of (69) with the right-hand
sides

d:=d—vDw,), §g:=g— V' (v1+v2)+0>+03,
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the triple

vy tv2+vs, p2tps P
satisfies (39). From estimates (60) and (66) for problems (59) and (65),
respectively, we readily get

112 ~112 2 2
R 7 PP (F P L e

(4
T N2 F 2 T 1d? + lqll? + llall? )
A 172 (0) I ||H;+%(g) Hg”Hi*%(g) I ||H;+g(2)

Also by the same estimates, it is clear that a bound of the form

2 2 2 2 2

(9)

<C(d2 s+ gl s )
17 1 g, + Wl

for the solution of (69), implies (68) for the solution just constructed.

We now prove the existence of a solution to (69). For any fixed § > 0,
we consider a finite covering of G with balls B(z;,d),z; € G, and this can
be done in such a way that the number of balls containing any point of
Q; is bounded independently of §. We now choose a periodic partition of
unity ¢; with each ¢; having support in B(z;,2d), > ,¢; = lon V :=
O, NU; B(z;,0) € Q, NU;B(x;,20) =: U. For each p; we choose n;, with
support in B(z;, 3d) such that ¢; = n;¢;. Any norm of the @;, n; is bounded
by a suitable constant depending only on 4, and in particular we can
suppose

Vil + V| < [V20il + V2] < (70)

c c
5’ 52
Moreover, N; will be the normal to G at x;, V; = vy(x;), II; the projection
on the tangent space to G at x;, C; an isometry bringing IN; to —e3 and

we write N; = C;N, V; = C;V;. For each i we will set, as in (4)
yi = Ciz, yi= ey, (2i),

where ¢; is defined through C;(a’, ¢p(z’)) = (2], —¢i(2})) and ey, is the
transformation defined in (4). Here we suppose that ¢} = 6;(zi3)¢i(2])
with 6; = 1 on the support of ¢;(z(z;)). Recall that for any isometry C, it
holds
V. =TV, =07V, A, = =2 = A 71
=0TV, =0T, A=yl =4y, (T
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and thus these formulas hold for each of the C; with respect to the coor-
dinates y;. Moreover V,, = L;Tvzi, where £; is the Jacoby matrix of the
transformation ey,. Since ¢y is smooth for 2z’ € ¥ N B(0, 20), we have

(2N < e, [V'$i(2)] < 2], (72)
which, toghether with (70), implies (67) for n = n; and ¢ = W’]’ Therefore,
by the previous lemma and Proposition 1.3, it holds

0di ,
"o, 62‘]'

< 8l sy + @A sy (73)
Wi (2)

and the same inequality for the norms on ¥°°. In the following we will
shorten somewhat the notation, letting, for example, z(z) = e;l_l(C’i(a:))
(and similar expressions) whenever the dependance on i will be clear.

We define a linear operator R(d, g) = (u,q, p), where we construct @, ¢
and p linearly in d and ¢ in the following. We let

v=>Y nClvi(zi(x), p=Y mpi(zi(x)), p=> mpi(zi(z))
i i i
where v; = v;(2), p; = pi(z), and p; are periodic and solve a problem of
the type (41), namely.

Av; — vALv; + (V; . Vz)vi +V.p; =0 in R:jr,
V, v;=0 in Ri,

(BZ] + 823) =n;(Cid)i (x(z)) j=1,2 in R2, (74)
—pi + 2w e pi = ¢i(Cid)*(z(2)) in R?
Api + ViV pi +vf = pig(z(2)) in R2
We then set
AU — A+ Vep = f
Ve v =: h

T(v,p)N + cLpN =:d + A(d, g)
M+ Ve -v—v+v,-Vp=:g+A(d,g)
noting that both v and p vanish in a neighbourhood of 3. We have
h=V-F+W
for sufficiently regular F and 1/ that will be spec1ﬁed later We can apply
Lemma 4.1 on h F and ' and suppose that B =0 and h F are defined
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in the whole X*° with controlled norms. We also extend ;‘ to X°° with
preservation of class imd coAntrolled norm. We keep the notation unchanged
for the extensions of h and f, and call F the vector arising from Lemma 4.1.
Let then (v1, p;) be the periodic solution of

I/A’Ul +Vp,=F in R3,
=-h=-V-F i R},
0 on X,

<
= q §|

(notice that F |== 0, since all the n; vanish in a neighbourhood of ¥), for
which it holds estimate (60), which, together with (61), implies

17205 g + 19513 0
(IF 1t ) + Bl 11 ) + T2 UE ) + 17 [ 20) )

Finally, we let U5, D, be solution of (65) with the right-hand side Vp,. We
let

(75)

R(d,g) = (4,q,p) := (v + 01 + V2, p+ Ps, p)- (76)

This triple solves

A —vAu+Vg=0 in Q,

V-u=0 in Q,

T(@,7)N + cLpN = d + A(d, g) on G,

N5+ V' -dile,) — @(e,) +vy - VA= g+ Ad,g) on G,

u=>0 on X,
where

A(d,g) = A(d,g) + vD(w1)N,
A(d,g) = A(d, g) + V'y - (B +T2) — 0} — 75,
We will prove that (:4,21\) is a contraction operator from Wé—’_%(g) X
3 DU
Wé+2 (G) to itself, therefore, establishing the invertibility of I + (A, A),

and obtaining the solution R(I + (X,A\))’l(d, g). Instead of using the
usual norm, we will perform the estimates w.r.t. the norm

d,g)|? := dl2 + losgll? :
DI = ooy, + loisl e
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which is equivalent to the usual norm with constant independent of § and
A, whenever Re A > ¢(0), where ¢(d) — +o0 for § — 0.

1. Estimate of ;"
Transforming coordinates near each point z; and using (71) and(74), we
find that

Zm v(Ay — A)vi +(V y—Vz)piHZszm

—Zc V(2V i Vav; + viAgn; + L (V- Vo)),

The lower order terms of the second line are estimated in the z coordinates,
through interpolation inequality:
i ’
H Z C;1V(2vm77ivm'vi +viALn; + f(V; : vz)'vi)
i

H(2)
5 S 10il2 511 5y + N 0103
i

()
|>\| Z”vzHHlJr?(Eoo |>\| ||(d g)”)\;

where we used estimate (42) for solution of (74). For the higher order
terms, we recall that

vV, - V.= (LT -1V,

Ay—A =L7T DT+ 1) : D2+ £7TD.LTTV.

The last term in the previous formula is still a lower order term which can

be estimated as before, while by (16), the terms involving E;T — I have

coefficients of the form gfi my, with smooth m;’s depending on z, ¢}, and
k

V¢:. Therefore, we have to estimate terms of the form

8¢*mi Op; and tlon mi 8%v;
T oz T oz Bz02
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in the W} and L? norm. The L2 norm is estimated using (72) and (42)
giving

>§‘ . Op; 6¢* - 9%,
Alf Z n Nig ;”6 l||L2(zoo + ||771 }CJZW”L (z)
i,k,7,0
< c8? Z IMIVPill7 sy + ||Ui||?;yg(zoo))
i

< e 3 [0ilpsa ey + N IT-pil ) < e )3
i

For the W/ norm, we can suppose that [ > 0. We use (73), obtaining:

8¢z i 8p1 ¢* i a Ui
Z ”771 My =— 9z le(zoo) + an k;lWHW (z0)

i,k,5,l

< Z&nviuivyz(m +c(6)nvi||%vzz(zm) + OVl g ) + ()Tl 2
< Za(uvinivyz(m +IV-pillig e ) + @ (lvilF2 ey + IVapillia (o))
(6+ SOICROLS

by interpolation inequality and (42). To estimate the term >, p;Vn;, we
let

d = / i(Cid)* (2(2)) ds,

2

and use (43) and (44) to obtain

[ sz il 120y < Z Ipi = dill72(s0ey + llpidll72(g)
i ()
Z Il + il o)

and thus

. c(d .
A S il < J%nw, 9.
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Moreover, by interpolation and estimates (42), (77) for the model problem

| Zpivzmﬂ%@(n) < ¢(9) Z ”pi“%ﬁ/z’(ﬁ"")
9)

C
S I:pilygm) + @ 2 Il < (s (w)n(d,g)ni,

All in all we have obtained

171y o < 6+ T )R, (78)

where § > 0 (equal to [ if 0 <1 < %, and § otherwise).

