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CONVEX HULLS OF REGULARLY VARYING
PROCESSES

ABSTRACT. We consider the asymptotic behaviour of the compact
convex subset W, of R¢ defined as the closed convex hull of the
ranges of independent and identically distributed (i.i.d.) random
processes (X;)1<ign- Under a condition of regular variations on the
law of X;’s, we prove the weak convergence of the rescaled convex
hulls Wn as n — oo and analyse the structure and properties of the
limit shape. We illustrate our results on several examples of regularly
varying processes and show that, in contrast with Gaussian setting,
in many cases the limit shape is a random polytope of R%.

§1. INTRODUCTION

Let T be a separable metric space. Let X; = {X;(¢),t € T},i=1,2,...,
be i.i.d. copies of a random process X with values in R?. Assume that X
is separable and has a.s. bounded sample paths. We consider the closed
convex hulls

W, =nv{X;(t); t€ T, 1<i<n} (1)
and study its asymptotic behavior as n — oo.

Our work is motivated from one side by the recent works of Comptet,
Majumdar, and Randon-Furling [10, 13] dealing in an ecological context
with the estimation of the home range of a heard of animals with popu-
lation size n. Another stimulating point is the relation with classical ex-
treme value theory. Indeed, if T' = {to} is a singleton and d = 1, then Xj,

i=1,2,...,1is simply a sequence of i.i.d. real random variables and
W,, = [min X;, max X;].
i<n i<n

In the Gaussian case, the question was studied in details by Davydov
in [4]. It was shown that for any bounded centered Gaussian process X,
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1

7Wn — W  almost surely as n — oo,

2log(n)
where W is a nonrandom compact convex set and the convergence is meant
in the sense of the Hausdorff distance. Hence, the growth rate of W,, is
always equal to 1/2log(n) and there exists a nonrandom limit shape W.

The limit set W is given by
W, = conv(Ky, t€T),

where K; is the ellipsoid of concentration associated to the covariance
operator of X (t) (see [4] for a precise definition). In particular, W has, in
general, smooth boundary.

The aim of the present work is to consider what happens for non-
Gaussian processes.

Limit theorems for unions of random sets in Euclidean or Banach space
have been studied in great details by Molchanov [12] (for general results on
random closed sets in stochastic geometry we refer also to this monograph
and the references therein). In particular, he got necessary and sufficient
conditions for convergence of convex hulls. However, these conditions are
formulated in the terms of capacity or containment functionals and it is
very difficult to use them in our concrete situation. Therefore we apply
more direct method based on point processes. We show (and it is in a full
agreement with Molchanov’s results) that the natural class of processes
for which the normalized sequence (Wn)n>1 has some limit is the class
of regularly varying processes (for more details on the regular variations
property, see Hult and Lindskog [8], Davis and Mikosch [3]).

We generalize an initial problem and consider at first the convex closed
hulls

Wn:m(Xla"'aXn) (2)

of an i.i.d. sample of elements of K in abstract cones K.

If X € RV,,+(K), i.e. if X is regularly varying with index « and spectral
measure o (see Definition 2.2 below), then the rescaled empirical point
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process
k=1

converges as n — oo to a Poisson point process II, , on K, with (by)n>1
a suitable renormalization sequence. It is then possible to deduce the con-
vergence in distribution of the convex hulls

by ' Wy = Cap, (4)

where C, , = tonv(Il,,,). When K = C(T,R?) is the Banach space of
continuous functions f : T'— R?, we can go back to our original problem:
under the assumption that the processes are regularly varying, we deduce
from (4) the weak convergence of the convex hulls of the ranges of the
processes

b, W, = Cap (5)

Another interesting case is the case K = D([0,1],R?) where we consider
regularly varying cad-lag processes from [0, 1] into R?. The main difficulty
here is that the addition is not continuous on the Skorokhod space so that
the convergence (4) may not be satisfied. Nevertheless, we can go through
these technical issues and prove directly the convergence (5) in this case.

Our main conclusions about the convex hulls of non-Gaussian random
processes are the following: the assumption of regular variations plays a
natural role; the logarithmic scale of normalization natural in the Gaussian
case is replaced by a power one; the limit shape is no longer deterministic
and almost sure convergence has to be replaced by weak convergence; in
many cases, the limit shape is a polytope and in particular its boundary
is not smooth.

