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ON CHI-SQUARED TYPE TESTS AND THEIR
APPLICATIONS IN SURVIVAL ANALYSIS AND
RELIABILITY

ABSTRACT. The famous chi-square test of Pearson is well known,
but different modifications of this test are not so well known. The
theory of the chi-squared tests is developed very actively till now, es-
pecially in accelerated trials. We shall discuss here some applications
of the theory of chi-squared tests in reliability and survival analy-
sis for parametric regression models with time depending covariates
when data are right censored.

1. INTRODUCTION

In complete data case well known modification of the classical chi-
squared tests is the NRR statistics which is based on the differences be-
tween two estimators of the probabilities to fall into grouping intervals:
one estimator is based on the empirical distribution function, other — on
the maximum likelihood estimators of unknown parameters of the tested
model using initial non-grouped data (see Nikulin [22-24], Rao and Rob-
son [26], Greenwood and Nikulin [11], Drost [10], LeCam et al. [18], van
der Vaart [27], Voinov and Nikulin [28], etc).

Habib and Thomas [12], Hollander and Pefia [14], Zhang [30] considered
natural modifications of the NRR statistics to the case of censored data.
These tests are also based on the differences between two estimators of the
probabilities to fall into grouping intervals: one is based on the Kaplan-
Meier estimator of the cumulative distribution function, other — on the
maximum likelihood estimators of unknown parameters of the tested model
using initial non-grouped censored data.

The idea of comparing observed and expected numbers of failures in
time intervals was proposed by Akritas [2] and was developed by Hjort [13].
We develop this direction considering choice of random grouping intervals
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as data functions and writing simple formulas useful for computing of test
statistics for mostly applied classes of survival distributions. More about
these problems one can see in Bagdonavi¢ius, Kruopis and Nikulin [6].

We give chi-squared type goodness-of fit tests for general hypothesis
Hy with possibly time dependent covariates. Choice of random grouping
intervals as data functions is considered.

2. ESTIMATION AND PEARSON’S CHI-SQUARED TESTS FOR
COMPLETE DATA

In this section we discuss some applications of the chi-squared type
tests in classical situation for testing the hypothesis Hy according to which
the distribution of independent identically distributed random variables
X1, X, ..., X,,, X; € R', belongs to the parametric family

{Po,0 = (6:,...,0,)" € ©CR*}, (1)

O is an open in R?. We assume that for each 8 € © the measure Py is
absolutely continuous with respect to certain o-finite measure y, given on
Borelian o-algebra B. We denote

the density of the probability distribution Py with respect to the measure
i (in the continuous case we assume that p is the measure of Lebesgue on
B and in the discrete case p is the counting measure on {0,1,2,...}). We

denote
n

L.(0) =[] f(z,0), 6¢c®, (2)
i=1

the likelihood function of the sample X = (X1,...,X,)T, which is called
also the simple sample. We note here that in general in classical statistics
we worked only with simple samples. Concerning the family {f(z, @)} we
assume that for sufficiently large n (n — o0) the conditions of LeCam
of the local asymptotic normality (L.A.N.) and asymptotic differentiability
of the likelihood function L, (@) hold (see, for example, Ibragimov and

Has’minskii [15], Greenwood and Nikulin [11], Lawless [17]).
Let /(8) = grad In L, (@) be the vector-informant, based on the simple
sample X = (X1,...,X,)7, and let 1, = (1,...,1)T be the unit vector in
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R?, and 0, be the zero-vector in R?. Let denote
1. . .
i(0) = ﬁEef(e)fT(e) (3)

is the information matriz of Fisher, corresponding to the observation X;.
We suppose that i(-) is continuous on © and deti(@) > 0. On the other
hand we denote o
1(6) = ni(6) = Eol(6)("(0), (4)

the information matriz of Fisher, corresponding to the complete simple
sample X = (X1,...,X,)T.