2. Construction of F and 1.
We now prove that h can be written as the sum h = V, - F + b’ in
a satisfactory way. More precisely we claim that for some tensors M,

r =0,...,3 and functions m;, smooth and depending only on ¢, and {n;}
~ . 1 . .
F= Z Mgvs + 5 Z:(vayvi — Mipy), (79)
B = l(Mgvy”i — mip;), (80)
A

i
where, in the z coordinates,
|M§| < ¢|Vl, (81)

for some constant depending only on ¢;. To prove this representation, first
notice that from (71) we get

V. Clfw=Cv, Cf'w=vV,w, (82)

for any vector w, being C; an isometry. Thus, by the solenoidality (in the
z coordinates) of v;, it holds

E =V, (’Ih'CiT'Ui) = VyTh' “vU; + Th‘(vy — Vz) c V. (83)

Calling [} j1, the entries of £; and using summation convention on repeated
indexes except 1, we can write

szzn = l ll] kvz ] + lk] sj zmska vzpi = (l,inkpi,k):
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and since v; = (A,v; — V.p;)/A, we have

Vyni v = Xni,m(l}c]’lim”?g + Uilsivisk — UngPisk)

1 o .
= Y (Th',m( }cj i‘jvzls - l:nkpi))’k

1 . . )
+5 [ (i,m ks lsi) k075 + (Mimloi) k2i + mljUsjn 07

One can proceed in a similar way for the term 7;(Vy — V) - v;. We define
the matrices a’ whose entries are al, = (I — L), and, using (15), we
have

|ahi | < c(IV'6i + |¢3)). (84)
Proceeding as before, in the y coordinates we have
ni(Vy = V) v, = niafntvzm,t = (niafntvzm),t - n,-afnmvm

i
i NiCmt t 1i 14 i i

J— (3 m il (2 (3 m (3 m (2

= (it vi") & — h (Uilej kvis + Uijlsivilsr, — LnkPik)

+ (mafnkv?"“ - Xniafnm( kjlsjVis — l:nlcpi))Jg
1

(3

+ X [(niaint,tlfcjlsj),kvzls - (niamhtl:’nk),kpi - Wiafnmlfcjlsj,kvgls] .

If the hk-entry of C; is denoted by C** | we now define for each i the tensors
M, r=0,...,3 as follows

(Mg)y, = CFmicay,

(Mll)gm = Cz'kh(ﬁz}m - niafnt,t)lijlij

(le)h = th(mym - mafqm)lfn

(Mé)sm = (Miym — Wiaint,t)llijlim = ((mi,m — niaint,t) Iicj ;])k

and the functions
mi = ((Dim — Mg, )lnk) 4

Applying (82) for the terms in the divergence and gathering the previous
equalities, we obtain
MiVv; — Mip; n Z MiVv; —m;p;

Ve v=V,- ZM&UH- \ h\ ,
i

i

which gives (79) and (80), while (84) and (72) give (81) for small 6.
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3. Estimate for h, F and 1.
For h, using formula (83), we can split the estimate in local coordinates:

R gy < €(0) D 0l ey + €3 Ty = V)villppos e

The first sum has only lower order terms which can be estimated through

interpolation inequality, while by (16) the second one has addends of the
form

0¢; m O0v;

" 0z, M 0z’

(85)

for some smooth functions m;- « depending only on ¢. As before, its Wzl+1
square norm is estimated through (73) and interpolation, giving

STy = Vo0l h1 ey < €OVl s + @03 )
(2 (2

< e X 810l gon gy Ol < (04 50 ) I
(3
All in all, we get

Il oy < (8 + S0l DR

To estimate F, using the expression (79), (81) and (72), we have
= 1 ‘ ‘ ‘
1Bl <3 o (H0ill3g ey + IPil 25 ) + 82 0ill 20,
i
and proceeding as in (77) for the pressure term, one obtains

A2 P2 < (62 jl_j|)||< 92

The estimate for ﬁ’, due to the form (80), is even simpler, and is omitted.
The full estimate then reads

- . - 9)
I s gy + N2 QB 2y + I 2 )) < (

VIl

)n(d 93 (86)
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4. Estimate ofﬁ
The term D, (T1)NN is readily estimated through (75), the continuity of
the restriction operator and interpolation inequality, giving

— 2 — 12
IDaEINIZ 1y < el

c(IF 1521 @ + IRl g + NF2 U E 20y + 17 72(0)))-

From the previous estimates for f , E, F and 7’ one thus obtains

IDEONIE, < e(5+ 55 I oIk

Regarding A we have, using d = ), pin;d,
To(v,p)) N +0LpN —d =Y 1i( = piN + C; "D, (v;) N + 0Lp;N — p;d)
i

+3 C7'Vapi @vi - N+ o(L(nipi) — niLpi) N,
1

in the z coordinates. The second sum is a lower order term, and is bounded
C‘(fl ll(d,g)|l3. We transform the first sum in the z
coordinates and use the boundary conditions for (74), to obtain a sum
whose terms are

ni(—pi(N' — e3) + (D) —D.)(v;)N' + D, (v;)(N' — e3)
+0Lpi(N' —es) + o(Lp; + A'p;)es).

via interpolation by

Notice that n;(D, — D, )(v;) and ;D (v;)(IN' — e3) can be computed ex-
plicitly using (16) and both are linear combination of terms of the form
(85). Similarly

a¢i i pz a¢z i 6/%‘

op; .
(N'—e3) = pi imi Lpi(N'—e3) = 2imi mt
pil €s) = pi 9z; pil €s) 0z; IR 921,02 0z; %5z,

for some smooth vectors m/, mj-k, and mé-kl depending only on ¢,. More-

over, letting g; = 1 + |V'¢;|?, we have

|C/¢i|2 ¢z a¢z,6
Lp;+ANp,=—""" ANp, + +m ,
A T AV A B asPiapip

which has the same structure as Lp;(IN' — e3). These terms are thus esti-
mated using (73) and interpolation inequalities as follows: for the pressure
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term

(N 2 12 12
zi: |70 (N 63)||Hi+%(2) < Zl: 6le”Hi+%(E) + )il z2s)

< (5+ 125 )@l

reasoning as in (77), while

Z I:[(Dy — D) (w) N + D (v:) (N — es)l|” 14

H, %(2)

< Z 6||vzvi||i{l+% 5 +¢(0)IVvill 72z

(5+ ) S el < o(5+ ke )19l

by interpolation inequalities (11) and (12). Finally,

Z ||77le1 - 63)” 1+%(2) + ||7h(Lpl + A Pz)e3||H;+%(2)

12 +3, 02 12 112
<o (el g sy Tl ) + @iy + 1ol g (E))

i 2

. o (o) |
<200l g ) + e loile) < (6 + ) o)1

All in all we have

L e LI "

5. Estimate of A
The estimate for V', ¢y, - (01 +2) — 05 — 03 follows from (75) for B, and (66)
for U5. The argument is very similar to those given above, and is omitted.
For the estimate of A we localize in the z coordinates, obtaining, via

(Vidy, —1)C; vy = (=Vigi, Vv, vy - Vip; = Civy - Vipy,
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the explicit representation
M+ Vidy-v—0°+v,-Vep—yg
= Zm Api+ (Vioty, —1) - O v+ 0y - Vipi — 0ig) + Y pivs - Vaili

i

= Z’?z (v — vy () Vipi — Vigi-vi] + Z Cipivy - V1.

The second summand is a lower order term, which as usual is bounded by
P\I ) |I(d, 9)||3. The higher order term 7;V'¢; - v; is estimated through (73)
as

2 2 2
|| }}jmwi -mnHH% by SO0y + @il
)
< (94 fier) Dl <e(5+ G U0l

by interpolation inequality (12). For the remaining terms of the form
ni(vs — vp(x;))V.pi, by the smoothness of v, we can assume that |vf —
vf(z;)| < on the support of n; and thus apply Lemma 4.3 with ¢ =
vp — vp(x;) to obtain

o2 2 2
||Z77z i(vy —wvp(z ))Vz/’z||Hi+g(E) <Zi5||VP||H;+g(E)+C(5)||VP||L2(2)

: () 20 :
< S0l g+ IO g ) < (94 IO

which completes the proof of the inequality

1A, 9|1 (6+ %) 1, g3 (88)

e
6. Existence and estimates for the solution
The estimates (87) and (88) yield

I(A(d, 9), A(d, 9)) | < (5+ ﬁ) 1, g)lla.