The structure of the paper is as follows: in the next section, we present
general results on convex cones, convex hulls and regular variations, and
then state a limit theorem for the convex hull W), of an i.i.d. sample of
size n in a convex cone K under a general assumption of regular variations.
The structure and properties of the limit shape are analysed: we give a
representation of the limit shape in terms of a LePage series and prove
a stability property. This is in good correspondance with the results by
Molchanov [12]. In Sec. 3, we focus on our original problem and provide
a limit theorem for the convex hull Wn of the range of n i.i.d. regularly
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varying processes. The last section is devoted to examples: we present
several classes of processes satisfying the regular variations properties. In
many interesting cases, the limit shape éw, is a random polytope in R?,
i.e. the convex hull of a finite number of random points. In particular, this
is the case for strictly a-stable Lévy processes when the spectral measure
is scattered enough on the unit sphere.

§2. CONVEX HULLS OF LARGE SAMPLES IN A CONVEX CONE

2.1. Preliminaries on convex cones. We look at our original problem
of convex hulls associated to random processes in the general framework
of abstract convex cones. We refer to Davydov, Molchanov and Zuyev [6]
for general results on convex cones and the associated stable distributions.
For the reader convenience, we recall here some definitions.

A convex cone K is a topological space with a binary operation (x,y) —
x + y and an operation (a,x) — ax of multiplication by positive scalars a
such that:

i) (K, +) is a topological abelian semigroup: the operation + is asso-
ciative, commutative and continuous;

ii) the group (0,00) acts on K by continuous automorphisms: for all
a > 0, the multiplication operator D, : K — K defined by D, (z) =
ax is a continuous automorphism, D, is the identical map and the
relation D, Dy = Dy holds for all a,b > 0;

iii) the topological space K is Polish: there is a metric d on K that
makes the space complete and separable.

Furthermore, we will always suppose that
iv) the cone K is pointed, i.e. there is an element 0 called the origin
such that for all z € K, ax — 0 as a — 0;

v) the metric d on K satisfies the following properties: for all z,y,h €
Kanda>0

d(z + h,y + h) < d(z +y), (6)
d(aw,ay) = ad(z,y). (7)
Note that it is not assumed that the origin 0 is the neutral element of the
operation +, i.e., we may have x+0 # z for some z € K. Axiom v) suggests

the following convention: the multiplication by a = 0 is defined by 0z =0
for all z € K. The norm of an element = € K is defined by ||z| = d(0, ).
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Note that the term “norm” is somehow abusive, since the function d(0, z) is
not supposed to be sublinear, i.e. d(0, z+y) is not necessarily smaller than
d(0,z) + d(0,y). Clearly, the origin 0 is the unique point z € K such that
||z = 0. Let Ko = K\ {0} and S = {z € Ky; ||z|| = 1} be the unit sphere.
With the induced metric, S is also a Polish space. The polar decomposition
p: Ko — (0,00) x S given by & — (||z||, z/||z]|) is a homeomorphism.

A large class of examples of convex cones is given by the class of Banach
spaces and their subcones. For example, the linear space of continuous
functions C(T") on some compact parameter set 7' endowed with the usual
uniform norm will be considered in the sequel when dealing with the convex
hull of continous random processes. Other examples play an important role
in extreme value theory:

— the space [0, 00) with the usual metric d(z,y) = |z — y|, the usual
multiplication by positive scalars and the addition defined by x +
y = max(a, );

— the space K = C*(T') of nonnegative functions on a compact set
T, with the distance associated to the uniform norm, the usual
multiplication by positive scalars and the addition given by the
pointwise maximum z + y = max(z,y).

Further examples are discussed in [6].

We recall some basic definitions and properties of convex sets and convex
hulls in convex cones. They are standard in the context of Banach spaces
and can be extended without major changes to abstract convex cones.
A subset C' C K is said to be convez if for all z,y € C and X\ € [0,1],
Az 4+ (1 — Ay € C. The whole cone K is convex and any intersection of
convex sets is convex. The conver hull of a subset A C K, denoted by
conv(A), is defined as the smallest convex C' containing A, and is equal to
the intersection of all convex sets containing A. Equivalently, a constructive
definition is

n
conv(A) = {x €K; In>1, Izi)igicn € A", INE X, Z)\,-xi = x},
i=1

where ¥,, denotes the simplex X, = {)\ = (Ni)igisn € [0,1]% 3 N = 1}.
i=1

The closed convex hull of a subset A, denoted by conv(4) is the smallest

closed convex set containing A. Using the fact that the closure C of a

convex set C' is convex, it is easy to see that the closed convex hull of A is
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equal to the closure of the convex hull of A:
conv(A) = conv(A).
For € > 0, the e-neighborhood of A C K is the set V.(A4) defined by
Ve(A) ={z € K; Ja € A, d(z,a) < e}.

The axiom v) ensures that the e-neighborhood of a convex set is convex
and also that the closed convex hull of a relatively compact set is compact.
Unlike the usual results on Banach space, singletons and balls may not to
be convex sets in a general abstract convex cone.