We note also that under the LeCam’s regularity conditions there ex-
ist asymptotically normal y/n-consistent sequences of maximum likelihood
estimators {6, }:

[(6.) = max(6), (5)
which satisfy the likelihood equation
((0) = grad InL,(8) = 0, (6)
and for which it holds the relation
L(v/n(8, ~ ) — N(0.,i'(8)), (7

where — denotes convergence in distribution.
To construct the Pearson chi-squared test for Hy we divide the real line
by the points
—0 =2 <2 <...<Tp_1 <Tp =+00
into k (k > s+2) intervals (z;_1, ;] of grouping the data. Following Fisher
and Cramer we suppose that

I) pi(e):P{XlE(:Uifl,ﬂ?i]}>C>0,i:1,...,k};
pi(0) +p2(0) + ... +pr(60) = 1,0 € O;
82pi(0) . .
II) 36,90, are continuous functions on ©;
III) the matrix
B— H 1 opi(6) (8)

Vv pi(0) 00,

has rank s. Further, let v = (v1,...,v)? be the result of grouping the
random variables X1, ..., X, into the intervals (zg,z1], ..., (Tr—1, k). As
is well-known (see, for example, Cramer [9], Greenwood and Nikulin [11],

kXxs
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Voinov et al. [29]), in the case when Hj is true and the true value of the
parameter 0 is known, the standard Pearson statistics

k ‘
. (O
x2(0) = S e 9
=3 =0 )
has in the limit as n — oo chi-square distribution with (k — 1) degrees of

freedom.

On this fact is constructed the well-known chi-square criterion of Pear-
son, based on the statistics X2(8). According to this test

the simple hypothesis Hy : X; ~ f(x,0) is rejected if X2 > c,,
where ¢, = X}Zcf1,a is the a-upper quantile of the chi-square distribution
with (k — 1) degrees of freedom.

If @ is unknown, in this situation we need to estimate it using the
data. Hence the limit distribution of the statistics X?2(6},) depends on the
asymptotical properties of estimator @), which one puts in (9) instead of
the unknown parameter 6.

Example 1. Minimum chi-square estimator of Fisher. Let consider
the sequence {6} of estimators 6,,, which satisfy the condition

6,, = argmin X2(0) (10)
0cO
i.e.
200\ — 3 2
X3 (0n) = min X;,(6), (11)

obtained by the so called minimum chi-square method. B
It is well-known that the sequences {6,} of estimators 6,, satisfy the
condition

L(V(8, ~ ) — N(0,,37), (12)
where
nJ =nJ(0) =nB'B
is the information matriz of Fisher of the statistics v = (vy,..., )%,
Finally, it is easy to show that the theorem of Fisher holds
T P{X20,) <w | Hoj =P {xi_,, <u}. (13)

As is known (see, for example, Greenwood and Nikulin [11]) the estimator
of Fisher @,,, obtained by the minimum chi-square method,

X31(0n) = min X73(0), (14)
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verifies the property (12).

Using these results Cramer considered the so called multinomial maz-
imum likelihood estimator én — the point of maximum of the likelihood
function L,,(0) of the statistics v = (vy,...,vg)%:

Ln(én) = Igleag L,(0), Ln(0)= p;1 (a)p‘lz’2 @) - 'PZ’“ (0), (15)

also satisfies the relation (12). One can say that 6, is the estimator for
0, based on censored data (v1,...,v)?. The statistics (v1,...,v)? gives
the trivial example of non-complete data, when we don’t have the vector
of observations X = (X1,...,X,)7.

We note here that if Xy, ..., X, follow a continuous distribution f(z, ),
0 < O, then in this case the statistics v = (v1,...,v;)7 is not sufficient as
the vector of observations X = (Xy,...,X,)? is itself, and hence in this
case the matrix

ni(@) —nJ(0) (16)
is positive definite, where ni(@) is the information matrix of the simple
sample X = (X1,..., X,)T.

Example 2. Maximum likelihood estimator. Let consider y/n-consis-
tent sequences of maximum likelihood estimators {6,,}, i.e.