Therefore, fixing ¢ sufficiently small, for any sufficiently large Re A (E, 2)
1 3
is a contraction on Wé+2 (G) x Wé+2(g) normed with || ||x, and thus
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R(I + (A, A)~1(d, g) is a solution. To obtain (68), it suffices to prove the
continuity of the operator R defined in (76) with respect to the norm

2 . 2 2
I I o= s g+ IVl o
+ llql? +lloll? + [ 2ol?

Now from (75) and (66) we have that
2

— — 112 2
91+ g0y + 1VP2lg )+ Il

< C(||f||§{;(g) + ||h||%/{/2l+1(9) + |)\|l+2(||F||2L2(Q) + ||h/||iz(9)));

and the right-hand side is bounded by ||(d, 9)||3 by (78), (86). By the defini-
tion of (v, p, p) we have, through estimate (42), the inequality || (v, p, p)|[x <
c(9)||(d, g)||x, which is the desired continuity estimate.

7. Uniqueness
Let (u, p, p) a solution to (39) with vanishing right-hand sides. Taking the
scalar product with w in the first equation and integrating by parts gives

)\/|u|2d:c+ g/|ﬂ)(u)|2dx: —a/LpN~uds, (89)
Q Q g

(the boundary terms on ¥ vanish due to u|yx= 0). The right-hand side can
be rewritten using the equation for p and

N = (_vl(lsba 1)/\/.%7 g = 1+ |v¢b|27 ds = \/%dwla

giving
/LpN ~uds = /Lp(—V/p cu+ud)de = /Lp(/\p +vy - V'p)de'.
g b b

If A = s +it, taking the real part in (89) thus gives

s/|u|2 dr+ 7 / ID(w)? dz = —oB,(p) < 0,
Q Q

by Lemma 2.1, for s sufficiently large. Therefore, for s = Re A sufficiently
large we get w = 0, and Vp = 0 from Bs(p) = 0 and (38). From the
equation for p we thus get p = 0 and from the boundary condition on the
stress tensor, p = 0 on G. Since the velocity equation now reads Vp = 0, we
conclude that p vanishes in the whole Q, and thus (u,p, p) = (0,0,0). O
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§5. TIME DEPENDENT LINEAR PROBLEM

In this section, we prove through Laplace transform methods (see again
[1]), the solvability of the time-dependent linear problem (36).
We first need to consider the perturbed version of problem (39), i.e.,

A —vAu+Vg—®(u,p)=f in O,

V-u—®(pp)=h=V-F in  Q,
T(u,q)N +0cLpN — ®3(p) =d on G, (90)
M+Viey-u—u+Vp-vy=9g on G,
u=a on X,

where @ is as in (23) with Ap* instead of pl, and @® = F? =0 on .

Theorem 5.1. Let [ > 0. For any sufficiently large Re A, there exists a

unique periodic solution of (90), for any choice of periodic f € Wi(Q),
1 3

d e W,'2(G), g € Wat2(G), h € WH(Qy), and F € W(Q) with

F3|x=0 and this solution satisfies (68).

Proof. We start estimating the A-weighted norm of the various ®;. For <i>1,
we see from definition (23) that all its terms are of the form (24). Each of
these terms can be estimated in the W/ (€2;) norm through Proposition 1.3.
One considers separately the terms containing the spatial derivatives of p
and those containing the derivatives of 8 to obtain, for Re A > 1,

121 lwyan < (1900w g + Nlolwgo) + Tullwi )
where ¢ is a constant depending on the higher order norms of vy, p, and 6.
Applying interpolation inequality one then obtains, again for Re A >> 1,

c

22 < ( 2 2 2 )
||q)1||W2’(Q,,) \/W ||p||H;+%(g) + H/\p”Hl:—%(g) + ”u”H;"'z(Qb)
The L? norm of ‘31 is estimated as

[®1ll22(0,) < C(||VP||W21(Q) + [IAollzzg) + ||U||W21(Q,,)),

thus, bounding ||pl[z2(g) With [[pllwz(g) and using interpolation inequali-
ties,
c

& 12 2 2 2
A 1®1]17 20, < W(”””H':% o TP g o+ lullZise g, )
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Therefore, for Re A > 1, we have

181131 ) < m(npnz ()+||Ap||§{;+%(g+||u||Hl+2m)

For ®,, recall by (29), that it is a linear combination of terms of the form
h,p?,, and h,p, therefore,

1820) i+t 0y < c(I9Pllwz1g) + Iz q) ),

giving

) 2 < ( 2 2 )
120y € 57 (1905 gy + 100
Moreover, recalling that ®,(p) = V - (I — L)v,, we have for (I — L)y,

I pll2
\/IAI

Finally ®3 is made up of terms of the form hp and hp ., therefore, for
ReA >1,

N2 = Eyouleqan < e+ lolfvy @) < —lMl? g

&.||2 < cllpl? 2
|| 3||H;+%(g) ||p||Hi+2 |>\|||p|| l+2(g)

with a constant depending on py, vy, ¢p and p.. A standard iteration
argument now gives existence and uniqueness of a solution satisfying (68)
for sufficiently large Re A. (]

Theorem 5.2. Letl € (%,1) and T < +o0. For any X-periodic choice

of f € K'(Qr), h € Wi0Qr), F e W= (Qr) with F*|x= 0,

de K"z (Gp), g€ K2 (Gr), a € K'*2(2) with a® = 0, py € W2(G),
and uy € WE(Q) such that

V'UO:(I)Q(/)())-FV'F(-,O) m Qb,
VIl D(ug) N =11, (‘I>3(p0) + d(-,O)) on G, (91)
up = a(,0) on X,

there exists a unique solution to (36), and it holds the estimate (see (7))

I, 2)lhr < er (Iollwzes gy + 1oolhwgzgy +lal s, + 1 Fll (@)

Hblhwgrsoign +IFI oo o+ 1lgins g, + olass ) 92)
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Moreover, if T > 1, it holds

I 0 lhr < (1 Fln +Ilhwgrsogn +IF I o gon g

+ ||d||Kl+%(GT) + ||g||Kl+%(GT) + ||a||Kl+%(ET) (93)
+ lvollyi+1(q,) + llpollyivzg) + lullzzor) + ||p||L2(GT))'
with constant independent of T'.

Proof. We will reduce problem (36) to a similar one with homogeneous
initial data in order to apply Laplace transform and use Theorem 5.1 to
get the solution. First of all we fix Ty > T+ 1 and extend all the right-hand
terms except h and F' (keeping the notation unchanged) to Qo and G
with controlled norm, supposing furthermore that all the terms vanish for
t > Ty. For T' > 1, this can be done with constants independent of T, i.e.,

HfHKl(Qoo) + HdHKH%(GOO) + Hg”KH%(GOO) + HaHKH%(EOO)

<e(llflxr@n + 1l et gy + 190158 gy + 10l iv8 5 )-

To construct the extensions of h and F', we define, for all t < T', wo = V¢,
where 1 is the solution of

Aw:hZV'F in Qb,

=0 on G, (94)
g—:ﬁ:F-nzo on X.