Denote by K = K(K) the set of nonempty compact convex subsets of K
with the Hausdorff distance p. Recall that the Hausdorff distance between
closed bounded subsets A and B of K is defined by

p(A,B) =inf{e > 0; A CV.(B) and B C V.(A)}.

It is easy to see that (IC,p) is a Polish space. Interestingly, there is a
natural structure of convex cone on (I, p): the multiplication is defined in
the usual way
aC ={ac; ce C}, CeK, a>0,
and the addition, denoted €, is defined as the convex hull of the union
CidCy = COHV(Cl U 02), C,Cy e K.

It is easily checked that these operations satisfy the axioms i)—v); the origin
of the cone K is equal to the singleton {0}. The following simple lemma
turns out to be useful in order to estimate the Hausdorff distance between
convex hulls. The proof is elementary and left to the reader.

Lemma 2.1. Let A and B be nonempty bounded subsets of K. Suppose
that there exists r > 0 such that

Vaec A, dbe B, d(a,b) <r and Vbe B, Ja€ A, d(a,b) <r. (8)

Then,
p(tonv(A),conv(B)) < r.

2.2. Regular variations. The notion of regularly varying random vari-
able on a convex cone will play a key role to derive the asymptotic behavior
of the convex hull of i.i.d. sample. We recall here some definitions and ba-
sic properties needed in the sequel, more details can be found in Hult and
Lindskog [8] or Davis and Mikosch [3].
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Definition 2.2. A Ky-valued random variable X is said to be regularly
varying with exponent a > 0, if there exist a probability measure o on S
and a positive sequence b, — +0o such that

lim nP ||))§|| e A; | X|| >rby| =c(A)r @ 9)
for all ¥ > 0 and all A € B(S) such that 0(0A) = 0. We denote this
property by X € RV, - (K).

The exponent a and the spectral measure o are uniquely determined,
the sequence (b,) is unique up to asymptotic equivalence and a possible
choice is given by

b, = inf{z > 0; P(|X|| >z) <n '} (10)

It is known that b, = n'/®L(n) for some function L slowly varying at
infinity.

The definition of regularly varying random variable can then be refor-
mulated using the concept of vague convergence of measures. Following
Davydov et al. [6], the usual definition of vague convergence is suitably
amended in order to take into account possible explosion of the measures
near the origin 0 and the fact that the state space K is not locally compact.
See also Daley and Vere-Jones [2] and Matthes et al. [11] for a discussion
on measures and vague convergence in general Polish spaces. For » > 0,
let

B, ={zeK,|z||<r} and B" ={zeK,|z| >r}.
Denote by M(K) the set of measures u on Ky such that u(B") < oo for all
r > 0. Consider the family C of continuous bounded functions f : Ky —R
with support included in B" for some r > 0. A sequence of measures
{mpn,n > 1} is said to converge vaguely to m in M(K) as n — oo, denoted
my — m if for every f € C

/f Ym, (dz) —>/f as n — oo.

The space M(K) with the vague topology is Polish. As stated by Davis
and Mikosch [3], X € RV, ,(K) if and only if

nP [b,'X € -] =5 mae(-), (11)
where m, , is the measure on Ky characterized by the relation

mw({xeKo,x/||x||eA||x|| r})_r% . AcB(S), r>0.
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2.3. Convergence of the empirical point processes. Consider
M, (K) € M(K) the subspace of point measures: m € M, (K) if and only

if m=7>%"0,, with {z;,i € I} an at most countable collection of points in
icl

Ko such that for all » > 0, B" contains only a finite number of the z;’s.

The subset M, (K) is closed in M(K) with respect to the vague topology.

Hence M (K) with the induced topology is a Polish space. Let X be a Ko-

valued random variable and {Xy,k > 1} an i.i.d. sample with the same

n
distribution. Consider the rescaled empirical point process 3, = > dx, /s,
k=1
with b, given by (10).

Theorem 2.3. The following conditions are equivalent:
(1) X € RV,,(K).
(2) The rescaled empirical point processes [3,, weakly converge in
My(K) as n — oo to a Poisson point process I, , with inten-
Sity measure My o -

This result can be found in Resnick [14], in the case when the state space
K is locally compact; the extension to complete and separable abstract
cones is discussed in Davydov et al. [6], Theorem 4.3.

2.4. Convergence of the convex hulls. Let {Xj,k > 1} be an i.i.d.
sequence of Ko-valued random variables. The convex hull W, of the n-th
order sample is defined by equality (2). Our main result in this section is
a weak limit for the convex hull W,, as n — +o00. The weak limit is taken
in the sense of weak convergence in the Polish space K.

