3auCKu HayIHBIX
cemuHapos [IOMU
Tom 410, 2013 T.

V. Vialov, T. Shilkin

ESTIMATES OF SOLUTIONS TO THE PERTURBED
STOKES SYSTEM

ABSTRACT. In this paper, we derive local estimates of solutions to
the Perturbed Stokes system, which arises as a reduction of the
Stokes system near a curved part of the boundary of the domain
if a diffeomorphism flatting the boundary is applied. The estimates
obtained in the paper play the crucial role in the investigation of
partial regularity of weak solutions to the Navier—Stokes system near
a curved part of the boundary.

Dedicated to 90-th anniversary of Olga Alexandrovna

Ladyzhenskaya
§1. INTRODUCTION
Let B}, := {x € R": |z| < R,z > 0} be a half-ball in R", 2, and
assume QF = B, x (—R%,0). For any z € R, x = (21,... ,xn,l,azn) we
denote by ' € R""! the vector 2’ := (z1,...,7,_1). Denote

Spi={z eR"':|2/|<R}

and assume ¢ : Sg — R is a sufficiently smooth function. In this paper we
obtain local estimates for the following system which we call the Perturbed
Stokes system:

ow — Apv + V p =

T 7 in Q. (1.1)
Ve-v =0

Here v, f QR — R™ are vector fields, p : QR — R is a scalar functions,

A and V are the differential operators with variable coefficients defined
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via a function ¢ by formulas
ﬁg,v = AV = 20 000 + Vn|Vo|? — v, A,
ﬁw v = diVU — Ven®,a, (1.2)
Vep = Vp—pn < v(;go ) .

Here we assume summation from 1 to n—1 over repeated Greek indexes and

V'’ and A’ denote the gradient and Laplacian with respect to (z1,-..,%n_1)
variables. We will also make use of the differential operator

R /

Vv =Vo—v,® < Vo‘p ) : (1.3)

where for any a, b € R™ the symbol a ® b denotes the n x n- matrix with
components (a;b;), ¢, j =1,...,n.

In this paper we study the problem (1.1) assuming v satisfies the slip
boundary condition on the hyperplane {z, = 0}:

Vlz,=0 = 0. (1.4)

The Perturbed Stokes system arises as a reduction of the usual Stokes
system in a domain near a point belonging to the curved part of the bound-

ary if the latter is a graph of ¢. Let (u, g, f) satisfy the Stokes system in
Qg X (_R27 0)7

Ou—Au+Vg = f
{ AUV =T o (CR2,0). (1.5)
divu=0
We assume that
Qp = {yGR”:Iy’|<R, o) <yn <o@y) +VR2—|y'? }

where ¢ is a certain appropriate coordinate system and impose the slip
boundary condition on u:

U’|wn=kp($') =0. (16)

In this paper, we assume that ¢ is of class W2, (i.e., its second derivatives
are Lipschitz continuous) and the Cartesian coordinate system is chosen
in such a way that the following relations hold:

p(0)=0,  Ve(0)=0, lelwszsa <p (L.7)
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Now we apply the diffeomorphism flattering the boundary. In other words,
we introduce new coordinates = 1(y) by the relations

/
:Qr — B, &= = y ) 1.8
(0 R — Dp 1!’(1/) <yn—<p(y’) ( )
yeOr <+ z€BE.
and denote
vi=uoth L, p=qotp L.

Then, for z = 1(y) we have relations

~ ~ ~

Vq(y) = Vep(x), Auly) = Apv(z), divu(y) = (Ve v)(z).

Hence, the Stokes system (1.5), (1.6) in Qg x (—R?,0) in y-variables trans-
fers to the Perturbed Stokes system (1.1), (1.4) in @7, in z-variables.