From standard elliptic estimates valid for any ¢ < T', we have

||w0||W2’+2’0(QT) < CHhHWzH'l’O(QT)
and

sup ||w I+1 < csup ||h]|lwiq) -
sup 100l 0, < 399 [lwie)

Differentiating in ¢ the weak formulation of (94), one gets

/woyt-Vnda::/F7t-Vnd:U, YneC™, nlg=0,
Qb Qb

and a similar identity for the finite differences in time of wg ¢, which implies

w 1 < c||F L
” OHWZO’ZH(QT)\ ” ||W20)2+1(QT)7



THE LINEARIZATION PRINCIPLE 79

Therefore, it holds

||w0||Kl+2(QT) < c(||h||W2l+1'0(QT) + HFHW;'%H(QT))

We extend wy in such a way that wo = 0 for t > Ty, wi(z,t) = 0 for all
t>0and z € ¥, and with K*?(Q.,) norm controlled by the K!*2?(Q7)-
norm of wy if 7" > 1 with a constant independent of 7. Then, for all ¢ > 0,
we define

FOZ’on, h:V"wo,
and f, = wo+ — vAwy. It is clear that problem (36) is equivalent to the
same problem with Fy instead of F'. It holds

Illgsso, + IFol < c(Ihllyzero@my + IFI_a g

W E Q) . <QT>)’

with constants independent of 7', and

[ follxt+2(Qu) < llwollki+2(q.)

(A ||F0||W;,%H(Qm)). (95)
We now let
oo = g(0) — vy - v/po — v/(ﬁb “Up + ug,
and we construct p; in such a way that
P1 |_t:0: Po, Pit \_t:oz 0o,
lorl e gy + 10l s gy < e(loolwgong) + ool e ) o

<e(lgllng ) + IPollugrae) + lollusoi ) )-
5
We first consider r; € Wé—’_z (Go) such that 1 |t=0= po, r1,t[t=0= 0 and

||T1||W21+%(Goo) < C||p0||W2’+2(g)'

Then, we construct ry € K!+3 (Goo) such that r2|=0= 0, 24| t=0= 00 and

Irall i3 g < ool et

Kl+%(Goo ) (g)
< 0 1 2 s )
(9Ol v ) + 0l ros gy + Nuoll v

<e(lgllng g, + IPollugrag) + Iollyzor ) )
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for a constant ¢ depending only on vy, and ¢. The sum p; = r1 + 72 clearly
satisfies the initial conditions and

vl 1+— 0( Goo)

Finally, from the inequality

(L+ 6ol + 167+ < ar((L+ 16D + (1 + Lol +1€P) 160l

we get, through local coordinates, Fourier transform and Parceval identity

ol s gy < e(Iolwgzg) +llool e )
o 2

loales gy < eloall oz +lonellgins )

and thus (96). Clearly we can modify p; so as to obtain p; = 0 for ¢ > Ty,
without affecting the latter inequality. Then we take out a part of the
divergence, considering w; = Vi where v is the periodic solution of

A’I/J:(Pz(pl) ZVFl in Qb,
=0 on G,
W =F -n=0 on X,

where F; = (I — L(p;))vy, which vanishes in a neighborhood of . Notice
that since p; vanishes for ¢ > Ty this is also true for w;. We set f; =
wi ¢ — vAw;. With the same argument as for problem (94), we obtain

@)
and looking at the explicit form (29), (28) of ®; and F, we find that

11l i@m) < cllwn iy < (182000 e oy HIFIL o
2

o lxts2(@a) < e(Iorllgooiguy HIVRLL s o il s, )

(ol gins g, + Iorell vt )
which (by (96)) yields the estimate
1£1lxs@my < e(llgll vt g, + I0llwgrae) + Iuollgos ) )-
We choose ws € K'*2((Q4) in such a way that

Veowy =0, VE20, ws(-,0)=wuo(-) —wo(-) —wi(,0),
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with ws = 0 for ¢t > Tp, and optimal regularity estimates: by a result of Bo-
gowskii [5], uo(x) — wo(x,0) — w1 (z,0) can be extended with preservation
of class and solenoidality for all z € R?, as a vector wj. We set

wa(z, 1) = $(t) / D(x — y, () dy,
R3

where ¢(t) is a smooth function equal to one for small ¢ and vanishing for
t > Ty, and ['(z,t) is the fundamental solution of the heat equation. Well
known estimates of the heat potential give

||w2||Kl+2(QT) < C”w;HWle(u@) < cflug — leWle(Q,,)-
Letting f, = wa; — vAws, we obtain

I Fall it @) < cllwall gtz

< ol g,y + Iwolliss(gny + lwillkis2qun) )

Finally, we set f; = —®1 (wo+w; +wa, p1). From the explicit structure
of ®; given in (23) and applying (13), one sees that it holds

3

Ifslician < e S loilirssiay + 01l goes o + o1l ovs g )
=0

Letting

g9 — vN - ]D)(UO)N +JLp0 - d(O) -N — @3(p0) . N,

we have o9 € Wé_%(g) (the four terms have regularity, respectively, I,
I, 11— % and [ + 1) and thus we can extend it to the whole 2}, as g2 €
WE() with controlled norm, and subsequently define p; € K'T1(Q) as
an extension of g2 t0 s, also with controlled norm. Therefore p; satisfies

pl(O) |_g: vN - D(UO)N + O'Lpg - d(O) -N — @3(p0) . N,

”leK“rl(Qoo) < C(”UOHWle(Q,,) + HPOHWZH?(Q) + HdHKH%(GOO))’ (97)
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where we used that ®3(po) is of the type MV pg + mp for regular M and
m depending on the data. We finally define w = wg + w; + ws and

N

(aaaap) (u_w7q_p17p_p1)7

3
}:f_vpl_z‘fia
=0

d=d—vD(w)N —oLpiN +p N + ®3(p1),
Gg=9—p1e— Vo -w+w®—v, Vpy,
a=a—w.

Problem (36) is then reduced to

u=aonX forall t>0,
u(z,0)=0, z€Qp, p,0)=0, z€X,

Uy —vAG+VG— @1 (6,0) = f in Q,
V-t—®(p) =0 in Q,
T(@,7)N + cLpN — &3(p) = d on G, (98)
pe+Vgy-u—ut+Vp-vy=79 on G,

where g(0) = 0 by the definition of p;, @(0) = 0 by the third condition in
(91) and the definition of ws, and 3(0) = 0 by the second condition in (91)
and the definition of p; (0). Since ! < 1, }, 2, g, and a can be extended with
0 for t < 0 preserving regularity, and we can apply the Laplace transform
to convert (98) to a problem of the form (90). The latter is solvable for
Re A > v > 0 for v sufficiently large by Theorem 5.1. Inverting the Laplace

transform gives a solution in weighted Sobolev—Slobodetskii space W;7 ’777,/ >
for 4/ > ~, defined for all ¢ and vanishing for ¢ < 0. We obtain a weighted
estimated, which can be localised in [0,T") on the left-hand side, while the-
right one is controlled by the non weighted norm since all the terms vanish
for t > Tp. Localization gives rise to the constant C(T) in the bound (92).
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Moreover, from (95)—(97), it follows

1F i@y + 180 ot g, + 180 ity + 18l in

<e(Iflx) + Wllwgroao + NFol spon |+ 1l v g,
2

(Qoo

tlollrrs ) T lollgirg s ) +lvolwing,) + ”pOHWé“(@)
< c(||f||Kl(QT) + ||h||W21+1.0(QT) + ”FOHW;'éH(QT) + ”dHKH%(GT)

+ Hg”KH'%(GT) + HaHK“r%(ET) + ||u0||w2’+1(Q,,) + ||P0||W2’+2(g)):

with ¢ independent of T'. The same estimate also hold for ||(w, p1, p1)|i, 7
and summing back those term to (4, q, p) does not affect (92). Uniqueness
is obtained through standard properties of Laplace Transform. To obtain
(93) one splits the solution through a partition of unity of [0,77] with
functions having support of length 1, in order to apply (92) with T'=1 on
each such support. Lower order terms appearing due to this splitting are
dealt with interpolation inequality, and give rise to the L? terms in (93).