Theorem 2.4. Suppose that X € RV, ,(K). Then, as n — oo,
b, ' W, = Ca.,,

where Cy & 4 conv(Ily,s) with 11, » a Poisson point process on K with
intensity measure mq, .. The symbol 2 stands for equality in distribution.

The proof of Theorem 2.4 relies on Theorem 2.3 and on the following
lemma:

Lemma 2.5. The map ® : M,(K) — K defined by

o <Z 5z,—> =conv({z;,i € I} U{0}) (12)
icl
is continuous on M,(K) with respect to the vague topology.
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Remark 2.6. By definition of M, (K), the set {z;,4 € I} U {0} is closed
and compact since 0 is the only possible accumulation point of the set
{z;,i € I}. The closed convex hull conv({z;,i € I} U{0}) is therefore
compact and the mapping C is well defined with values in K. The possible
accumulation of points at the origin 0 explains why we have to add the
origin to the convex hulls. Consider indeed the following example: let x €
Ko and for n > 1, m,, = 8, + 6,,-1,; then it holds that m,, — J, in
M, (K) and that conv(z,n'z) - conv(z,0) in K.

Proof of Theorem 2.4. According to Theorem 2.3, the scaled empirical

n
point process 3, = >_ dy-1x, converges weakly in M, (K) to the Poisson
i=1
point process I, » a; n — 00. The map ® being continuous, the continuous
mapping Theorem (see Billingsley [1]) implies that the convex hulls ®(,,)
weakly converges in K to the convex hull ®(II, ;).
The origin 0 is almost surely an accumulation point of the set Il ,
because the intensity mq , explodes at the origin (mq,»(B,) = oo for all
r > 0). This implies that

®(I1,,,) = conv(Il,,, U{0}) =conv(ll,,,) a.s.
On the other hand,
®(B3,) = conv({b,* X;,1 <i<n}u{0})
and
b, W, =conv({b, ' X;, 1 <i<n}).
An application of Lemma 2.1 yields
P(®(Bn), by W) < bt min [ X1,

1<i<n
and this distance converges almost surely to 0 as n — oo. As a consequence,

the weak convergence b, 'W,, = conv(Il, ) holds in K and Theorem 2.4
is proved. (I

Proof of Lemma 2.5. Consider a sequence (my,),>0 that converges va-
guely to m in M,(K). Let ¢ > 0. Denote by m:, (respectively, m®) the
restriction of m, (respectively, m) to B¢. These are finite point processes
on B® and m, — m® as n — oo. It is easy to see that we can write

kn k
e __ g __
m; = E 595? and m° = E Oz,
i=1 =1
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with, as n — oo,
kn—k and z} —wx;, 1<i<k.

Note that k,, is equal to k for n large enough. Let ny be large enough so
that for all n > ny,

kn=%k and d(z},z;)<e, 1<i<k.

For fixed n > ng, denote by A’ the set of points in m,,, and by B’ the set of
points in m. We prove easily that the sets A = A’U{0} and B = B’ U{0}
satisfy the assumption of Lemma 2.1: for example, a given point a in A’
is either in B;, and then d(a,0) < ¢, or in B", and then a = z? for some
1 <i<kandd(a,z;) < e. Using Lemma 2.1, we get that for all n > no,
p(C(my),C(m)) < e. This proves that C(my) — C(m) in £ as n — oo
and that the mapping C' is continuous. (]

2.5. Stability and structure of the limit shape. Let C, , be the limit
shape Cy , = conv(Il,,,) appearing in Theorem 2.4. This is a random
variable taking values in the Polish space K. Recall that IC has a natural
structure of cone with operations

C1 & Cy :W(Cl UCZ), aCy :{(IC; CECl}, 01,02 GIC, a > 0.

The following proposition states two interesting properties of the limit
shape: its stability with respect to the operation @& and a representation
in terms of LePage series. For a general discussion on LePage series in
abstract convex cone, see Davydov et al. [6] Theorem 3.6. The results are
a consequence of the study of convex-stable sets in Molchanov [12, Chap. 4,
Sec. 4.2] and the proof is omitted.

Proposition 2.7. (1) If C’Clw and C’fw are two independent copies of
Ca,o, then
d
ai/aC;U D aé/aC’i’a = (al + az)l/“C’a,g, ai,az > 0.

(2) Let (T'x)r>1 be the nondecreasing enumeration of the points of a
Poisson point process on [0,+00) with Lebesgue intensity measure
and, independently, let (},)r>1 be an i.i.d. sequence of S-valued
random elements with distribution o. Define e, = conv{e},}. Then,
Co,o admits the representation

d -1/«
Ca,o = Gp1ly, [y
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§3. CONVEX HULLS OF INDEPENDENT PROCESSES

3.1. Framework. We consider the case when the random variables
{Xk, k > 1} are independent processes, i.e., the convex cone K is a space
of functions. Two main cases occur: we can consider either the class of
continuous processes or the class of cad-lag processes; the corresponding
spaces are K = C(T,R%) and K = ([0, 1], RY), respectively.