Now we need to introduce some functional spaces: assume 1 < s,l <
+00. Assume Q C R”, Qr = 2 x (0,T) and let Ly ;(Q7) be the anisotropic
Lebesgue space equipped with the norm

T
ostan = ( / ( / Fapar) )"

/]

and denote

W (Qr) = Li(0,T; WHS)) = { u € Loy(Qr) : Vu € Ly(Qr) },
W2HQT) = {ue W(Qr) : Vu, dwu € Loyi(Qr) }-

These spaces are equiped with the following norms:

lullwio@r) = lelle. @ + IVullz, w@r),

w2 (@r) = lulwro@r + IV ullL. @) + 10etllL, y@r)-
We also denote by W, () the conjugate space to W1, () equipped with

the norm

IFlwsr@y = sup [(f, w)]
wEWi,(Q), HwHW:, (Q)gl
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and denote by L;(0,7;W,;(Q)) the space of measurable functions
f:[0,T] — W, 1(Q) such that the following norm is finite:

L l 11
iz on = ([ 17601y )"
0

Definition 1.1. Assume that 1 < s,l < 400 and f € Ly (QF). We say
that the functions (v, p) are the strong solution of the problem (1.1), (1.4),
if they belong to the spaces

veWZNQR), peW @),

satisfy the equations (1.1) a.e. in Qg, and satisfy the boundary condi-
tions (1.4) in the sense of traces.

Definition 1.2. Assume 1 < 5,1 < +oo and f € Li(—R?,0; W, 1(B})).
We say that the functions (v,p) are the generalized solution of the problem
(1.1), (1.4), if they belong to the spaces

veW (QR),  peLa@Qf)

(v, p) satisfy (1.1) in the sense of distributions and v satisfies the boundary
condition (1.4) in the sense of traces.

Note that though ﬁw and ﬁcp are the operators with variable coeffi-
cients, the function ¢ is independent of z,, and thus these operators possess
the properties

/ﬁwv wdr =— @wvzﬁwwdx—/v-ﬁwwdw,
B By By
/pr-wdxz—/pvg, w dz
By B

for any v € W2(B%), p € WH(BE), w € C§°(By,). Hence, for the equa-
tions (1.1) with variable coefficients there it is easy to define solutions “in
the sense of distributions” in the usual way (similar to PDEs with constant
coefficients) by putting all differential operators ﬁw and §w on a smooth

test function.
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Also, we note that if (v,p) is a generalized solution to (1.1), then the
following identity holds in D'(Q}) (i.e., in the sense of distributions):

Ov = f + div (VU —p]I)
/

n a%n( — 00 + V0| Vp® - UA'@H’( v0<p ))

This identity implies that ;v € L;(—R?,0; W, 1(B})) and the estimate

18e0ll 1, Rz oywt (BE))
(1.9)

Ls,z(Qﬁ))

holds. In particular, it is possible to choose a representative of v such that

<C (||f||L,(—R2,o;W;1<B$>> +llvllwregz + Pl

[e]
YVweWwl(Q) t — /v(:c,t) -w(zx) dx is continuous on [—R?, 0].
BT
Hence we can assume that every generalized solution (v,p) satisfies the
integral identity

/v(:c,t)-n(x,t) dz ‘ - + /(—v - O + @vv : 6%777) dzdt

+ +
BR QR

t=0

(1.10)

0

= [ @) at+ [ 99,0 n deat
R2 Q;

for any n € C>(Q}) such that 77|8ng(732,0) =0.

In the paper, we use the following notation

e 0} is a boundary of a domain  C R".

e 0'Q} = (0B x (—R?,0)) U (B}, x {t = —R?*}).

e We assume summation from 1 to n over repeated Latin indexes
and summation from 1 to n — 1 over repeated Greek indexes.

e The indexes after comma imply the derivatives with respect to the

corresponding spatial variables.

a - b = a;b; is the scalar product of vectors a, b € R™.

e A: B = A;;B;j is the scalar product of matrices A, B € M"*".
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§2. MAIN RESULTS

In this section, we formulate four theorems which are the main results
of the present paper. At the end of this section, we give some comments
to these results.

