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MEASURES AND DIRICHLET FORMS UNDER THE
GELFAND TRANSFORM

ABSTRACT. Using the standard tools of Daniell-Stone integrals, Sto-
ne-Cech compactification and Gelfand transform, we show explicitly
that any closed Dirichlet form defined on a measurable space can
be transformed into a regular Dirichlet form on a locally compact
space. This implies existence, on the Stone—Cech compactification,
of the associated Hunt process. As an application, we show that for
any separable resistance form in the sense of Kigami there exists an
associated Markov process.

§1. INTRODUCTION

The main object of our study is a Dirichlet forms (€, F) on the Lo-space
over a measure space (X, X, u). The notion of the Dirichlet form means
that £ is a closed nonnegative (bilinear) quadratic form on L?(X, X, p)
with a dense domain F C L2(X, X, ). Moreover (£, F) has what is called
Markov (or positivity preserving, or normal contraction property): if u € F
then @ = min(u, 1) € F and

E(w,u) < E(u,u).

By the combination of the standard theories of quadratic forms on Hilbert
spaces, the spectral theory of self-adjoint operators and the Hille-Yosida
theorem, there exists an associated self-adjoint operator (nonnegative or
nonpositive, depending on the analytic or probabilistic conventions), which
generates a positivity preserving contraction semigroup on L%(X, X, pu).
This is equivalent to having a semigroup of transition probability kernels
which, by the Kolmogorov’s general theory of random process, is equivalent
to the existence of a symmetric Markov process (in the usual way one may
have to allow for the extinction of the process, or to augment the state
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space X with a “cemetery” point). This set up has generated an abundance
of strong and well-known results (see, e.g., [8,10,11,14,25-27], and recently
was extensively used in analysis and probability on fractals, see [20,23,28].
However most of the basic results in the theory of Dirichlet forms and
Markov processes rely on a set up where X is assumed to be a topological
space. Examples include the classical Beurling—Deny decomposition for
regular Dirichlet forms, the existence of energy measures in the sense of
Fukushima [14] and LeJan [24] or the existence of an associated Hunt
process. To discuss them most references require X to be locally compact.
Of course it is desirable to have versions of these theorems in more general
situations (for instance for quasi-regular Dirichlet forms on Souslin spaces),
and therefore a reduction of topological assumptions was one of the various
directions into which the standard theory for regular Dirichlet forms has
been extended. See e.g. [2, 3,13, 25] for results close to the content of
our paper. One of the typical strategies is to embed the possibly non-
locally compact state space X into a larger but (locally) compact space
and to transfer the Dirichlet form to this new space, where the standard
theory for the locally compact case applies. In [1], the authors used such
a compactification method to prove a Beurling—Deny type theorem for
quasi-regular Dirichlet forms on Hausdorff spaces X that are such that
each compact is metrizable and its Borel o-algebra is countably generated.

In this paper, we pursue similar ideas but intend to emphasize a more
algebraic point of view and do not assume the given state space X to carry
any topology (except for Sec. 7). Given a multiplicative Stonean vector
lattice B of bounded real-valued functions on a set X we use the connection
between the Daniell-Stone theorem and Gelfand’s representation theorem
for C'*-algebras to establish an injection of a suitable class of measures
on X into the space of nonnegative Radon measures on the spectrum A
of the complex uniform closure of B. We apply this idea to show that for
any given Dirichlet form over a measurable space there is a corresponding
uniquely determined regular Dirichlet form on a larger and locally compact
state space.

We consider the algebra B(€) of bounded measurable functions on
(X, X) that are p-square integrable and have finite energy. The uniform
closure of its complexification is a C*-algebra, and its spectrum A is a lo-
cally compact Hausdorff space. If B(E) vanishes nowhere, then A (roughly
speaking) contains X as a dense subset, and there is a Radon measure jz on
A which is uniquely determined by u in a way that makes the restriction
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of the Gelfand transform f — f to B(E) an Ly-isometry, i.c.,
1 sy = 1 o - f € BE)- (1)

This allows to define a symmetric bilinear form by
E(J.9):=E(f,9), f.g€BE)