The space C(T,R?) endowed with the uniform norm

= (t
lzll = sup max [2:(¢)]

is a Banach space and hence a convex cone satisfying the basic axioms
i)-v). We can therefore apply the general theory of convex hull developed
in the previous section in this particuliar case K = C(7T, R?). For example,
Theorem 2.4 provides the behavior of the convex hulls for a large sample
of regularly varying continuous processes.

The space D(]0, 1], R?) endowed with the Skorokhod metric d is a Polish
space, see Billingsley [1]. Note that the norm of z € D([0, 1],R?) is equal
to

el =d0,2) = sup max ()

This case suffers from the noncontinuity of the addition +. Some assump-
tions in the definition of convex cones are violated: axiom i) holds ex-
cept that the addition + is not continuous and in axiom v), the property
d(x + h,y + h) < d(z,y) is not fulfilled. Recall this simple example: let
v = 1p/21, ¥y = —x and for n > 2, xp = 1[1/241/n,1); then z, — x but
Tn +y /A x+y. As a consequence, Theorem 2.4 cannot be applied for the
sample convex hull — see Example 3.2 below.

As explained in the Introduction, we are interested rather in the convex
hull of the ranges of the process than in the sample convex hull. Denote
by K4 the space of nonempty compact convex subsets of R¢ endowed with
the Hausdorff' distance pg. Let {Xg, k& > 1} be independent and identi-
cally distributed random elements in K = C(T,R?) or in D([0, 1], R?) and
consider the convex hull of their range Wn defined by (1), with 7" = [0, 1]
when K = D([0, 1], R?). In the sequel, we will provide results for the limit
behavior of the Ky4-valued random variable Wn We will consider only
the case K = D([0,1],R%), the results being easily adapted to the case
K = C(T,R%). For notational convenience, we will use the shorter nota-
tion D = D([0, 1], R%).
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3.2. Regular variations for the convex hull of the range of a ran-
dom process. Let 7 : D — Ky be the application defined by

m(z) =conv{z(t), t €[0,1]}, =z e€D.
Our proof uses the representation
W = Sy m(X). (13)
The following lemma plays an important role in the proof.

Lemma 3.1. Suppose that X € RV, (D). Then the random element
m(X) of the cone K4 satisfies the condition RV , 5 (K4), where & = om~".

Proof of Lemma 3.1. Let b, be such that (9) holds in the definition
X € RV, +(D). We use the notation pg for the Hausdorff distance in g4
and |.| for the norm in Kg4:

IC| = pa({0},C), C €Ky
Let Sk, ={C €Ky4; |C|=1} and consider A € B(Sk,) such that d(0A)=0.
We need to state that for all r > 0,

im n —W(X) sl r =o(A)r ¢
nlqOo P ()] eA; |xn(X)| >rb, (A4) ) (14)

Remark that for all z € D and a > 0,
(@) = |lo]l and n(az) = an(x)

so that the condition |7(X)| > rb, is equivalent to || X| > rb, and the
condition % € A is equivalent to ﬁ € n~1(A). Furthermore, it is
easily checked that the map = is Lipschitz:

pd(’lT(iL“),’lT(y)) < d(ﬂ?,y), T,y € D.
From the continuity of =, it follows that d(7~1(A4)) C 7~ *(0A) and we get
o(A(x 1 (A)) < o(x~(9A)) = 5(DA) = 0.

Now we see that (14) is equivalent to

X
lim nP X entA; || X| >rby| =o(mH(A)r ™

which follows from X € RV, (D). O
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3.3. Convergence of the convex hulls /V\V/n As noted above, the cone
D violates the assumption that the addition + is continuous. As a conse-
quence, Theorem 2.4 does not hold true, as the following example shows.

Example 3.2. Consider a positive random variable n such that
P(n >r) ~rtasr — oo Let ¢ : (0,400) — (0,1/2) be a decreas-
ing function such that ¢(r) — 0 as r — oo. Consider X the D-valued
random variable defined by

X = (12— (n),1) (1) Jose<a -

It is easy to check that the random variable X is regularly varying in
K = D with exponent @ = 1 and spectral measure ¢ = d,,, where
To = (1(1/2,1)(t))o<t<1- The corresponding normalization sequence is sim-
ply b, = n. On the other hand, given i.i.d. copies X,,n > 1, of X, one can
show that W,, = conv(Xy, 1 < k < n) does not satisfy b, 'W,, = f(Il,,,)
as in Theorem 2.4.