Theorem 2.1. Assume Q C R"™ is a bounded domain with smooth bound-
ary. Assume that Q is diffeomorphic to a ball and denote Qr = Q x (0,T).
Suppose s, 1 € (1,00). There is a positive constant uy (depending on Q, T,
s, I, n) such that for any function o € W3 () which is independent on
T -variable and satisfies the condition

lellws @) < m (2.1)
and for any f and g satisfying conditions

f e Lsu(Qr), (2.2)
9 €W, (Qr), (2.3)
6tg € Ls,l(QT)a (24)
/g(:v,t) do=0, aetc0T), g(0=0,  (25)

Q

the problem

Su—Apu+Vog=f
{ t @vu _ o1=1 in Qr, ulsaxor =0, uli=o=0,
prU=9g
(2.6)
has a unique solution u € Wi’ll(QT), q€ WS{’ZO(QT), [ a(z,t) de =0, for
Q

a.e. t € (0,T) and the estimate

llws ory + 194z, @0

<c.(Ifl

1/s 1/s’

Ls.l(QT)”atg”Lz(&T;Ws_l(Q))
(2.7)

holds with some constant C, > 0 depending only on Q, T, n, s, and [.

Loa(@r) Fllgllwroor) 10k

Theorem 2.2. Assume that s, [ € (1,00), and 0 < r < R are fived. There
exists a positive constant ps (depending only onn, s, 1, v, and R) such that
if ¢ € W3 (Sg) satisfies (1.7) with p < po, then for any f € Ly (QF),
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and any strong solution v € Wi’ll(QE), pE Wslv’lO(QE) to the system (1.1),
(1.4) in QF, the following local estimate holds:

lollwzt @iy + IVPIL, o)
(2.8)

<€ (HfHLS”(QE) + HVUHLs,z(QE) + bein(Iifm,o) lp— bHLs,l(Q;)) ’

where b is a function of t-variable and the constant C' depends only on n,
s, I, r, R.

Theorem 2.3. Assume that s, [ € (1,00), and 0 < 7 < R are fized. There
exists a positive constant ps (depending only onn, s, l, r, and R) such that
if o € W3 (Sr) satisfies (1.7) with p < s, then for any f € Ly 1(QF) and
any generalized solution v € Wslv’lO(QE), pE Ls,z(QE) to the system (1.1),
(1.4) in QF, the following inclusions hold: v € Wi}l(Qj), pE Wslv’lO(fo).

Theorem 2.4. Assume that s, I, m € (1,00), m > s and 0 < r < R are
fized. There exists a positive constant ps (depending only on n, s, I, r,
m, R) such that if o € W2 (Sg) satisfies (1.7) with p < py then for any
f € L (QF) and any generalized solution v € Wf”ll (QF), pe W;’lO(QE)
to the system (1.1), (1.4) in QL we have the inclusions v € Wslll(Qj),
Vp € L 1 (Q;) and the following local estimate holds:

[wllwzt o) +I1VPL,, @)

2.9)
<C (IIfIILm,l(Qg) + ([ Vo)

Lsi(QF) + beLli(rif;Qz’O) lp — ] Ls,l(Q;))

with some constant C depending only onn, s, [, m, r, R.

Remark. The constants y; controlling the smallness of the W2 -norm of
the function ¢ in Theorems 2.2-2.4 depend on the domain (or on the
size of the half-cylinders Q; and QE). Nevertheless, for applications to
the investigation of the Stokes and the Navier—Stokes systems near the
point at the curved part of the boundary this is not a serious obstacle
(in contrast to the smoothness assumption that ¢ is of class W3,). This
fact is explained by the following scaling property of the Perturbed Stokes
system: if (v, p, f, ) satisfy (1.1) in the cylinder @}, with ¢ satisfying (1.7)
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then the functions

v¥(z,t) = Ru(Rx, R°t), p"(x,t) = R°p(Rx, R*t),
(2.10)

fB(z,t) = R®f(Rx, R*t), and o%(2) (Rz")

satisfy the Perturbed Stokes system in @ and from Taylor decomposition
of the function npR one can obtain for R <1

PO =0, VRO =0, e lwisy < wR.