Our main result, Theorem 5.1, says that g, , together with the image
B(&) of B(E) under the Gelfand map, is closable, and its closure (€,F)
in Lo (A, iz) is a symmetric regular Dirichlet form. In other words, we can
find a locally compact Hausdorff space A which “contains” the state space
X, and a regular Dirichlet form (€, F) that is the image of (&€, F). For
this Dirichlet form we can now apply the standard theory [14] and for
instance obtain a Beurling—Deny representation and the existence of energy
measures. We would like to point out that in [2] the embedding of a Souslin
standard Borel space into the Gelfand spectrum of a countably generated
and point separating algebra of continuous functions had been used to
construct a symmetric Hunt process associated with the given Dirichlet
form.

In contrast to references like [1,2] it may not be possible to pull these
results back to the Dirichlet form (€, F) on the original state space X. For
instance, the energy measure of (5, .7?) on A may be such that the image of
X under the embedding into A is of zero energy measure, see Example 6.1.
This is reminiscent of the situation in infinite dimensional analysis where
the Cameron—Martin space typically is a null set, cf. Remark 3 and such
references as [8,16-18,29]. The study of the Dirichlet form (5, F) on the
spectrum A may be a natural way to enlarge the space to support energy
measures. Under additional topological assumptions we can recover results
similar to those in [1,2].

Before we turn to Dirichlet forms we discuss how to naturally relate
suitable measures u on X to Radon measures fi on A. This correspon-
dence relies on a connection between the Daniell-Stone theorem and the
Gelfand transform. Although this idea is not new, see for instance [15], it
does not seem to be all too well known. We consider a multiplicative vec-
tor lattice B of bounded real-valued functions on X. The uniform closure
A(B) of its complexification is a commutative C*-algebra. If p is uniquely
associated with a positive linear functional on B then we may use positiv-
ity arguments to obtain a uniquely associated positive linear functional on
the space C.(A,R) of real-valued compactly supported functions on the
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spectrum of A(B). By the Riesz representation theorem this functional
can be represented by integration with respect to some uniquely deter-
mined Radon measure z1 on A. Proceeding this way we obtain an injective
mapping from a cone of nonnegative measures on X into the cone of non-
negative Radon measures on A. The isomorphism property of the Gelfand
transform finally yields the Ly-isometry (1).

The paper is organized as follows. For convenience, we recall some pre-
liminaries concerning Gelfand theory and the Daniell-Stone theorem in
Sec. 2. In Sec. 3, we investigate the connection for multiplicative Stonean
vector lattices of bounded real-valued functions and establish some lem-
mas on positivity, support properties and denseness. The main result of
Sec. 4 is Theorem 4.1, which states the correspondence between measures
on X and A. As a consequence we also obtain the Ls-isometry (1). In
Sec. 5, we apply these results to Dirichlet forms to obtain the closability of
(€,B(€)) in Ly (A, i) and the regularity of its closure (€, F), Theorem 5.1.
Consequences include the Beurling-Deny representation and the existence
of Radon energy measures for the transferred Dirichlet form (£, F) on A,
sketched in Sec. 6.

We write Cp(A) to denote the space of continuous functions on A that
vanish at infinity and C.(A) to denote its subspace of functions with
compact support. For their subspaces of real-valued functions we write
Co(A,R) and C.(A,R), respectively, and we will do similarly for other
function spaces. If the index set of a sequence is not specified, it is the set
of natural numbers, and if corresponding limits are taken, they are taken
with the index going to infinity.

Acknowledgements. Helpful discussions with Mikhail Gordin and Ma-
sha Gordina are gratefully acknowledged.

§2. GELFAND THEORY AND THE DANIELL-STONE THEOREM

For multiplicative vector lattices of bounded real valued functions the
theorem of Daniell-Stone can be connected to Gelfand’s representation
theorem for commutative C'*-algebras. In this section we briefly recall these
two concepts.