Even though no limit theorem holds for the convex hull W,, of the
sample of processes in D, we can prove a limit theorem for the convex

hull Wn of their ranges in R?. Recall that the multiplication operation in
Mp(Kq) is defined by

G<Z5oi> = Z(Saci.
icl icl

Theorem 3.3. Suppose that X € RV, (D). Then the following weak
convergence holds in the space Kq4

b,;an = éa,g as n — oo
where 50[70 is given by the LePage series
Coro = @k>11—‘,:1/a5k

with the sequence (I'y)k>1 as in Proposition 2.7 and (€;)r>1 an indepen-

dent i.i.d. sequence in Si, with distribution 6 = on L.

An alternative representation of the limit is as follows:
Cor < conv({x(t); z€ll,,, telo, 1]}),

where II, , is a Poisson point process on D) with intensity m, . The proof
of Theorem 3.3 makes use of the following lemma.
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Lemma 3.4. The mapping ® : My (Kq) — Kq defined by

() -y

el i€l

satisfies the following properties:

%(am) = ai(m)N, - (15)
<I>(m1 + 777,2) = ‘I)(ml) D ‘I)(mg), (16)
& is continuous. (17)

Proof of Lemma 3.4. Equality (15) is straightforward. To prove (16),

consider my = }_ d¢,; and my = ) dc, . It is obvious that $(my) U
i€l i€l

®(my) C ®(my +my) so that ®(my) ® ®(ms) C g(my + my). Conversely,

the set
c=Jcn Gl {0}
il i€l
is such that ®(m; + my) = conv(C), and we have C C ®(m1) & ®(msy).
As a consequence, ®(my + my) C ®(my) ® ®(m,) and relation (16) holds
true. _

Finally, we consider the continuity of ®. The proof is similar to the proof
of Lemma 2.5. Consider a converging sequence (my,)n>o0 that converges
vaguely to m in M, (KCq). Let € > 0 and denote by m:, (resp. m¢) the
restriction of m,, (resp. m) to B. These are finite point processes on B¢

v .
and mS, — m® as n — oco. As a consequence, we can write

kn k
my = Z dcp and m° = Z oc,
i=1 i=1
with, as n — oo,
kn—k and C}'—C;, 1<i<k.

Note that k,, is equal to k for n large enough. Let ny be large enough so
that for all n > no,
kn=k and d(z},z;)<e, 1<i<k.

For fixed n > ng, denote by A’ the set of points in m,,, and by B’ the set of
points in m. We prove easily that the sets A = A’U{0} and B = B’ U{0}
satisfy the assumption of Lemma 2.1: for example, a given point a in A’
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is either in B, and then d(a,0) < ¢, or in B, and then a = z} for some
1 <i < kand d(a,z;) < e. Using Lemma 2.1, we get that for all n > ny,
p(®(m,,), ®(m)) < e. This proves that ®(m,) — ®(m) in K4 as n — oo
and that the mapping ® is continuous. (I

Proof of Theorem 3.3. In view of (13), the definition and properties of

b;lwn = &; (Z 6W(Xk)/bn> .

k=1
Using the fact that 7(X) € RV, 7(Kq), Theorem 2.3 implies the conver-
gence of the empirical point processes in M, (KCq):

® imply

Z(sﬂ(xk)/bn - ng as n — oo
k=1

with II, 7 a Poisson point process with intensity mq 7. The continuity of
® and the continuous mapping Theorem imply the weak convergence in
ICdZ N "
b ' W, = ®(Il,5) asn — oc.

Finally, it is well known that II, 7 admits the LePage series representation

d

oz = Z 5F;1/“5k
k>1

with the sequence (I'y)r>1 and (€;)r>1 as in Theorem 3.3. Using the mor-

phism properties and continuity of ® proved in Lemma 3.4, we deduce
that N p
Oy z) L @4y /G O

3.4. Properties of the limit shape éw,. The limit shape 5’%0 is a
random element of the convex cone K4 that enjoys the stability property.

Proposition 3.5. Let CL  and 520 be two independent copies of 50[70.

o,0

For all ay,a2 > 0 it is true that
a}/aéé’g D a;/aéi’a_ g (a1 + 0,2)1/a5a7g.

The proof of Proposition 3.5 is very similar to the proof of Proposi-
tion 2.7 and is omitted.