Hence, we can take a canonical domain (say, QL = QF, Qf = 1/2)
and compute the constants pj = p; for these particular domains. We
emphasize that u] are constants depending only on n, s, [, and m. Then,
we consider the Stokes system (1.5), (1.6) near a point of the W3 -smooth
boundary without any restrictions on the curvature of the boundary (i.e.,
the constant g in (1.7) can be arbitrary large). After that, we choose R in
(1.5) so small that the following estimates hold:

R <l 1=2,3,4. (2.11)

Making change of variables by means of (1.8), we obtain the functions
(v,p, f,¢), which satisfy the Perturbed Stokes system (1.1), (1.4) in QE.
At this step our Perturbed Stokes system is not a small perturbation of the
usual Stokes system (i.e., so far smallness conditions of Theorems 2.2-2.4
are not satisfied). Then, we make the scaling (2.10) and obtain functions
(B pf fE& pf), which satisfy the Perturbed Stokes system in Q* and
also satisfy the smallness assumptions (2.11). Thus, we can apply results
of Theorems 2.2-2.4 to the functions (v, pf, ff ©f) and recover infor-
mation about the original functions (v, p).

It is worth appending some comments to Theorems 2.1-Theorem 2.4.

Theorem 2.1 in the case of the Stokes system (i.e. for ¢ = 0) was proved
in [2]. The generalization in the case of a “small perturbation” of the Stokes
system is quite obvious. The proof is presented in Section 3.

Theorem 2.2 presents a local estimate for strong solutions to the Per-
turbed Stokes system. In the case of the usual Stokes system near a plane
part of the boundary, such estimates were originally proved in [3]. In [7],
the same estimates were proved for solutions to the Stokes system near
curved part of the boundary. In our approach, Theorem 2.2 follows from
Theorem 2.1 by arguments presented in [2]. We reproduce these arguments
in Section 4 just for the sake of completeness.
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In Theorem 2.3, we prove that any generalized solution is actually a
strong one. In the case of the Stokes system, this result originally was
proved in [5]. In Section 5 we deduce a similar result for the Perturbed
Stokes system with the help of a new approach based on the estimates
obtained in Theorem 2.1. Probably this section contains main novelty of
the present paper.

Finally, in Section 6 we obtain improved local estimate of solution to
the Perturbed Stokes system. The estimate in Theorem 2.4 turns out to be
the crucial step in investigation of boundary regularity of solutions to the
nonlinear Navier—Stokes system, see [4] and [6]. For the Stokes system this
estimate was originally obtained in [3] in the case of plane boundary, and
after that in [7] in the case of curved boundary. In our approach, we obtain
the corresponding estimate for solutions to the Perturbed Stokes system
(under certain conditions that guarantee smallness of the “perturbation”)
as a direct consequence of our Theorems 2.3 and 2.2.

§3. PROOF OF THEOREM 2.1

We derive Theorem 2.1 with help of the following result.

Theorem 3.1. Assume that s, | € (1,00), @ijri, bijk, Cij, dij € Loo(QT)
and consider the problem

Oyw; — QijkmWj km + bijrwjk + cijw; + dijq; = fi, in Q
divw = 0, T (3.1)
W)= = 0, wloax (0,1) = 0.

There exists a constant po > 0 (depending on Q, T, s, I, n) such that if
the coefficients a;jii, biji, Cij, dij satisfy the estimate

sup. ( [aijim (2) =010k |+ dis (2) =05 | +[bisi () +le (2)] ) < o, (3:2)
ZEQT

for all i,j,k,m = 1,...,n, then for any f satisfying conditions (2.2) the
problem (3.1) has the unique solution w € Wi’ll(QT), q € W;’lO(QT),
Jqdz =0 ae t e, and the estimate

Q

”wHWi'll(QT) + ||‘I||w51)-10(QT) < Cflle, i@ (3.3)

holds with some constant C > 0 depending only on Q, T, n, s, [.
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Proof of Theorem 3.1. Let
H = { (w,q) € Wi’ll (Qr) x WS{’ZO(QT) : divw =0 ae. in Qr,

wlsax(0,1) = 0, wlt=o0 =0, /q dr =0ae.t€(0,7) }
Q

denote the Banach space equipped with the norm
”(wa‘J)”H = ”wHWf)'ll(QT) + HqHW:)‘,O(QT)'

For any f € Ls;(Qr) denote by (w,q) € H the unique strong solution to
the Stokes system:

Ow — Aw + Vq = f,
divw = 0, (3.4)
wli=o = 0, wlaqx(0,1) = 0,
and consider the bijective operator
Ao H — Ley(Qr),  Ao(w,q) == f.