We start with remarks on commutative Gelfand theory, cf. [5,7]. Let
A be a commutative C*-algebra of bounded functions a : X — C, with
the supremum norm ||-|| and with the algebra operations defined point-
wise and the involution * defined by complex conjugation ¢* := @. By
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A(A) we denote the spectrum (Gelfand space) of A, the space of continu-
ous, complex-valued, multiplicative functionals on A. Equipped with the
Gelfand topology the spectrum A(A) becomes a regular locally compact
Hausdorff space, cf. [19]. If A contains the constant function 1 then A(A)
is compact. The space A(A) is second countable if and only if the C*-
algebra A is separable, and this in turn is equivalent to A being countably
generated. For any a € A the Gelfand transform a : A(A) — C of a is
defined by a(p) := ¢(a), and by the Gelfand representation theorem the
Gelfand map a — @ is seen to be an isometric *-isomorphism from the
Banach algebra A onto the algebra Co(A(A)) of continuous functions on
A(A) vanishing at infinity. If the algebra A vanishes nowhere on X, that
is, if for any # € X there exists some a € A such that a(z) # 0, then X
may be identified with a subset of A(A4) by the map ¢ : X — A(X), where

Uz)(a) = a(z), acA4, (2)

for any € X. Note that multiplication in Co(A(A)) is given pointwise,
and

uz)(araz) = (araz)(x) = ar(x)az(x) = v(x)(a1)i(x)(az)
for any z € X and ay,a2 € A. Thus, we observe the set-theoretic inclusion
t(X) C A(A). The set +(X) is dense in A(A). For if not, we could find a
nonzero function f € Cy(A(A)) such that f(c(z)) = 0 for all z € X. Then,

however, some nonzero a € A would have to exist with a = f € Cyo(A(A4)),
hence

a(u(z)) = v(z)(a) = a(z) (3)
would have to be zero for all z € X and consequently a = 0 in A4, a
contradiction.

The second tool we would like to sketch is the Daniell-Stone Theorem.
Let X # 0 and let £ be a real vector lattice of functions on X, i.e., a vector
space of functions f : X — R that is closed under minimum and maximum
operations f A g = min(f,g) and fV g = max(f,g). We assume that £
possesses the Stone property: for any f € L, fA1l € L. By (L) we denote
the o-ring of subsets of X generated by £ and by M™T(c(L£)), the cone of
(nonnegative) measures on o(£). A positive linear functional I : £ — R is
called a Daniell integral on L if for any sequence (f,,), C £ of nonnegative
functions decreasing to zero pointwise at all x € X also the sequence of
integrals (I(fy,))n decreases to zero. The Daniell-Stone Theorem says that
for any Daniell integral I on L there exists a uniquely determined measure
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pu € MT(a(L)) on (L) such that

I(f)= [ fdu, fFeL. (4)
/

See for instance [12]. We use the notation
D(L) := {p € MT(c(L)) : all functions from L are p-integrable} .

If I is a Daniell integral on £ then the measure p uniquely associated with
I by (4) is a member of D(L). Conversely any p € D(L) defines a Daniell
integral on £ by (4). Note that if £ contains a strictly positive function,
then all measures in D(L) are o-finite, and if it contains the constant
function 1, then all measures in D(L) are finite.

§3. MULTIPLICATIVE STONEAN VECTOR LATTICES

We are interested in special cases to which both theories apply. Let B be
a real multiplicative vector lattice of bounded functions on X # () that has
the Stone property. By B + iBB we denote its complexification, that is the
complex vector space of functions fi +1if, with f1, fo € B. The vector space
operations and the complex conjugation are defined pointwise. We endow
B+iB with the supremum norm ||-|| and denote its closure by A(B), clearly
a Banach space. Pointwise multiplication turns A(B) into a commutative
Banach algebra, and with the involution * defined by complex conjugation
it becomes a commutative C*-algebra. Under the Gelfand transform f — f
the C*-algebra A(B) is isometrically *-isomorphic to Co(A(A(B))). To
shorten notation we will write A to abbreviate A(A(B)). From now on we
will assume the following.

Assumption 3.1. The space B vanishes nowhere.

Under this assumption the set ¢(X), where ¢ is defined as in (2) with
A = A(B), is a dense subset of A, and according to (3) we have f(L(az)) =
f(z) for any f € Band z € X.