L(Vn(B, —8)) - N(0,,i "), n— oo.

As was shown by Chernoff and Lehmann [8], (see also LeCam et al. [18]),

lim P{X20,) <o |Hop =P{xi_, +M&+ -+ A& <a}, (17)
where x3_, ,&},...,& are independent random variables, & ~ N(0,1),
and in general \; = \;(0), 0 < A; < 1, and A; are the roots of the equation

| (1— \)i(8) —3(8) |=0.

From this theorem it follows that in practice it is not easy to apply
the best methods of estimation of unknown parameter for construction
the Pearson chi-squared test. In general the limit distribution of the test
statistics is rather very complicated! Only in 3 cases the Pearson statistics
X2 has in the limit chi-squared distribution with k — 1 (in the case of
Pearson), and k£ — s — 1 degrees of freedom (in the cases of Fisher and
Cramer).
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These difficulties we have in very simples cases of parametric models.
We want to test the statistical models used in survival analysis and reli-
ability, when data are censored and we take into account the influence of
covariates. It is evident that we have to modify the statistics of Pearson
to do it more adaptive for solving our problems.

3. STATISTICS Y,

Evidently if we want to use the maximum likelihood estimators for
testing Hy it is possible to construct the so called NRR statistics Y;? (see,
van der Vaart [27], Drost [10], Greenwood and Nikulin [11], Nikulin [22-24],
Rao and Robson [26], Moore and Spruill [20], Lemeshko et al. [19], etc. .. ),
which is the sum of the standard statistics of Pearson and non-negative
quadratic form @Q:

Y2 =Y2(0,) = X5(0,)G (0,)X,(0,) = X2(0,) +Q,  (18)

where the matrix G~ is a generalized inverse for the asymptotic matrix of

~

covariance G of the statistics X,,(6,,), where

X,.(6) = (”1"””1(”) ”’f‘”““”)T.
" \/np1(0) T v/ np(60)

We note that the quadratic form Y;? is invariant under choice of G~ in
virtue of the specific Cramer’s condition I) of the singularity of the matrix
G. As follows from the lemma of Chernoff-Lehmann

lim P {Y,f(@n) <z| HO} =P{xl, <z}

n—oo

Some examples of the applications of statistics ¥,? can be found in
the publications of Bagdonavicius et al. [6], Greenwood and Nikulin [11],
Voinov et al. [29], Lemeshko et al. [19], Drost [10], etc.

~

The statistics Y,2(0,,) has a particularly convenient form when we con-
struct a chi-square test with random cell boundaries for continuous dis-
tributions, which are used in survival analysis and reliability. It is evident
that the one can construct the similar test based on the statistics Y,? for
testing Hy if we use any square-root consistent estimator, by choosing
the corresponding matrix of covariance G' and its generalized inverse. For
example, one can apply the method of moments estimator, etc. Such ap-
proach is very important in survival analysis and reliability, when often
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we have no the complete data, especially when data are right or/and left
censored. We shall consider the situation with right censoring data.

4. ACCELERATED LIFE MODELS IN RELIABILITY AND SURVIVAL
ANALYSIS

Suppose that n independent failure time variables are observed. Let us
consider the hypothesis Hy stating that the survival function given the
vector of explanatory variables (covariates),

2(t) = (20(8),21(8), . zm()T, 20(t) =1,
has the form
S(tlz) = So(t; 0, 2), (1)
where Sy is a specified functional of time ¢, finite-dimensional parameter
0= (6p,01,...,0,)7 € ® C R*T! and z. The hypothesis Hy can be also
formulated in terms of the hazard functions A(t|z) = —S'(¢|z)/S(¢|z) or
the cumulative hazard functions A(t|z) = —1n S(¢|2).