Then, we know (see [8], Theorem 1.1) that there is a positive constant C,
such that

Co l(w, @l < [ Ao(w,9)lz. .@r)

for any (w,q) € H. Hence, the linear operator 4y is invertible and its
inverse operator is bounded from L, ;(Qr) to H.
Consider the operator

Al tH— Ls,l(QT)

determined by the system (3.1). The system (3.1) can be reduced to the
system (3.4) with the right-hand side f, where

fi = fi + (aijrr — 6150k wj gt — bijrwi g — cijw; — (dij — 0i)q.5,
and due to conditions (3.2)

1F = Fllz. i@r) < Choll(w, q)llr, (3.5)
Then for every f € L;;(Q7) we have

(A1 — Ag) Ayt f

L. (Qr) — ||}-V_ f|

L, (Qr)

C
< Opoll(w, )l < 2111

L, 1(Qr)-
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Choosing po < g—(’; we obtain

1
L, (Qr)—Ls1(Qr) < 5

(AL — Ag) Ay

and hence there exists A, ' : Ls ;(Qr) — H which is a bounded operator.
Theorem 3.1 is proved. (I

Proof of Theorem 2.1. Let L, = V1, where ¢ is introduced in (1.8).
Note that L, is a smooth matrix and it is non-degenerate. Denote
w := L,u. Then

ﬁcp cu = divw ae.in Qp
and the system (2.6) can be reduced to the form
Bpw — LwAw(Lglw) +LoVor = Lof O
divw = g (3.6)
W)= = 0, wlsox 0,1y = 0.
Note that this is a system of type (3.1) but with non-zero divergence.
The coefficients aijxm, biji, cij, dij arising in this system depend on the
derivatives of ¢ of the first, second and third orders, due to the condition
(2.1) they are bounded and satisfy the conditions (3.2).
Using the result of paper [2] (see section 4, estimate (4.1) in the cited
paper) we can find a function W € Wi’ll(QT) such that
diviV = g ae.in Qr,
Wlaax(o,r) =0, Wli=o =0,

1 1/s

IWlwzi0n < C(lsllwro@e + 1091 0 1001y 5 iy )-
Then we consider the problem

00 — LA, (L5 D) + L,V0q = |

divw = 0

’[E|t:0 = 07 ﬁ|8Q><(O,T) = 07
f= Lof- (8tW - Lw&p(L;lWD € Loi(Qr),

which has the unique solution (w, q) € Wf”ll(QT) X W;’lO(QT) due to The-
orem 3.1. Now we take w := w + W and see that (w,q) € Wz’ll(QT) X

in Qr,



16 V. VIALOV, T. SHILKIN

Wslv’lO(QT) satisfy all equations in (3.6). The uniqueness of this solution
follows from Theorem 3.1, and the estimate

||w||Wf’~ll(QT) + ”qHWsl,’zO(QT)
<c(ls)

1/s 1/s’
st + gl + 1013 o 10081 )

follows from the corresponding estimates of w and W. From this estimate
taking into account u = L;lw and W3 -smoothness of ¢ we obtain (2.7).
Note that only here we need W2 -smoothness for the function . Theo-
rem 2.1 is proved. O

§4. PROOF OF THEOREM 2.2

The estimate (2.8) follows from (2.7) by the arguments used in [2]. We
reproduce this proof here just for the sake of completeness. Within this
section C' denotes different positive constants which depend only on n, 7,
R, s, 1.

Take arbitrary p;, p2 such that

1
r<p1<P2<R—1—O(R—r).

Consider a cut-off function ¢ € C§°(QF,) such that
0<¢<1lin Qf, ¢(=1in Qf, ¢(=0in QE\Q},

c
vk <77
IVl 0t) < G

C C
10Cllzciomy < 5 10Clewion < =

k=1,2,

Let (v, p) be a solution to the system (1.1), (1.4). Fix arbitrary function b €

Li(—R?,0) of t-variable and denote p := p — b. Let Q2 be a smooth domain

such that BE—L(R—T) C Q C B, Consider functions u := (v, ¢ := (p.
10

Then (u, ¢) is a solution to the initial-boundary problem of type (2.6), but
in domain © x (—R?,0) instead of Q x (0,T) and with “right hand sides”
f, g in (2.6) equal to f, g, where