To discuss nonnegativity issues let A(B)T and Co(A)T denote the cones
of real-valued nonnegative functions in A(B) and Cy(A), respectively. For
a real-valued function f we write f* = max(f,0) and f~ = max(—f,0).

If f is a member of B then so are f* and f~.

Lemma 3.1. A function f € A(B) is real-valued if and only iffe Co(A)
is. Moreover, we have f € A(B)* if and only if f € Co(A)T.
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This lemma is a consequence of (3) together with the denseness of +(X)
in A.
Lemma 3.2. For any real-valued f € A(B) we have (ft)" = f© and
=7
Proof. For any x € X we have (f7)"(«(x)) = fT(z) by (3). If f(z) >0
then f+(x) = f(@) = F(x) = F*(u(2)). It 1) <0 thn Ful@) < 0
and fT(x) = 0. Consequently (f*)"(v(z)) = f™(c(z)) for all z € X, and

(v B

by linearity also (f~)"(«(z)) = (z)). By continuity and the denseness
of «(X) in A the lemma follows. O

I
-

The members of A(B)™ are all monotone limits of nonnegative functions
from B. For this statement Assumption 3.1 is not needed.

Lemma 3.3. For any function f € A(B)" there ewists a monotonically
increasing sequence (f,), of nonnegative functions f,, € B that converges
to f pointwise.

Proof. By the lattice property in B, we can see that there is a sequence
(gn)n of nonnegative functions g, € B converging uniformly to f. We
may assume that the nonnegative numbers 6,, := supy |gn — gnt1| are
such that ) 4, < oo (otherwise pass to a subsequence). Setting f, :=

oo
gn—gn/\ Y. 0 we obtain a sequence (f,), with the desired properties. O
k=n

We discuss compactly supported functions. If B contains the constant

functions, then A is compact, hence every function in B has compact sup-
port. To formulate a result for the general case, set

B.:={peB:peC.(A)}.
Clearly B, is again a multiplicative vector lattice having the Stone prop-
erty.

Lemma 3.4. The space B, is uniformly dense in B.

To prove Lemma 3.4 we use a property of upper level sets. Given ¢ € B
and k € N\ {0} set

M) ={ee X101 = 1}

Lemma 3.5. For any f € B and any k the closure of the set «(Ng(f)) is
compact in A.
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Proof. We have |f| € B and, according to Lemma 3.2, |f|* = |f]. Conse-
quently we may assume f > 0. Since f € Cy(A), the closed set

= {vea:jw =1}

is contained in a compact set and therefore compact itself. On the other
hand ¢(Ni(f)) € Li(f), what implies that ¢(N(f)) is a closed subset of
Li(f), hence compact. O

We verify Lemma 3.4.

Proof. It suffices to show that nonnegative functions can be approxi-
mated. Given f € B with f > 0 consider the functions
1
o :=f—fAN X
Obviously the sequence (pg)r uniformly converges to f, and for fixed k
the set
Nt :={z e X :¢p(z) > 0}
is a subset of Ni(f). On the other hand, we have
{y € A:Qr(y) > 0} C o(NF).
For if there were some y € A with 9 (y) > 0 having an open neighborhood
Uy such that ¢ (z) = 0 for all € X with «(z) € Uy, then we would have
@r(z) = 0 for all z € Uy by the density of «(X) in A, a contradiction. It
also follows that

supp @ C o(NF) C Ni(f),
and Lemma 3.5 implies that supp @y is compact. O

§4. POSITIVE LINEAR FUNCTIONALS AND MEASURES

In this section, we establish a correspondence between suitable measures
won X and Radon measures iz on A and list some consequences. As before
we assume that B is a Stonean multiplicative vector lattice of bounded
real-valued functions on X.