Let us consider examples of such hypotheses (see Aalen [1], Andersen et
al. [3], Aven and Jensen [4], Bagdonavicius and Nikulin [5], Bagdonavicius
et al. [6], Klein and Moeschberger [16], Billingsley [7], LeCam et al. [18],
Nelson [21]):

1) Parametric accelerated failure time (AFT) model: 8 = (87 ,4%)%]

t

S(t12) = So( [ e Vi), &)
0
where 8 = (Bo,...,Bm)? is a vector of unknown regression parameters,

the function Sy does not depend on z; and belongs to a specified class of
survival functions: So(t,7), v = (11,---,7)" € G C RY. If explanatory
variables are constant over time then the parametric AFT model has the

form S(t|z) = Sy (e‘fBT'Z t; 7) , and the logarithm of the failure time T

under z may be written as
In{T}=p"2+e, e~ S(t)=So(lnt).

If € is normally distributed random variable then the AFT model is stan-
dard multiple linear regression model.

Sometimes some specified functions of z instead of z may be used. In
accelerated life testing transforms In z (power rule model), 1/z (Arrhenius
model), In (Meeker—Luvalle model), and others are used.

z
1—z
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2) Parametric proportional hazards (PH or Cox) model: @ = (87,+T)T,
A(tlz) = ¢ xa(t,7), (3)
where Ao belongs to a specified class of hazard functions A(¢,7), v € G C
R1.
3) Parametric generalized proportional hazards (GPH) models (includ-
ing parametric frailty and linear transformations models):
0= ("7"v")T,
t
WA 0) = [ ¢ ho(u7) du ()
0

where the function h(z,v) and the hazard function Ag(t,7) belong to a
specified parametric classes. In particular, if
v —vz 2
h(z,v) = %, h(z,v) = 1% or h(z,v)=z+ %,
we have respectively parametric positive stable, gamma, and inverse Gauss-
ian frailty models with explanatory variables.
4) Models with cross effects of survival functions:

Atlz) = g(z, B, v, Ao(t, 7)), (5)
where the cumulative hazard Ag has specified form and the function g has
one of the following forms:

T
_,,Tzi1 eBTZ-HCC" z

7 1 -l-e(’e"'”)Tz:v}e (6)

I 1 + e(ﬂ+u)Tz[exeyTz - 1] .
5. RIGHT CENSORED DATA AND TIME DEPENDING COVARIATES

We shall give chi-squared tests for the hypothesis Hy from right censored
failure time regression data:

(X1,51,Zl(8),0 <s < Xl); s (Xnaénazn(s)ao <s< Xn)7 (1)
where:
X, =T; NCY, 6i:1{Ti<Ci}7 1=1,2,...,n,
T; is being failure times; C; is being censored times and
Z,‘(t) = (Zio(t), Zil (t), cey Zim(t))T, Zio(t) =1.

the possibly time depending covariates. the random variable §; is the in-
dicator of the event {T; < C;}, and 7 is the finite time of the experiment.
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Denote by G the survival function of the censoring time C; and g;(t) is
the density of GG;. Set:

1, if X;<t and §; =1,
Ni(t) = Lix, <t ,6,=1) = { 0 if XZ >t. l

N;(t) is the number of failures of i-th item,

_ 1, it X;>t,
Yilh) = Lixizn _{ 0, if Xi<t.
It is also clear that our data can be easily represented in terms of processes
N; and Y; under the form following

(N1(t), Yi(t), t 2 0),...,(Nu(t), Yo(t), t > 0)

and vice versa. Set
N(t) = Z Ni(t), Y(t) = Z Yi(t). (2)

We note also that the representation
{Ni(s), Yi(s),0< s < t,i=1,2,...,n},

gives us the dynamics of the stories of failures and censoring up to time
t. The very concept history is well formalized in terms of the concept Fil-
tration of a random process (Bagdonavi¢ius and Nikulin [5], Lawless [17],
Andersen et al. [3], Klein and Moeschberger [16]).