F=Cf 400 — A0 —2(Vou)Vol + Vel §=v- V(.
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Applying the estimate (2.7) to the functions (u,q, f,§) and taking into
account that ( =1 on qu > C, we obtain

p2— P1

C
S B S =|| S
Izt < WA iom + gy (Plivzpiay * 171, o)

+0(Iv@- V015 o)
+ 18w Vi)l
Taking into account the estimates
~ s C
||V(’U : VVJC)HLSJ(Q;) <

ol o
(o2 — 2 Wil

Los@i IO v%"C”L( R2,0;W (B,t)))'

c
190090l 0 < G (1001, g,y *+ 101, )
||8t( )HLl( R2,0;WS (B+))
¢ s—1 s—1
<W(n@vn oty + 1015 or) )
we find that
”UHS 2, 1(Q+ < C”f”sLs‘l(Qﬂ
+L(nvns 1B, o, + )
(p2 — prze \widedy TP, of) T 1L, (k2 0wt 81)
c -
oy 100, i (10015 s gy + 1915 o))

(4.1)
Estimating the last term in the right-hand side of (4.1) via the Young
inequality ab < €a® + Csbs, we obtain

c
55 101

oo 100, (191 e s sy + 1915 o)

C.

(p2 — p1)*s¥
where the constant € > 0 can be chosen arbitrary small. Therefore,

<C|fIl5. +elldwl, )

6”athL Q+ ) + (Hatv”il(fRZ,O;Ws_l(B;)) + ”,UHSLSJ(Q;)>7
[[v

C:.
+ 2ss’
(p2 — p1)

||W2 QM) Q%)

= s
(”UH;V:)'ZO(Q;) + ”p”isz(Q;) + ||8tv||Ll(7R2,0;WS_1(B$)))7
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and by virtue of (1.9) we arrive at the estimate

s s
lellivzs ) < el0llz, oz,
C. . s o (4.2)
o (P A Ay B
Let us introduce the monotone function ¥(p) := ||v||;v2,1(Q+), and the
s, P

constant

J— S s NIE]
A= (115, gy + Ioliynn gy + 1713, o)) -
The inequality (4.2) implies that
U(p1) <e¥(p2) + ﬁ, Vo1, p2: Ry <p1<pz <Ry, (4.3)

for a = 2ss’ and for Ry =r, Ry = R — 15(R — r). Now we shall take an

advantage of the following lemma (which can be easily proved by iterations
if one takes py := Ry — 27F(Ry — Ry)):

Lemma 4.1. Assume V¥ is a nondecreasing bounded function which sat-
isfies the inequality (4.3) for some a >0, A >0, and ¢ € (0,27%). Then
there exists a constant B depending only on € and a such that

BA

S =y

Fixing ¢ = 2745 in (4.2) and applying Lemma 4.1 to our function ¥,
we obtain the estimate

H’U”Wf,’zl(@j) < C*(”.f”sle(Q;) + ”UH‘;V;"[O(Q;) + ”szSz(Qg))

Then from (1.1) we obtain that 6<piD € L (Q;"). Taking into account (1.2)
and [|¢|lws (s,) < p2 we get

Vp € L (QF), [IVp

Lo@f) S C<||U||w3;,1(Qi) +II£] Ls,z(Qi))-

Theorem 2.2 is proved. g
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§5. PROOF OF THEOREM 2.3

For the of convenience, in subsequent presentation we fix R = 1 and

r = % The extension of our proof to the case of general 0 < r < R is

straightforward.

Let p,, — +0 be an arbitrary sequence. Extend all functions v, p, f
from Q7T to the set BT x R by zero. For any extended function v denote
by v™ the mollification of the function v with respect to ¢ variable:

v (x,t) = (w,,, *v)(z,t) = /wpm (t — m)v(x,7)dr,
R

where w,(t) = %w(t/p), and w € C§°(—1,1) is a smooth kernel normalized
by the identity Jl"w(t)dt =1.
Aswve Wslv’lO(OQﬂ, p€ Ls (QF), f € Ly (QF) we have
v — v in Wsljlo(Q"_), Pt —p  in L (QF),
f"—f in Ly(Q).