Let I : B—R be a positive linear functional. Given a function f € A(B)*
and an increasing sequence (f,), C B of nonnegative function as in Lem-
ma 3.3, we set

I(f) = sup I(fn). (5)



DIRICHLET FORMS UNDER THE GELFAND TRANSFORM 311

The lattice property of B guarantees that (5) provides a well-defined posi-
tive linear (i.e., positively homogeneous and additive) functional I : A(B)*
— [0,400]. In what follows let Assumption 3.1 be satisfied. In view of

Lemma 3.1 we can then define a bounded positive linear functional T:
Co(A)T — [0, +00] by

I(f) = I(f), feCo(A)t, (6)

and according to Lemma 3.2 we may set

o~ o~

I(F) == I(F) — 1(f~) and T(F):= I(f)
to extend (6) to all f € B.
Let MT(A) denote the cone of nonnegative Radon measures on A. The
Riesz representation theorem ensures the existence of a uniquely deter-
mined fi € M*(A) such that for any f € C.(A) we have

i(f) = / faa. (7)
A

Remark 1. Recall that to prove the existence part of the Riesz represen-
tation theorem one usually sets

A(K) = inf{f(f) . f € C.(A,R), and f > 1K}

for compact K C A and defines the pi-measure of an arbitrary Borel set
by inner approximation by compacts. It is therefore sufficient to know the
functional I on the cone C.(A)™.

Now assume that I : B — R is a Daniell integral and p € D(B) is the
unique measure on o(B) associated with I as in (4). In this case definition
(6) yields

[ tin= [ fan. ses. Q
X A
The map u +— @ is positive and linear (i.e. additive and positively homo-

geneous). By (8) and the uniqueness part of the Daniell-Stone theorem we
obtain the following result.

Theorem 4.1. The map p — i is an injection of D(B) into MT(A).
We may also consider equivalence classes of functions.

Lemma 4.1. Let p € D(B) and f € B. Then f =0 p-a.e. on X if and
only if f =0 fi-a.e. on A.
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Proof. Let f =0 p-a.e. on X. Then also ftand f~ vanish p-a.e. on X.
By Lemma 3.2 and (8) therefore [ fTdn = 0, hence f* = 0 p-a.e. The
A

same is true for f’ and consequently f: 0 zi-a.e. The converse implication
follows in a similar manner. (]

Therefore the Gelfand map induces a well-defined map from the space
of p-equivalence classes of functions from B into the space of H-equivalence
classes of functions on A. We denote it again by f — f. We investigate
corresponding Lo-spaces.

Lemma 4.2. Let p € D(B). For f € B we have

1 0zax = ||7]

Proof. Being an algebra homomorphism, the Gelfand map satisfies (f)2 =
(f?)" for any f € A(B). For f € B the identity (8) then yields

[ fau= [rai= [ Pa
X

A A

La(Ah)

O

The following fact will be used in the next section.
Lemma 4.3. For any p € D(B) the image B of B is dense in Lo (A, 11, R).

Proof. Since Cy(A,R) is a dense subspace of Lo(A, 1, R), it suffices to
show that any fe Co(A,R) can be approximated in L2 (A, 1z, R) by func-
tions from B. However, as Co(A) is isometrically isomorphic to the uniform
closure A(B) of the complexification of B, there is a sequence (f,), C B

such that (fn)n approximates f uniformly. Given ¢ > 0 we can find a
compact set K. C A such that ji(A \ K.) < e. Then obviously

lim/ |Fn — f2dii =0
Ké‘

and

[ 15— FPdp < <151+ sup 15.. 0

A\K.
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§5. DIRICHLET FORMS UNDER THE GELFAND MAP

We use the setup of the previous section to transfer from a Dirichlet
form on a measure space to a regular Dirichlet form on a locally compact
Hausdorff space.

Let (X,X,u) be a measure space and (€,F) a Dirichlet form on
Ly (X, u, R), see for example [8, Chap. I]. We will frequently use the short-
hand notation £(f) := £(f, f) and do similarly for other bilinear expres-
sions. The space of bounded measurable functions on X is denoted by bX.
Set

B(E) :={fe€bX : the p-equivalence class of f is in FNLy (X, pu,R)}. (9)

The Cauchy—Schwarz inequality and the Markov property of (£,F) imply
that B(€) is a multiplicative vector lattice that has the Stone property. In
addition we assume the following;:

Assumption 5.1. The space B(E) vanishes nowhere on X.