Interestingly, in many examples, the limit shape 5(1,0 is a random poly-
tope of R?, i.e., the convex hull of a finite numbers of points in R%. This
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can happen when the spectral measure ¢ is concentrated on F, the subset
of functions z € Sp such that

iL“(t) :f(t)S, te [071]7

for some s € Sgpa and some cad-lag function f : [0,1] — [0, 1] such that

f(0)=0 and sup f(¢t)=1. Note that the element s € Sga is uniquely de-
te[0,1]
fined and let @ : F — Sga be the measurable function defined by 6(x) = s.

Proposition 3.6. Suppose that the spectral measure o is concentrated
on F and let & = o~ . Let {&}, k > 1} be i.i.d. random elements on the
unit sphere Sga with distribution . Then,

éa,a L @k>1{rlzl/agk}-

If furthermore the interior of the closed convex hull of the support of @
contains 0, then Cy , is a random polytope with 0 as an interior point.

Proof of Proposition 3.6. When z € F,
m(x) = conv{x(t);0 < t < 1} = conv{0,6(x)}.

Let 5 an i.i.d. sequence with distribution o. The LePage series in Theo-
rem 3.3 can then be rewritten as

5’01’0 4 @kgll—‘]:l/aﬂ({—:k) = @k>1f‘;1/aconv{0,9(sk)}.
Let g, = () € Spa. The sequence &, is i.i.d. in Spe with distribution

. Furthermore, F,;l/ “zZr — 0 almost surely, so that we can remove the
point 0 in the summands and

Cor L @k}l{rlzl/agk)}-

Let Cj, = ®1<j<kI'y "/ {2k} be the partial sum. Denote by Int(C) the inte-
rior of C C R% We first prove that 0 € Int(Ck) if and only if
0 € Int(®1<j<k{E;}). To see this, note that 0 ¢ Int(Cy) if and only if there
exist some nonzero linear form L : R — R such that L(Fj_l/agj) = 0 for
all 1 < j < k; since the I';’s are nonnegative, this is equivalent to L(g;) > 0
for all 1 < j < k; hence to the fact that 0 ¢ Int(B1<j<k{g;})-

Denote by Supp @ the support of the measure . Under the assumption
that 0 € Int(conv(Supp 7)), we prove that 0 € Int(Cy,) for some random
integer ky. To see this, note that the assumption implies that there exists
some 61,...,6; € Supp @ such that 0 € Int(conv(fy,...,6;)). There exists
also 6 >0 such that for all 8},...,6; satisfying max{|¢; — 0%]; 1<j <} <9,
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it holds 0 € Int(conv(fi,...,8;)). By the definition of the support of 7,
there is some integers kg such that the set {gj; 1 < j < ko} intersects all
balls of radius ¢ and centered at 6; for some j € {1,...,l}. Then, we have
0 € Int(D1<i<ko{Ek}), and also 0 € Int(Cy,).

Then, Cy, contains some ball centered at the origin and with radius
d > 0. Since F,;l/ “gr — 0 almost surely, there is some (random) integer
ky > ko such that Ty /% < § for all k > ky; this implies Cj, = Cj, for all
k > k1. Hence 5(1,,, = C}, is the convex hull of a finite number of points,
i.e., a polytope in R?, and 0 is an interior point. O

§4. EXAMPLES

In this section, we recall some examples of regularly varying random
processes due to Davis and Mikosch [3] and Hult and Lindskog [7,9] and
illustrate our results in these cases.

4.1. Simple multiplicative process. Consider the D-valued random
process

X(t)=nY(t), tel0,1]
where Y is a cad-lag process with values in R? and 7 is a non-negative
regularly varying random variable with index a > 0, and independent
of Y. Assume that one of the following condition is satisfied:

i) E[|Y]|%F] < oo for some § > 0;
ii) E[|Y||%] < oo and P( > &) ~z—oo Cx~® for some C' > 0.

Then, according to Davis and Mikosch [3], Sec. 4.1, the process X is reg-
ularly varying on D with index a and spectral measure given by

B[V L pen]
T gy A

where ¥ = Y/|Y]l € Sp. Theorem 3.3 can be applied. However, in this
context, a slightly different formulation is more natural. Let

b, = inf{x > 0; P(n >2) <n '}
and € an i.i.d. sequence in Ky such that
& 2 conv{Y(t); 0<¢t<1}, k=1

Then, the renormalized convex hulls b 117[7“ converge weakly to the limit
shape defined by the LePage series @legl/ac’k.
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4.2. Regularly varying Lévy processes. Consider a random process
X with independent and stationary increments. We suppose that its paths
belong to D a.s. and that for all ¢ € [0,1] and u € R?,