L
)12

Ot (w,,, xn)(z,t) = (Wp,, xOm)(z,t), Yz e€BT, te(—1+4,-9).
Let us set n = w,, *7 in (1.10), where 7] € C°>°(Q™) is an arbitrary function
vanishing on dB* x (—=1,0) and on BT x (—=1,—1+§) and BT x (—4,0).
Using the property of convolution

/g - (wp,, * h) dedt = /(wpm x g) - h dxdt,
Q* Qt
Vopm <0, g€ L1(QF), he C=®(QT): supph C BT x [~1+4,—4],

and taking into account the fact that convolution with respect to ¢ com-
mutes with the differential operators A,, V,,, we obtain the identity

_ /vm @+ A7) dudt = /(fm T W) dedt (5o
Q* Qt
which holds for all 77 € C*°(Q¥) such that 7|,,—o = 0 and 7] vanishes on
Bt x (—1,-144), Bt x (—4,0), and near the set &' BT x (—1,0), where
BT :={x eR": |z| = R,z > 0}.

(5.1)

Let us fix arbitrary § € (0, 7). Then for any p,, < d and any n € C=(Q")
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Let ¢ € C>(Q1) be a cut-of function vanishing in QT \ Q;/(), and such
that ( = 1 in Q;/3. Denote u™ := (v™, ¢" := (p™. Then from (5.2) we
obtain that (u™,¢™) satisfy the integral identity

- [ w@ma B o= [ (5w T, ) dod

Bt x(—1,-6) Bt x(—1,-6)
for any n € C*°(BT x [-1,—0]) such that n|sp+x(—1,—5 = 0 and
Nl B+x{t=—s} = 0. Here by fi" we denote the expression

fr=frmC—vmo¢ + um&og - 2§¢vm§¢C - pm%(. (5.3)
Moreover, 4™ also satisfies the identity
6@ ™ =g¢g™ ae.in QT,
where we denote R
gm =v"- V(.
Assume that Q@ C R3 is a smooth domain such that B;r/ﬁ c Qc Bt

and denote @ := 2 x (—1,0). As v™ is smooth with respect to ¢ variable
for each fixed m € N the functions f™, g™ possess the properties

€ Lea(@), g™ € W' (@QF), Big™ € Loa(QF), / g" (1) de = 0.
Q
From Theorem 2.1, we obtain that for any m € N there exists a strong
solution 4™ € Wf”ll(Qﬂ, qm € W:”ZO(Q+) to the problem
™ — Ay u™ + Vog" = i ~
o in QF,
V‘P a™m = gm (54)
™55+ = 0.
Note that as ( = 1 in Q;/S, we have the identity ¢™ = 0 in Q;r/g. So,

~m

functions (u™,q¢™) satisfy all assumptions of Theorem 2.2 in Q;/B‘ and

hence by Theorem 2.2 with r = 1, R = 2 we obtain the estimate

17 hw22 @t + 19T 2, ot

(5.5)

< c (I

where the constant C' does not depend neither on m nor on § and b €
Li(—3,0) is arbitrary.

~5m -~m
Ls.l(Q;—/g) + ||U ||W:"10(Q;—/3) + ||q o b||Ls,l(Qg—/3)) ’
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As every strong solution of the Perturbed Stokes system is a generalized
one, from (1.10) we obtain that (u™,¢™) satisfy the integral identity

[ @ Bo dudt = [ (7 47V, o) dade

QT Qt

for all € Cm(@+) such that 7|sox(—1,00 = 0 and n|qx 4=} = 0. Hence
the differences w™ := u™ —u™, 7™ := ¢ — ¢™ are a generalized solution
to the Perturbed Stokes system (1.1) in 2 x (=1, —9) satisfying the integral
identity

- / w™ - (O + Ayn) dwdt = / 7"V, -1 dadt,
Qx(-1,-6) Qx(-1,-4) (5.6)
§w cw™ =0 ae.in Qx(=1,-0)

for any n € WSZ,},(Q x (=1,-0)) such that nlpox(—1,—sy = 0 and
Nlox{t=—sy = 0. Denote s = min{s,l} > 1. Asu™,u™ € L,;(Q") and ¢,
qm" € LSJ(@*) we have w™ = u™ — @™ € L,(QT) and 7™ = ¢™ — ™ €
L,.(Q1). Hence |w™|* 2w™ € L,.(Q7), and using Theorem 2.1 we can
find functions n € Wi}l(ﬂ x (—=1,-9)) and K € Wi)o(ﬂ x (—1,—-9)) such
that
O + Kwn + §v” = |w™|*2w™,
ﬁcp = 07
nloax(-1,6) =0, Nt=—s = 0.