O

§6. ESTIMATE OF THE NONLINEAR TERMS

In this section, our main assumption will be that the transformation (4)
is well defined, and thus we require that sup |p| < u(f) < 1. This ensures
that all the nonlinear terms are polynomials in the derivatives of u, p, and
p multiplied by a nonlinear term which is of the form h, = h(z, p, Vp) for
smooth f’s. Indeed the only singularity in the nonlinear terms appears in
the Jacobian of Hanzawa transformation, where

1
-1 _
det L™ = 150,

In the following, we will call x4 any positive number such that

< — .
B Supy 107]

for sufficiently small constant, so that for example the condition
||P||W2’+1(g) Sp

will ensure |pf’| < 1 and the smoothness of the nonlinear terms. We prove
the following theorem.
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Theorem 6.1. Let | € (1,1). Suppose that ||(u,p, p)|li,r < p, where p is
such that (99) holds. There exists c¢(p), bounded for bounded p such that

Lo (w, p) +11 (u, p, p)IIKz(QT)+||lz(u,p)||W;+1~o(QT)+IIG(u,p)IIWZO 5 om)

+ ||l3(u7p)||Kl+%(GT) + ||l4(u7p)||Kl+%(GT) < cHH(qu? p)||l27T

The constant c,, also depends on vy, py, ¢p, F, and does not depend on T'
as long as T > 1.

In the rest of this section, we will thus always suppose | € (%,1),
l(w,p, p)|li < p. Moreover, for any given function g : X x Y — R and
n > 0 we denote by [lgllwz(x) the function y — [lg(-,y)llwy(x) and simi-

larly for ||g||W2"(Y)-
Since p* = 0p and 6 is C°°, any norm of p* in Q, or Qr is bounded by
the same norm of p in G or Gr. Notice that, letting from now on

ol =12l rs5 oy + 10rtlrst iy
proposition 1.4 gives

s < < . 100
sup ollwgoaigy < (ol uvgn g + 10l rgn, ) <clioli (100

From standard embedding theorems, it follows

%1p|p*|+|Vp*| (Sup|p|+|V pl) < clipli- (101)

T

We will also frequently use the following bounds:

p ol g3 190 g < (gt g #1920 gy
tswllpal goy o H IV 5oy ) (102)

(10l 118 #1921 s o 1Pl i3 ey I Pl i) <l

sup ||uw| 1,1 < cllu L . 103

wplul ey el g (103
Indeed (102) and (103) follow from repeated application (twice for p and
thrice for u) of the standard restriction estimates in anisotropic Sobolev—
Slobodetskii spaces. The previous constants depend only on G and 2, and
not on 7', as long as T' > 1, which will always be assumed.
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Lemma 6.2. Let | € (1,1), and suppose ||p|l; < p. Given a smooth func-
tion f:G x R x R? — R, there exists a constant cg(u), depending also on
G and bounded for bounded p, such that for any function g = g(x,t) and
anyn < 1+10, 0 <L +32, it holds

||f($7 P, vp)g||W2"0(GT)
||f($7 P vP)gHWzO’"'(GT)

crp) ||g||w2"'°(GT);

<
< Cr (/l’) ||g||W20"’,(G'T)'

Proof. Letting f = f(z,s,p), we will omit the explicit dependence of
f(z,p,Vp) on its arguments, letting for simplicity

fp(xat) = f(ﬂ?,p(:l?,t),vp(ﬂ?,t)), fpw(xat) = .fw(xap(w;t)avp(xat)):
fp,s(xat) = fVS(:C,p(x,t),Vp(x,t)), fP,P(xat) = f,p(:v,p(:c,t),Vp(:v,t)),

and similarly for other derivatives. We claim that if ||p||; < u, then
Sup £l 1) < e (10): (104)
t<T

To prove this fix ¢t € [0,77] (all the norms will be calculated at time ¢) and
notice that by (101), f,, fo.. and f, sVp are bounded by a constant ¢z ()
independent of ¢, as well as, thus, their L?(G)-norms. The principal part
of the W3 ' (G)-norm has square bounded by

o2 vsca) + 105V lieg) + 1fopD? Pl ) (105)
4(9) 4(9) 4(9)

The first term is readily estimated as

”fpw”%vzl(g) < ||fp,z||%2(g)
+ ||fp,m||%2(g) + ||fp7stP||%2(g) + ||fp,wpD2P||%2(g)a

since the first three addends are bounded, and the fourth is estimated
through (100). For the second term in (105) we apply proposition 1.3, to
get

1£0.sVPllwig) < cllfpsllwioIVollwr g,

and the first factor can be estimated as f,, above, while the second is
less than u by (100). For the third term in (105) we apply the mean value
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theorem:
2 112 2 112 dz
1fonD Pllwigy Scrlw) +¢ | |fopA-:D p”LZ(Q)W
i<
2 2 dz
tc |D prPvP(gz)(ZaA—zpaA—zvp)HL?(g)W:

lzI<1

for some uniformly bounded function £,. Since f,, is bounded, the first
integral is less than cf(u)||p||w2z+z(g). Moreover, by proposition 1.3,

J L AR NN PR =
[z|<1
2 2 dz
<erl) [ D01z + A+ AV irm
|z|<1
< WID g (14 [ 18l i)
5(9) IWI=H©) |2+
[z|<1

The last integral is bounded by ||p]| and using (100), we obtain a

%/Vzl+2(g) )
bound depending only on f and p. Taking the supremum in ¢ < T gives
(104).

One can proceed in the same way for the time derivative, to obtain

sup [1£oll <cr(w). (106)

wi o)
To provide an example, suppose f, = f(Vp), and let us prove

< cr(p),

sgp I foo Vol

L1
w2 *(0,7)

which is the higher order term. We have
\v4 2
1 fo.p P,t||W2% %(O,T)
T
dh 2 2
<2 Pz ”meA*hvp,tHL?(O,T) + vaiAfhwaHL?(O,T);
0
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and the first term in the integral is bounded by ¢y () indipendently of €
G due to (102). For the second one, by the mean value theorem and (102)

T T

dh . dh .
/EHVP,AMMHE(O,T) < Cf/hz?||VPmepp(ﬁh)AwVP||iz(o,T)
0 0

T

dh .
[ 18l

%(O,T) J h= W, (0,7)

cr(mVoel?

N~

1
2

T
dh
< er(u) / S |0l + 1AVl
0

< cr(w)(|IVel?

1_1 1_1
w2~ 1(0,T) w2 %(0,T)

Now we can apply proposition 1.3, noting that

T
10006y = / o6z ) < sup 1By v / 912z o) dt

1090, / 1520 oy <SR ILI 5 / 190, 0

and thus (104) and (106) for f = f, justify the claim of the lemma. O

Remark 6.3. We will estimate also functions of the form f(z,p*(z,t),
Vp*(z,t)) for ¢ € Qp. The proof of (106) and (104) carries over in this
case, using the fact that any norm of p* on Qy is bounded by the same
norm of p on G. For the final step, we recall that 1 +1 > % and thus
Proposition 1.3 still applies.

From now on ¢ will denote a constant depending on pu, the base state
of the system (€, vy, pp) and a finite set of functions f = f(x, s, p), which
can change from line to line but will be anyway denoted by ¢. Moreover,
f, will denote a smooth function evaluated at (z, p, Vp).

Estimate of ||lo + l1||Kl(QT).

We will describe the estimates of the higher order terms in (26), since
the other ones follow with easier arguments. For the VV2 %(Q7) norm one
can simply use (100) and the algebra property (9) with s =1+ 1 > 3,
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toghether with Remark 6.3 to get rid of the nonlinear factors on all the
following terms:

*2 * sk * * * % * sk * k * k *
P P p7wi7 p7$ipy-7?j’ P p7t7 P p7wi,1;j7 pyq;iu7wj7 p,q;iu”q;jq;m7 p7wiq,$]"

For example,
1£0P%; P00y < < esup IVl o ot lwrogqp < cllolli,

k, h

and similarly for the other ones. For the term u"u’, , we use standard

restriction estimates on u¥ instead of (100), and for p%u®, = we have

6wz @) < €532 el Velwzogy) < cltulrssqon el

€
and similarly result for pfmz]_uf“zh. Now we estimate the VV2O’2 (Q7) norm.
All the terms
P2 0N Pl PP p*p*w,wj,

* k * k *
p,a:iu,.zj? p7]}iu,.1)]‘.1)m7 p,ziqﬂﬂja pt 7w3

are estimated as before through (9) with s = L + 1 >
example,

and (102). For

1
2

v
wobiom S ORIl b ) IVl 0t )

< esup ol

||pt , T

wi ||u||Kz(QT) < CHP”ZH“HK’(QT)'

(0,7)