Suppose that

1) The processes N;,Y;, z; are observed up to the finite time 7;

2) Survival distributions of all n objects, given z;, are absolutely continu-
ous with the survival functions S;(t,0) = S(t, 0, z;) and the hazard rates
Ai(t,0) = A(t,0, z;) of T; under z;;

3) Censoring is non informative and the multiplicative intensity model
holds: the compensators of the counting processes N; with respect to the

t

history of the observed processes are [ Y;(u)A;(u,8) du.

0
In this case for non-informative and independent censoring we may give
the following expressions for the likelihood function:
o s _s, —6; _5
Ln(0) =[] £71(X:,0)8; 7%(X;,0).G;' (X:)g; " (X:); 0€O.

i=1
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Since the problem is to estimate the parameter 8, we can skip the multi-
pliers which do not depend on this parameter. So under non-informative
censoring the likelihood function has the next form:
Ln(6) = [[ £(X:,0)8;7(X;,0), 6€®O.
i=1
Using the relation f;(¢,8) = \;(¢,0)S;(t,0) the likelihood function can be

written
n

Ln(0) = [[M(X:,0)8:(X:,0), 6¢c®.
i=1

The log-likelihood functions are the form:

10) => {6ilnXi(X;,0) +InS;(X;,0)}, 6¢cO.
i=1

The log-likelihood function is maximized at the same point as the like-
lihood function. As before the estimator 5, maximizing the likelihood
function L,(6), 8 € O, is called maximum likelihood estimator. We de-
note @ the maximum likelihood estimator of @ under H,. We remind that
0 = (BY, 1)L If N\i(u, @) is sufficiently smooth function of the parameter
6 then the MLE 8 satisfies the equation:

i(6) =0,
where [(6) is the score vector

o9 (O1(8) 8l(6) SO
i) = 5510 = (T S )

As before, the Fisher information matrix is I(8) = —Eel(@), where
n n 82

.. 8?
i=1 60 =1 80

With the sample (1), the parametric loglikelihood function is

n

10)=> /{m Ai(u, 0)dN;(u) — Yi(u)A(u, 0)} du.

i=1 0
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and the score function is
o0

[(0) = a% In \;(u, 0) dM;(u, 8),
0

where
t

Mi(t,8) = Ni(t) — /Y,-(u))\,-(u,G) du

is the zero mean martingale with respect to the filtration generated by the
data. The Fisher’s information matrix is given by formula

1(8) = —Egi(0) =

203" [ (510 (Z1nn0) 300 .

i=1 0
We suppose that there exists the matrix
n—oo
where 0 is the true value of parameter 6.
6. CHI-SQUARED TYPE TESTS CONSTRUCTION

Divide the interval [0, 7] into k£ smaller intervals I; = (aj—1, a;], ap =0,
ar = 7, and denote by:

Uj = N(a;) — N(aj-1), (1)

the number of observed failures in the j-th interval, j =1,2,... k.
Under regularity conditions the equality

ENi(t) = E / N (u, 0)Yi (u) du,

holds, where @ = (87,7T)T and X;(t,0) = A(t, z;, 0) is the hazard function
of T; under z;. It suggests that we can expect to observe

ej:Z / Ai(u, 0)Yi(uw)du, (2)

failures in the interval I;, here 0 is the MLE of @ under Hy.



54 V. BAGDONAVICIUS, R. LEVULIENE, M. S. NIKULIN, Q. X. TRAN

Let us consider the stochastic process

(0 = —=(N0) =3 [ M ¥ilwo)
0

i=1

which characterizes the difference between observed and expected numbers
of failures.

It looks very reasonable to construct the test for Hy, based on the vector
Z = (Zl, Z2, ey Zk)T, where

1

Zj = Hyn(a;j) — Hp(aj—1) = —=(U; —¢;), j =1,... k. (3)

7 ESTIMATION AND CHI-SQUARED TYPE TESTS

To investigate the properties of the statistics Z we need properties of
the stochastic process Hy,(t),t > 0. To obtain these properties we use the
properties of the ML estimators which are well known. We present here
these properties:

Conditions A:

(1) 8 55 0;

(2) J7(80) < Nin(0, i(80));

(3) V(B — B0) =i *(80).7=L(Bo) + op(1);
(4) V(8 — 80) —5 Nw(0, i (80));

(5) =10(00) - i(80); =Li(B) T i(B0),

where 0 is the true value of the parameter 8, and

Z/—ln (u, 0)){dNi(u) — Yi(u)\i(u, ) du},
0

i=1

is the score function.