E[e!“X(1)] = exp <t / (W) —1— i<U,y>1{y<1})V(dy)),
R4\ {0}

where v is a Lévy measure on R? \ {0} satisfying

(LA lyP*)v(dy) < oo
R4\ {0}
According to Hult and Lindskog [9], Lemma 2.1, X is regularly varying
with index a on D(]0,1],R?) if and only if v is regularly varying with
index o on RY; then if p is the spectral measure on Sy associated to v, the
spectral measure o on Sp associated to X is given by

1
o(B) = / / Ls(ylyy)u(dy) di, B € Sp.
0 S4

In other words, o is the distribution of the random function ¢ — Y1y 11(2),
where Y and T are independent random variables, Y with distribution
p on Sq and T uniform on [0,1]. Note that the spectral measure o has
the particular form discussed in Proposition 3.6: it is concentrated on the
set of functions F and in this case ¢ = u. Hence, we can jpply Theo-
rems 3.3 and 3.6, so that the renormalized convex hull b, 'W,, converges
to @@1{1",:1/“@}, where the £;’s and I'’s are as in Proposition 3.6. If
furthermore the convex cone generated by the support of the spectral mea-
sure p is equal to R?, then the limit shape is a random polytope with the
origin 0 in its interior.

4.3. Regularly varying Ornstein—Uhlenbeck processes. Consider
the cdd-lag process X defined by
t

X(t) = / eV L(y), te0,1]
0

where A > 0 and L is a regularly varying Lévy process with Lévy measure
v € RV, ,(R?) (see Sec. 4.2). According to Hult and Lindskog [9], X is reg-
ularly varying on D([0, 1], R?) with exponent o and its spectral measure o
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is equal to the distribution of the random function ¢ — Ye = =115 (),

where Y and T are independent random variables with distribution p and
Ujo,1) respectively. Here again, the spectral measure o is concentrated on
the function space F and & = p. The same conclusions as in Sec. 4.2 hold.

4.4. Symmetric a-stable series. We now consider processes of the form
X(t) = Zriri_l/a)/i(t): t€10,1], (18)
i=1

where a € (0,2) and the sequences (r;), (I';) and (Y;) are independent.
The sequence (I';) is as that of usual a nondecreasing enumeration of the
points of a Poisson point process with Lebesgue intensity on R, the Y;’s
are i.i.d. D-valued random elements, and the r;’s are i.i.d. Rademacher
random variables, i.e.,

P(T‘i = -l-].) = P(T‘l = —].) = ]./2

We will always assume that the series (18) converges a.s. in D and discuss
several conditions ensuring the convergence of this series, see Rosinsky [15].
In these cases, X is regularly varying with index a and our results apply.

Symmetric a-stable series in C = C([0, 1], R%).

It is known (see, e.g., Corollary 5.3 in Ledoux and Talagrand [16]) that
every symmetric a-stable random process X in C admits a representation
in law in the form of a LePage series (18) with E[||Y]|%] < co. In this case
the series converges a.s. in C and X € RV, ,(C) with the spectral measure
given by

B 1% 51
- (15 I

where ¥, = ¥, /IIY1]l € Sc. The renormalizing sequence satisfies b, ~
E[||Y1]/%]"/*n'/* so that we can apply Theorem 3.3. In these settings how-

ever, it is more natural to consider the renormalization n ="/ “Wn and the
limit shape @Dll“gl/agk, with € and i.i.d. sequence in K4 with the same
distribution as thar of conv{r Y1 (¢);0 <t < 1}.

Symmetric a-stable series in D = ([0, 1], R?).
In the case when 0 < a < 1 and the Y;’s are D-valued and 0 < a < 1, the
series (18) converges a.s. uniformly in D if and only if E[||Y1]|%] < oo (see
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Davis and Mikosch [3]). The case «a € [1,2) is more tricky and only some
examples can be found in the literature: for example if Y;(t) = 1y, 1)(t)
with U; an ii.d. sequence uniformly distributed on [0, 1], the series (18)
converges a.s. uniformly on [0, 1] and the limit process is a symmetric a-
stable Lévy process (see [3,15]). A more general criterion for convergence
of symmetric a-stable series is provided by Davydov and Dombry [5].

Proposition 4.1. Let « € [1,2) and consider {Y;; i > 1} an i.i.d sequence
of processes in D([0, 1], R?) such that E[|Y1|%] < co. Suppose furthermore
that there exist a continuous nondecreasing function F : [0,1] — [0, 00)
and constants f > 1/2 and v > 1/2 such that:

E[|Yi(t2) = Yi(t1)P] < |F(t2) — F(t1)|°, 0<t <t2 <1,

E[|Y1(t2) - Yi(t)* M1 () -Yi(t) PIS|F(t2) - F(t)*, 0<t <t <ta < 1.
Then the random series (18) converges a.s. in D([0, 1], R9)
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