Let A be the spectrum of the uniform closure A(B(E)) of the complex-
ification of B. For f,g € B(£) we set

E(f,9) =E(f,9). (10)
Obviously Eisa nonnegative definite symmetric bilinear form on the dense
subspace

B(&) = {fe Co(A,R): f € B(s)}

of Lo(A, i1, R). It enjoys the Markov property. In fact, it defines a regular
symmetric Dirichlet form on Lo(A, iz, R).

Theorem 5.1. The form (€, B(€)) is closable on Ly(A, i, R). Its closure
(&, F) defines a symmetric reqular Dirichlet form.

Proof. Let (fn)n be a sequence of functions from B(€) that is &-Cauchy
and tends to zero in Ly (A, i1, R). Then by (10) the sequence (fy,),, of preim-
ages f, € B(E) of the functions fn under the Gelfand map is £-Cauchy,
and by Lemma 4.2 it tends to zero in Lo (X, ). From the closability of
(€, F) together with (10) it then follows that

lim E(f,) = lim E(f,) = 0.
Therefore (£, B(€)) is closable. According to Lemma 3.4 the set
B.(€) = {FeC(n): feBE)}
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is uniformly dense in B(£), hence also in Cy(A). On the other hand, given
f € B(£), the functions
1 1
== (fV (=) A~
o= f TV () AT
converge to f in & -norm, see for instance [14, Theorem 1.4.2]. Conse-
quently B.(€) is a core for (€, F). O

To the symmetric regular Dirichlet form (5 F ) on Ly(A, 1z, R) we refer
as the transferred Dirichlet form.

§6. BEURLING-DENY DECOMPOSITION AND ENERGY MEASURES

We record some consequences of the existing theory for Dirichlet forms
on locally compact spaces when applied to (5, F). As before let (X, X, )
be a measure space and (£,F) a symmetric Dirichlet form on Ly (X, )
such that Assumption 5.1 is satisfied.

The first theorem is the Beurling—Deny representation.

Theorem 6.1. The transferred Dirichlet form (EA, .7?) on Ly(A, i, R) ad-
mits the decomposition

EF9) =8+ / / (Fl@) - Fu) @) - 3(0) T (de, dy)

AXA\{(z,z):z€A}

+ / F@)3()R(dx)

A

for any f,ﬁ € E(S), where E° is a symmetric nonnegative definite bilinear
form on E(S) that is strongly local, Jis a symmetric nonnegative Radon
measure on AXA\{(z,z) : x € A}, and k is a nonnegative Radon measure
on A. The normal contraction operates on £° and EAC, f, and k are uniquely
determined.

For a proof see for instance [4] or [14].

Remark 2. Note that these proofs require the local compactness but not
the second countability of A. However, if B(£) has a countable subset
from which any element in B(£) can be produced by linear operations,
multiplication, truncation by 1 and taking uniform limits, then A is second
countable and by Urysohn’s theorem there exists a metric turning A into
a locally compact separable metric space.
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Another result is the existence of energy measures for the transferred

Dirichlet form (EA , F ), which is an immediate consequence its regularity,
[14,24].

Theorem 6.2. For any fe g(S) there exists a uniquely determined finite

~

nonnegative Radon measure T(f) on A such that

2 [ Gdl(F) = 281, 7) - . P)
A
for any ¢ € g(f))

If the original Dirichlet form (&, F) itself admits energy measures, that
is if for any f € B(E) there exists some nonnegative measure I'(f) such
that

2 / pdU(f) = 26(of. ) — E(p. ), € B(E), (11)
X

then the energy measures f(f) are consistent with these original ones.