These conditions mean consistency and asymptotic normality of the ML
estimator 6. We suppose also that the Conditions VI.1.1 given in Andersen
et al. ( [3]) hold.

Set

= Oln \;(t,0)
(0) (1) = () Ty
SO(¢,6) § Yi(t SW(t,0) = Vi) i \i(t,8),
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S (t,0) ZY 6 1“(;@; 9 ).t.0).

Conditions B: There ex1st a neighborhood ®( of 6y and continuous

bounded on ®q X [0, 7] functions

s (t,0)
00 ’

9?50 (t,0)

S(O) (ta 0)7 5(1) (t7 0) = 602

s2(t,0) =

)

such that for j =0,1,2

| )
sup  [|=SD(t,0) —sD(£,0)]| 20 as n— oco.
tc[0,7],0€@ T

The conditions B imply that uniformly for ¢ € [0, 7]
1 | 1A [0
P
EZ//\ZUOO du—>A EZ/% (u,00)Y;(u) du — C(t),
=17y =17
where A and C are finite functions.
Lemma. Under the conditions A and B the following convergence holds:
H, %V on DJ0,T];

here D[0, ] is space of cadlag functions with Skorokhod metric, V is zero
mean Gaussian martingale such that, for all0 < u < v < 7

cov(V (), V (v)) = A(u) — C* ()i (80)C(v).
Proof. By conditions A

\/ﬁ(a — 00) = i_l(ao) % ; b/ % In )\,‘(U, 00) dM,'(U,) + OP(].),

dM;(u) = dN; — Yi(u)Ai(u, 8y) du.
Using Conditions B and the Taylor formula we have:

H,(t) = \/_/ (u, 0 ) — 5O (u, 00)] du + op(1)

/ (u, 00)] " du/n(6 — 6y) + op(1)
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1 PN R
= =M@ - CT (03 (OO)W;O/%IHAi(u,GO)dM,-(u) +op(1)

—: M () — C"() i (60)M; (7).

The predictable variations and covariations are

BI'—‘

t
/S u0du—>A()
0

n t

M7 M5)0 =5 3 [ it 80w du L )

(M3z)(7)
== Z/—ln)\ (880 In ;s (1, )7 Ni (1, 00) Y (u)du 5> i(65).
=1 0

The result of the lemma is implied by the CLT for martingales because
Conditions A and B imply that the Lindeberg condition (see Andersen et
al. [3]) is obviously satisfied: for all ¢ € [0, 7]

/1{1>s}dM )>‘=—1{I>e}2/ (u, 80)Y;(u) du — 0,

0

o+

1

n 7 9
_nzl/—JlnA u 00)1{%1n)\i(u,90)>5\/ﬁ} dMZ(U)>‘
i=

1. [ d
—Z/{W 10 X4 (0 00) 1y 1 (0 B viny N (18 00) Vi (1) s — 0.
i=1 J

:
[

The proof is complete. (I
Let us consider now
Vi =Vl(aj) =V(aj-1), ojyr =cov(Vy, Vi), Aj = Ala;) - Alaj-1),
Cij = Ci(ay) = Cilaj-1),  Cj = (Cojy-.-,Cs)T B = [0 Ik,

C = [Cijl(s+1) xk>
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fori=0,...,s; 7,7 =1,...,k, and denote by A a k x k diagonal matrix
with the diagonal elements Ay, ..., Ag.
From Lemma one can obtain Theorem 1.

Theorem 1. Under conditions A and B
ZiYNNk(O,E) as n — oo,
where
¥ =A-Ccti"}(6y)C.
Remark. Set G =i— CA~'C”. The formula
ST =AtrAICTGeAT!
implies that we need to invert only diagonal k& x k matrix A and find the
general inverse of the s X s matrix G.