in Qx(-1,-9),

Substituting this n as a test function into the identity (5.6) we obtain
w™ =0in Q x (—1,—9). Hence v™ = u™ € Wi}l(ﬂ x (—1,—0)). Hence,
from (5.6) we obtain

7, o dedt =0, Ve Lp((—1,—8);WL(Q).  (5.7)
Qx(—1,-6)

Correcting, if necessary, function ¢"™ by a constant, we can assume that
[ @™ dx =0 for a.e. t € (—1,—0). As mp, € L,.(Q) for ae. t € (—1,-9),
Q

we have |m,|* 27™ € L,.(Q) for a.e. t € (—1,—4). Taking into account
the identity V,, - n = div(L,n) where L, is smooth invertible matrix and
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using results of [1] for a.e. t we can find n(-,¢) € T/%/L/(Q) such that
div(Lyn) = |mm | 20™ = (|7 | 27™)q, ae.t € (—1,-6),
Il @) < ClA™ 1k,
From the last estimate, we see that
M€ Lo ((=1,=8); W1 () € L ((—1,-6); W4, ().

Substituting this 7 into the identity (5.7), we obtain #™ = 0. This implies
q™ = ¢™ + const and we obtain the inclusion ¢"™ € W1 O(Q x (=1, -=9)).
Moreover, from (5.5) we obtain

x(~1,—ay TIVa™lg

e

¢ (1652, s, +||um||W;,lo(Q2+/3)+||q bl 0t

where C'is independent on m and 4. Using identities u™ = (o™, g™ = (p™
¢ =1 on Q3 and the expression (5.3) for fJ we arrive at the estimate

L, l(B1/2 (__ _5))

x(—1,-a)) + V™|

f[v™ ||W2 (B,
c (I,

Making use of (5.1) we obtain
ve W2 (B, x (-4,-9)), pewl) (B, x (-4,-9)),

and the estimate
||U||W21 B* SX(—1,-5)) + ||Vp|

<o (I, Leat@ty)

holds for any ¢ € (0,2;) with C independent on 4. The last inequality
provides the required properties of (v,p). Theorem 2.3 is proved. (]

Loa(Bf ,x(=},-9)

Ls( Q+ + ||’Um||Wsl,'lo(Q;/3) + ||pm| LSJ(Q;N)) '

sl(B1/2 ( %7_5))

Lou(QF)5) + ||v||W1>°(Q+ +llpll,

§6. PROOF OF THEOREM 2.4

As usually, for the presentation convenience we fix R = 1 and r = % For
any k = 0,1,... denote s, = =
otherwise. Denote also N = min{k € N: s;, = m} and pr = § + 557
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Using Theorem 2.2 and Theorem 2.3 we see that if
(v,p) € W.5(Q) % Lo a(Q,)

is a generalized solution of the problem (1.1), (1.4) in @}, then

2,1 1,0
('U,p) e WskJ( jk+1) X Wsk,l( ;k+1)

and the following estimate holds:

lwz @z, 0 T 1VPIL,, @, 61)
<C (||f||Lm,l(Q+) +lvllwre @) +llp = b”LSk,l(QM)’

where b € L;(—1,0) is an arbitrary function of ¢-variable. Moreover, due

to the imbedding W (B} )< L B} ) we obtain the estimate

Prt1 3k+1( Pk+1)

lolwee @z, H P, @, 62
<C (IIUIIW;;{,(Q;W) + ||p||W:,;‘?,(Q,Tk+1>)'

Iterating (6.1) and (6.2) from k£ = 0 to k = N we finally obtain the estimate

ollwz o, +IVPIL, @, <

< O (I lema@) + IWlwra ooy + 1P =Bl ui@h))-

This estimate is equivalent to (2.9). Theorem 2.4 is proved. O
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