Theorem 6.3. Assume that (£,F) admits energy measures (11). Then
for any f € B(E) we have

~

T =T/,
Proof. For any ¢ = Cy(A) we have

[y = [ eares)

A X
=28(fp, f) — E(p, )
=28((fe)", ) — E@, (1))
= 28(f3,]) - €@, )
:/Adf(f)
A

d

Theorem 6.2 is significant, because as the following examples show, the
original Dirichlet form (&, F) itself may not admit energy measures.
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Examples 6.1. Consider the classical Dirichlet integral on the unit inter-
val [0, 1], given by

&@wzfyufm

for any function g from
Fo:={g=C([0,1]) : £(g) < o0},

The form (&, Fo) is a resistance form on [0, 1] in the sense of Kigami
[21,22]. We consider the countable state space X = QN [0, 1]. Set

Folx :={f : X — R : there exists some g € Fy such that f = g|x}

and
E(f) = ¢&olg), f € Folx-

Here g|x denotes the pointwise restriction of the continuous function g
to X. By continuity and the density of X in [0,1] each f € Fy|x is the
restriction of exactly one function g € Fy. Now let J, denote the normed
Dirac point measure at a given point ¢ and let {qn}ff:1 be an enumeration

of X. Then
K= Z 27"y,
n=1

is a probability measure. The form (€, Fo|x) is closable in Ls(X, 1), see
for instance [22, Lemma 9.2 and Theorem 9.4], and its closure (£, F) is a
Dirichlet form. For a function f € Fy|x with £(f) > 0 (such as for instance
the restriction to X of a nonconstant linear function) and g € Fp is such
that f = g|x we have

%wﬁﬁ—6WJ%=2/¢mmew, (12)
0

for all ¢ € Fy|x with ¢ € ¥|x, ¥ € Fo. On the other hand approxi-
mation by piecewise linear functions shows that Fo is dense in C([0,1]),
and consequently any bounded Borel function on [0,1] can be approxi-
mated pointwise by a uniformly bounded sequence of functions from Fp.
Let (¢¥,)n C Fo be a uniformly bounded sequence of functions that ap-
proximate 1x pointwise. If for some f as above (£, F) would admit energy
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measures as in (11) then we would obtain

/ bulx dT(f) = / (alx)" dE(f) = / bu(e)g () de,
X A

and by bounded convergence

because the restriction of ¢’(x)?dz to X is the zero measure. This contra-
dicts E(f) > 0.

Remark 3. In some sense the situation of Example 6.1 displays a similar
feature as we encounter it for Dirichlet forms on infinite dimensional spaces.
For instance, let (E, H, u) be an abstract Wiener space, cf. [8,16,17,25,29],
let

FOF = {f(ll,...,ln):neN, FeCE®M, b,... 1, eE’},

(Vu(z), )y o= 2

= %(Z), hEH,

for any u € FCp*° and
£(u) ::/||vu||§, dp.
E

Then (£, FCy®) is closable on Ly(E, i) and its closure (€, F) is a Dirichlet
form. Its energy measure is given by ||Vu||§{ dup on E. However, as the
Gaussian measure y is quasi-invariant under translations by elements of
the (infinite dimensional) generalized Cameron—Martin space H, the space
H has zero Gaussian measure, hence zero energy measure. In other words,
the space H is too small to carry a nontrivial energy measure, but on the
larger space E the energy measures generally are nontrivial.

§7. SEPARATION OF POINTS AND SEPARABLE RESISTANCE FORMS

In addition to Assumption 3.1 we now assume the following.

Assumption 7.1. The space B separates points, that is for each x,y € X,
there are f € B such that f(z) # f(y).
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An immediate consequence of this assumption is that ¢ : X — A is
injective, so X is embedded in A as ¢(X). Thus we will use X and ¢(X)
interchangeably. We further assume that +(X) is a Borel set with respect
to the Gelfand topology in A, although this assumption is technical and
often can be weakened or eliminated, depending on the situation.

Remark 4.

(i) Assumption 7.1 leads to a situation similar to the one in [2, Sec. 2].
See also the references cited there.

(ii) If B does not separate points, one can define an an equivalence
relation ~ on X by z ~ y if f(z) = f(y) for all f € B. Then
all functions in B naturally define functions on the quotient space
X = X/ ~, and functions in B separates equivalent classes. In this
case, T : X — A, defined by 7([z]) = «(«) is an embedding with
(X)) = u(X).

In light of 4.1, any u € D(B) can be extended to a positive measure
on A. By assumption 7.1 we may consider the measure of X in A. In
particular, for any o-finite p € D(B), we can extend p to A either by
considering i, or by

v(A) = p(ANX).