From Theorem 1 it follows that under conditions A and B the following
estimators of A;, C;, ¥ and i(fy) are consistent:

A; =Uj/n, C;= ! Z/%lnA,(u,G)dN,(u), S=A-CTi'C;
z:le
and .
+ 1 [0ln)\(w,0) [9lnX(u,B)
i= nzl/ 50 ( 20 dN;(u).
=10

8. TEST STATISTICS

The theorems 1 implies that a test for the hypothesis Hy can be based
on the statistics Y2 = ZTX~ Z, where

ST=AT 4 CTATGTCATY, G=1-cATiCT.

This statistics can be written in the form
k

. Uj —ej)?
YZ: ( J J + ,
xow e

where

Uj = Z i, € :Z/)\i(u,b\)yi(u)du, Q=wTG W,

i X; €l i=1 I;
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k
W = (W07"'7WS)T7 G = [/g\ll’]sxsa /g\ll’ :ill’ _chjcl’jA;17

Jj=1

1 B _
Gy = ' > 5ia_9lln>\i(Xi70):

1 9l n(X,8) Aln A (X, 0)
5= — 61 )
= Z 00, a0,

i=1
k o~ ~
Wl:ZClej‘le, LI =0,...,s.
j=1

The limit distribution of the statistics Y2 is chi square with
r = rank(V ") = Tr(V~V) degrees of freedom. If the matrix G is non-
degenerate then r = k.

Test for the hypothesis Hy: the hypothesis is rejected with approximate
significance level v if Y2 > x2(r).

Note that for there are many examples in Bagdonavicius et al. [6],
Voinov et al. [29] related with some models very important for reliabili-
ty and survival analysis.

Remark. On the choice of random grouping intervals.

An usual experiment plan in accelerated life testing is to test several
groups of units under different higher stress conditions. In such experiment
it is possible that the failures of units from different groups are mostly
concentrated in different non-intersecting intervals. So using common idea
of constructing chi square test by division of the interval [0, 7) into smaller
intervals and comparing observed and expected numbers of failures the
choice of the ends of the intervals is very important because dividing into
intervals of equal length may give intervals where the numbers of observed
failures are zero or very small.

Let us consider the choice of the limits of grouping intervals as random
data functions.
Define for j =1,...,k

n n
-~

Bo=) [MwdYiwdu= Y 0(X8), By =B ()

i=1 0 i=1
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So we seek @; to have equal numbers of expected failures (not necessary
an integer) in all intervals. So @; satisfy the equalities

@) = E;, gla) = Z/Ai(tﬁ)Yi(u) du.

Denote by X(1) < ... < X, the ordered sample from Xj, ..., X,,. Note
that the function

g9(a) =>_ Ai(X; Aa,)

=1
n n i—1
=> 1D Ap(@,0)+) A (X(z),a)] Lix 1) X (@)
i=1 Ll=1i =1

is continuous and increasing on [0, 7]; here X () = 0, and we understand
Z?:l ¢ = 0. Set

i
~ ~

bi= > Ap(X@),0)+ > A (X, 0). (11)
l=i+1 =1

If E; € [b;j—1,b;] then @; is the unique solution of the equation

n i—1
> Aw(@;,0) + Ay (Xg),0) = Ej. (12)
=i =1

Wehave 0 <@ < ap...<ap = 7.

Under this choice of the intervals e; = Ej /k for any j.
Remark. One can verify Under conditions A and B and random choice of
the endpoints of grouping intervals the limit distribution of the statistics
Y2 is chi-squared with r degrees of freedom.

So the hypothesis Hy is rejected with approximate significance level « if
Y? > x2(r), the statistics Y? is computed using the formulas (10)—(12),
replacing a; by a; in all formulas and taking

1o ~

e1 = =ep = EZA(Xi:O:Zi)'
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