For the term w"u”, one uses (103) instead of (102), and it remains to

estimate p*, . u . . Let us focus on the higer order term. Since
JEi T s Tm

T T
* 2
et o / h/ iyt ) e

T T
<e / . / N N S o NI S s
0 h
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we split the estimate into two parts. By Proposition 1.3, we have
T

W / 1672, At [

T T
dh
S e T PP P
0 h

2
T
2
< sl ) [ 755 / I8t [y + 18-Vt e,
0

2
< sup lpllyze ) IIUIIKuz(QT);

since % — 1 < 1. To estimate the other term, we consider extensions of w,

p and @ (still denoted with the same symbols) to the whole R?, R? and R
respectively, with controlled K2, K'*5/2 and C'*°-norms, respectively.
Holder inequality for mixed norms gives
||uy$mA7hp:k$i$j ”%2(]1%3) < e |70, 2(R3) ||A P, x; 1700 100 (R3)
< clug, ||LP>P>2(R3)||A*hpy$iEj ||L‘1(R2)7

where 1/p+1/¢g =1 and

| fllLewee) = | fllL2(des;Le (dedes))s

[ fllLaaoo sy = ||| Loo(des;La(de des))-

The anisotropic Sobolev embedding theorem ensures that, given p =
(p1,...,pN) With p; > 1, i =1,...,N, it holds

N
1 N
smN P(mN H _ >
Wi (RN) < LPRY) i s+ )~ > T

Chosing p in such a way that
I+ 2 + 1 3
p 2 2

we get p > 1 and for the corresponding ¢ the relation (1 —1) +2/q = 1.
Therefore, being 6 € C*°, we obtain

.z, ||%P-P-2(R3) ||A7h/pj‘€13iilij ||%q-q>°°(]R3) clluq,, ||Wl () [A—rpe;e; ||%;V2171(g)7
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which yields

T
/ /|u.rm by [

T
dh .
/ it [ IO o g 1A 0 s g
0 h

Scsu pIIuIIWz+1 ol 5y < cllullisaullPll i g,

by (14) and noting that 3 < 2 + 1.

Estimates of ||l2(u, p)||Wz+1 0(Qp) and IG (u, p)|| WA (on

Note that [ (cf. (30)) is a linear combination of terms of the form p*,,

T

wa
and p*uf“xi and thus its Wé“ O(QT) norm is estimated as before through
(9) and (100) For the time derivative of G, also given in (30), notice that

its VV2 (QT) can also be estlmated through (9) and (102), Therefore it

suffice to estimate the VV2 '3 (Qr) of its time derivative, i.e.,
(Vo -u)es + (Vp-uy)es — 0 (pru+ puy).
To this end notice that, applying (103), one gets

Vph -u i <csupl|lull 1.1
IV IIW;.2(QT) QFII ||W22+‘1*([07T])” Vol o4 ()

< cllull gz ot k1 (ar) < c||u||Kl+2(QT)||p||l7
since £ + 4 > 1. Furthermore, by (102),

||Vp*u,t||W;,%(QT) < CSlglp (lellwz o, + 1Vellwa o,y 1.l

1
W20' 2(Qr)

<c u L .
X ”leH ||W20 é+1(QT)

The same estimates holds for the terms in p;u and pu,, and thus we

obtain

200, ) g,y + 1G 0 Ao g < el s

Estimate of ||l3||KlJr ()
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Since [ + 1 > 1, all the terms in (35) are estimated in W, L+4.0 (Gr)
through the algebra property (10), (100) and standard restiction theorem
for Sobolev—Slobodetskii spaces. For example,
< cfplli-

[P.20P wie; fupllwllwwl(g)ﬂpll

witE () % (Gr)

11
Similarly one can proceed for the W20 EAE

(102) on the terms containing p or p ;.

. l 1 1 . . .
,since 5+ 7 > 3, this time using

Estimate of ||l4||K,+%(GT).

The explicit form of I4 is given in (20). For the spatial derivative, we
use (10) and find that

Vo -
Vo “||W;+%(g)

C(||VP||W25+%(Q)||U||W2:+% o FITP e Tl (g)),

since ! + % > 1. Now (100) and the standard restriction estimates for
anisotropic Sobolev—Slobodetskii spaces imply

Vo -ul z+—0(G)

c| su 3 u 3 + sup ||u )
(suploll o g ol g+ sup ol ey ol rvo

< c||p||Kl+%(GT)||u||Kl+2(QT)'
For the time derivative, we use (102) and deduce the estimate

Vp- 3
Vo ul oot

esup |Vl g Tl

A
< <c u
< Gn S lollllwll kitz(gr)s
which is the last estimate needed for the proof of 6.1.

Finally, we prove a continuity estimate for the nonlinear terms.
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Theorem 6.4. Let | € (3,1), and ||plli, |p'li < p such that (99) holds.
There ezists c(u), bounded for bounded p, such that

o (e, p) = lo(w’, )l k1 (@u) + 11 (s s p) — Li(s P p) | k1 ()

/ / / /
+ ||l2(u7p) - l2(u P )||W2l+1'0(QT) + ||G(u7p) - G('LL ' P )||W20 é+1(QT)

!/ / / /
+ ||l3(u7p) - l3(u P )||Kl+%(GT) + ||l4(u7p) - l4(u P )||Kl+%(GT)
< c)(l(w,p,p)llr + (w0 ) i)l (w = w'sp =1, p = )7

Proof. This is a consequence of the structure of the nonlinear terms: as
noted in the previous estimates, each nonlinear term is a linear combina-
tions of products of the form

hpTF(’U/, vu; PPt vp; v2p7p7 vp):
where 7 stands for a monomial of total degree at least 1 in a certain subset
of the arguments. Therefore, except for the term h,, each of these terms is
separately linear in its arguments, and can be estimated as above, provided
one can prove an estimate of the form

1y = Bl iy < en@lio = 0119l o ny

(107)
1y = Bo)gllyor gy < cn()llo = 'l gl o o,

(similar estimates can be obtained for p* on Qr), with n < 1+ and n’
Indeed, it suffices to split the difference of the products using the algebralc
formula

Y o — My = Zyl Yi-1(Ti — Yi)Tipr TN,

and exploit estimates (107) for the terms containing the differences of the
nonlinear terms h’s. The particular structure of the various products =
(for example, being of degree at most one in u and Vu) ensures that the
estimates of the previous proof carry over in this case. To prove (107), we
notice that, as in the proof of Lemma 6.2, it suffices to show that

sup 1hp = b gz gy < en(m)llp =o'l (108)

sup ho = hpllwa o,y < ca(@)llp = plli- (109)

(this also implies estimates of the form (107) involving p* on Qr; see
Remark 6.3). We sketch the proof of these two estimate, supposing for
simplicity that h = h(Vp), which is the higher order term. Smoothness
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of h, together with (101), means that h(Vp) is Lipschitz continuous w.r.t.
Vp in C° and the inequality

sup [A(Vp) — h(Vp")| < sen(p) sup| Vo — Vlllp - Pl (110)

holds. Thus, it remains to estimate the norm
1h,5(VP)D?p = 1, (V') D?p|lyw1(g)
< Nhp(Vp) — o (VO)Dpllws gy + Ihp(V6)D* (0~ p)llwyc)-

The second term in the right-hand side is treated through Lemma 6.2 and
(100), while for the first one we apply Proposition 1.3, point 2 and obtain

1R 5 (VP)=hp (V")) D? pllwi )
< ep|hp(Vp) = hp(VP)lwpg) + Sup (V) = hp (V).

Property (110) takes care of the second term and the L? part of the first
norm. Therefore, it remains to estimate h_,(Vp)D?p —h ,(Vp')D?p in L2,
which can be splitted as before. Thus,

1h.p(Vp)D? p=h (V') D?pl| L2(g)
<l = ollwz) + sup Ihp(Vp) = hp(VO)llpllwz (o)

Applying once again (110) proves (108). To prove of (109) it suffice again
to estimate h ,(Vp)Vp,—h ,(Vp')Vp/, in L?, which can be done as before:

1hp(VP)V i —h (Vo )Vl L2 (0,1)

[(hp(Vp) — h,p(vp/))vp,t”Lz(mT) + ||h,p(vﬂl)v(/7,t - p:t)||L2(07T)

W Ule = P'1IVelwz 0,0y + 11V (e = P)llwio.1)

cn()llp = p'lli- O

Ch

NN N

§7. THE ABSTRACT LINEARIZATION PRINCIPLE

In this section, we prove Theorem 1.1. Thus (v, py, ¢s) is a fixed smooth,
stationary solution of problem (1), which is supposed to be linearly expo-
nentially stable.