However, by Eq. (8) and the Riesz representation theorem, g and v coin-
cide.

The fact that X is a set of full measure i allows us a technique for
extending results for Dirichlet forms on locally compact spaces to a more
general class of spaces. The following result is a version of [2, Theorem 2.7].

Proposition 7.1. Since Eisa regular Dirichlet form on A, there is a Ji-
symmetric Hunt process on A with Dirichlet form €. Since A(B(E)) sepa-
rates points, X is naturally identified as a subset of A with full i-measure.
By [14, Lemma 4.1.1], this implies that the process on A is contained in
X with probability 1, thus can be thought of as a process on X .

Note that we do not claim that this process is a Hunt process on X
because we do not consider X as a topological space. However the random
process is well defined, which is useful in some applications such as the
following.
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In much of what follows we will consider a special class of Dirichlet
forms, the resistance forms of Kigami [20-22], for which points have pos-
itive capacity. For simplicity we define these forms in the separable case,
which can be reduced to a form on a countable set.

Definition 7.1. A pair (€,F) is called a resistance form on a countable
set Vi if it satisfies:
(RF1) F is a linear subspace of the functions V. — R that contains the
constants, £ is a nonnegative symmetric quadratic form on F, and
E(u,u) =0 if and only if u is constant.
(RF2) The quotient of F by constant functions is Hilbert space with the
norm & (u,u)'/?.
(RF3) If v is a function on a finite set V. C V. then there is uw € F with
u|v =wv.
(RF4) For any x,y € Vi the effective resistance between x and y is
2
R(z,y) = sup{w(:?(u—,z()y)) cu € F,E(u,u) > 0} < o0
(RF5) Markov Property. If u € F then u(z) = max(0, min(1,u(z))) € F
and E(u,u) < E(u,u).
The resistance forms on countable sets are determined by a sequence of
traces on finite subsets, as in the following two propositions.

Proposition 7.2 ([20-22]). Resistance forms have the following proper-
ties.

(i) R(z,y) is a metric on Vi. Functions in F are R-continuous, thus have
unique R-continuous extension to the R-completion Xg of Vi.

(ii) If U C Vi is finite then a Dirichlet form Ey on U may be defined by
Eu(f,f) =inf{E(g,9) : g € F,g|, = f}

in which the infimum is achieved at a unique g. The form Ey is called the
trace of € on U, denoted Ey = TraceU(E). If Uy C Uy then

Eu, = Trace Uy (Ew,).
Proposition 7.3 ([20-22]). Suppose V,, C V. are finite sets such that
Vi C Vi1 and U Vi is R-dense in V. Then Ey, (f, f) is non-decreasing
and E(f, f) = hm Ev, (f, f) for any f € F. Hence & is uniquely defined

by the sequence of finite dimensional traces Ey, on V.
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Conversely, suppose V, is an increasing sequence of finite sets each
supporting a resistance form Ev,, and the sequence is compatible in that

each Ey, is the trace of Ev, ., on'V,. Then there is a resistance form £ on

Ve= G Vi, such that E(f, f) = lim &y, (f, f) for any f € F.
n=0 n—00

The following theorem follows easily from the analysis presented above.
See [22, Chap. 5] for discussion why the effective resistance metric is not
suitable to define topology to produce a regular Dirichlet form.

Theorem 7.1. There exists a finite measure p on X =V, such that:

(1) any point of X has positive measure and any function of finite
energy is in L*(X, p);

(2) & is a Dirichlet form on L*(X,u);

(3) embedding of X into the Gelfand spectrum A yields a regular Diri-
chlet form on L?(A, p).

Moreover, one can see that for any other finite measure p on V, one
can obtain a regular Dirichlet form on L?(A, ) by modifying the domain.
However the case of infinite measures is more delicate. For instance, in [22,
Chap. 5] one can see that choosing the counting measure on V, may not
produce a regular Dirichlet form, even though the space X is compact in
the topology induced by the set of functions of finite energy (but is not
locally compact in the topology induced by the effective resistance metric).
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