Proof of Theorem 1.1. We construct the solution as a sum

(w,p,p) = (w1 + uz,p1 + p2, p1 + p2),
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where (u1,p1,p1) is a solution of (5) for some initial data wi|;—o:= u?,
p1lt=0= po, and (us, P2, p2) solves a nonlinear problem with initial data
s | t=0= wo — u?, pa|t=o= 0. We split the proof into three steps.

Step 1: construction of (uj,p1, p1).
We start by constructing wy. We solve the problem

V - wo = l2(uo, po) in  (y,
VI, D(wo) N = Ipl3(uwg, po) on G, (111)
wo =0 on X,

and use the estimate
lewolly g1 0y < (20, p)llwyiay + s o, o)l -3 )-

Recall that I3(u, p) is a linear combination of terms of the form p} u® and
p*ug’gi, and, therefore, Proposition 1.3 yields the estimate
Itz (a0, 0)lwzceny < ellpollyiveey latoll it -

For the term I3, one has to consider addends of the following kind:
p,xiufczj hp: Pz;P,z; hp: or  pp g, hp-
As in the proof of Lemma 6.2 for p = py, we obtain

113 (o, o)l -

Wb S c(||p0|lw2l+%

(g)||u0||W2l+l(Qb) + ||/’0||iv2z+%(g))'

Finally, we deduce the estimate

2
lollwz+1ay) < ¢(Ioollwireg) + lollwira, ) > (112)
and define the quantity

Uo = llpollrvz gy + lluollyi+r (g, )

supposing it is sufficiently small, in a sense to be specified later. Now,
since (ug, po) satisfies (19), it is clear that the couple (u?, pp), where uf =
up — Wy, satisfies the compatibility conditions (6) for the homogeneous
linear problem (5). We will then let (w1,p1,p1) be solution of (5) with

such initial data. The stability hypothesis gives for v > 0and 7" > 1

||(U1;p1;/’1)||l,oo < ||evt(U1,p1,P1)||l7oo

(113)
< cllullypess + lpollypizg)) < erl,
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and by standard restriction estimates for unbounded intervals

T (s (3T sy + 01 T s )

t (114)
< e (wr, p1y p1) 1,00 < U,

with a constant ¢; > 1 independent of T > 1.

Step 2: construction of (us,ps, p2).
We seek for a solution of the nonlinear problem

uzt — VAU + Va2 — 1 (u2, p2) = (lo+11) (w1 +u2, 142, p1 + p2)  in Qp,
V-ug — $a(p2) = (w1 + w2, p1 + p2) =V - G(ur +uz, p1 + p2) in Qp,
T(uz, )N — ®3(p2) = ls(u1 + w2, p1 + p2) on G,
P+ Vy - us —ud + Vps vy = la(ur + uz, p1 + p2) on G,
u2 =0 on X, forallt >0,

uz(z,0) = wo(z), forz €y, p2(z/,0)=0 forz’ €.

(115)
We apply the standard iteration scheme, defining a sequence of solutions
of linear problems and consider an extension vq for ¢ > 0 of wg such that

[voll g2y < cllwollyyiq,) < UG-

We start with the triple (vg,0,0), assuming that c3U? < 1. Then, we

define (vp41,Pn+1,Pn+1) as the solution to problem (36) with the right-
hand sides

Froi=Uo+ 1) (w1 +Vn,q1 + Gn,p1 + pn)s By i=la(wr + wup, p1 + pn),

dp = ls(ur + un, p1 + pn),  gn = la(wr + Un, 1+ p),

and initial data v,4+1(0) = wo and pp+1(0) = 0 (notice that (31) holds
at each stage). For this problem, the compatibility conditions (91) are
satisfied at each stage by (111). The coercive estimate (92), together with
Theorems 6.1, (112), and (113), yields

I (Vn+1,Gnr1, pnsa) T
< ere(w)([(0ns @, pu) 7 + | (s, 1, p2) 7 + UG)
< e, T) ([ (s ans po) I + UG)
if
max{||(vn, Gn, pr)ll1, 7, [[(wr, pr, p1) 7} < s (116)



96 S. J. N. MOSCONI, V. A. SOLONNIKOV

for p satisfying (99). We fix u = p(fd) < 1 so that (99) holds, set
c2(1,T) = c2(T) supposing ca(T) > max{u~!,c1,c3}, then Uy so small
that

Up < ! =:¢(T) < L

* S 8eeo(T) = 8ey(T)

With such Uy, one can prove by induction that (116) holds. More precisely,

2CZ(T)U5 2 U()

Un,4qn, Pn s < <2CTU <—

o tuspolir € s <20 <

It remains to prove that (v, ¢n, pn) strongly converges to a solution of
(115). To this end, consider

(117)

< p. (118)

(ﬁnai)\naﬁn) = (’UnJrl — Un,Pn+1 — Pns Pnt+1 — pn)

They satisfy a linear system of the type (36) with the right-hand sides
defined by the relations

Foi= o+ 1) (ur +v0,q1 + Gn, p1 + pn)
—(lo + 1) (w1 +Vp1,q1 + Gn1,p1 + pn-1),
hn = la(u1 + Up, p1 + pn) — lo(U1 + Up—1,p1 + Pr—1)
=V G(u1 +up, p1 + pn),
dp = U3(u1 + un, p1 + pp) = L3(ur + tn1, pr + pu-),
gn = la(ur + un, p1 + pn) — la(ur + Up—1,p1 + pn—1),

and zero initial data. We can assume that the constant in Theorem 6.4 is
equal to ¢ (T'). Hence, from (92), (113), (117), and (118), and Theorem 6.4,
we obtain

| @nt1, Pt 1, Prr) e < (1) (| (Wng1, Prsts prsa) T
+ | (Wn, P, o) 1,7 + 21| (wr, o1, p0) |6,7) | @y Py P 1,7

|
< 5”('Umpnapn)||l,T7

This in turn gives strong convergence of the sequence (¥, pn,pn)- By
Theorem 6.4, the nonlinear terms converge too, and, thus, the limit solves
(115). Clearly (118) holds for the solution.

Step 3: construction of the global solution.
We chose Ty so large that cie™7% < { in (113), then choose g := (1)
as in (117). If Uy < g9 we have a global solution in [0, Tp] of (18) defined



THE LINEARIZATION PRINCIPLE 97

as the sum (u,p, p) ;= (u1 + w2, p1 + p2, p1 + p2). From (114) and (118),
we obtain

||“(T0)||w21+1(9b) + ||P(T0)||w21+2(g) < lw (T0)||w21+1(9,,)

+ o1 (TO)”WZH?(Q) + ||u2(T0)||W21+1(Q,,) + ||p2(T0)||W21+2(g)
U U U €
<224 ci (w2, p2, p2)|li,r < =24 2c162(To)UG < 22
4 4 2 2
Setting Uy = ||U(T0)||W2’+1(Q,,) + ||p(T0)||W2z+z(g), we see that (117) holds
for Uy with 1 = €¢/2, and we can solve system (18) in [Ty, 27p] with the
same procedure, as above, and initial data w(7p), p(To). Proceeding in this
way, we obtain a global solution (u, p, p), which satisfies

Uo
Uk == ||U(kT0)||W2’+1(Q,,) + ||p(kT0)||W2’+2(g) < ok

If between kT, and (k+1)T}, we denote the solution of the linear system as
(ugk);pgk)mgk)) and the solution of the nonlinear one as (U;k);pgk);/’;k));
then (114) and (118) hold with Uy, at each step. We have

k k k k k k
1@, 0, 0 iz ks nymony + @S 08 o8 e ks 1201

Uy U
< U+ 7 < c2—,?.
Since Tp is bounded away from zero we can split the norms over [0, +00) as
a sum of the norms over [kTy, (k+ 1)T)), and from the previous inequality
and

ce” T (

€7 (w, p, )| twt, (1T, (k1) To]} < U, D, P) || twi, (kT (k+1) T} 5

we get (8) for 0 < 7' < log2/Tp. The fact that [ pda’ = 0 for all times
b
follows from the fact that [ pdz’ is a motion’s integral, as noted after (19).

b
(]

§8. EXPONENTIAL STABILITY OF THE REST STATE

In this section, we prove Theorem 1.2. We apply the linearization prin-
ciple to obtain nonlinear stability of the rest state v, = 0 in a layer of fluid
defined by ¢, = h for some h > 0, subjected to a potential force f = VV
and an external pressure p. defined in {x3 > 0}. In order for the layer of
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fluid at rest to be a stationary solution, the pressure p, must satisfy
Vp, =VV in Q,
Py = De on G:={x3=h},

and thus it must hold V = p, + ¢ on G for some constant c. In this case, in
view of (23), (29), and (34), the corresponding linearized problem for the
pertubation has the form

ur—VvAu+Vq—Vp'pprs — f ,,p" =0 inQ,

V-u=0 in Qp,

T(w,q)N — 0 A’pN + pe z,pIN =0 on G,

pr—u>=0 on G,

u=20 on X forallt>0,
u(z,0) = uo(x), pa’,0) = po(z’), forz ey, 2’ €Xx,

(119)
where N = e3, with the compatibility conditions

V-ug =0, II;D(ug) =0, /pds =0.
»
Notice that since f = VV = Vpy in Qp,

Vo Pozs + F asp™ = V(0 Pbzs)-

Let J be the set of Y-periodic, square summable solenoidal vector fields
with zero normal component on ¥. More precisely, letting L?(Q4) be the
set of Y-periodic vector fields on the X periodic extension 4 of €, we
have

J = {v € L (Qy) : /v -Vndz =0, Vn € W) (Qg) s.t. nlg= 0}.
Qp

We denote by P the orthogonal projection of L?*(Q4) onto J. Given a
periodic vector field w, it can be splitted as w = Pw + (I — P)w, where
(I — P)w = Vi, and ¢y, is the periodic weak solution to

Apy =V -w in Q,

Yw =0 on G, (120)

Bow — g3 on X.
T3
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The operator P is continuous in W' (£2), n > 0. Projecting the first equa-
tion of (119) onto J gives

us—vPAu+Vyx =0,

where, using (120), x is a X-periodic function such that

Ax =0 in  Qp,
X =vN -D(u)N — ocA'p+ p(Pe,as — Pbzs) On G,
g_;; - on X.

It can be splitted as x = xu + X,, Where x,, and x, are two ¥-periodic
harmonic functions with vanishing normal derivative on ¥ and

Xulg=N -Du)N, Xx,lg=—0Ap+ (Pe — Pb),25p-
We then define a linear operator A : D(A) C X — X on the Hilbert space,

X =Jx {pELZ(E):/pds:O}
b
equipped with the norm

1
I pllx = (lellfe@,) + lolEes))
and corresponding standard inner product. We let A = (A;;); j=1,2, where
Aii(u) =vPAU — Vxu, Ai2(p) =—-Vx,, An= u®,  Agy =0.
The linear operator A will have domain D(A) defined as

D(A) == X 1 {u € W2(Q) : uls= IL,D(u)N|g= 0} x Wi (Z),

which is a Banach space w.r.t. the norm

1
2
2 2
It oy = (Ielfzian ol 5 )
A resolvent estimate for A where Re ) is sufficiently large has been proved
in Theorem 4.4 (for I = 0), and this gives that A — A is coercive (and
thus closed) for Re A sufficiently large. Thus, A is closed and since D(.A)
is compactly embedded in X, its spectrum consists of a countable number
of eigenvalues with the only accumulation point at —oo.
We can look at problem (119) as the evolutionary problem

U,t - AU = 07 U(O) = UO = (UO:I)O):
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whose exponential stability follows from classical results once one can show
negativity of the real part of the spectrum of A. To this end, suppose
(u,p) € D(A) is a solution of the complex eigenvalue problem

A —vPAu+Vyxy=0 in ,

V-u=0 in Q,
T(u,x)N —cA’pN =0 on G,
Ap—ud=0 on g,
u=20 on X

for A € C. Multiply by u the first equation and integrate by parts to get

O—/)\|u|2 )|2d:c—u/D(u)N-uds+/Xu~Nds
g g
/)\|u|2 )|2d:c—u/D(u)N-u—N-D(u)Nu-Nds
g

— U/A’p)\p ds + )\/p2(pe,x3 — Dbes) ds

) /WFm+/}wm2<mm Doss)p? ds /m )2 de,

X

where we used the fact that w - N = Ap and II,D(u) N = 0 to cancel out
the boundary terms containing D(w). Since

B(p) := /UIV'/JI2 + (Pe,ws — Poas)p’ds >0, Vp#0, (121)
>

the spectrum is real and A < 0 for any eigenvalue of A. Assume that
0 € o(A) to obtain u =0 from the previous equality, and thus Vx, =0
from the equation. Therefore, for some ¢ € R,

—0A'p + (pe = Pv).asp = c.
Multiplying by p, integrating and using the periodicity, we find that

Bp)=c [ pas=o.

X
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since p has zero mean value, forcing p = 0 by (121). Thus,
o(A) C {Re) < 0}

and the linear problem is exponentially stable. More precisely, by standard
results (for example, see [6]), it holds

IU®)x < c()e [ Uol|x,

T
/e_wllU(t)ll%( dt < c(7)||Uoll% (122)
0

for 0 > v > sup{A: A € o(A)} with ¢(v) independent of T'. Now if (u, p, p)

solves (5), the triple e " (u,p,p) =: (u,p-, py) solves the same system

except for a forcing term —vyu, in the equation for u,; and —vyp, in the
one for p, . Applying (93) to (u~,py, py) We obtain

”67%("‘71’: p)Hl,oo < c(”uvHKl(Qoo) + HPVHK”%(GW) + ”uOHWzl“(Q,,)

+ lpollwgreg) + sl 2@ + s l2(an) )-
Using interpolation inequalities and (122), we finally obtain

||(uvap77pv)”l7oo < c(”uOHWzl“(Q,,) + ||P0||W21+2(g))7

which is (8). Applying Theorem 1.1, thus concludes the proof of the non-
linear exponential stability of the rest state, and in particular of Theo-
rem 1.2

Condition (121) has an appealing physical meaning: the term

DPe,zz — Pb,xzs = (pe - V)7w3 = (vpe - .f) -N

represents the total volume force acting on a fluid particle on the free
boundary in the direction —IV, and thus its positivity implies that volume
elements at the free boundary are subjected to a force pointing inside the
layer. More generally, the surface tension allows volume forces to point
outwards, as long as the wavelength ¢ of the perturbation is sufficiently
small compared to the capillarity. More precisely, by the explicit constant
of the Poincaré inequality for periodic functions, we obtain stability as
long as it holds the inequality

inf (pe(2', h) = V(@' 1)) s > — 75

6_2 .
For p. = patm and f = (0,0, —g), (121) is certainly satisfied, thus giving
exponential stability of the rest state in the small scale model. Stability is

(123)
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also obtained for the more refined model in which the fluid has density d;,
the gas filling {3 > h} density d» and both are subjected to a gravitational
force directed along (0,0, —1) with modulus —d;V’(z3), respectively. In
this case,

.f = (0707 _dlv/(wb‘)); De = sz(ﬂfa‘); V/ <0

and (121) holds true as long as dy > d, i.e., the gas filling {x3 > h} is less
dense than the fluid. For small wavelength ¢, the case d; < d> may also
lead to stable solutions. In this case, we need to require (123).

Finally, we consider the case in which f = (0,0, g) and pe = patm, which
models a layer of fluid on a roof. To get a meaningful stable solution, we
consider
Patm

gdy’
where h, as usual, is the height of the layer and d; is the density of the
fluid. Condition (123), which implies (121) holds as long as the wavelength

of the perturbation satisfies ¢ < ﬁ.

Pb = DPatm + gdl (333 - h), h <
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